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AN IMEX FINITE VOLUME SCHEME FOR REACTIVE EULER
EQUATIONS ARISING FROM KINETIC THEORY∗

MARIA GROPPI † AND MICOL PENNACCHIO ‡

Abstract. A class of reactive Euler-type equations derived from the kinetic theory of chemical
reactions is presented and a finite–volume scheme for such problem is developed. The proposed
method is based on a flux–vector splitting approach and it is second–order in space and time. The
final non–linear problem coming from the discretization has a characteristic block diagonal structure
that allows a decoupling in smaller subproblems. Finally, a set of numerical tests shows interesting
behaviors in the evolution of the space-dependent fluid-dynamic fields driven by chemical reactions,
not present in previous space homogeneous simulations.
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1. Introduction
We focus here on macroscopic balance equations with source terms arising from a

kinetic model for chemically reacting gas mixtures proposed quite recently in [17]. Ki-
netic descriptions of chemical reactions, based on Boltzmann-like equations, represent
a fundamental point to derive macroscopic laws for non-conservative phenomena start-
ing from the mesoscopic level (see the survey paper [16] and the references therein).
A closed set of balance equations for the main macroscopic fields of physical relevance
can be obtained in the physical situations when elastic scattering is the dominant
mechanism in the process [9]. The procedure amounts to a sort of Euler closure and
gives a good description of the chemical kinetics at a hydrodynamic level, after the
short initial layer in which elastic equilibrium is rapidly approached. This reactive
Euler approximation turns out to be robust, in the sense that the main features of
the kinetic equations (equilibria, H-theorem, mass action law, conservation laws) are
correctly reproduced.

Preliminary numerical simulations in space homogeneous conditions have been
presented in [9]. In this work we develop a numerical strategy to simulate the reactive
Euler equations in more general space-dependence conditions.

The proposed numerical approximation is not new in the literature for the non–
reactive Euler equations but, at least to the authors’ knowledge, it has never been used
before for this kind of problem arising from kinetic theory. It starts from a splitting
of the physical flux vector into a convective and a non–convective part. Then, for
the reactive terms, following the ideas of [5] a suitable reaction matrix is introduced,
whose structure and properties facilitated the construction of an efficient numerical
solution algorithm. The numerical scheme is derived from a special semi-implicit
evaluation of both the numerical flux chosen and the reactive terms; as a result we
obtain a method belonging to the class of the IMEX–RK methods.

A global second–order in space and time accuracy is obtained using a linear
reconstruction in space [14, 12] and the forward–backward Midpoint time marching
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scheme. The final discretized problem is non–linear due to the semi–implicit treatment
of the chemical reaction source terms. This approach yields a time evolution matrix
operator with a typical block structure that allows a decomposition of the global
non–linear problem into three separate smaller problems, solved iteratively via a block
Gauss–Seidel– like algorithm. Concerning the non–linearity, our numerical experience
shows that convergence of the iterative fixed point scheme is achieved by a small
number of iterations.

Finally, exploiting the structure of the algebraic system we verify that each single
block coefficient matrix is an M–matrix. This property guarantees the positivity of
the species mass densities at each time step under suitable constraints. Moreover,
all the uncoupled systems are solved without the use of Jacobian matrices or their
approximations. Indeed we solve different systems characterized by M–matrices; this
procedure is both easy and fast and considerably simplifies and accelerates the imple-
mentation of the scheme.

The robustness and the accuracy of the method are tested first on the classical
Euler equations of gas dynamics, then the role of the chemical source terms is in-
vestigated. The promising results reported here show interesting effects due to the
chemical reaction, especially on the spatial distribution of the compound, not yet
available in literature for this class of reactive equations arising from kinetic theory.
These preliminary numerical tests can be regarded as a first step towards effective
simulation of industrial reactors; moreover they also provide qualitative informations
about the solutions of the Boltzmann-like equations for chemical reactions, at a com-
petitive cost if compared to semi–continuous schemes applied to the original kinetic
equations [10].

The paper is organized as follows. In Section 2 we present the mathematical
model, in Section 3 we derive the numerical scheme, the algebraic decomposition
and its iterative solution procedure. Finally, in Section 4 we report some numerical
simulations, testing the proposed method and showing the main features of the model
and in Section 5 we summarize our conclusions.

2. The Mathematical Model
The kinetic model of the chemically reacting gas that we consider in this work is

composed of a mixture of four different species indicated by the symbol Si, where the
integer index i is ranging from 1 to 4. We assume that – besides the elastic collisions
and considering only translational degrees of freedom – these species can also interact
according to the bi-molecular reaction

S1 + S2 ­ S3 + S4. (2.1)

First we briefly recall here the Boltzmann–like equations governing the evolution of
this chemically reacting mixture, that were deduced in [17] and presented there in
a different formulation. Then we summarize the main steps of the closure strategy
that allow to obtain the reactive Euler equations starting from the kinetic model
(see [9] for details). In what follows, v and w stand for velocity vectors, and fi

denotes the i-th one-particle distribution function, with f for the vector (f1, f2, f3, f4).
Explicit dependence on position x and time t will be omitted unless necessary. The
relative velocity v − w will be cast as gn, with g = |v − w| and |n| = 1. If a (i, j)
collision results in generation of a pair (h, k) at velocities v′ and w′, the differential
scattering cross section is labeled by σhk

ij , and depends only on g and on n ·n′, where
n′ = (v′ − w′)/g′. In the case of elastic collisions, since (h, k) = (i, j) necessarily,
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notation will be simplified to σij only. The symbols mi and Ei stand for particle
mass and internal energy of chemical link, ∆Ehk

ij = Eh + Ek − Ei − Ej denotes the
total variation of internal energy, and index ordering may always be chosen in such
a way that ∆E34

12 , ∆E ≥ 0 (endothermic direct reaction in (2.1)). Moreover, mass
conservation in (2.1) means that m1 + m2 = m3 + m4 = M .

The extended Boltzmann equations for the evolution of the one-particle distribu-
tion functions fi are

∂fi

∂t
+ v · ∂fi

∂x
= Ii[f ] + Ji[f ], i = 1, 2, 3, 4 (2.2)

where Ii and Ji are the elastic and chemical integral collision terms.
The term Ii takes the usual form [7]

Ii[f ] =
4∑

j =1

∫

R3

∫

S2
g σij(g,n · n′)

[
fi(v

ij
ij)fj(w

ij
ij)− fi(v)fj(w)

]
d3w d2n′, (2.3)

where the two-dimensional unit sphere S2 is the domain of integration for the unit
vector n′. The post-collision velocities in the general interaction (i, j) − (h, k) are
given by

v′ = vhk
ij = αijv + αijw + αkhghk

ij n′, w′ = whk
ij = αijv + αijw − αhkghk

ij n′ ,
(2.4)

where αij = mi/(mi + mj) are the mass ratios and the outgoing relative speeds are
given by

ghk
ij =

[
µij

µhk

(
g2 − 2∆Ehk

ij

µij

)] 1
2

, (2.5)

depending also on the reduced masses µij = αijmj ; of course we have gij
ij = g.

Each of the chemical integral collision terms Ji is given by a single contribution,
because there is a unique chemical reaction in which species i is gained or lost. Upon
invoking microreversibility, the first integral term J1 can be written as [9]

J1[f ] =
∫

R3

∫

S2
Θ g σ34

12(g,n · n′)
[(

µ12

µ34

)3

f3(v34
12) f4(w34

12)− f1(v) f2(w)

]
d3 w d2n′,

(2.6)

and the expressions relevant to i = 2, 3, 4 are obtained from (2.6) by a cyclic permu-
tation of the indices.

The unit step function Θ = Θ
(
g2 − 2 ∆E

µ12

)
is relevant to the fact that the direct

reaction in (2.1) occurs when the kinetic energy of the relative motion overcomes the
endothermic threshold ∆E.

The major macroscopic moments of physical relevance are (i = 1, . . . , 4)

• the number densities ni =
∫

R3
fi d3v and the total number density n =

4∑

i =1

ni;

• the mass densities ρi = mini and the total mass density ρ =
4∑

i =1

ρi;
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• the drift velocities ui =
1
ni

∫

R3
v fi d3v and the mass velocity u =

1
ρ

4∑

i =1

ρiui;

• the pressure tensor P =
4∑

i =1

mi

∫

R3
(v − u) ⊗ (v − u) fi d3v , whose trace is

linked to the gas pressure by the relation p =
1
3
tr(P);

• the energy density E =
3
2

p

ρ
and the excitation energy Ech =

4∑

i =1

Eini.

The kinetic temperature is defined as usual by T =
p

n KB
, with KB Boltzmann

constant.

Among all these macroscopic moments of the distribution functions, there exist
seven quantities which are conserved under the whole collision process and correspond
to seven independent collision invariants [17]: they are three independent partial

mass densities, like ρ1 + ρ3, ρ1 + ρ4, ρ2 + ρ4, momentum ρu and total energy
1
2

ρ u2 +

ρE + Ech. There correspondingly are seven macroscopic conservation equations [9,
17] obtained by taking the weak form of the kinetic equations (2.2) relevant to the
collision invariants. Such equations constitute an exact but not closed set of coupled
differential equations for macroscopic observables, expressing conservation of mass,
momentum and total energy. Moreover, a detailed balance principle allows then to
derive completely and explicitly collision equilibria for (2.2) from collision invariants.
They result in the seven-parameter family of Maxwellian distributions [17]

Mi(v) = ni

(
mi

2πKBT

) 3
2

exp
[
− mi

2KBT
(v− u)2

]
, for i = 1, . . . , 4 (2.7)

with number densities linked by the mass action law

n1n2

n3n4
=

(
µ12

µ34

) 3
2

exp
(

∆E

KBT

)
. (2.8)

For practical applications, an appropriate closure of the set of macroscopic con-
servation equations can be obtained from the assumption that the gas mixture is in
mechanical equilibrium, but still far from the chemical one. This assumption is correct
in the frequent cases in which the time scale of the elastic relaxation processes is very
small with respect to the one of the chemical reaction process. The relevant closure
strategy consists first in taking moments of the kinetic equations (2.2) relevant to
the elastic collision invariants, which constitute now an 8-dimensional linear space,
generated for instance by the mass density of each species, momentum and kinetic
energy. Then, in the resulting set of 8 equations, one makes use of the corresponding
elastic collision equilibria in the evaluation of all unknown moments, either of the
distribution functions or of the chemical collision terms. Elastic collision equilibria
are essentially an 8–parameter family of local Maxwellian distributions as in (2.7),
with uncorrelated number densities.

Following [9], it is possible to show that under the above approximations the set
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of reactive Euler-type equations that results from this closure is

∂

∂t
(ρi) +

∂

∂x
· (ρiu) = Ci for i = 1, . . . , 4

∂

∂t
(ρu) +

∂

∂x
· (ρu⊗ u + pI) = 0

∂

∂t

(
1
2ρu2 + ρE

)
+

∂

∂x
· [( 1

2ρu2 + ρE + p
)
u
]

= CT

(2.9)

where, due to the chemical non-equilibrium, there are collision–like terms Ci, CT dif-
ferent from zero. Such collision source terms are given by Ci = miC̄i in the first four
density equations of (2.9), with

C̄3 = C̄4 = −C̄1 = −C̄2 = Cchem (2.10)

and the collision source term in the final energy equation of (2.9) is

CT = −∆ECchem, (2.11)

where

Cchem =
γT

m3m4

[
ρ1ρ2

(
µ34

µ12

)5/2

exp (−∆E/(KBT ))− ρ3ρ4

]
. (2.12)

The term γT in (2.12) is an average microscopic collision frequency with Gaussian
weight functions and by using, as we will, Maxwell molecules assumption for the
exothermic reaction 3 + 4 → 1 + 2, we have γT = const [9].

The set of reactive Euler-type equations (2.9) inherits the conservation properties
from the original kinetic model (see [9] for details) and in particular the same com-
binations of mass densities stated above are conserved; it can be easily deduced by
rearranging Eqs. (2.9) and by making use of (2.10).

It is worth noticing that for γT → 0 the set of equations (2.9) tends to the set
of the well-known Euler equations of inviscid gas dynamics. On the other hand, the
larger γT , the stronger is the role played by the chemical reaction in the evolution. In
the limiting situation γT → +∞ the equations at the Euler level would imply equating
to zero the square brackets in (2.12), which leads to the mass action law (2.8).

The physical model previously introduced can be rewritten in vector (conserva-
tive) form as

∂

∂t
U +∇ · F(U) = S(U) (2.13)

where

U =




ρ
ρu
E


 , F(U) =




ρ⊗ u
ρu⊗ u + pI

(E + p)u


 , S(U) =




ω
0
ω


 , (2.14)

U is the conservative solution vector whose six components are collected in the species
mass density vector ρ = (ρ1, . . . , ρ4)

T , in ρu total momentum and in E = 1
2ρu2 + ρE

total energy (note that ρ =
∑4

i =1 ρi is the total mass density); F(U) is the non-linear
flux function.
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The reactive source term S(U) takes into account chemical reactions in a mixture
of thermally perfect gases and is expressed in terms of ω, depending on the mass
densities ρ and on the thermal state of the gas mixture. In order to treat easily the
reactive term we write S(U) in a more general way, by introducing an ns×ns matrix
(ns = 4) with continuous entries Cij(ρ, T ) such that

ω = Dm ω̄, ω = −1T
ns

DE ω̄

with ω̄ = C(ρ, T )ρ, Dm = diag(m1, . . . , mns
), DE = diag(E1, . . . , Ens

) and 1ns

vector in Rns whose components are all equal to unity. Thus our chemical reaction
model can be included in a general formulation proposed in [5] to deal with reactive
hypersonic flows, simply defining the entries of this reaction matrix C(ρ, T ). The
explicit form of the matrix C(ρ, T ) used in this work is

C(ρ, T ) =




−ν ρ2 0
β

2
ρ4

β

2
ρ3

0 −νρ1
β

2
ρ4

β

2
ρ3

ν

2
ρ2

ν

2
ρ1 −β ρ4 0

ν

2
ρ2

ν

2
ρ1 0 −β ρ3




(2.15)

with

ν =
γT k(T )
m3m4

β =
γT

m3m4

k(T ) =
(

µ34

µ12

)5/2

exp(−∆E/KBT ).

The structure of the source term written in this way and the properties of the matrix
C(ρ, T ) will be useful in the following construction of the numerical approximation
algorithm.

3. Numerical Approximation
This section is devoted to the numerical approximation of system (2.13) by means

of a finite volume method. We focus on the physical situation where the distribution
functions depend only on one spatial coordinate and cylindrical symmetry in molecular
velocity space is assumed. In this case, we have that fs = fs(x, vr, vz, t) and it can be
easily checked that the reactive Euler system (2.9) reduces to a set of PDEs in only
one space variable (Euler equations in slab symmetry).

The numerical approximation was inspired by the scheme proposed in [5] and
here we describe in detail how the procedure can be adapted to our particular model.
We start with a decomposition of the physical flux vector function into the sum of a
convective and a non-convective part, i.e. we write the flux vector F(U) as

F(U) = a(U) U + g(U) (3.1)

with a(U) = u and g(U) = (0ns , p, pu)T . The numerical scheme used, that belongs to
the class of the IMEX–RK schemes [2, 1, 15], discretizes semi–implicitly the convective
part a(U) U together with the source term S(U), whereas the non-convective part
g(U) of the flux (3.1) is discretized explicitly.
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3.1. The Semi-discrete FV scheme. The Finite Volume (FV) method
has been used considering a uniform mesh. Cells are conventionally labeled by an
integer identifier ranging from 1 to N , ∆x and ∆t are spatial and time steps (scales)
respectively. We will adopt the following notations: xj := j ∆x, xj±1/2 := (j ±
1/2) ∆x, tn := n ∆t, Ui i-th cell-averaged solution; U is the global collection of N
cell-averaged data, i.e. U is the N × 6-size block vector UT = (UT

1 ,UT
2 , . . . ,UT

N ),
whose i-th block is the vector Ui with length 6.

If we reformulate equation (2.13) in an integral form for each cell of the mesh,
apply the Gauss divergence theorem and introduce suitable numerical flux functions to
discretize the physical flux, then we obtain the following semi-discrete FV numerical
scheme

dUi

dt
+

1
∆x

(Hi,i+1(U)−Hi−1,i(U)) = Si, i = 1, 2, ..., N (3.2)

where Si = S(Ui) is the source term computed on the i-th cell given by

Si = S(ρi, Ti) =




DmC(ρi, Ti)ρi

0
−1T

ns
DEC(ρi, Ti)ρi


 i = 1, . . . , N. (3.3)

The term Hi,j(U) denotes the flux estimated by using the cell-averaged solutions Ui

and Uj within adjacent cells.

3.2. Construction of the numerical flux. The FV scheme (3.2) is defined
in terms of a numerical flux, denoted by H, depending on the left and right solution
states UL and UR, i.e. H = H(UL,UR). More specifically, the numerical flux used
in this paper can be written as [19]

H(UL,UR) = F+(UL,UR)− F−(UL,UR) (3.4)

where F± are defined following the splitting (3.1) of F, that is

F+(UL,UR) = a+(UL,UR) UL + G+(UL,UR)
F−(UL,UR) = a−(UL,UR) UR + G−(UL,UR)

(3.5)

with

a+(UL,UR) =
sR

sR − sL
(uL − sL) (3.6)

a−(UL,UR) =
sL

sR − sL
(uR − sR)

G+(UL,UR) =
sR

sR − sL
g(UL) G−(UL,UR) =

sL

sR − sL
g(UR) (3.7)

sR = max {λmax
L , λmax

R , 0} sL = min
{
λmin

L , λmin
R , 0

}

and λmin
L,R , λmax

L,R minimum and maximum eigenvalues of the Jacobian matrix of the
flux vector function F computed on UL and UR respectively. This choice of sR and
sL yields the so-called local Lax-Friedrichs numerical flux (see [4, 8]).
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Let us define, for i = 1, . . . , N , the vectors gi = g(Ui−1,Ui,Ui+1) ∈ R6

gi = G+(Ui,Ui+1) + G−(Ui−1,Ui)− G−(Ui,Ui+1)− G+(Ui−1,Ui), (3.8)

the N ×N matrix A = A(U) with elements ai,j

ai,j =





−a−(Ui,Ui+1) j = i + 1
−a+(Ui−1,Ui) j = i− 1
a+(Ui,Ui+1) + a−(Ui−1,Ui) i = j
0 otherwise

(3.9)

and the 6N × 6N matrix A = A(U)

A = (A(U)⊗ I6)

where ⊗ denotes the tensor product, i.e. given two matrices A1 and A2 of order
m× n and p× q, then A1 ⊗A2 is the block-matrix of order mp× nq whose block ij
is (A1 ⊗A2)i,j = (A1)i,jA2.

If we introduce the numerical flux (3.4) into (3.2) we then obtain the final form
of the semi-discrete FV scheme

dUi

dt
+

1
∆x

(ai,iUi + ai,i+1Ui+1 + ai,i−1Ui−1) +
1

∆x
gi = Si (3.10)

with ai,j elements of the matrix A.

3.3. Second–order in space accuracy. A second–order in space accuracy can
be obtained using a linear reconstruction; let qi be anyone of the components of Ui

for the i-th cell, then the reconstructed value q̃i is defined by

q̃i(x, t) = qi + (x− xi)
σi

∆x
on the cell [xi−1/2, xi+1/2] (3.11)

with σi slope of the i-th cell based on the data Ui (see [12, 14]). Our choice of
slopes is the so-called minmod slope1 σi = minmod(δ+

i , δ−i ), with δ+
i = qi+1 − qi and

δ−i = qi−qi−1, which is the simplest one among the limiters proposed in [14]. In order
to avoid possible loss of accuracy near local extrema, more effective limiters could be
chosen, such as for example the UNO limiter (see [13, 14]). At the interface xi+1/2 we
have values on the left and right from the two linear approximations in each of the
neighboring cells. The left and right cell values for cells i and i + 1 are obtained as
in [12]

q̃L
i = qi +

1
2
σi q̃R

i+1 = qi+1 − 1
2
σi+1.

Thus when a spatial reconstruction is taken into account, the final form of the semi-
discrete FV scheme becomes

dUi

dt
+

1
∆x

(ai,iUi + ai,i+1Ui+1 + ai,i−1Ui−1) +
1

∆x
gi +

1
∆x

fi = Si (3.12)

with

fi =
[
a+(ŨL

i , ŨR
i+1)

(
ŨL

i −Ui

)
+ a−(ŨL

i−1, Ũ
R
i )

(
ŨR

i −Ui

)]

−
[
a−(ŨL

i , ŨR
i+1)

(
ŨR

i+1 −Ui+1

)
+ a+(ŨL

i−1, Ũ
R
i )

(
ŨL

i−1 −Ui−1

)]
.

1Here minmod stands for the usual function: minmod(a, b) = 1
2
(sgn(a) + sgn(b))min(|a|, |b|)
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Now the scalar functions ai,j and the vectors gi come from the evaluation of
a±(ŨL

i , ŨR
j ) and G±(ŨL

i , ŨR
j ) using the reconstructed values ŨL

i , ŨR
j , whereas fi

takes into account how much the reconstructed values differ from the cell-averaged
solutions.

The semi–discrete formulations (3.10) or (3.12) yield large systems of ordinary
differential equations in the unknown U. In order to write these systems in a compact
way, let us introduce the block vector

b(U) = −g(U)− f(U) (3.13)

with g(U) = (g1, . . . ,gN ) and f(U) = (f1 . . . , fN ). Note that the vector g(U) takes
into account the contribution given by the non–convective part of the flux g(U),
whereas f(U) is generated by the spatial reconstruction used. Hence the components
of g related to the species mass density vector ρ are zero, whereas f vanishes when
no reconstruction is considered.

Then we finally can write the following system of ordinary differential equations
in the unknown U

dU
dt

+
1

∆x
A(U) U =

1
∆x

b(U) + S(U). (3.14)

3.4. Time discretization. A semi–implicit scheme is used for the time dis-
cretization for both the flux and the reactive source term. This choice is motivated by
the fact that the source term becomes stiff for large values of γT (see (2.12)). Explicit
schemes are not convenient since, because of the stiffness, severe restrictions on the
time step can appear. On the other hand, fully implicit discretizations are in general
computationally too expensive. Thus we need a numerical scheme that can be always
applied, also in the stiff cases, and with acceptable computational costs.

As for the flux, in the framework of IMEX–RK schemes we consider here a semi–
implicit scheme where only the convective part is discretized implicitly. More precisely,
the term A(U)(U) is treated implicitly in U and explicitly in A(U). The first right
hand side term b(U), including the non–convective part of the flux g(U), is discretized
explicitly. The resulting semi-implicit scheme, which does not require any numerical
evaluation of the Jacobian matrix, produces a system of algebraic equations with a
very peculiar block structure that can be easily solved, thus ensuring the effectiveness
of the numerical approach.

Concerning the reactive source term S(U), an implicit discretization is appropri-
ate to handle the possible stiffness introduced by large values of γT . However, a fully
implicit evaluation of S(U), i.e. of both ρ and T , yields a strong non–linear system
which requires non–linear iterative techniques. The resulting algorithm may be too
expensive, then a convenient semi-implicit discretization has been taken into account.
Indeed, the particular structure of the chemical source terms S(Ui) given in (3.3)
suggests to treat implicitly the dependence on ρ and explicitly the one on T .

The first and simpler time-marching scheme considered is a semi–implicit version
of the Euler method for ODEs, that is

Un+1 + λ A(Un) Un+1 −∆t S(ρn+1,Tn) = Un + λ b(Un) (3.15)

with λ = ∆t/∆x, Un
i ,Un+1

i cell–averaged solutions at time level t = tn and t = tn+1

respectively.
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To obtain a method which is second order accurate in time as well as in space,
we can discretize the ODEs (3.14) using a forward–backward Midpoint scheme. The
first step evaluates a preliminary solution at the intermediate time tn+1/2 while the
second step advances the solution from tn to tn+1 by using the approximate solution
at tn+1/2. More specifically the scheme takes the form
First step.

Un+1/2 +
λ

2
A(Un) Un+1/2 − ∆t

2
S(ρn+1/2,Tn) = Un +

λ

2
b(Un), (3.16)

Second step.

Un+1 = Un + λ
[
b(Un+1/2)−A(Un+1/2) Un+1/2

]
+ ∆t S(ρn+1/2,Tn). (3.17)

Other higher order IMEX–RK scheme can be found in literature (see for instance [1]).

3.5. Solution algorithm. To simplify the presentation of the solution al-
gorithm and to highlight its properties we prefer reordering the vector U as UT =(
ρT ,qT , ET

)
where ρ, q, E collect all the cell components related to the mass den-

sity vector, the momentum and the energy respectively. Then with this notation the
Euler method (3.15) and the first step of the Midpoint scheme (3.16) can be written
in the following unified matrix form

Ln
α(ρn+α)Un+α + Cn+α

α = Bn
α (3.18)

where α is a constant, Ln
α(ρ) is the block-diagonal matrix operator

Ln
α(ρn+α) =




Dn+α
ρ + Mn

α ⊗ Ins 0 0
0 Mn

α 0
0 0 Mn

α


 (3.19)

with

Mn
α = IN + αλA(Un), (3.20)

Dn+α
ρ is a block–diagonal non–negative matrix whose i-th block is the ns×ns matrix

Dn+α
ρ,ii defined as

Dn+α
ρ,ii = −α ∆tDmC(ρn+α

i , Tn
i ) (3.21)

and Cn+α
α , Bn

α are the following vectors

Cn+α
α =




0
0

bn+α
C


 Bn

α =




bn
ρ

bn
q

bn
E


 +




ρn

qn

En




with bn
ρ,b

n
q,bn

E components of αλb(U) related to ρ, q and E respectively and bn
C

the vector whose i-th component is given by

bn+α
C, i = α ∆t 1T

ns
DEC(ρn+α

i , Tn
i )ρn

i .

Equation (3.15) can be obtained with α = 1 whereas to get (3.16) α = 1/2.
The typical structure of (3.19) suggests to decompose the global non–linear prob-

lem (3.18) into three separate smaller problems, which are solved sequentially via a
block Gauss-Seidel–like algorithm. The solution algorithm proceeds as follows:
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(i) Solve the non–linear system for species mass densities ρ
(
Dn+α
ρ + Mn

α ⊗ Ins

)
ρn+α = bn

ρ + ρn

(ii) Solve the system for momenta q

Mn
αqn+α = bn

q + qn

(iii) Solve the system for total energies E
Mn

αEn+α = bn
E + En − bn+α

C .

Note that the term bn
ρ is different from zero only when the spatial reconstruction is

considered (see definitions (3.13) and (3.7)).
Step (i) requires the solution of a non–linear problem; this non–linearity comes

from the semi–implicit treatment of the chemical source term. If we introduce the
map Φ(·) : RN×ns → RN×ns defined as follows

Φ(ρn+α) :=
(
Dn+α
ρ + Mn

α ⊗ Ins

)−1 (
bn
ρ + ρn

)

then the solution of (i) can be seen as the fixed point ρn+α = Φ(ρn+α). Numerical
experiments show that, if the time step ∆t is sufficiently small, the map is contractive
hence convergence of the iterative fixed point scheme is guaranteed. A detailed study
on the existence and uniqueness of the solution can be found in [4]. Finally, steps (ii)
and (iii) are linearized by using the upgraded values of ρn+α.

The resulting linear algebraic systems may be solved by a standard Krylov solver,
such as the preconditioned Bi-CGSTAB method. In the next section we will show
that each diagonal block of (3.19) is an M–matrix. This property can help to solve
the algebraic systems in a simpler and more efficient way (see [4, 5]).

3.6. Properties of the scheme. Positivity of the mass densities ρ can be
obtained using some properties of matrices Mn

α and Dn+α
ρ .

First let us focus on the matrix C previously introduced for the source term S.
It can be shown that the entries Cij(ρ, T ) of the ns × ns matrix C(ρ, T ) satisfies

1. Cii(ρ, T ) ≤ 0 i = 1, . . . , ns

2. Cij(ρ, T ) ≥ 0 i 6= j
3.

∑ns

i=1 Cij(ρ, T ) = 0 j = 1, . . . , ns

For reader’s convenience we report the definition of M–matrix and a Lemma that will
be used in the sequel (see [3]).

Definition 3.1. A real square matrix A is called an M–matrix if and only if A can
be written in the form

A = sI−B, s > 0, B non–negative matrix

where s ≥ ρ(B) and ρ(B) is the spectral radius of B. A non–singular M–matrix
requires s > ρ(B).

Lemma 3.2. The following statements are equivalent:
i) A is a non–singular M–matrix
ii) AT is a non–singular M–matrix
iii) there exists a positive vector x such that Ax is also a positive vector2

2A positive vector is a vector whose entries are all positive
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iv) A−1 is a non–negative matrix
Following [4, 5] we can state that

Proposition 3.3. The three diagonal blocks defined in (3.19) are M–matrices.

Proof.
1. Mn

α is a non–singular M–matrix.
In fact by using the definition of Mα and from (3.9) we have

(
1T

NMn
α

)
j

=
N∑

i=1

Mn
α,ij = Mn

α,jj +
∑

i 6=j

Mn
α,ij = 1 > 0

Thus from Lemma 3.2 with x = 1N , we obtain that the second and the third
diagonal block in (3.19) are M–matrices.

2. Mn
α ⊗ Ins is a non–singular M–matrix.

Taking x = 1N ⊗ 1ns , by using the definition of dyadic product and the
property 1T

NMn
α > 0 previously obtained, we have

xT (Mn
α ⊗ Ins) = (1N ⊗ 1ns)

T (Mn
α ⊗ Ins) =

= 1T
NMn

α ⊗ 1T
ns

Ins =

= 1T
NMn

α ⊗ 1T
ns

> 0.

3. From the properties of the matrix C and definition (3.21) we get xT Dn+α
ρ = 0

with x = 1N⊗1ns . Hence, the first diagonal block in (3.19) Dn+α
ρ +Mn

α⊗Ins

is a non–singular M–matrix.

Proposition 3.4. Let us assume to use the time–marching scheme (3.15) without
any space reconstruction, hence a globally first–order scheme. If ρ0 ≥ 0 then the
scheme is unconditionally non–negative, that is ρn+1 ≥ 0 ∀n without any condition
on ∆t.

Proof. The first diagonal block of equations related to ρ (with α = 1) is

(
Dn+1
ρ + Mn

1 ⊗ Ins

)
ρn+1 = bn

ρ + ρn

If no reconstruction is devised, bn
ρ reduces to zero. Moreover, since Dn+1

ρ +Mn
1 ⊗ Ins

is a non–singular M–matrix, from Lemma 3.2(iv) if ρn ≥ 0 we get unconditionally
ρn+1 ≥ 0, i.e. this result is independent of any constraint on ∆t.
Remark 1. When a spatial reconstruction is taken into account bn

ρ does not vanish.
By using the non–negativity of the inverse of an M–matrix (Lemma 3.2(iv)) we obtain
the non–negativity of ρn+1 under the condition bn

ρ + ρn ≥ 0.
Numerical experience shows that this condition is not too strict and it can be

achieved for a quite large range of values λ. However when a second–order in time and
space scheme is used, a general discussion is more difficult (see for instance [4, 11]).
In this case numerical simulations show that we still have positivity of the species
mass densities and also of the total energy, i.e. the scheme prevents the non–physical
quantities from appear during the solution process.
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4. Numerical Results
In this section we perform some numerical tests both to validate our method,

assessing some properties of the scheme used, and to investigate the effects of the
chemical reaction on the evolution of the fluid–dynamic quantities characterizing the
mixture. All the numerical results presented are obtained using the Midpoint scheme
(3.16)-(3.17) and a linear reconstruction in space.

4.1. Application to Euler equations of gas dynamics. We now present
an application of the scheme to the classic evolution equations for a mixture of
monoatomic gases. Our first test, chosen to validate our numerical scheme, is the
Riemann problem for the Euler system of inviscid gas dynamics (system (2.9) in the
limit γT → 0), similar to the one proposed by Sod [18] which consists of the following
initial data

ρ = 1 u = 0 p =
5
3

for x < 0.5

ρ =
1
8

u = 0 p =
1
6

for x > 0.5.

For comparison purposes, we will use the same parameters as in [13] considering
the case of four equal gases; hence, we will plot the total mass density ρ. A fixed
mesh ratio ∆t = ∆x/9 as in [13] has been used.
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Fig. 4.1. Solution at time instant t = 0.07 of the Euler equations of gas dynamics for a mixture
of four equal monoatomic gases. Density (left) and velocity (right) computed with 200 and 1600 grid
points (dashed and continuous line respectively).

We consider the equations in the interval [0, 1] and in Fig. 4.1 we present numerical
results at time instant t = 0.07. Fig. 4.1 shows the behavior of density and velocity,
computed using 200 and 1600 grid points. It is worth noticing that our results well
reproduce those obtained in [13] by using generalized Nessyahu-Tadmor schemes.

Then we can extend our scheme to more general cases and we start by dealing with
a mixture of four gases with different mass densities, i.e. we consider the following
initial data

ρ1 =
1
10

ρ2 =
2
10

ρ3 =
3
10

ρ4 =
4
10

u = 0 p =
5
3

for x < 0.5
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ρ1 =
1
80

ρ2 =
2
80

ρ3 =
3
80

ρ4 =
4
80

u = 0 p =
1
6

for x > 0.5.

The given numerical values have to be considered as dimensionless and corresponding
to arbitrary scales; they have been chosen for illustrative purposes only. As before,
in Fig. 4.2 we display the solutions at time instant t = 0.07 for the different mass
densities ρi, for global mass density ρ, for velocity u and for pressure p. As expected,
the same trend characterizes the plots of mass densities and we obtain results very
similar to the ones of Fig. 4.1.
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Fig. 4.2. Solution at time instant t = 0.07 of the Euler equations of gas dynamics for a mixture
of four gases with different mass densities. Top pictures: densities (left) and total density (right)
computed with 200 grids points. Bottom pictures: velocity (left) and pressure (right).

4.2. Application to the reactive Euler equations. We now perform a
few numerical simulations to test our method when applied to the reactive Euler
equations. As a first step, we start by considering the case of energy gap ∆E = 0.
Consequently, the computed global quantities ρ, ρu, E have to be the same as those
obtained from the classical Euler system, whereas the mass densities ρi may differ
from each other; this property can be easily verified by summing equations (2.9).

Our first test is given again by the Sod problem, and in Fig. 4.3 (left) we display
the global ρ for the two different cases of no reaction and of reaction with ∆E = 0;
we observe complete overlapping of the two solutions, as predicted by the property
above mentioned. This figure allows a qualitative comparison; an error analysis based
on the computation of the relative errors between the global mass densities arising
from the systems (reactive with ∆E = 0 and non–reactive, respectively) was also
performed. More precisely, in our test the relative errors between the reactive and
the non–reactive cases in L∞ norm for ρ, ρu, E are reported in table 4.1. In these
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simulations, the chosen values for masses, appearing in the reactive terms, are m1 =
58.5, m2 = 18, m3 = 40, m4 = 36.5.

The difference between the density ρ1 is shown in Fig. 4.3 (right), where we
compare the numerical solutions coming from the reactive and non–reactive equations.
The two profiles are clearly different, as expected, due to the effects of the chemical
reaction.
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Fig. 4.3. Comparison of the solutions of the non–reactive and reactive equations for a mixture
of four gases with different masses and mass densities. The reactive equations relates to the case
of ∆E = 0. Total mass density ρ =

P4
i=1 ρi (left), mass density ρ1 (right) for the non–reactive

(continuous line) and the reactive case (dashed line).

Table 4.1. Relative errors in norm || · ||∞ for ρ, ρ v, E computed solving the non–reactive and
the reactive (with ∆E = 0) equations. Note that we used γT = 100.

Grid points ρ ρ u E
200 5.957 10−5 1.406 10−4 5.587 10−5

400 2.761 10−5 4.600 10−5 2.373 10−5

800 2.206 10−5 4.146 10−5 1.744 10−5

This figure shows that in the unperturbed regions where u = 0 the evolution of
the mass density ρ1 (and the same for all the other ρi) is characterized by a space-
homogeneous trend [9]. The rate of variation (with respect to the non–reactive case)
depends on the strength of the reactive source terms and it is mainly proportional to
the values of γT and ∆E.

In Fig. 4.4 (left) different spatial distributions of ρ1 at the same time instant
t = 0.07 are plotted, each of them corresponding to increasing values of ∆E between
0 and 200. Variations with respect to the non–reactive case are more pronounced in
the region ahead the shock (near x = 0) and less evident behind it (near x = 1), where
the reactive source terms are closer to zero; in fact, for the chosen values of parameters
and at t = 0.07, ahead the initial shock max |Cchem| increases from 5.1 10−5(∆E = 0)
to 8.1 10−5 (∆E = 200), whereas behind the shock we have max |Cchem| ranging from
7.7 10−7 (∆E = 0) to 1.26 10−6 (∆E = 200). Analogous trends can be observed in
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the spatial distributions of the total energy E when we compare the non–reactive and
the reactive case (Fig. 4.4 (right)).
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Fig. 4.4. Reactive case with γT = 100. Left: spatial distribution at time instant t = 0.07 of
density ρ1 for different values of ∆E. Right: total energy E at the same instant t = 0.07 when
∆E = 0 and ∆E = 200.

For larger time instants, the shock propagates into the spatial domain with a
smoother profile, as it can be seen in Fig. 4.5 (top left), where the spatial distribution
of ρ1 is reported at different time instants. The flat regions for ρ1 correspond again
to the shorter intervals where u is still zero, before the arrival of the shock wave (see
Fig. 4.5 top right).

The time evolution of ρi at point x = 0.2 for large t is shown in Fig. 4.5 (bottom
left). It is interesting to notice the trend to a steady situation after the passage of
the shock wave, due to the fact that the chemical reactive terms become smaller and
smaller. Then the time evolution of the total energy E is reported in Fig. 4.5 (bottom
right), at two points x = 0.2 and x = 0.9, showing two different trends ahead and
behind the initial shock.

Remark 2. The proposed semi-implicit discretization of the flux was chosen since it
may give some benefits in the stiff cases when compared with an explicit treatment
of it. As an example, let us focus again on the Sod problem for the reactive Euler
equations and let us consider the stiff case in which γT = 10000 and ∆E = 200.
A qualitative comparison between the proposed semi-implicit scheme and a second-
order explicit scheme for the flux is shown in fig. 4.6, where the resulting velocities are
reported; in both cases the stiff reactive term is treated semi-implicitly as discussed
before.

This figure shows that the semi-implicit method assures stability for larger time
steps than the explicit one: indeed, whereas the two methods are in good agreement
when the time step is chosen sufficiently small (left, ∆t = ∆x/9), the explicit method
gives rise to unphysical quantities and unstable trends when the time step becomes
larger, contrary to the semi-implicit one which is still accurate (right, ∆t = ∆x/3).

The quantitative comparison between the two methods was carried out on a SUN
Blade 100 by measuring the CPU time: each time step required 12.38 sec. and 13.69
sec. for the explicit and the semi-implicit scheme respectively.
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Fig. 4.5. Reactive case with ∆E = 200 and γT = 100. Top Left: Density ρ1 for different
time instants from t = 0.07 to t = 0.21 with a time step of 0.035. Top Right: Velocity u for
different time instants from t = 0.07 to t = 0.21 with a time step of 0.035. Bottom Left: Evolution
of ρi, i = 1, . . . , 4 in x = 0.2. Bottom Right: Evolution of E in x = 0.2 and x = 0.9.

Even if each time step of the semi-implicit approach is slightly more costly, the
semi-implicit scheme becomes competitive when a run of several time steps is taken
into account. More specifically, we considered the time interval [0, 0.09] and we com-
pared the total CPU time required by the explicit scheme with time step ∆t = ∆x/4
and the semi-implicit scheme with time step ∆t = ∆x/3. The time step chosen
for the explicit case yields a CFL number close to the optimal one, that is the
maximum allowed for the stability of the method; the CFL number was defined by
CFL= maxj ρ(JF )j ∆t/∆x , where ρ(JF )j is the spectral radius of the Jacobian ma-
trix of the flux JF in the j-th cell. Although a rigorous stability analysis is beyond the
scope of this work, numerical experiments show that instability arises when the CFL
number for the explicit scheme (with semi-implicit treatment of the reactive term) is
about 1.37. Figure 4.7 shows that again the two solutions are in good agreement as
in Fig. 4.6 - Left, where a smaller time step is used for both methods.

Our experiments showed that the explicit scheme required 72 time steps to cover
the time interval [0, 0.09] and a total CPU time of 886.60 sec., whereas for the semi-
implicit one we had 54 time step and a final CPU time of 668.05 sec.. Thus, a
reduction in time of about 24% for the semi-implicit discretization was observed.

Inflow problem. Finally, we present and discuss the results of a more realistic
simulation and more precisely we consider the inflow problem in a channel for a
four-component mixture, characterized by a positive constant inflow velocity u(0, t).
This may be regarded as a sample problem in the simulation of chemical reactions in
industrial pipelines.

With reference to the reaction Na Cl + H2 O ­ Na OH + H Cl the following
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Fig. 4.6. Velocity for the reactive case at t=0.09: ∆E = 200, γ = 10000, ∆x = 1/200. Left:
∆t = ∆x/9. Right: ∆t = ∆x/3, the explicit scheme can’t reach the final time instant t=0.09 because
it stops at t=0.0833 producing a negative temperature.
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Fig. 4.7. Velocity at t=0.09 for the reactive case: ∆E = 200, γ = 10000, ∆x = 1/200. The
time step chosen for the explicit scheme is ∆t = ∆x/4 whereas for the semi-implicit one ∆t = ∆x/3.

values for masses have been chosen
m1 = 58.5 m2 = 18 m3 = 40 m4 = 36.5 (g/mol)

We start with the following initial data (i = 1, . . . , 4)
ρi(x, 0) = min

0
i − ρ̄ sin(2πx/L) E(x, 0) = E0 + Ē sin(2πx/L) u(x, 0) = u0

where
n0

1 = 0.5 n0
2 = 0.6 n0

3 = 0.7 n0
4 = 0.654 (mol/m3)

u0 = 0.4 m/s E0 = 8.445 KJ/mol L = 1m ρ̄ = 1g/m3 Ē = 1 KJ/mol.
At the inflow boundary x = 0 all the unknown fields are kept fixed on the mean values
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of the initial profiles.
First we consider the classical Euler equations, and we can observe in Fig. 4.8

the relaxation of the total mass density ρ to the constant values that are maintained
at the entrance of the channel, after a transient in which initial profiles are pushed
ahead. In this figure the spatial distributions of ρ relevant to increasing time instants
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(left) and temporal evolutions in two internal points (right) are depicted. Analogous
behaviour can be shown for all other macroscopic unknowns.

Then we put into the channel the mixture initially in chemical non–equilibrium,
assuming ∆E = 0 for comparison purposes. In Fig. 4.9 the spatial distribution of
the four mass densities is reported and we can observe that the chemical reactions
give rise to variations of the ρi close to the entrance of the channel, whereas for large
time instants the mass densities tend to steady profiles different from the ones in
the non–reactive case (see Fig. 4.10 top). Then in Fig. 4.10 (bottom) we report the
temporal evolution of ρ1 in the first cells and compare again the reactive and the
non–reactive cases; the former shows a space-dependent trend, contrary to the latter.
The temporal evolutions of ρ1 and E in two internal points are reported in Fig. 4.11
and compared with the corresponding solutions of the classical Euler equations. It is
worth noticing that equilibrium values for ρ1 are different in the two points, whereas E
at equilibrium has the same value throughout the interval. In fact, as already pointed
out, total energy relevant to chemical processes with ∆E = 0, together with global
mass density ρ and velocity u, satisfies also the corresponding non-reactive classical
Euler equations.

non–reactive reactive ∆E = 0
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Fig. 4.10. Non–reactive case (Left). Reactive case (Right). Spatial distribution of ρ1 at time
instants t = 1, 2, 3 (Top). Temporal evolutions of ρ1 for the first points of the mesh (Bottom).
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Fig. 4.11. Non–reactive case (Left). Reactive case (Right). Temporal evolution of ρ1 in x = 0.2
and x = 0.9 (Top) Temporal evolution of E in x = 0.2 and x = 0.9 (Bottom)

5. Conclusion
In this paper we have considered a class of reactive Euler equations arising from

kinetic theory and we have applied a numerical strategy already known in literature
but never used for these kinds of problems.

A semi–implicit scheme has been used for the time discretization for both the flux
and the reactive source term. This choice is originated from the fact that there exist
physical regimes in which the reactive source term becomes stiff. Explicit schemes
are not convenient for the restrictions on the time step that can appear because of
the stiffness of the problem. The system of algebraic equations that arises from the
semi-implicit discretization chosen can be easily solved thus ensuring the effectiveness
of the numerical approach.

The promising numerical results illustrate the role played by the chemical source
terms and show interesting effects due to the reaction, especially on the spatial dis-
tribution of the compound, not yet available in literature for this class of reactive
equations. The presented results can be regarded as a preliminary step for extensive
2D and 3D simulations of reactive models arising from kinetic theory. Moreover, fur-
ther developments can be obtained from the application of this numerical scheme to
other more detailed macroscopic models derived again from the kinetic description,
such as Grad 13 moment equations [6]. In fact, the scheme used is quite general and
can be easily extended to more complex systems in two and three spatial dimensions,
where efficient methods are essential.
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