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THREE-FACTOR INTEREST RATE MODELS∗

YOU-LAN ZHU †

Abstract. A three-factor interest rate model defined on a finite domain has been provided.
All the functions in the model can be obtained from the real markets. It has been proven that a
final-value problem of the corresponding partial differential equation on a finite domain has a unique
solution. Because the formulation of the problem is on a finite domain and correct, it is not difficult
to design efficient numerical methods for the problem. Therefore interest rate derivatives can be
evaluated without any difficulty and the results can readily be used in practice.

1. Introduction
There are a number of papers devoted to interest rate models. Many of them

discuss one-factor models (see Vasicek (1977), Cox, Ingersoll & Ross (1985), Ho &
Lee (1986), Hull & White (1990), Black, Derman & Toy (1990) and Black & Karasinski
(1991)). Since the information on interests is given by a random curve, for example,
by a zero-coupon bond curve, even the best one-factor model is hard to describe the
major features of the curve. However, it has been pointed out that the main feature
of a random curve related to interest rates can be described by three or four random
variables (see Jarrow (1996), Frye (1997), Hull (2000), James & Webber (2000) and
Wilmott (2000)). Therefore it is possible that a multi-factor model can describe the
major random features of such a curve. There exist several multi-factor interest rate
models (see Brennan & Schwartz (1982), Heath, Jarrow & Morton (1992) and James
& Webber (2000)). However, there are still some problems when those models are used
in practice. In this paper a three-factor interest rate model has been suggested. In
this model, the price of an interest rate derivative is evaluated by solving a final-value
problem of a degenerate parabolic partial differential equation on a finite domain. For
such a problem there exist efficient numerical methods (see Zhu & Li (2003)). Hence
the model can be used to price interest rate derivatives quite quickly.

Using the same idea, n-factor models with n > 3 can be established. The reason
why we discuss three-factor models is that usually three-factor models might be good
enough and three-dimensional parabolic problem can still be solved quite fast on
today’s computer, so that the model can be readily adopted in practice.

The rest of the paper is organized as follows. In Sections 1 and 2, we discuss how
to reduce a random zero-coupon bond curve to three or four random variables with a
small error. In Section 3 the partial differential equation for interest rate derivatives
is derived. In Sections 4 and 5, the major results are given. First the uniqueness
theorem for final-value problems of degenerate parabolic partial differential equations
on finite domains is proven. Then based on the theorem, we show that when our model
is used, the price of interest rate derivatives can be evaluated by solving a final-value
problem of degenerate parabolic partial differential equations on finite domains. Since
the formulation of the problem is correct, it is not difficult to design efficient numerical
methods to compute solutions for this problem.
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2. Approximation to zero-coupon bond curves
Let Z(t, t+T ) denote the T -year zero-coupon bond price at time t and we use the

notation Zi(t) = Z(t, t + Ti) for Ti, i = 0, 1, · · · , N . Here we also assume Ti < Ti+1,
i = 0, 1, · · · , N − 1, T0 = 0 and Z0(t) = 1, which means that the face value of bonds
is one. According to Zi(t), i = 0, 1, · · · , N , we can have an interpolation function
Z̄(t, t + T ) for T ∈ [0, TN ] by requiring Z̄(t, t + T ) to be a continuous function with
continuous first and second derivatives in the form:

Z̄(t, t + T ) =





a0,1 + a1,1T + a2,1T
2, 0 ≤ T ≤ T1,

a0,i + a1,iT + a2,iT
2 + a3,iT

3, Ti−1 ≤ T ≤ Ti,

i = 2, · · · , N − 1,

a0,N + a1,NT + a2,NT 2, TN−1 ≤ T ≤ TN .

(2.1)

In this function, there are 4(N − 2) + 6 = 4N − 2 coefficients. Since we have N + 1
conditions on the value of the function

Z̄(t, t + Ti) = Zi(t), i = 0, 1, · · · , N

and 3(N − 1) continuity conditions on the function, first and second derivatives at
T1, T2, · · · , TN−1, the total number of conditions is also 4N − 2. Therefore, those
coefficients in (2.1) can be determined by these conditions uniquely. This method is
called a cubic spline interpolation. A zero-coupon bond curve is a monotone function
with respect to T . If the interpolation approximation (2.1) for a set of Zi(t), i =
0, 1, · · · , N does not possess this property, the approximation needs to be modified so
that the monotone is guaranteed.

We assume that Z̄(t, t + T ) is a very good approximation to the zero-coupon
bond curve Z(t, t+T ), i.e., from Zi(t), i = 0, 1, · · · , N , we can determine a very good
approximation to the zero-coupon bond curve. In this way, a random curve is reduced
to N random variables with a small error.

3. Reducing the number of random variables
In the last section a random curve has been reduced to N random variables. In

this section the number of random variables will be reduced to K from N by the
principal component analysis.

Suppose that we have N random variables

Si(t), i = 1, 2, · · · , N

and the covariance between Si and Sj is

Cov[SiSj ] = bibjρi,j , i, j = 1, 2, · · · , N,

where −1 ≤ ρi,j = ρj,i ≤ 1 and ρi,i = 1. Let

c2
i and ai =




ai,1

ai,2

...
ai,N


 , i = 1, 2, · · · , N,
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be the eigenvalues and unit eigenvectors of the covariance matrix

B =




b2
1 b1b2ρ1,2 · · · b1bNρ1,N

b2b1ρ2,1 b2
2 · · · b2bNρ2,N

...
...

. . .
...

bNb1ρN,1 bNb2ρN,2 · · · b2
N


 .

That is, there is the following relation:

BAT = ATC,

where AT is the transpose of A and

A =




a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N

...
...

. . .
...

aN,1 aN,2 · · · aN,N


 , C =




c2
1 0 · · · 0
0 c2

2 · · · 0
...

...
. . .

...
0 0 · · · c2

N


 .

Let S̄1, S̄2, · · · , S̄N be N other random variables defined by



S̄1

S̄2

...
S̄N


 = A




S1

S2

...
SN


 .

For simplicity, this relation can be written as

S̄ = AS,

where

S̄ =




S̄1

S̄2

...
S̄N


 , S =




S1

S2

...
SN


 .

Then

Cov
[
S̄iS̄j

]
= E

[(
S̄i − E

[
S̄i

]) (
S̄j − E

[
S̄j

])]

= E

[(
N∑

k=1

aik (Sk − E [Sk])

)(
N∑

l=1

ajl (Sl − E [Sl])

)]

=
N∑

k=1

N∑

l=1

aikajl Cov [SkSl]

=
{

0, i 6= j,
c2
i , i = j.

That is, C is the covariance matrix of the random vector S̄. We furthermore suppose
that ci ≥ cj for i < j and ci ¿ cK, i = K + 1, · · · , N . Assume that on some day

S =




S∗1
S∗2
...

S∗N



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and

S̄ =




S̄∗1
S̄∗2
...

S̄∗N


 = A




S∗1
S∗2
...

S∗N


 .

Since ci, i = K + 1, · · · , N are very small, for a period starting from that day, we
neglect the uncertainty caused by the last N − K components of S̄. That is, we
assume in that period S̄ has the following form:

S̄ =




S̄1

...
S̄K

S̄∗K+1

...
S̄∗N




,

where S̄1, · · · , S̄K can take all possible values. In this case

S = AT




S̄1

...
S̄K

S̄∗K+1

...
S̄∗N




. (3.1)

Under this assumption, among S1, S2, · · · , SN , only K components are independent.
Suppose that

∣∣∣∣∣∣∣∣∣

a1,1 a2,1 · · · aK,1

a1,2 a2,2 · · · aK,2

...
...

. . .
...

a1,K a2,K · · · aK,K

∣∣∣∣∣∣∣∣∣
6= 0.

Then we can choose S1, S2, · · · , SK as independent components. Rewrite (3.1) as




S1

...
SK


 = AT

1




S̄1

...
S̄K


 + AT

2




S̄∗K+1

...
S̄∗N


 ,




SK+1

...
SN


 = AT

3




S̄1

...
S̄K


 + AT

4




S̄∗K+1

...
S̄∗N


 ,
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where

AT

1 =




a1,1 · · · aK,1

...
. . .

...
a1,K · · · aK,K


 , AT

2 =




aK+1,1 · · · aN,1

...
. . .

...
aK+1,K · · · aN,K


 ,

AT

3 =




a1,K+1 · · · aK,K+1

...
. . .

...
a1,N · · · aK,N


 , AT

4 =




aK+1,K+1 · · · aN,K+1

...
. . .

...
aK+1,N · · · aN,N


 .

Then, for SK+1, · · · , SN , we have



SK+1

...
SN


 = AT

3 (AT

1 )−1







S1

...
SK


−AT

2




S̄∗K+1

...
S̄∗N





 + AT

4




S̄∗K+1

...
S̄∗N


 . (3.2)

Therefore for given S1, · · · , SK , using (3.2) we can get all other components of a
vector S. Consequently (3.2) defines a class of vectors with K parameters. Therefore
by (3.2), we actually determine a class of S, where only S1, · · · , SK are independent.
Here we take S1, · · · , SK as independent components. However, it is also possible to
choose other K components as independent components.

Letting Si = Zi/Ti, i = 1, 2, · · · , N , by the principal component analysis de-
scribed above we can find a class of vectors (Z1/T1, · · · , ZN/TN)T with K parameters1

and using the method given in the last section, we can further determine the curve
Z̄(t, t + T ) for T ∈ [0, TN ]. From the books by Jarrow (1996), Hull (2000), James
& Webber (2000) and Wilmott (2000), we know that K usually is equal to three or
four for the random curves related to interest rates. Thus all the curves determined
by (3.2) form a class of curves with three or four parameters. The zero-coupon bond
curve at that day is one of such curves and the projections of any vector S deter-
mined by (3.2) on the eigenvectors corresponding to the eigenvalues cK+1, · · · , cN are
the same as those of S∗. Those projections are different for different S∗, so this is a
feature belonging to S∗. It is clear that the class of curves with such a feature needs
to be considered most for derivative-pricing problems. Hence when K = 3 or 4, the
class contains all possible and need-to-be-considered-most zero-coupon bond curves.
As soon as we have a zero-coupon bond curve, we can determine various interest rates

at t, including the spot interest rate at time t: − ∂Z̄(t, t + T )
∂T

∣∣∣∣
T=0

. In what follows,

such a function is denoted by r(Z1, · · · , ZK , t), or simply, by r.

4. Three-factor interest rate model
Suppose that Z1, Z2, Z3 are prices of zero-coupon bonds with maturities T1, T2, T3

respectively. Assume T1 < T2 < T3, which implies the relations 1 ≥ Z1 ≥ Z2 ≥
Z3. Furthermore we assume Z1 ≥ Z1,l, Z2 ≥ Z2,l and Z3 ≥ Z3,l, where Z1,l ≥
Z2,l ≥ Z3,l ≥ 0. Z1, Z2, Z3 are random variables and satisfy the system of stochastic
differential equations:

dZi = µi (Z1, Z2, Z3, t) dt + σi (Z1, Z2, Z3, t) dXi, i = 1, 2, 3

1If the conditions Zi ≥ Zi+1, i = 0, 1, · · · , N − 1 are not satisfied, then some modification needs
to be done in order to guarantee the monotonicity.
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on the domain Ω: {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤ Z1, Z3,l ≤ Z3 ≤ Z2}. dXi are the
Wiener processes and E [dXidXj ] = ρijdt with −1 ≤ ρij ≤ 1. The coefficients µi, σi

and their first and second order derivatives are assumed to be bounded on the domain
Ω.

Let V (Z1, Z2, Z3, t) be any function of Z1, Z2, Z3, t. Consider the portfolio

Π = V −
3∑

i=1

∆iZi.

We have

dΠ = dV −
3∑

i=1

∆idZi.

According to Itô’s lemma

dV =
∂V

∂t
dt +

3∑

i=1

∂V

∂Zi
dZi +

1
2

3∑

i=1

3∑

j=1

∂2V

∂Zi∂Zj
σiσjρi,jdt,

we have

dΠ =
∂V

∂t
dt +

3∑

i=1

(
∂V

∂Zi
−∆i

)
dZi +

1
2

3∑

i=1

3∑

j=1

∂2V

∂Zi∂Zj
σiσjρi,jdt.

Choosing ∆i =
∂V

∂Zi
, we obtain

dΠ =
∂V

∂t
dt +

1
2

3∑

i=1

3∑

j=1

∂2V

∂Zi∂Zj
σiσjρi,jdt.

In this case there is no risk. Any short time investment with no risk should have a
return rate of the spot interest rate r(Z1, Z2, Z3, t). Therefore we also have

dΠ = rΠdt = r

(
V −

3∑

i=1

∂V

∂Zi
Zi

)
dt.

Consequently we finally arrive at

∂V

∂t
+

1
2

3∑

i=1

3∑

j=1

∂2V

∂Zi∂Zj
σiσjρi,j + r

3∑

i=1

∂V

∂Zi
Zi − rV = 0.

Let

L3Z =
1
2

3∑

i=1

3∑

j=1

∂2

∂Zi∂Zj
σiσjρi,j + r

3∑

i=1

Zi
∂

∂Zi
− r. (4.1)

The equation above can be written as

∂V

∂t
+ L3ZV = 0.
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This is the equation any derivative V (Z1, Z2, Z3, t) should satisfy. For a derivative
security, at the maturity date T , its price should be equal to the payoff VT (Z1, Z2, Z3).
Therefore any European interest rate derivatives under this model should be solutions
of the problem





∂V

∂t
+ L3ZV = 0 on Ω× [0, T ],

V (Z1, Z2, Z3, T ) = VT (Z1, Z2, Z3) on Ω.

(4.2)

Introduce the following transformation:





ξ1 =
Z1 − Z1,l

1− Z1,l
,

ξ2 =
Z2 − Z2,l

Z1 − Z2,l
,

ξ3 =
Z3 − Z3,l

Z2 − Z3,l
.

(4.3)

Through this transformation, the domain Ω in the (Z1, Z2, Z3)-space is transformed
into the domain Ω̃: [0, 1]× [0, 1]× [0, 1] in the (ξ1, ξ2, ξ3)-space. Since

∂ξ1

∂Z1
=

1
1− Z1,l

,

∂ξ2

∂Z1
=

−ξ2

Z1 − Z2,l
,

∂ξ2

∂Z2
=

1
Z1 − Z2,l

,

∂ξ3

∂Z2
=

−ξ3

Z2 − Z3,l
,

∂ξ3

∂Z3
=

1
Z2 − Z3,l

,

we have

∂V

∂Z1
=

1
1− Z1,l

∂V

∂ξ1
− ξ2

Z1 − Z2,l

∂V

∂ξ2
,

∂V

∂Z2
=

1
Z1 − Z2,l

∂V

∂ξ2
− ξ3

Z2 − Z3,l

∂V

∂ξ3
,

∂V

∂Z3
=

1
Z2 − Z3,l

∂V

∂ξ3
,

∂2V

∂Z2
1

=
1

(1− Z1,l)
2

∂2V

∂ξ2
1

− 2ξ2

(1− Z1,l) (Z1 − Z2,l)
∂2V

∂ξ1∂ξ2

+
ξ2
2

(Z1 − Z2,l)
2

∂2V

∂ξ2
2

+
2ξ2

(Z1 − Z2,l)2
∂V

∂ξ2
,
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∂2V

∂Z2
2

=
1

(Z1 − Z2,l)
2

∂2V

∂ξ2
2

− 2ξ3

(Z1 − Z2,l)(Z2 − Z3,l)
∂2V

∂ξ2∂ξ3

+
ξ2
3

(Z2 − Z3,l)
2

∂2V

∂ξ2
3

+
2ξ3

(Z2 − Z3,l)2
∂V

∂ξ3
,

∂2V

∂Z2
3

=
1

(Z2 − Z3,l)
2

∂2V

∂ξ2
3

,

∂2V

∂Z1∂Z2
=

−1
(Z1 − Z2,l)2

∂V

∂ξ2
+

1
Z1 − Z2,l

(
1

1− Z1,l

∂2V

∂ξ1∂ξ2
− ξ2

Z1 − Z2,l

∂2V

∂ξ2
2

)

− ξ3

Z2 − Z3,l

(
1

1− Z1,l

∂2V

∂ξ1∂ξ3
− ξ2

Z1 − Z2,l

∂2V

∂ξ2∂ξ3

)
,

∂2V

∂Z1∂Z3
=

1
Z2 − Z3,l

(
1

1− Z1,l

∂2V

∂ξ1∂ξ3
− ξ2

Z1 − Z2,l

∂2V

∂ξ2∂ξ3

)
,

∂2V

∂Z2∂Z3
=

−1
(Z2 − Z3,l)2

∂V

∂ξ3
+

1
Z2 − Z3,l

(
1

Z1 − Z2,l

∂2V

∂ξ2∂ξ3
− ξ3

Z2 − Z3,l

∂2V

∂ξ2
3

)
.

Therefore the operator L3Z defined by (4.1) can be rewritten as

L3ξ =
1
2
σ̃2

1

∂2

∂ξ2
1

+
1
2
σ̃2

2

∂2

∂ξ2
2

+
1
2
σ̃2

3

∂2

∂ξ2
3

+σ̃1σ̃2ρ̃1,2
∂2

∂ξ1∂ξ2
+ σ̃1σ̃3ρ̃1,3

∂2

∂ξ1∂ξ3
+ σ̃2σ̃3ρ̃2,3

∂2

∂ξ2∂ξ3

+b1
∂

∂ξ1
+ b2

∂

∂ξ2
+ b3

∂

∂ξ3
− r, (4.4)

where

1
2
σ̃2

1 =
1
2σ2

1

(1− Z1,l)
2 ,

1
2
σ̃2

2 =
1
2

(
σ2

1ξ2
2 − 2σ1σ2ξ2ρ1,2 + σ2

2

)

(Z1 − Z2,l)
2 ,

1
2
σ̃2

3 =
1
2

(
σ2

2ξ2
3 − 2σ2σ3ξ3ρ2,3 + σ2

3

)

(Z2 − Z3,l)
2 ,

σ̃1σ̃2ρ̃1,2 =
σ1 (σ2ρ1,2 − σ1ξ2)

(1− Z1,l) (Z1 − Z2,l)
,

σ̃1σ̃3ρ̃1,3 =
σ1 (σ3ρ1,3 − σ2ξ3ρ1,2)
(1− Z1,l) (Z2 − Z3,l)

,

σ̃2σ̃3ρ̃2,3 =
−σ2

2ξ3 + σ1σ2ρ1,2ξ2ξ3 − σ1σ3ρ1,3ξ2 + σ2σ3ρ2,3

(Z1 − Z2,l) (Z2 − Z3,l)
,

b1 =
rZ1

1− Z1,l
,

b2 =
r (Z2 − Z1ξ2)

Z1 − Z2,l
+

σ1 (σ1ξ2 − σ2ρ1,2)
(Z1 − Z2,l)

2 ,

b3 =
r (Z3 − Z2ξ3)

Z2 − Z3,l
+

σ2 (σ2ξ3 − σ3ρ2,3)
(Z2 − Z3,l)

2 .
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Consequently problem (4.2) can be rewritten as




∂V

∂t
+ L3ξV = 0 on Ω̃× [0, T ],

V (ξ1, ξ2, ξ3, T ) = ṼT (ξ1, ξ2, ξ3) on Ω̃,

(4.5)

where L3ξ is defined by (4.4) and

ṼT (ξ1, ξ2, ξ3) = VT (Z1,l + ξ1(1− Z1,l), Z2,l + ξ2(Z1 − Z2,l), Z3,l + ξ3(Z2 − Z3,l)).

This is a final-value problem on a rectangular domain. It will be proven that this
problem has a unique solution. In such a case this problem can be solved by numerical
methods without big difficulties.

We would like to point out the relations among σ̃1, σ̃2, σ̃3, ρ̃12, ρ̃13, ρ̃23 and dξ1,
dξ2, dξ3. Using Itô’s lemma, from the definitions of ξ1, ξ2, ξ3, we have

dξ1 = µ̃1dt + σ̃1dX1,

dξ2 = µ̃2dt + σ̃2dX̃2,

dξ3 = µ̃3dt + σ̃3dX̃3,

where dX̃2 and dX̃3 are two new Wiener processes. Therefore σ̃2
1 , σ̃2

2 and σ̃2
3 are

Var[dξ1]/dt, Var[dξ2]/dt and Var[dξ3]/dt respectively. It can also be shown that

Cov[dX1dX̃2]/dt = ρ̃12, Cov[dX1dX̃3]/dt = ρ̃13

and

Cov[dX̃2dX̃3]/dt = ρ̃23.

5. Uniqueness of solution
Consider the parabolic final-value problem on a finite domain Ω





∂V

∂t
+ L3SV = 0, on Ω× [0, T ] ,

V (S1, S2, S3, T ) = VT (S1, S2, S3), on Ω,

(5.1)

where

L3S =
1
2
σ2

1

∂2

∂S2
1

+
1
2
σ2

2

∂2

∂S2
2

+
1
2
σ2

3

∂2

∂S2
3

+σ1σ2ρ1,2
∂2

∂S1∂S2
+ σ2σ3ρ2,3

∂2

∂S2∂S3
+ σ1σ3ρ1,3

∂2

∂S1∂S3

+µ1
∂

∂S1
+ µ2

∂

∂S2
+ µ3

∂

∂S3
− r,

σ1, σ2, σ3, ρ1,2, ρ2,3, ρ1,3, µ1, µ2, µ3, r being given function of S1, S2, S3, t

and the matrix

P =




1 ρ1,2 ρ1,3

ρ1,2 1 ρ2,3

ρ1,3 ρ2,3 1



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is a symmetric non-negative definite matrix. It is clear that the operators in problems
(4.2) and (4.5) have such a form.

The operator L3S can be rewritten as

L3S =
1
2

∂

∂S1

(
σ2

1

∂

∂S1
+ σ1σ2ρ1,2

∂

∂S2
+ σ1σ3ρ1,3

∂

∂S3

)

+
1
2

∂

∂S2

(
σ2σ1ρ2,1

∂

∂S1
+ σ2

2

∂

∂S2
+ σ2σ3ρ2,3

∂

∂S3

)

+
1
2

∂

∂S3

(
σ3σ1ρ3,1

∂

∂S1
+ σ3σ2ρ3,2

∂

∂S2
+ σ2

3

∂

∂S3

)

+a1
∂

∂S1
+ a2

∂

∂S2
+ a3

∂

∂S3
− r,

where

a1 = µ1 − 1
2

∂σ2
1

∂S1
− 1

2
∂ (σ2σ1ρ2,1)

∂S2
− 1

2
∂ (σ3σ1ρ3,1)

∂S3
,

a2 = µ2 − 1
2

∂ (σ1σ2ρ1,2)
∂S1

− 1
2

∂σ2
2

∂S2
− 1

2
∂ (σ3σ2ρ3,2)

∂S3
,

a3 = µ3 − 1
2

∂ (σ1σ3ρ1,3)
∂S1

− 1
2

∂ (σ2σ3ρ2,3)
∂S2

− 1
2

∂σ2
3

∂S3

and we define ρ2,1 = ρ1,2, ρ3,1 = ρ1,3 and ρ3,2 = ρ2,3. In what follows, Ω denotes
the boundary of the domain Ω and N = (n1, n2, n3) represents the outer unit normal
vector of Ω.

For problem (5.1), we have the following theorem.

Theorem 5.1. Suppose that
i) on Ω





n1σ1 + n2σ2ρ2,1 + n3σ3ρ3,1 = 0,

n1σ1ρ1,2 + n2σ2 + n3σ3ρ3,2 = 0,

n1σ1ρ1,3 + n2σ2ρ2,3 + n3σ3 = 0;

(5.2)

ii) on Ω

n1a1 + n2a2 + n3a3 ≤ 0; (5.3)

iii)

max
Ω

∣∣∣∣
∂a1

∂S1
+

∂a2

∂S2
+

∂a3

∂S3
+ 2r

∣∣∣∣ ≤ c1. (5.4)

In this case the solution of (5.1) is unique.

Proof. Define

τ = T − t and U(τ) =
∫∫∫

Ω

V 2(S1, S2, S3, T − τ)dΩ.
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Then from the partial differential equation, we have

1
2

dU

dτ
=

1
2

d

dτ

∫∫∫

Ω

V 2dΩ =
∫∫∫

Ω

V
∂V

∂τ
dΩ =

∫∫∫

Ω

V LV dΩ

=
1
2

∫∫∫

Ω

[
∂

∂S1

(
σ2

1

∂V

∂S1
+ σ1σ2ρ1,2

∂V

∂S2
+ σ1σ3ρ1,3

∂V

∂S3

)

+
∂

∂S2

(
σ2σ1ρ2,1

∂V

∂S1
+ σ2

2

∂V

∂S2
+ σ2σ3ρ2,3

∂V

∂S3

)

+
∂

∂S3

(
σ3σ1ρ3,1

∂V

∂S1
+ σ3σ2ρ3,2

∂V

∂S2
+ σ2

3

∂V

∂S3

)]
V dΩ

+
∫∫∫

Ω

(
a1

∂V

∂S1
+ a2

∂V

∂S2
+ a3

∂V

∂S3

)
V dΩ−

∫∫∫

Ω

rV 2dΩ.

Let us look at the first two integrals on the right hand side of the equation above.
For the first integral, we have

1
2

∫∫∫

Ω

[
∂

∂S1

(
σ2

1

∂V

∂S1
+ σ1σ2ρ1,2

∂V

∂S2
+ σ1σ3ρ1,3

∂V

∂S3

)

+
∂

∂S2

(
σ2σ1ρ2,1

∂V

∂S1
+ σ2

2

∂V

∂S2
+ σ2σ3ρ2,3

∂V

∂S3

)

+
∂

∂S3

(
σ3σ1ρ3,1

∂V

∂S1
+ σ3σ2ρ3,2

∂V

∂S2
+ σ2

3

∂V

∂S3

)]
V dΩ

=
1
2

∫∫∫

Ω

{
∂

∂S1

[(
σ2

1

∂V

∂S1
+ σ1σ2ρ1,2

∂V

∂S2
+ σ1σ3ρ1,3

∂V

∂S3

)
V

]

+
∂

∂S2

[(
σ2σ1ρ2,1

∂V

∂S1
+ σ2

2

∂V

∂S2
+ σ2σ3ρ2,3

∂V

∂S3

)
V

]

+
∂

∂S3

[(
σ3σ1ρ3,1

∂V

∂S1
+ σ3σ2ρ3,2

∂V

∂S2
+ σ2

3

∂V

∂S3

)
V

]}
dΩ

−1
2

∫∫∫

Ω

{(
σ2

1

∂V

∂S1
+ σ1σ2ρ1,2

∂V

∂S2
+ σ1σ3ρ1,3

∂V

∂S3

)
∂V

∂S1

+
(

σ2σ1ρ2,1
∂V

∂S1
+ σ2

2

∂V

∂S2
+ σ2σ3ρ2,3

∂V

∂S3

)
∂V

∂S2

+
(

σ3σ1ρ3,1
∂V

∂S1
+ σ3σ2ρ3,2

∂V

∂S2
+ σ2

3

∂V

∂S3

)
∂V

∂S3

}
dΩ

≤ 1
2

∫∫

Ω

{
n1

(
σ2

1

∂V

∂S1
+ σ1σ2ρ1,2

∂V

∂S2
+ σ1σ3ρ1,3

∂V

∂S3

)
V

+n2

(
σ2σ1ρ2,1

∂V

∂S1
+ σ2

2

∂V

∂S2
+ σ2σ3ρ2,3

∂V

∂S3

)
V

+n3

(
σ3σ1ρ3,1

∂V

∂S1
+ σ3σ2ρ3,2

∂V

∂S2
+ σ2

3

∂V

∂S3

)
V

}
dΩ
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=
1
4

∫∫

Ω

[
σ1 (n1σ1 + n2σ2ρ2,1 + n3σ3ρ3,1)

∂V 2

∂S1

+σ2 (n1σ1ρ1,2 + n2σ2 + n3σ3ρ3,2)
∂V 2

∂S2

+σ3 (n1σ1ρ1,3 + n2σ2ρ2,3 + n3σ3)
∂V 2

∂S3

]
dΩ

= 0.

Here we have used Gauss’s divergence theorem, condition (5.2) and the fact that P
is a nonnegative definite matrix.

For the second integral, the following is true:
∫∫∫

Ω

(
a1

∂V

∂S1
+ a2

∂V

∂S2
+ a3

∂V

∂S3

)
V dΩ

=
1
2

∫∫∫

Ω

(
∂(a1V

2)
∂S1

+
∂(a2V

2)
∂S2

+
∂(a3V

2)
∂S3

)
dΩ

−1
2

∫∫∫

Ω

(
∂a1

∂S1
+

∂a2

∂S2
+

∂a3

∂S3

)
V 2dΩ

=
1
2

∫∫

Ω

(n1a1 + n2a2 + n3a3) V 2dΩ

−1
2

∫∫∫

Ω

(
∂a1

∂S1
+

∂a2

∂S2
+

∂a3

∂S3

)
V 2dΩ

≤ −1
2

∫∫∫

Ω

(
∂a1

∂S1
+

∂a2

∂S2
+

∂a3

∂S3

)
V 2dΩ.

Here we have used Gauss’s divergence theorem and condition (5.3). Consequently,
noticing condition (5.4), we have

1
2

dU

dτ
≤ −1

2

∫∫∫

Ω

(
∂a1

∂S1
+

∂a2

∂S2
+

∂a3

∂S3
+ 2r

)
V 2dΩ

≤ 1
2
c1U.

From this relation we further have

U(τ) ≤ U(0)ec1τ .

Therefore if U(0) = 0, then U(τ) = 0 for any τ ∈ [0, T ], which means that problem
(5.1) has a unique solution.

Here we give a remark. When (5.2) holds on Ω, we say that the parabolic partial
differential equation is degenerate on Ω. For a parabolic partial differential equation
to degenerate on Ω, whether or not a boundary condition is needed depends upon
the value of n1a1 + n2a2 + n3a3. When condition (5.3) holds, no boundary condition
is needed. When a piece of boundary is a part of a plane with N = (−1, 0, 0), then
conditions (5.2) and (5.3) become σ1 = 0 and a1 ≥ 0. Similarly if N = (1, 0, 0), then
σ1 = 0 and a1 ≤ 0. From the paper by Zhu and Li (2003), we know that these are
the reversion conditions on the left and right boundaries respectively if the domain
is rectangular. Therefore conditions (5.2) and (5.3) are called the reversion condition
on a general domain. If on a piece of the boundary n1a1 + n2a2 + n3a3 > 0, then on
that piece a boundary condition might be required in order to have a unique solution.
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6. Application of the uniqueness theorem to three-factor models
Using Theorem 5.1, we can prove that under certain conditions the solutions of

both problem (4.2) and problem (4.5) are unique. The conclusion that problem (4.2)
has a unique solution is equivalent to the conclusion that the solution of problem (4.5)
is unique. Thus we need to prove the uniqueness only for one case. Here we choose
to prove the result for problem (4.5).

Theorem 6.1. Suppose all the coefficients and their first and second order deriva-
tives in problem (4.5) are bounded on the boundary of the domain Ω̃, the following
conditions are satisfied:

i) on surface I: {ξ1 = 0, 0 ≤ ξ2 ≤ 1, 0 ≤ ξ3 ≤ 1} ,

σ1 = 0 (or equivalently σ̃1 = 0) and rZ1 ≥ 0; (6.1)

ii) on surface II: {ξ1 = 1, 0 ≤ ξ2 ≤ 1, 0 ≤ ξ3 ≤ 1} ,

σ1 = 0 (or equivalently σ̃1 = 0) and rZ1 ≤ 0; (6.2)

iii) on surface III: {0 ≤ ξ1 ≤ 1, ξ2 = 0, 0 ≤ ξ3 ≤ 1} ,

σ2 = 0 (or equivalently σ̃2 = 0) and rZ2 ≥ 0; (6.3)

iv) on surface IV: {0 ≤ ξ1 ≤ 1, ξ2 = 1, 0 ≤ ξ3 ≤ 1} ,

σ1 = σ2, ρ1,2 = 1 and − r(Z1 − Z2) ≤ 0; (6.4)

v) on surface V: {0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1, ξ3 = 0} ,

σ3 = 0 (or equivalently σ̃3 = 0) and rZ3 ≥ 0; (6.5)

vi) on surface VI: {0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1, ξ3 = 1} ,

σ2 = σ3, ρ2,3 = 1 and − r(Z2 − Z3) ≤ 0. (6.6)

Then problem (4.5) has a unique solution.
Before proving this theorem, we give three remarks:
• The first two parts of condition (6.4) are equivalent to

σ̃2|ξ2=1 =

√
σ2

1 − 2σ1σ2ρ1,2 + σ2
2

Z1 − Z2,l
= 0. (6.7)

It is clear that from (6.4) we can have (6.7). Now suppose (6.7) holds, i.e.,

σ2
1 − 2σ1σ2ρ1,2 + σ2

2 = 0

or

σ2
1 + σ2

2 = 2σ1σ2ρ1,2.

Since

σ2
1 + σ2

2 ≥ 2σ1σ2

and −1 ≤ ρ1,2 ≤ 1, σ1 ≥ 0, σ2 ≥ 0, in order for the equality above to be true,
there must be

σ1 = σ2 and ρ1,2 = 1.
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Here when σ1 = σ2 = 0, we define ρ1,2 = 1. Thus we have our conclusion.
Similarly the first two parts of condition (6.6) are equivalent to

σ̃3|ξ3=1 =

√
σ2

2 − 2σ2σ3ρ2,3 + σ2
3

Z2 − Z3,l
= 0. (6.8)

• The last parts of conditions (6.1)-(6.6) hold automatically for this case. Be-
cause r, Z1, Z2 and Z3 are nonnegative, the last parts of (6.1), (6.3) and (6.5)
are fulfilled. On surface II, ξ1 = 1, so Z1 = 1 and the value of a zero-coupon
bond curve must be equal to one identically for T ∈ [0, T1] because the zero-
coupon bond curve is a non-increasing curve, which implies r(1, Z2, Z3, t) = 0.
Thus the last part of (6.2) is fulfilled. The last parts of (6.4) and (6.6) are
also satisfied because Z1 = Z2 on surface IV due to ξ2 = 1 and Z2 = Z3 on
surface VI due to ξ3 = 1. Thus for proving this theorem we can take these
conditions away. The main reason why we list them is that the conditions in
this theorem are actually not only sufficient but also necessary to conditions
(5.2) and (5.3) in Theorem 5.1. That is, problem (4.5) has a unique solution
if and only if conditions (6.1)-(6.6) hold.

• According to the Feynman-Kac formula, the partial differential equation in
(4.2) is related to the stochastic differential equations (see Karatzas & Shreve
(1988))

dZi = rZidt + σidXi, i = 1, 2, 3. (6.9)

Therefore we may think that dZi satisfy the stochastic differential equations
(6.9) when we consider problem (4.2). Intuitively, conditions (6.1)-(6.6) guar-
antee that a random point (Z1, Z2, Z3) satisfying the stochastic differential
equations (6.9) will not move from inside of the domain Ω to its outside.
For example, on surface I, the corresponding outer unit normal vector in the
(Z1, Z2, Z3)-space is (−1, 0, 0). The conditions σ1 = 0 and rZ1 ≥ 0 cause

−dZ1 = −rZ1dt− σ1dXi = −rZ1dt ≤ 0,

so a random point in Ω will not move outside the domain Ω from that part
of the boundary. On the surface IV, σ1 = σ2, ρ1,2 = 1 and −r(Z1 − Z2) ≤ 0.
In this case dX1 = dX2, and

−dZ1 + dZ2 = −rZ1dt + rZ2dt− σ1dX1 + σ2dX2

= −r(Z1 − Z2)dt− σ1dX1 + σ1dX1

= −r(Z1 − Z2)dt ≤ 0.

On that surface the corresponding outer unit normal vector in the (Z1, Z2, Z3)
-space is

(−1/
√

2, 1/
√

2, 0
)
. Therefore −dZ1 + dZ2 ≤ 0 also means that a

random point will not move outside Ω from that part of the boundary.

Proof. Since all the coefficients and their first and second order derivatives are
bounded on the domain Ω̃, condition (5.4) will hold. Thus if we can show that con-
ditions (5.2) and (5.3) hold on the entire boundary of Ω̃, then we have the conclusion
we need.
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First let us check conditions (5.2) and (5.3) on surface I. There N = (−1, 0, 0).
Thus conditions (5.2) and (5.3) are in the form





−σ̃1 = 0,

−σ̃1ρ̃1,2 = 0,

−σ̃1ρ̃1,3 = 0

and

−
(

b1 − 1
2

∂σ̃2
1

∂ξ1
− 1

2
∂ (σ̃2σ̃1ρ̃2,1)

∂ξ2
− 1

2
∂ (σ̃3σ̃1ρ̃3,1)

∂ξ3

)
≤ 0

respectively. Therefore when (6.1) is fulfilled, i.e., σ̃1 = 0, then (5.2) holds. It
is obvious that ∂σ̃2

1/∂ξ1 = 0 on surface I. The partial derivative with respect to
ξ2 or ξ3 is a derivative on surface ξ1 = 0 and σ̃1 = 0 on the entire surface I, so
∂(σ̃2σ̃1ρ̃2,1)/∂ξ2 = 0 and ∂(σ̃3σ̃1ρ̃3,1)/∂ξ3 = 0 on surface I. Thus condition (5.3)
becomes

b1 =
rZ1

1− Z1,l
≥ 0,

which is always true because both r and Z1 are non-negative. Therefore when (6.1)
is satisfied, (5.2) and (5.3) hold on surface I. When (6.3) holds on surfaces III, the
way to show (5.2) being satisfied and (5.3) being reduced to b2 ≥ 0 is the same. In
this case σ2 = 0 and ξ2 = 0, so (5.3) can be further reduced to

rZ2

Z1 − Z2,l
≥ 0.

It is clear that this is true, so (5.2) and (5.3) are fulfilled when (6.3) holds. On surface
V the situation is similar. That is, in the same way it can be shown that (5.2) and
(5.3) are fulfilled when (6.5) holds.

On surface II, if (6.2) is fulfilled, then (5.2) holds and (5.3) can be reduced to
rZ1 ≤ 0. Recalling that r = 0 when Z1 = 1, we know (5.3) also holds.

On surface IV, N = (0,−1, 0), condition (5.2) becomes




−σ̃2ρ̃2,1 = 0,

−σ̃2 = 0,

−σ̃2ρ̃2,3 = 0.

As demonstrated earlier, the first two parts of condition (6.4), σ1 = σ2 and ρ1,2 =
ρ2,1 = 1, are equivalent to σ̃2 = 0, so condition (5.2) is satisfied. In this case condition
(5.3) becomes b2 ≤ 0 and furthermore is reduced to

r(Z2 − Z1)
Z1 − Z2,l

≤ 0

due to ξ2 = 1, which holds when Z1 = Z2 on surface IV. Therefore if condition (6.4)
is satisfied, then (5.3) is fulfilled. Similarly, (5.2) and (5.3) are satisfied on surface
VI when (6.6) holds. Therefore we have proved that when (6.1)-(6.6) hold, (5.2) and
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(5.3) are satisfied on the entire boundary of Ω̃. Consequently, from Theorem 1 we
conclude that problem (4.5) has a unique solution.

Finally we will say a few words about how to use this model to evaluate interest
rate derivatives. First we need to choose Z1, Z2, Z3 and find σ1, σ2, σ3, ρ1,2, ρ1,3 and
ρ2,3 satisfying conditions (6.1)-(6.6), or find σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3 and ρ̃2,3 satisfying
conditions (6.1)-(6.3), (6.5) and (6.7)-(6.8). Finding these functions can be done
from the historic and present data on markets by statistics, including the forecast
technique on time series. After that, problem (4.5) needs to be solved. Suppose that
t = 0 today and the derivative is European style. On the maturity date T , for each
point (ξ1, ξ2, ξ3) in Ω̃, we can have Z1, Z2, Z3 by (4.3) and then determine a zero-
coupon bond curve by using the methods given in Sections 1 and 2. On having such
a curve, the value of payoff for the point can be obtained. For example, suppose we
want to price a half year option on 5-year swaps with exercise swap rate rse. From
what described in Sections 1 and 2, for a set of three zero coupon bond values Z1, Z2

and Z3, we can have a zero-coupon bond curve Z̄(t, t + T ∗;Z1, Z2, Z3). Here we use
Z̄(t, t + T ∗; Z1, Z2, Z3) instead of Z̄(t, t + T ∗) in order to explain the dependence of
the curve on Z1, Z2, Z3 explicitly. When we have this curve, the value of the option
at the maturity date T can be obtained by (see Zhu, Wu & Chern, 2002)

Q

[
1− rse

2

2N∑

k=1

Z̄

(
T, T +

k

2
; Z1, Z2, Z3

)
− Z̄ (T, T + N ; Z1, Z2, Z3)

]
,

where N = 5 because we consider 5-year swaps. This can be done for all points
(ξ1, ξ2, ξ3) in the domain Ω̃ for t = T . When we have the final value, we can solve
the final-value problem (4.5) from t = T to t = 0 and get the value of the derivative
at t = 0 for all the points in Ω̃. Since from Theorem 6.1 we know that the price
of an interest rate derivative can be determined uniquely by the final condition (the
payoff) given on a rectangular domain Ω̃, without requiring any boundary condition.
Therefore it is not difficult to design a numerical method to price such a problem.
In the paper by Zhu & Li (2003), the details of numerical methods for such a two-
dimensional problem are given. For such a three-dimensional problem, the idea is the
same and the details will be given in another paper in the near future. For American
style derivatives, the situation is similar. The only difference is that the value of
derivative must be greater than the constraint. Since the value of the constraint can
be obtained by the zero-coupon bond curve at all points in Ω̃× [0, T ], the value of a
derivative can be determined without any difficulty. However, in this case usually a
free boundary will appear.

7. Summary
A three-factor interest rate model and the corresponding parabolic partial dif-

ferential equation for derivative securities have been provided. This model has the
following features.

• The state variables are prices of three zero-coupon bonds with different ma-
turities which can be traded on the markets, so the coefficients of the first
derivatives with respect to the bond prices Zi in the partial differential equa-
tion simply are rZi.

• The volatilities of these zero-coupon bonds and their correlation coefficients
can be found directly from the real markets by statistics, so the model will
have the real major feature of the markets.

• All the zero-coupon bond curves having appeared in the real market can be
produced quite accurately. This is the base of a model giving correct results.
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If taking three random variables is not good enough, four-factor models can be
adopted. Generalizing three-factor models to four-factor models is straight-
forward.

• In other models, the partial differential equation is defined on an infinite
domain. For this model the corresponding partial differential equation is
defined on a finite domain and it has been proved that no boundary condition
is needed for its final-value problem to have a unique solution. Thus it is not
difficult to design correct and efficient numerical methods to price interest
rate derivatives.
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