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ON ONE VERSION OF A SEMIDISCRETE GALERKIN METHOD

FOR PDE PROBLEMS INVOLVING A GENERALIZED 2D

HAMILTONIAN OPERATOR∗

ALEXANDER ZLOTNIK† , BERNARD DUCOMET‡ , HELOISE GOUTTE§ , AND

JEAN-FRANCOIS BERGER¶

Abstract. We consider a boundary value problem, an eigenvalue problem and an initial-
boundary value problem involving a generalized 2D Hamiltonian operator (i.e., the second order
self-adjoint elliptic operator) in a rectangular domain. We apply a semi-discrete Galerkin method ex-
ploiting space approximations of the form c1(x1)χ1(x1,x2)+ ···+cN (x1)χN (x1,x2), where χ1,... ,χN

are some known complex-valued basis functions and c1,... ,cN are unknown coefficients. The corre-
sponding approximate problems are stated and their properties such as existence and uniqueness of
solutions and bounds for them, positive definiteness of the related sesquilinear forms, etc. are ana-
lyzed. For a specific physically reasonable choice of the basis functions, error bounds of arbitrarily
high orders are proved for all the listed problems.
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1. Introduction

The description of large amplitude collective motion in atomic nuclei, such as
large-scale collective oscillations and nuclear fission remains one of the most challeng-
ing problems in contemporary nuclear physics. One way of tackling this kind of prob-
lem is to employ the so-called Generator Coordinate Method (GCM) [11]. This ap-
proach consists in first defining a set of static nuclear wave-functions Φq(~r1,~r2,... ,~rA)
labeled by the composite index q=(q1,q2,... ,qM ), representing the different kinds of
shapes the system is expected to adopt during time-evolution. These wave-functions
usually are determined by means of self-consistent mean-field Hartree-Fock-like tech-
niques using M constraints of the form ql = 〈Φq|Q̂l|Φq〉. In most cases the operators

Q̂l are taken as the usual multipole operators of order l. The time-dependent wave-
function of the system is then assumed to be the superposition of all static states Φq

weighted by a probability amplitude f(q;t):

Ψ(~r1,~r2,... ,~rA;t)=

∫
f(q;t)Φq(~r1,~r2,... ,~rA)dMq. (1.1)

The justification for this form of nuclear wave-function is similar to the Bohr-
Oppenheimer approximation of molecular physics. It is assumed that the “collec-
tive” degrees of freedom described by the set q evolve with characteristic times τcoll

that are much larger than the one associated with the internal motion of nucleons:
τcoll ≫ τint ≃10−23 s. The GCM is therefore expected to be a good approximation in
the low-energy regime (E .15 MeV).
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An equation for the unknown function f in equation (1.1) is found by applying a
time-dependent Schrödinger variational principle to the trial wave function Ψ. This
procedure leads to an integro-differential equation, the so-called Hill-Wheeler (HW)
equation, which is first order in time and contains a M -fold integral [9]. This equation
is quite difficult to solve numerically as soon as M >1. For these reason, further ap-
proximations are made — Gaussian dependence in ‖q−q′‖ of the the overlap kernel
〈Φq|Φq′〉 and expansion up to second order in the non locality ||q−q′|| of the Hamil-

tonian kernel 〈Φq|Ĥ|Φq′〉 — which allow one to transform the HW equation into the
time-dependent Schrödinger-like equation [20]

ı
∂

∂t
v(q,t)=H(M)v(q,t), (1.2)

where H(M) is the Hamiltonian, a linear differential operator with variable coefficients,
defined as

H(M) =−
M∑

i,j=1

∂

∂qi

(
Bij(q)

∂

∂qj

)
+V (q),

containing inertia coefficients Bij(q) and a potential term V (q) which are known
functions of q1, q2, . . . , qM , and ı is the imaginary unit. The function v is related to
f through convolution with a Gaussian.

Equation (1.2) has been used for instance to analyze the problem of multidimen-
sional collective tunneling [10,19]. Employed with an appropriate initial condition
v(q,t=0)=v0(q), this equation is also the basis of present-day descriptions of the
fission phenomenon [2,8]. A stationary version of the GCM can be derived in the
same way as above by leaving aside the time-dependance in equation (1). Equation
(2) then is replaced by the stationary Schrödinger-like equation

H(M)va(q)=Eava(q), (1.3)

which is widely used to calculate bound states of collective nature in nuclei [14, 18,
17].

Although many numerical methods exist to solve such problems, physical insights
into the obtained solutions can be gained by attempting to expand them on a set of
stationary functions which solve a Schrödinger equation of type (1.3) in a reduced
collective space of dimension M ′ <M . The interesting features of this technique are
twofold. First, the stationary functions in M ′-dimensional space and their associ-
ated eigenvalues give physical information about the structure of the collective space
spanned by the variables q1,... ,qM ′ . Second, one expects from physical arguments
that only a small number N of these functions — those associated with the lower
eigenvalues — are useful in the expansion of the full function v, which clearly re-
duces the numerical effort necessary for solving equation (2). This technique has
been employed in a simple case in [19].

In principle the above method is expected to be particularly interesting when M
is large, but we will restrict ourselves in the present paper to the case M =2, which
is currently used in applications. In this case, the method amounts to analyzing
techniques which exploit expansions of the form

v(N)(q1,q2)= c1(q1)χ1(q1,q2)+ ···+cN (q1)χN (q1,q2). (1.4)
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In this expansion, χ1, . . . , χN are basis functions obtained by solving a 1D stationary
equation (3) in the variable q2 for every value of q1, and c1,... ,cN are unknown
coefficients. Such an expansion can be applied in the Galerkin method as well as in
various other approximate methods. There exists an indirect relation to the spectral
Galerkin methods, in particular see [4, 5, 10].

In the present paper, we consider three problems involving the generalized 2D
Schrödinger operator, i.e., the general variable-coefficient second-order self-adjoint
elliptic operator:

(1) the boundary-value problem (BVP) with zero Dirichlet boundary conditions;

(2) the corresponding eigenvalue problem;

(3) the corresponding initial-boundary value problem (IBVP) for the associated
time-dependent Schrödinger equation.

Actually, these statements are only simplifications of practically interesting prob-
lems in nuclear physics. Moreover, problem (1) is not physically relevant, but we
begin with it and study it in detail for mathematical reasons.

We investigate the semi-discrete Galerkin method relying on approximations (1.4)
and identify the arising approximate problems as:

(1) a boundary-value problem for a system of second-order ordinary differential
equations (ODEs) for c1,... ,cN with zero boundary values;

(2) the corresponding ODE eigenvalue problem;

(3) the corresponding initial-boundary value problem for the time-dependent
Schrödinger-like system of 1D (in space) equations.

The paper is organized as follows. In section 2, we recall some functional spaces,
state the self-adjoint elliptic BVP and list some of its basic properties. We also
introduce our version of the semi-discrete Galerkin method in several equivalent forms.
In section 3, we define two Gram matrices for the system of the basis functions, bound
their elements, and prove uniform in space positive definiteness. As a consequence, we
obtain that our infinite dimensional space of trial functions (1.4) is closed which leads
to the existence and uniqueness of the approximate solution of the elliptic BVP. We
also derive a BVP for a system of ODEs to define the unknown coefficients c1,... ,cN ,
bound entries of involved matrices, and study positive definiteness of the related
Hermitian symmetric sesquilinear form. Results on the existence and uniqueness of
weak and strong solutions of this Galerkin BVP are also presented, and an alternative
form of the system of ODEs is discussed. At the end of the section, we briefly show
how the version of the Galerkin method can be generalized to the multidimensional
case.

Section 4 is concerned with a specific choice of the basis functions as eigenfunctions
of an auxiliary 1D eigenvalue ODE problem with coefficients depending both on x1

and x2; in this case, the method can be considered as a Fourier-Galerkin semi-discrete
method. The basic properties of this problem are recalled. We study approximation
properties of the corresponding space of trial functions and prove the L2-error bounds
of optimal order O

(
N−θ

)
, θ≥0, and the much more delicate H1-error bounds of the

logarithmically optimal order O
(
N−(θ−1)(1+log1/2N)

)
, where θ>1 is the (arbitrar-

ily high) order of smoothness of an approximating function. These bounds imply L2-
and H1-error bounds for the semi-discrete Galerkin method for the BVP of orders
O

(
N−θ(1+logN)

)
and O

(
N−(θ−1)(1+log1/2N)

)
, θ>1.
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An example of further discretization in x1 is considered in section 5. The finite
element method with the simplest linear elements and numerical integration is applied.
We show that this leads to a finite difference scheme in x1 for the Galerkin BVP for
c1,... ,cN , bouns entries of involved matrices, and study positive definiteness properties
of the corresponding mesh Hermitian symmetric sesquilinear form.

Section 6 deals with a 2D elliptic eigenvalue problem. We recall its basic prop-
erties, apply our version of the semi-discrete Galerkin method, and present similar
properties for the approximate eigenvalue problem. The latter is the eigenvalue prob-
lem for the Galerkin system of ODEs derived in section 3. For the specific choice
of the basis functions, we prove error bounds for the approximate eigenvalues of or-
der O

(
N−2(θ−1)(1+logN)

)
, θ>1, together with L2- and H1-error bounds for the

approximate eigenfunctions of the same orders as for the BVP.
The final section 7 is devoted to the time-dependent generalized Schrödinger equa-

tion once again 2D in space. For a weak solution of the corresponding IBVP, we recall
the conservation laws, the Fourier expansion with respect to the eigenfunctions intro-
duced in section 6, as well as the existence and uniqueness properties. We apply our
version of the semi-discrete Galerkin method and prove its similar properties. The
uniform in time L2 and H1-error bounds of the same orders as for the BVP are also
proved. All our error estimates seem to be logarithmically optimal.

2. A 2D elliptic boundary-value problem and its semi-discrete Galerkin

approximation

We first recall some function spaces for the reader’s convenience. For a paral-
lelepiped U =(0,X1)×···×(0,Xn) in Rn, n≥1, we exploit the standard (complex)
Lebesgue spaces Lq(U), and the (complex) Sobolev spaces Hm(U), m=1,2, which
are equipped with the norms

‖w‖Lq(U) :=

[∫

U

|w(ξ)|qdξ

]1/q

for 1≤ q <∞, ‖w‖L∞(U) :=ess supξ∈U |w(ξ)|,

‖w‖H1(U) :=
(
‖w‖2

L2(U) +‖|Dw|‖2
L2(U)

)1/2

,

and

‖w‖H2(U) :=
(
‖w‖2

H1(U) +
∥∥|D2w|

∥∥2

L2(U)

)1/2

.

Here Dw=(D1w,...,Dnw) and D2w={DiDjw}n
i,j=1 are the gradient and the Hessian

of the function w (the derivatives are understood in the Sobolev sense), and |Dw|
and |D2w| are their norms in Rn and Rn×n. In the proofs, the simplified notation
‖·‖U =‖·‖L2(U) is adopted.

We also need the subspaces H1
0 (U) :=

{
w∈H1(U); w|∂U =0

}
and H2∩H1

0 (U) :=
H2(U)∩H1

0 (U), which can be equipped with the simpler but equivalent norms

‖w‖H1(U) :=‖|Dw|‖L2(U) , ‖w‖H2∩H1
0 (U) :=

∥∥|D2w|
∥∥

L2(U)
.

We exploit the dual space H−1(U) :=
[
H1

0 (U)
]∗

equipped with the norm ‖f‖H−1(U) :=
sup‖ϕ‖

H1
0(U)

=1 |〈f,ϕ〉U |, where 〈f,ϕ〉U is the duality bracket on H−1(U)×H1
0 (U) (gen-

eralizing the integral
∫

U
fϕ∗dξ for f,ϕ∈L2(U), with ϕ∗ denoting the complex conju-

gate of ϕ). The Sobolev spaces in use are separable Hilbert spaces. C(U) is the space
of continuous functions on U equipped with the norm ‖w‖C(U) :=maxξ∈U |w(ξ)|.
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For n=2, we use the more general anisotropic Lebesgue spaces Lq,r(U) and

L̃r,q(U) [6, 15], for q,r∈ [1,∞], and an anisotropic Sobolev space H1,0(U), equipped
with the norms

‖w‖Lq,r(U) :=
∥∥∥‖w(·,ξ2)‖Lq(I1)

∥∥∥
Lr(I2)

, ‖w‖eLr,q(U) :=
∥∥∥‖w(ξ1,·)‖Lr(I2)

∥∥∥
Lq(I1)

,

‖w‖H1,0(U) :=
(
‖w‖2

L2(U) +‖D1w‖2
L2(U)

)1/2

,

where I1 := (0,X1) and I2 := (0,X2). It is known that ‖w‖eLr,q(U)≤‖w‖Lq,r(U) for
1≤ r≤ q≤∞.

We first consider the self-adjoint elliptic equation in a rectangle

Hu :=−
2∑

i,j=1

Di (κijDju)+V u=f in Ω, (2.1)

where Ω := I1×I2, supplemented with the zero Dirichlet boundary conditions

u|∂Ω =0. (2.2)

We assume that the coefficients of the Hamiltonian operator H are real and satisfy
the conditions

max
i,j

‖κij‖L∞(Ω) +‖V ‖Lp(Ω)≤µ0 for some p∈ (1,2], κ12 =κ21, V ≥0.

For the first condition, we automatically assume that κij ∈L∞(Ω), V ∈Lp(Ω); a simi-
lar agreement is adopted in subsequent conditions as well. We also impose the uniform
in Ω ellipticity condition

ν(ξ2
1 +ξ2

2)≤
2∑

i,j=1

κij(x)ξiξj for almost all (a.a.) x=(x1,x2)∈Ω and all ξ1, ξ2∈R,

(2.3)

with some ν >0. Let κ ={κij}2
i,j=1 be the matrix of the leading coefficients of H. Note

that V could also be complex-valued. However, we do not consider this possibility
hereafter.

By definition, a weak solution u∈H1
0 (Ω) of the BVP (2.1), (2.2) satisfies the

integral identity

LΩ(u,ϕ) :=

∫

Ω




2∑

i,j=1

κijDju ·Diϕ
∗+V uϕ∗


dx= 〈f,ϕ〉Ω for any ϕ∈H1

0 (Ω). (2.4)

Hereafter we use abbreviations such as Dju ·w := (Dju)w in order to avoid extra
brackets. The sesquilinear form LΩ(u,ϕ) is bounded and Hermitian symmetric on
H1(Ω)×H1(Ω), and the associated quadratic form is positive definite on H1

0 (Ω), i.e.,

ν‖w‖2
H1

0 (Ω)≤LΩ(w,w) for any w∈H1
0 (Ω). (2.5)

We denote the energy norm in H1
0 (Ω) by ‖w‖E(Ω) := [LΩ(w,w)]

1/2
, which is equivalent

to the original one:
√

ν‖w‖H1
0 (Ω)≤‖w‖E(Ω)≤K1‖w‖H1

0 (Ω) for any w∈H1
0 (Ω), (2.6)
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where K1 =K1(µ0,p,Ω). This means that K1 depends only on µ0,p, and Ω (i.e., on
X1 and X2); a similar agreement is adopted throughout the paper.

It is well known (for example see [7, 13, 14]) that for any f ∈H−1(Ω), there exists
a unique weak solution u∈H1

0 (Ω) which satisfies the bound

‖u‖H1
0 (Ω)≤ν−1‖f‖H−1(Ω). (2.7)

Moreover, under more restrictive conditions on the coefficients,

max
i,j

(
‖κij‖L∞(Ω) +‖Diκij‖L∞(Ω)

)
+‖V ‖L2(Ω)≤µ1 (2.8)

and for any f ∈L2(Ω), u is in fact a strong solution which belongs to H2∩H1
0 (Ω),

satisfies equation (2.1) in L2(Ω), and obeys the H2(Ω) bound

‖u‖H2(Ω)≤K2(ν,µ1,Ω)‖f‖L2(Ω). (2.9)

Let the basis functions (generally complex-valued) χℓ ∈H1(Ω), χℓ|x2=0,X2
=0 be

given for all ℓ≥1 (note that we do not suppose that χℓ|x1=0,X1
=0). We assume that

the system {χℓ(x1,·)}N
ℓ=1 is linearly independent on I2 for any x1∈ Ī1 (for any N ≥1).

In this respect we recall the well known embedding inequality

‖w‖C(Ī1;L2(I2))≤ c(Ω)‖w‖H1,0(Ω) for any w∈H1,0(Ω), (2.10)

so that w(x1,·)∈L2(I2) is well defined for any x1∈ Ī1. Hereafter, for any Banach space
B(I2) of functions defined on I2, C(Ī1;B(I2)) denotes the Banach space of continuous
functions w: Ī1→B(I2) equipped with the norm ‖w‖C(Ī1;B(I2)) := max

x1∈Ī1

‖w(x1,·)‖B(I2).

The generic constant c(Ω) depends on Ω only. Notice that ‖w‖L∞,2(Ω)≤
c(Ω)‖w‖H1,0(Ω) as well.

We seek an approximate solution to the BVP (2.1), (2.2) in the form of a finite
expansion

v(N)(x1,x2)=

N∑

ℓ=1

cℓ(x1)χℓ(x1,x2) on Ω (2.11)

with unknown coefficients cℓ ∈H1
0 (I1), for 1≤ ℓ≤N . For such v(N), we straightfor-

wardly obtain the formula

Hv(N) =
N∑

ℓ=1

−D1 [κ11χℓD1cℓ +(κ11D1χℓ +κ12D2χℓ)cℓ]

−D2 (κ21χℓ) ·D1cℓ−D2 (κ21D1χℓ +κ22D2χℓ) ·cℓ +V χℓcℓ. (2.12)

Generally, this equality must be understood in the sense of H−1(Ω), i.e.,

〈Hv(N), ϕ〉Ω =
N∑

ℓ=1

∫

Ω

{[κ11χℓD1cℓ +(κ11D1χℓ +κ12D2χℓ)cℓ]D1ϕ
∗

+[κ21χℓD1cℓ +(κ21D1χℓ +κ22D2χℓ)cℓ]D2ϕ
∗+V χℓcℓϕ

∗}dx for any ϕ∈H1
0 (Ω).

(2.13)



A. ZLOTNIK, B. DUCOMET, H. GOUTTE AND J.F. BERGER 253

In the case where the regularity conditions (2.8) and

χℓ ∈H2(Ω), cℓ ∈H2(I1) for all 1≤ ℓ≤N (2.14)

are valid, equality (2.12) holds simply in the strong sense, i.e. in L2(Ω).
Generally, conditions of various kinds could be imposed on the residual HvN −f

in order to obtain a system of equations defining the unknown coefficients {cℓ}N
ℓ=1 in

expansion (2.11) [17]. In this paper, we apply the Galerkin method. To this end, we
first introduce the linear space SN of functions having the form of expansion (2.11),
with arbitrary cℓ ∈H1

0 (I1), 1≤ ℓ≤N . Clearly SN is an infinite-dimensional linear
subset in H1

0 (Ω) (thus N is not the dimension of SN ) since the following inequalities
hold

‖v(N)‖H1
0 (Ω)≤‖|D1c|‖I1

‖|χ|‖L∞,2(Ω) +‖|c|‖L∞(I1) (‖|D1χ|‖Ω +‖|D2χ|‖Ω)

≤ c(Ω)‖c‖[H1
0 (I1)]N ‖χ‖[H1(Ω)]N , (2.15)

with the column vector-functions c := (c1,... ,cN )T and χ := (χ1,... ,χN )T . Actually
SN is a closed subspace in H1

0 (Ω); see Proposition 3.3 below.
We subject v(N) to the Galerkin orthogonality condition

〈Hv(N)−f, ϕ〉Ω =0 for any ϕ∈SN . (2.16)

Obviously, this can be rewritten as the standard Galerkin integral identity

LΩ

(
v(N),ϕ

)
= 〈f,ϕ〉Ω for any ϕ∈SN . (2.17)

On the other hand, condition (2.16) is equivalent to the collection of particular
orthogonality conditions

〈Hv(N)−f, ηχk〉Ω =0 for any η∈H1
0 (I1), with k =1,... ,N, (2.18)

which can be also rewritten more specifically as

〈(
Hv(N)−f

)
(x1,·), χk(x1,·)

〉
I2

=0 for a.a. x1∈ I1, with k =1,... ,N. (2.19)

In general condition (2.19) is nothing but a more abstract version of (2.18), but under
the regularity conditions (2.8), (2.14) and for f ∈L2(Ω) it takes the familiar integral
form

∫

I2

(
Hv(N)−f

)
(x1,x2)χ

∗
k(x1,x2)dx2 =0 for a.a. x1∈ I1, with k =1,... ,N. (2.20)

The variational form of this method is also available (see (3.9) below).

3. Properties of the semi-discrete Galerkin approximation

Let ρ0 be a real weight function such that

‖ρ0‖L∞(Ω) +‖D1ρ0‖L2(Ω)≤µ(ρ0), ρ0(x)≥ρ
0
>0 in Ω.

Let ρ̄0 :=‖ρ0‖L∞(Ω). We introduce the following Gram matrix for the system {χℓ}N
ℓ=1:

G0 ={gkℓ}N
k,ℓ=1, gkℓ(x1) :=

∫

I2

(ρ0χℓχ
∗
k)(x1,x2)dx2 for x1∈ Ī1. (3.1)
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The importance of studying Gram matrices is well known in Galerkin methods [18].

Lemma 3.1. The matrix G0 has the properties

‖gkℓ‖H1(I1)≤ c(Ω)µ(ρ0)‖χk‖H1(Ω)‖χℓ‖H1(Ω) for any 1≤k≤N, 1≤ ℓ≤N, (3.2)

G0(x1)=G∗
0(x1)≥ν0N I on Ī1, with ν0N >0, (3.3)

where I is the unit matrix of order N .

Proof. Applying embedding (2.10), we obtain

‖gkℓ‖L∞(I1)≤ ρ̄0‖χk‖L̃2,∞(Ω)‖χℓ‖L̃2,∞(Ω)≤ c(Ω)ρ̄0‖χk‖H1(Ω)‖χℓ‖H1(Ω).

Moreover, using the generalized Minkowski inequality [6], we derive

‖D1gkℓ‖I1
=

∥∥∥∥
∫

I2

[D1ρ0 ·χℓχ
∗
k +ρ0(D1χℓ ·χ∗

k +χℓD1χ
∗
k)] dx2

∥∥∥∥
I1

≤
∫

I2

‖D1ρ0 ·χℓχ
∗
k +ρ0(D1χℓ ·χ∗

k +χℓD1χ
∗
k)‖I1

dx2

≤‖D1ρ0‖Ω‖χℓ‖L∞,4(Ω)‖χk‖L∞,4(Ω)

+ρ̄0

(
‖D1χℓ‖Ω‖χk‖L∞,2(Ω) +‖χℓ‖L∞,2(Ω)‖D1χk‖Ω

)
. (3.4)

Using the embedding H1(Ω)⊂L∞,4(Ω) [15], we complete the proof of (3.2).
Now, we have G0 =G∗

0 ≥λmin[G0]I, where λmin[G0] is the minimal eigenvalue
of G0. Since the system {χℓ(x1,·)}N

ℓ=1 is linearly independent on I2, we have
λmin[G0](x1)>0, for any x1∈ I. By virtue of (3.2), gkℓ ∈C(Ī1) and consequently
λmin[G0]∈C(Ī1) as well. Thus inequality (3.3) follows with ν0N :=minĪ1

λmin[G0]>
0.

Corollary 3.2. G−1
0 ∈ [H1(I1)]

N×N .

Proof. This property follows from the usual explicit formula for the entries of G−1
0

by using the facts that the product of two or more functions in H1(I1) is in H1(I1) as
well and that det G0≥νN

0N (recall that det G0 equals the product of all N eigenvalues
of G0).

Proposition 3.3. SN is a closed subspace of H1
0 (Ω).

Moreover, if v(N)∈H1
0 (Ω) has the expansion (2.11) with arbitrary c (not neces-

sarily from [H1
0 (I1)]

N ), then actually c∈ [H1
0 (I1)]

N , and an inequality of the reverse
type with respect to (2.15) holds:

‖c‖[H1
0 (I1)]N ≤K3,N‖v(N)‖H1

0 (Ω), (3.5)

where K3,N =K3

(
ν0N ,‖χ‖[H1(Ω)]N ,µ(ρ0),Ω

)
.

Proof. Let {vm}∞m=1 be a sequence in SN which is convergent in H1
0 (Ω). We

denote its limit by v(N)∈H1
0 (Ω). By virtue of embedding (2.10), for any x1∈ Ī1,

the sequence {vm(x1,·)}∞m=1 converges to v(N)(x1,·) in L2(I2), and since the system
{χℓ(x1,·)}N

ℓ=1 is linearly independent, we get expansion (2.11) for v(N)(x1,x2), with
some c(x1).
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Clearly c(x1) satisfies the following system of linear algebraic equations

G0(x1)c(x1)=y(x1) on Ī1, (3.6)

where the column vector-function y=(y1,... ,yN )T in the right hand side has entries

yk(x1)=

∫

I2

(
ρ0v

(N)χ∗
k

)
(x1,x2)dx2 for any 1≤k≤N. (3.7)

Similar to bound (3.2), we have

‖y‖[H1
0 (I1)]N ≤ c(Ω)µ(ρ0)‖χ‖[H1(Ω)]N ‖v(N)‖H1(Ω). (3.8)

Now, applying Corollary 3.2 we see that c=G−1
0 y∈ [H1

0 (I1)]
N . Moreover, differ-

entiating system (3.6), we obtain the system

G0D1c=D1y−D1G0 ·c.

Property (3.3) applied to both systems implies that

ν0N |D1c|≤ |D1y|+ |D1G0||c|≤ |D1y|+ν−1
0N |D1G0||y|,

thus

ν0N‖c‖[H1
0 (I1)]N ≤

(
1+ν−1

0N

√
X1/2‖|D1G0|‖I1

)
‖y‖[H1

0 (I1)]N .

According to bound (3.2), we obtain

‖|D1G0|‖I1
=




N∑

k,ℓ=1

‖D1gkℓ‖2
I1




1/2

≤ c(Ω)µ(ρ0)‖χ‖2
[H1(Ω)]N .

Invoking bound (3.8), we complete the proof.

Corollary 3.4. For any f ∈H−1(Ω), there exists a unique approximate solution
v(N), which satisfies the uniform in N bound (compare with (2.7))

‖v(N)‖H1
0 (Ω)≤ν−1‖f‖H−1(Ω).

Proof. Due to Proposition 3.3, SN may be considered as a separable Hilbert
space equipped with the inner product LΩ(v,ϕ). Thus the result follows from the
Riesz-Fischer representation theorem and the Galerkin integral identity (2.17); see
also property (2.5).

Remark 3.5. In bound (3.5) (including the expression for K3,N ), the norms
‖v(N)‖H1

0 (Ω) and ‖χ‖[H1(Ω)]N may be replaced by the weaker ones ‖D1v
(N)‖L2(Ω)

and ‖χ‖[H1,0(Ω)]N , provided that one replaces the norm ‖D1ρ0‖L2(Ω) by the stronger
one ‖D1ρ0‖L2,∞(Ω). In fact, we have

‖gkℓ‖L1(I1)≤ ρ̄0‖χk‖Ω‖χℓ‖Ω,

‖D1ρ0 ·χℓχ
∗
k‖L2,1(Ω)≤‖D1ρ0‖L2,∞(Ω)‖χℓ‖L∞,2(Ω)‖χk‖L∞,2(Ω),
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and therefore (see (3.4))

‖gkℓ‖H1(I1)≤ c(Ω)
(
ρ̄0 +‖D1ρ0‖L2,∞(Ω)

)
‖χk‖H1,0(Ω)‖χℓ‖H1,0(Ω).

A similar change in bound (3.8) is possible as well.

Notice that since LΩ(·,·) is a Hermitian symmetric and positive definite sesquilin-
ear form, the Galerkin method may also be restated equivalently in the Ritz-like
variational version: v(N)∈SN and

JΩ(v(N))= min
ϕ∈SN

JΩ(ϕ), for JΩ(w) :=
1

2
LΩ(w,w)−Re〈f,w〉Ω. (3.9)

JΩ(w) is the energy functional; hereafter Rez and Imz denote the real and imaginary
parts of z∈C.

For technical reasons (see sections 5 and 6 below), we also introduce a linear space
S0

N of functions having the form of expansion (2.11) for any cℓ ∈L2(I1), for 1≤ ℓ≤N .
Note that S0

N ⊂L2(Ω) due to inequality (2.10).

Proposition 3.6. S0
N is a closed subspace of L2(Ω).

Proof. Let {vm}∞m=1 be a sequence in S0
N converging in L2(Ω), and v(N)∈L2(Ω)

be its limit. Since for a subsequence {vmk
}∞k=1 we have

∥∥∥
(
vmk

−v(N)
)

(x1,·)
∥∥∥

I2

→0 as k→∞, for a.a. x1∈ I1,

the function v(N)(x1,x2) has an expansion (2.11) for some c(x1).
Going back to system (3.6), (3.7), we observe that

‖|y|‖I1
≤‖ρ0v|χ|‖L2,1(Ω)≤ c(Ω)ρ̄0‖v(N)‖Ω‖|χ|‖H1,0(Ω).

Due to Corollary 3.2, c=G−1
0 y∈

[
L2(I1)

]N
; recall that ‖|c|‖I1

≤ν−1
0N‖|y|‖I1

.

Let (·,·)
CN be the inner product in CN .

Lemma 3.7. Let v and ϕ be any functions in SN such that

v(x1,x2)=
N∑

ℓ=1

cℓ(x1)χℓ(x1,x2), ϕ(x1,x2)=
N∑

ℓ=1

dℓ(x1)χℓ(x1,x2) in Ω, (3.10)

with c=(c1,... ,cN )T , d=(d1,... ,dN )T ∈
[
H1

0 (I1)
]N

. Then the following identity holds

LΩ(v,ϕ)=LN
I1

(c,d) :=

∫

I1

[(
AD1c+A(0)c,D1d

)
CN

+
(
A(0)∗D1c+Bc,d

)
CN

]
dx1.

(3.11)
Here the N ×N -matrices A,A(0) and B have the entries that are functions on I1, for
1≤k≤N and 1≤ ℓ≤N :

akℓ(x1)=

∫

I2

(κ11χ
∗
kχℓ)(x1,x2)dx2, (3.12)

a
(0)
kℓ (x1)=

∫

I2

[χ∗
k (κ11D1χℓ +κ12D2χℓ)](x1,x2)dx2, (3.13)

bkℓ(x1)=

∫

I2




2∑

i,j=1

κijDjχℓ ·Diχ
∗
k +V χ∗

kχℓ


(x1,x2)dx2. (3.14)
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For these entries, the following bound holds for any 1≤k≤N and 1≤ ℓ≤N :

‖akℓ‖L∞(I1)
+

∥∥∥a
(0)
kℓ

∥∥∥
L2(I1)

+‖bkℓ‖L1(I1)
≤K4(µ0,p,Ω)‖χk‖H1(Ω)‖χℓ‖H1(Ω) . (3.15)

Under the regularity conditions (2.8) on κij and V (the condition on D2κ2j may
be omitted) and

DD1χℓ ∈
[
L2(Ω)

]2
for 1≤ ℓ≤N, (3.16)

the following bound also holds:

‖D1akℓ‖L∞(I1)
+

∥∥∥D1a
(0)
kℓ

∥∥∥
L2(I1)

+‖bkℓ‖L2(I1)

≤K5(µ1,Ω)
(
‖χk‖H1(Ω) +‖D1χk‖L∞,2(Ω)

)(
‖χℓ‖H1(Ω) +‖|DD1χℓ|‖L2(Ω)

)
.(3.17)

Proof. Exploiting expansions (3.10) and rearranging the summands, we obtain

LΩ(v,ϕ)=

∫

Ω

N∑

k,ℓ=1




2∑

i,j=1

κijDj(cℓχℓ) ·Di(d
∗
kχ∗

k)+V cℓχℓd
∗
kχ∗

k


dx

=

∫

I1

N∑

k,ℓ=1

∫

I2

{[κ11 (D1cℓ ·χℓ +cℓD1χℓ)+κ12cℓD2χℓ](D1d
∗
k ·χ∗

k +d∗kD1χ
∗
k)

+[κ21 (D1cℓ ·χℓ +cℓD1χℓ)+κ22cℓD2χℓ]d
∗
kD2χ

∗
k +V cℓχℓd

∗
kχ∗

k} dx2dx1

=

∫

I1

N∑

k,ℓ=1

[(
akℓD1cℓ +a

(0)
kℓ cℓ

)
D1d

∗
k +

(
a
(0)
ℓk

∗
D1cℓ +b

(0)
kℓ cℓ

)
d∗k

]
dx1,

where akℓ, a
(0)
kℓ and b

(0)
kℓ are given by the above formulas (3.12)–(3.14). Identity (3.11)

is proved.
Bound (3.15) follows from the inequalities

‖akℓ‖L∞(I1)
≤‖κ11χ

∗
kχℓ‖L∞,1(Ω)≤‖κ11‖L∞(Ω)‖χk‖L∞,2(Ω)‖χℓ‖L∞,2(Ω) ,∥∥∥a

(0)
kℓ

∥∥∥
L2(I1)

≤‖χ∗
k (κ11D1χℓ +κ12D2χℓ)‖L2,1(Ω)

≤
(
‖κ11‖L∞(Ω) +‖κ12‖L∞(Ω)

)
‖χk‖L∞,2(Ω)‖Dχℓ‖Ω ,

‖bkℓ‖L1(I1)
≤‖2µ0|Dχk||Dχℓ|+V |χkχℓ|‖L1(Ω)

≤2µ0‖Dχk‖Ω‖Dχℓ‖Ω +‖V ‖Lp(Ω)‖χk‖L2p′ (Ω)‖χℓ‖L2p′ (Ω)

and the embedding H1(Ω)⊂Lq(Ω) for any 1≤ q <∞. Under the regularity condition
(2.8) and (3.16), we also have

‖D1akℓ‖L∞(I1)
≤‖D1κ11‖L∞(Ω)‖χk‖L∞,2(Ω)‖χℓ‖L∞,2(Ω)

+µ0

(
‖D1χk‖L∞,2(Ω)‖χℓ‖L∞,2(Ω) +‖χk‖L∞,2(Ω)‖D1χℓ‖L∞,2(Ω)

)
,

∥∥∥D1a
(0)
kℓ

∥∥∥
I1

≤‖D1χk‖L∞,2(Ω)

√
2µ0‖|Dχℓ|‖Ω

+‖χk‖L∞,2(Ω)

[(
‖D1κ11‖L∞(Ω) +‖D1κ12‖L∞(Ω)

)
‖|Dχℓ|‖Ω +µ0‖|DD1χℓ|‖Ω

]
,

‖bkℓ‖I1
≤2µ0‖|Dχℓ|‖L∞,2(Ω)‖|Dχk|‖Ω +‖V ‖Ω‖χk‖L∞,2(Ω)‖χℓ‖L∞(Ω) ,



258 SEMIDSCRETE GALERKIN METHOD FOR 2D HAMILTONIAN OPERATOR

thus obtaining (3.17).

Corollary 3.8. LN
I1

(·,·) is a bounded Hermitian symmetric sesquilinear form on

[H1
0 (Ω)]N × [H1

0 (Ω)]N , with the self-adjoint matrices A and B.

Proof. LN
I1

(c,d) is a Hermitian symmetric sesquilinear form since LΩ(v, ϕ) is.
The former is also bounded because of bound (3.15).

Since the matrix κ is symmetric (and real together with V ), A and B are self-
adjoint.

Remark 3.9. In general the basis functions in the system {χℓ}N
ℓ=1 can depend on N .

If they do not, then additional rows and columns appear in the N ×N -matrices A,
A(0) and B as N increases but no change appears in the previous rows and columns.

We observe that the role of the coefficients κij is not the same in LN
I1

(·,·). The

leading matrix A only depends on κ11, and A(0) and B depend on κ11 as well whereas
only B depends on κ22 (and V ) together with other κij .

Now we study positive definiteness of the involved matrices and the sesquilinear
form LN

I1
(·,·).

Proposition 3.10. The matrices A(x1) and B(x1) are positive definite for a.a.
x1∈ I1, uniformly with respect to x1. More precisely, for a.a. x1∈ I1, the following
matrix inequalities hold:

νν0N

ρ̄0
I≤ ν

ρ̄0
G0(x1)≤

1

‖(ρ0/κ11)(x1,·)‖L∞(I2)
G0(x1)≤A(x1), (3.18)

2νν0N

X2
2 ρ̄0

I≤ 2ν

X2
2 ρ̄0

G0(x1)≤
2ν

X2‖ρ0(x1,·)‖L1(I2)
G0(x1)≤B(x1). (3.19)

Proof. Let v be given by the first expansion (3.10) for any c∈CN independent of
x1. Then by the ellipticity condition (2.3) and the condition V ≥0, we obtain

(A(x1)c, c)CN =

∫

I2

(
κ11|v|2

)
(x1,x2)dx2

≥ 1

‖(ρ0/κ11)(x1,·)‖L∞(I2)

∫

I2

(
ρ0|v|2

)
(x1,x2)dx2,

(B(x1)c, c)CN =

∫

I2




N∑

i,j=1

κijDjv ·Div
∗+V |v|2


(x1,x2)dx2

≥ν

∫

I2

(
|D2v|2

)
(x1,x2)dx2

≥ 2ν

X2‖ρ0(x1,·)‖L1(I2)

∫

I2

(
ρ0|v|2

)
(x1,x2)dx2.

(3.20)

Applying the identity

∫

I2

(
ρ0|v|2

)
(x1,x2)dx2 =(G0(x1)c, c)CN on Ī1 (3.21)
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and property (3.3), we complete the proof.

Proposition 3.11. The sesquilinear form LN
I1

(·,·) has the following weakened positive
definiteness property

2νν0N

X1ρ̄0
‖|c|‖2

C(Ī1)
≤LN

I1
(c, c) for any c∈

[
H1

0 (I1)
]N

. (3.22)

Proof. By Lemma 3.7 and property (2.5), for any c∈
[
H1

0 (I1)
]N

, we obtain

LN
I1

(c, c)=LΩ (v, v)≥ν

∫

Ω

|Dv|2dx, (3.23)

where c and v∈SN are related by the first expansion (3.10). Taking into account
identity (3.21), we have

X1

2

∫

Ω

|D1v|2dx≥
∫

I2

|v(x1,x2)|2dx2≥
1

ρ̄0

∫

I2

(
ρ0|v|2

)
(x1,x2)dx2

=
ν

ρ̄0
(G0(x1)c(x1), c(x1))CN on I1.

Applying property (3.3), we complete the proof.

Now we state and study the problem for the unknown coefficients in the Galerkin
method (2.11), (2.17).

Proposition 3.12. For the vector-valued function c(N) =(c1,... ,cN )T built with the
coefficients in the expansion (2.11) of the approximate solution v(N), the Galerkin in-

tegral identity (2.17) means that c(N) is a weak solution in
[
H1

0 (I1)
]N

of the following
BVP for a self-adjoint system of second order ODEs

HNc(N) :=−D1

(
AD1c

(N) +A(0)c(N)
)

+A(0)∗D1c
(N) +Bc(N) = f (N) on I1, (3.24)

c(N)
∣∣∣
x1=0,X1

=0, (3.25)

i.e., c(N) satisfies an integral identity

LN
I1

(
c(N),d

)
=

〈
f (N),d

〉
I1

:=
N∑

k=1

〈fk, dk〉I1
for any d∈

[
H1

0 (I1)
]N

. (3.26)

Here the generalized vector-valued function f (N) =(f1,... ,fN )T has components fk ∈
H−1(I1) such that

〈fk,η〉I1
= 〈f,ηχk〉Ω for any η∈H1

0 (I1), with k =1,... ,N. (3.27)

In the case where f ∈L1,4/3(Ω) the last relation reduces to

fk(x1)=

∫

I2

(fχ∗
k)(x1,x2)dx2 for a.a. x1∈ I1.

Proof. This result is a direct consequence of Lemma 3.7.

Remark 3.13. Clearly, the integral identity (3.26), for d such that dk =ηχk and
dℓ =0 for ℓ 6=k, together with formulas (3.12)–(3.14) for the elements of the involved
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matrices can be also obtained from the orthogonality conditions (2.18) and formula
(2.13) for Hv(N) with ϕ=ηχk (by using D1(ηχk)=D1η ·χk +ηD1χk in that formula).
Moreover, under the regularity conditions (2.8) and (2.14), the system of ODEs (3.24)
together with formulas (3.12)–(3.14) directly appear from the orthogonality conditions
(2.20) by exploiting formula (2.12) for Hv(N).

Remark 3.14. One can rewrite the sesquilinear form in the integral identity (3.26)
as follows:

LN
I1

(c,d)=

∫

I1

[
(AD1c,D1d)

CN −2ı
(
Ã(0)D1c,d

)
CN

+(Bc,d)
CN

]
dx1

−
〈(

D1A
(0)

)
c,d

〉
I1

,

where the self-adjoint matrix Ã(0) := 1
2ı

(
A(0)−A(0)∗

)
has the entries, for 1≤k≤N

and 1≤ ℓ≤N :

ã
(0)
kℓ (x1)=

ı

2

∫

I1

[κ11 (D1χ
∗
k ·χℓ−χ∗

kD1χℓ)+κ12 (D2χ
∗
k ·χℓ−χ∗

kD2χℓ)] dx2 on I1.

In addition, generally

〈(
D1A

(0)
)
c,d

〉
I1

=−
∫

I1

[(
A(0)D1c,d

)
CN

+
(
A(0)c,D1d

)
CN

]
dx1,

or simply

〈(
D1A

(0)
)
c,d

〉
I1

=

∫

I1

(
D1A

(0) ·c,d
)

CN
dx1,

provided that the regularity conditions (2.8) and (3.16) hold so that D1A
(0)∈[

L2(I1)
]N×N

(see (3.17)). This corresponds to rewriting the system of ODEs (3.24)
as

−D1

(
AD1c

(N)
)
−2ıÃ(0)D1c

(N) +
(
B−D1A

(0)
)
c(N) = f (N) on I1. (3.28)

Remark 3.15. In the simplest case, where N =1, the system of ODEs (3.24) is
reduced to the self-adjoint ODE

−D1

(
a11D1c1 +a

(0)
11 c1

)
+a

(0)
11

∗
D1c1 +b

(0)
11 c1 =f1 on I1,

and the coefficients and the right hand side are given by formulas (3.12)–(3.14) and
(3.27) for k = ℓ=1. After the previous remark, this ODE can also be rewritten as

−D1 (a11D1c1)−2ı(Ima
(0)
11 )D1c1 +

(
b
(0)
11 −D1a

(0)
11

)
c1 =f1 on I1.

Let κ0 and V0 be two auxiliary real-valued functions such that

κ0∈L∞(Ω), κ0(x1,x2)≥κ0 >0 on Ω, V0∈ L̃1,∞(Ω), V0≥0. (3.29)
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We introduce another Gram matrix for the system {χℓ}N
ℓ=1 as

G(1) ={g(1)
kℓ }N

k,ℓ=1, g
(1)
kℓ (x1) :=

∫

I2

(κ0D2χℓ ·D2χ
∗
k +V0χℓχ

∗
k)(x1,x2)dx2 on I1.

Proposition 3.16. G(1)∈ [L1(I1)]
N×N , G(1) =G(1)∗ and the following matrix in-

equality holds:

ν

K6
G(1)(x1)≤B(x1) for a.a. x1∈ I1, (3.30)

where K6 :=‖κ0‖L∞(Ω) +(X2/2)‖V0‖L̃1,∞(Ω).

Moreover, G(1)∈ [C(Ī1)]
N×N and the following inequality holds:

G(1)(x1)≥ν
(1)
N I on Ī1, with ν

(1)
N >0, (3.31)

provided that

D2χℓ ∈C(Ī1;L
2(I2)) for 1≤ ℓ≤N, κ0∈C(Ī1;L

∞(I2)), V0∈C(Ī1;L
1(I2)). (3.32)

Proof. We have (compare with (3.4))

‖g(1)
kℓ ‖L1(I1)≤‖κ0‖L∞(Ω)‖D2χℓ‖Ω‖D2χk‖Ω +‖V0‖L̃1,∞(Ω)‖χℓ‖L̃∞,2(Ω)‖χk‖L̃∞,2(Ω)

≤K6‖D2χℓ‖Ω‖D2χk‖Ω. (3.33)

Let v =
∑N

ℓ=1 cℓχℓ, for any c∈CN . Then, similar to (3.20) and the last inequality, we
obtain

(B(x1)c, c)CN ≥ν

∫

I2

(|D2v|2)(x1,x2)dx2≥
ν

K6

∫

I2

(
κ0|D2v|2 +V0|v|2

)
(x1,x2)dx2

=
ν

K6

(
G(1)(x1)c, c

)
CN

for a.a. x1∈ I1, (3.34)

which completes the first part of the proof.
Under conditions (3.32), clearly χℓ ∈C(Ī1;H

1
0 (I2)), thus

‖g(1)
kℓ ‖C(Ī1)≤

(
‖κ0‖C(Ī1;L∞(I2)) +‖V0‖C(Ī1;L1(I2))

)
‖χℓ‖C(Ī1;H1

0 (I2))‖χk‖C(Ī1;H1
0 (I2)).

After that, the proof of inequality (3.31) follows that of (3.3).

We are now in position to derive the strong positive definiteness property of
LN

I1
(·,·).

Proposition 3.17. The sesquilinear form LN
I1

(·,·) has the following H1
0 (I1)-positive

definiteness property

νK−1
7,N‖c‖2

[H1
0 (I1)]

N ≤LN
I1

(c,c) for any c∈
[
H1

0 (Ω)
]N

, (3.35)

where K7,N =K2
3,N (see (3.5)) or K7,N =K8,N with

K8,N :=
1

ν0N

(
K6

∥∥∥∥
∫

I2

(
G(1)−1

D1χ
∗,D1χ

∗
)

CN
ρ0dx2

∥∥∥∥
L∞(I1)

+ ρ̄0

)
,
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and

χ
∗ =(χ∗

1,... ,χ
∗
N )

T
,

provided that the regularity conditions (3.32) and D1χℓ ∈ L̃2,∞(Ω) for 1≤ ℓ≤N are
valid.

Remark 3.18. Property (3.31) implies that

K8,N ≤ 1

ν0N

(
K6

ν
(1)
N

∥∥√ρ0|D1χ|
∥∥2

L̃2,∞(Ω)
+ ρ̄0

)
.

Proof. Let c∈
[
H1

0 (Ω)
]N

and v∈SN be related by the first expansion (3.10).
Inequality (3.23) and bound (3.5) imply (3.35) with K7,N =K2

3,N .
On the other hand, we can write down the inequality

∫

Ω

|Dv|2dx≥ 1

ρ̄0

∫

Ω

|D1v|2ρ0dx+
1

K6

∫

Ω

(
κ0|D2v|2 +V0|v|2

)
dx,

see the second intermediate inequality in (3.34). Using the equality D1(cℓχℓ)=D1cℓ ·
χℓ +cℓD1χℓ and the elementary inequality

|a+b|2≥ (1−γ)|a|2−
(

1

γ
−1

)
|b|2 for any a,b∈C, γ >0,

we have

∫

Ω

|D1v|2ρ0dx≥ (1−γ)

∫

Ω

∣∣∣∣∣

N∑

ℓ=1

D1cℓ ·χℓ

∣∣∣∣∣

2

ρ0dx−
(

1

γ
−1

)∫

Ω

∣∣∣∣∣

N∑

ℓ=1

cℓD1χℓ

∣∣∣∣∣

2

ρ0dx.

Applying identity (3.21) and the equality in (3.34), for 0<γ <1, we obtain

∫

Ω

|Dv|2dx≥ 1−γ

ρ̄0

∫

I1

(
G(0)D1c,D1c

)
CN

dx1

−
(

1

γ
−1

)
1

ρ̄0

∫

Ω

|(c,D1χ
∗)

CN |2ρ0dx+
1

K6

∫

I1

(
G(1)c, c

)
CN

dx1.

(3.36)

Furthermore, the following inequalities hold:

∫

Ω

|(c,D1χ
∗)

CN |2ρ0dx

≤
∫

Ω

(
G(1)c, c

)
CN

·
(
G(1)−1

D1χ
∗,D1χ

∗
)

CN
ρ0dx

≤ ess supI1

∫

I2

(
G(1)−1

D1χ
∗,D1χ

∗
)

CN
ρ0dx2 ·

∫

I1

(
G(1)c, c

)
CN

dx1.

Exploiting property (3.3) and taking γ such that

(
1

γ
−1

)
1

ρ̄0

∥∥∥∥
∫

I2

(
G(1)−1

D1χ
∗,D1χ

∗
)

CN
ρ0dx2

∥∥∥∥
L∞(I1)

=
1

K6
,
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from (3.36) we obtain (3.35) with K7,N =K8,N .

Note that although property (3.35) for K7,N =K8,N may appear more cumber-
some, it can ensure weaker dependence on N (or even independence from N); see
section 4 below.
Proposition 3.19. For any f (N)∈

[
H−1(I1)

]N
, there exists a unique weak solution

c(N)∈
[
H1

0 (I1)
]N

of the Galerkin BVP problem (3.24), (3.25), which satisfies the
bound

‖c(N)‖[H1
0 (I1)]

N ≤ν−1K7,N‖f (N)‖[H−1(I1)]
N . (3.37)

Under the regularity conditions (2.8) and (3.16), for any f (N)∈
[
L2(I1)

]N
, c(N)

is in fact a strong solution which belongs to
[
H2∩H1

0 (I1)
]N

and satisfies the system
of ODEs (3.24) (or (3.28)) in [L2(I1)]

N . Moreover, the following bound holds:

‖c(N)‖[H2(I1)]
N ≤K9,N‖f (N)‖[L2(I1)]

N (3.38)

(an expression for K9,N is omitted).

Proof. Corollary 3.8, Proposition 3.17, and the Riesz-Fischer representation the-
orem imply the first part of the proposition.

Next, under conditions (2.8) and (3.16) and for f (N)∈
[
L2(I1)

]N
, we first ob-

tain from (3.26) that AD1c
(N) has a derivative D1

(
AD1c

(N)
)
∈

[
L1(I1)

]N
. Equation

(3.28) holds in
[
L1(I1)

]N
as well and the bound

∥∥∥
∣∣∣D1

(
AD1c

(N)
)∣∣∣

∥∥∥
Lq(I1)

≤2‖|A(0)|‖I1
‖|D1c

(N)|‖
L

2q
2−q (I1)

+‖|B−D1A
(0)|‖Lq(I1)‖|c(N)|‖L∞(I1) +‖|f (N)|‖Lq(I1) (3.39)

is valid for q =1.
Consequently

∣∣D1c
(N)

∣∣∈L∞(I1) and there exists the derivative

D2
1c

(N) =A−1
[
D1(AD1c

(N))−D1A ·D1c
(N)

]
∈

[
L2(I1)

]N
,

by taking into account that bound (3.39) is now valid for q =2 as well, |D1A|∈L2(I1)
(see bound (3.17)), and A−1∈ [C(Ī1)]

N×N (see also inequalities (3.18)). This implies
bound (3.38). A more general result can be found in [24].

We do not intend to go deeply into the problem of error estimation for the method
and confine ourselves by the following standard result (for example see [1, 23]).

Proposition 3.20. The following optimal E(Ω)-error equality holds:

‖u−v(N)‖E(Ω) = min
ϕ∈SN

‖u−ϕ‖E(Ω), (3.40)

together with the L2(Ω)-error bound

‖u−v(N)‖L2(Ω)≤ sup
w∈H1

0 (Ω):Hw∈L2(Ω)

[
minϕ∈SN

‖w−ϕ‖E(Ω)

‖Hw‖L2(Ω)

]
min

ϕ∈SN

‖u−ϕ‖E(Ω).

(3.41)
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Proof. We recall that equality (3.40) (even for the infinite-dimensional closed SN )
follows from the identity

LΩ(u−v(N), u−v(N))=LΩ(u−v(N), u−ϕ) for all ϕ∈SN

(see the integral identities (2.4) and (2.17)) and that the L2(Ω)-error bound (3.41)
follows from the related identity

‖u−v(N)‖2
L2(Ω) =LΩ(u−v(N), w)=LΩ(u−v(N), w−ϕ) for all ϕ∈SN ,

where w∈H1
0 (Ω) is the solution of the auxiliary problem Hw=u−v(N).

Remark 3.21. The Galerkin method described above may be extended to solve an
elliptic BVP in an n-dimensional cylindrical domain Ω=G×In, where G is an (n−1)-
dimensional bounded domain, n>2 and In := (0,X). This is of increasing physical
interest now. The approximate solution (2.11) may be considered once more with
x̂n =(x1,... ,xn−1) replacing x1 and xn replacing x2. For cℓ ∈H1

0 (G) and χℓ ∈L∞,2(Ω),
Dχℓ ∈ [Lqn,2(Ω)]n, with qn >2 for n=3 and qn =n−1 for n>3, χℓ|xn=0,X =0, 1≤
ℓ≤N , we obtain that v(N)∈H1

0 (Ω). In the case of the n-dimensional version of the
self-adjoint elliptic BVP (2.1), (2.2) (with n replacing 2 as upper limit in the sum), the
Galerkin BVP for the vector-function c(N) of the coefficients of v(N) has the following
form:

HNc(N) :=−
n−1∑

i=1

Di




n−1∑

j=1

A(ij)Djc
(N) +A(i0)c(N)




+

n−1∑

i=1

A(i0)∗Dic
(N) +Bc(N) = f (N) on G, (3.42)

c(N)
∣∣∣
∂G

=0,

where the N ×N matrices A(ij), A(i0) and B have entries, for any 1≤ i≤n−1, 1≤
j≤n−1, 1≤k≤N , 1≤ ℓ≤N , and a.a. x̂n ∈G

a
(ij)
kℓ (x̂n)=

∫

In

(κijχ
∗
kχℓ)(x̂n,xn)dxn,

a
(i0)
kℓ (x̂n)=

∫

In


χ∗

k

n∑

j=1

κijDjχℓ


(x̂n,xn)dxn,

b
(0)
kℓ (x̂n)=

∫

In




n∑

i,j=1

κijDjχℓ ·Diχ
∗
k +V χ∗

kχℓ


(x̂n,xn)dxn,

and f (N) is a vector having the components fk ∈H−1(G), 1≤k≤N , such that

〈fk,η〉G = 〈f,ηχk〉Ω for any η∈H1
0 (G);

compare with (3.12)–(3.14) and (3.27). Equation (3.42) can be classified as a self-
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adjoint strongly elliptic system of PDEs since A(ij) =A(ji) =A(ij)∗, B =B∗ and

n−1∑

i,j=1

(
A(ij)ξ(j),ξ(i)

)
CN

=

∫

In

n−1∑

i,j=1

κijv
(j)v(i)∗dxn

≥ν

∫

In

n−1∑

i=1

|v(i)|2dxn ≥ νν0N

ρ̄0

n−1∑

i=1

|ξ(i)|2 for any ξ(1),... ,ξ(n−1)∈CN ;

compare with (3.18). Here v(i) :=
∑N

ℓ=1 ξ
(i)
ℓ χℓ, and ν0N >0 is introduced quite simi-

larly to (3.3) (see also (3.1) and (3.21)).

4. A specific choice of the basis functions

An important choice of the basis functions is related, for physical reasons, to a
1D eigenvalue problem with respect to x2 depending parametrically on x1∈ I1

H0χ :=−D2 (κ0D2χ)+V0χ=αρ0χ in I2, (4.1)

χ|x2=0,X2
=0, (4.2)

where the coefficients κ0, V0 and ρ0 depend on x1 and x2 and satisfy the above
conditions (3.29). Recall that in its general (i.e. weak) formulation, this problem con-
sists of finding the eigenfunctions χ(x1,·)∈H1

0 (I2), χ(x1,·) 6≡0 and the corresponding
eigenvalues α(x1) satisfying the integral identity

L0I2
[x1](χ(x1,·),ζ(·)) :=

∫

I2

[(κ0D2χ)(x1,x2)(D2ζ
∗)(x2)+(V0χ)(x1,x2)ζ

∗(x2)] dx2

= α(x1)

∫

I2

(ρ0χ)(x1,x2)ζ
∗(x2)dx2 for any ζ ∈H1

0 (I2). (4.3)

Below, we mainly omit [x1] in the notations for brevity.
According to well known results, for a.a. x1∈ I1 the problem has a sequence of

real eigenvalues such that

0<α1(x1)< ···<αℓ(x1)<..., αℓ(x1)→∞ as ℓ→∞,

and the corresponding real eigenfunctions {χℓ(x1,·)}∞ℓ=1 are orthogonal in L2(I2) with
the weight ρ0(x1,·):

∫

I2

(χkχℓρ0)(x1,x2)dx2 =0 for any k 6= ℓ. (4.4)

Moreover, we assume that they are normalized:
∫

I2

(
χ2

kρ0

)
(x1,x2)dx2 =1 for any k. (4.5)

From (4.3)–(4.5) one deduces that these eigenfunctions have a second orthogonality
property

∫

I2

(κ0D2χk ·D2χℓ +V0χkχℓ)(x1,x2)dx2 =αk(x1)δkl for any k,ℓ, (4.6)

with δkk =1 and δkℓ =0 for k 6= ℓ.
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Furthermore, for any w∈L2(Ω) and for a.a. x1∈ I1 the Fourier expansion

w(x1,x2)=
∞∑

ℓ=1

w̃ℓ(x1)χℓ(x1,x2), with w̃ℓ(x1) :=

∫

I2

(wχℓρ0)(x1,x2)dx2, (4.7)

converges in L2(I2), and the Parseval equality holds:

∫

I2

(
|w|2ρ0

)
(x1,x2)dx2 =

∞∑

ℓ=1

|w̃ℓ|2(x1). (4.8)

Moreover, if in addition D2w∈L2(Ω) and w|x2=0,X2
=0, then the expansion converges

in H1
0 (I2), and the second Parseval equality holds:

∫

I2

[
κ0|D2w|2 +V0|w|2

]
(x1,x2)dx2 =

∞∑

ℓ=1

αℓ(x1)|w̃ℓ|2(x1). (4.9)

We also recall the Courant-Fischer minmax principle, for ℓ≥1,

αℓ(x1)= min
Lℓ⊂H1

0 (I2)
max
ζ∈Lℓ

RI2
(x1;ζ), with RI2

(x1;ζ) :=
L0I2

[x1](ζ,ζ)∫
I2

(ζ2ρ0)(x1,x2)dx2
, (4.10)

where RI2
(x1;ζ) is the Rayleigh quotient. The minimum in (4.10) is taken over all

the ℓ-dimensional subspaces Lℓ in real H1
0 (I2), and the case ζ ≡0 is automatically

excluded.
Consequently, for any ℓ≥1, we have that αℓ ∈L∞(I1) and the following two-sided

bound holds:

K−1
10 ℓ2≤αℓ(x1)≤K11ℓ

2 for a.a. x1∈ I1, (4.11)

with

K−1
10 =

κ0

ρ̄0

(
π

X2

)2

, K11 =
K6

ρ
0

(
π

X2

)2

.

For such a choice of {χℓ}∞ℓ=1, by virtue of properties (4.4)–(4.6) we obtain

G0 = I, G(1) =diag{α1,... ,αN}, (4.12)

and thus ν0N =1 and ν
(1)
N =ess infI1

α1≥K−1
10 are independent of N . In particular, if

ρ0 =κ11, then A= I as well and the Galerkin system of ODEs (3.24) becomes simpler.
Note that according to the integral identity (4.3), for a.a. x1∈ I1, the product

(κ0D2χℓ)(x1,·) has the derivative

D2(κ0D2χℓ)(x1,·)=(V0χℓ−αℓχℓ)(x1,·)∈L1(I2). (4.13)

Thus (κ0D2χℓ)(x1,·)∈C(Ī2) and D2χℓ(x1,·)∈L∞(I2). Moreover, if κ0(x1,·)∈C(Ī2),
then χℓ(x1,·)∈C1(Ī2).

Each function χℓ(x1,·) is unique up to the factor ±1. We choose χℓ(x1,·) by spec-
ifying either that (κ0D2χℓ)(x1,0)>0 (the equality (κ0D2χℓ)(x1,0)=0 cannot hold)
or, when κ0(x1,·)∈C(Ī2), simply that (D2χℓ)(x1,0)>0. Then it is possible to de-
rive that χℓ ∈H1(Ω) under some additional conditions on κ0, V0 and ρ0 (the rather
lengthy proof is omitted).
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Remark 4.1. Optimally choosing the functions κ0, ρ0, and V0 is a practically im-
portant question. We will not touch upon this topic in the paper and only mention
that some physical arguments are invoked to solve this question, which would deserve
some mathematical work to be rigorously presented. One may keep in mind the simple
choice κ0 :=κ22, V0 :=V and ρ0 :=1 (or alternatively ρ0 :=κ11).

Also recall that formally one of the coefficients κ0 and ρ0 can be reduced to 1.
For example, one can normalize equation (4.1) by multiplying it by

[
1

κ0

]

I2

(x1) :=
1

X2

∫

I2

dx2

κ0(x1,x2)

(in order to keep the domain Ω the same) and then change the variable y2 :=∫ x2

0
dξ

κ̌0(x1,ξ) , leading to the simplified equation

−D2
y2

χ̌+ V̌0χ̌=αρ̌0χ̌ in I2,

where χ(x1,x2)= χ̌(x1,y2(x1,x2)) and

κ̌0 :=

[
1

κ0

]

I2

κ0, V̌0 :=

[
1

κ0

]

I2

κ̌0V0, ρ̌0 :=

[
1

κ0

]

I2

κ̌0ρ0.

But we have take into account then that D1χ=D1χ̌+D1y2 ·Dy2
χ̌.

Now we turn to a study of approximation properties of the space SN spanned
by the first N eigenfunctions of the auxiliary eigenvalue problem (4.1), (4.2). In
the spirit of [1], we introduce a family of associated Hilbert spaces H0,θ(Ω), θ≥
0, consisting of functions w∈L2(Ω) such that the series

∑∞
ℓ=1α

θ/2
ℓ w̃ℓχℓ converges

in L2(Ω), equipped with the norm ‖w‖H0,θ(Ω) =
[∫

I1

∑∞
ℓ=1αθ

ℓ |w̃ℓ|2dx1

]1/2

. Clearly

H0,θ1(Ω)⊂H0,θ(Ω) and H0,θ1(Ω) 6≡H0,θ(Ω) for any 0≤θ<θ1.
It follows from the Parseval equalities (4.8) and (4.9) that

‖w‖H0,0(Ω) =‖√ρ0w‖L2(Ω), ‖w‖H0,1(Ω) =

[∫

Ω

[
κ0|D2w|2 +V0|w|2

]
dx

]1/2

;

thus

H0,0(Ω)=L2(Ω) and H0,1(Ω) :=
{

w∈L2(Ω);D2w∈L2(Ω), w|x2=0,X2
=0

}
,

up to an equivalence of norms.
Next, the space H0,2(Ω) consists of functions w∈H0,1(Ω) having a deriva-

tive D2 (κ0D2w)∈L1(Ω) and such that H0w∈L2(Ω), with the norm ‖w‖H0,2(Ω) =∥∥∥ 1√
ρ0

H0w
∥∥∥

L2(Ω)
. The last two conditions on w are reduced to the simple condition

D2
2w∈L2(Ω) provided that D2κ0,V0∈ L̃2,∞(Ω). Moreover, H0,θ(Ω) for θ>2 is the

space of functions w∈H0,2(Ω) such that ρ−1
0 H0w∈H0,θ−2(Ω) and

‖w‖H0,θ(Ω) =
∥∥ρ−1

0 H0w
∥∥
H0,θ−2(Ω)

.

We define a projector PN : L2(Ω)→S0
N by the formula

(PNw)(x1,x2) :=
N∑

ℓ=1

w̃ℓ(x1)χℓ(x1,x2) in Ω, for w∈L2(Ω),
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where the coefficients w̃ℓ are given by formula (4.7).
We also define the auxiliary energy norm

‖w‖E0(Ω) :=

[∫

Ω

(
ρ0|D1w|2 +κ0|D2w|2 +V0|w|2

)
dx

]1/2

,

which clearly coincides with ‖w‖E(Ω) in the particular case κ =diag{ρ0,κ0} and V =
V0. Let αℓ :=ess infI1

αℓ.

Proposition 4.2. Let w∈H0,θ(Ω), for some θ≥0. Then the L2(Ω)-approximation
bound holds:

‖√ρ0 (w−PNw)‖L2(Ω)≤α
−θ/2
N+1 ‖w‖H0,θ(Ω) . (4.14)

If in addition θ≥1 and D1w∈H0,θ−1(Ω), the E0(Ω)-approximation bound holds:

‖w−PNw‖E0(Ω)≤α
−(θ−1)/2
N+1

(
‖w‖H0,θ(Ω) +‖D1w‖H0,θ−1(Ω)

)
+‖√ρ0RNw‖L2(Ω) ,

(4.15)
where RNw :=D1PNw−PND1w.

Proof. Due to the first Parseval equality (4.8), we obtain

‖√ρ0 (w−PNw)‖2
L2(Ω) =

∫

I1

∫

I2

ρ0 |w−PNw|2dx2dx1

=

∫

I1

∞∑

ℓ=N+1

|w̃ℓ|2dx1≤α−θ
N+1‖w‖2

H0,θ(Ω) . (4.16)

Moreover, we also obtain

‖w−PNw‖E0(Ω)≤‖√ρ0 (D1w−PND1w)‖Ω

+‖√ρ0 (D1PNw−PND1w)‖Ω

+

[∫

I1

L0I2
(w−PNw,w−PNw) dx1

]1/2

.

Due to the second Parseval equality (4.9), we have

L0I2
(w−PNw,w−PNw)=

∞∑

ℓ=N+1

αℓ|w̃ℓ|2. (4.17)

Then the second approximation bound (4.15) follows from the first one (4.14) with
D1w replacing w and estimating (4.17) similarly to (4.16).

A delicate matter is now to bound RNw. We first get a representation for RNw.

Let χ̇ℓ :=D1χℓ and χ̇ℓ,k := (̃χ̇ℓ)k, for brevity.

Lemma 4.3. Let w∈H1,0(Ω). The following formula holds

RNw=

N∑

ℓ=1

w̃ℓ (χ̇ℓ−PN χ̇ℓ)−
∞∑

ℓ=N+1

w̃ℓPN χ̇ℓ, (4.18)

where the series converges in L2(Ω) (note that the representation does not contain
D1w).
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Proof. By differentiating in x1 the formulas for PNw and w̃ℓ as well as the
orthonormality conditions (4.4) and (4.5), we derive

D1PNw=

N∑

ℓ=1

(D1w̃ℓ ·χℓ + w̃ℓχ̇ℓ) on Ω,

D1w̃ℓ =
(
D̃1w

)
ℓ
+

∫

I2

wD1(χℓρ0)dx2 on I1

and
∫

I2

[χ̇ℓχkρ0 +χℓD1(χkρ0)] dx2 =0 on I1, for any k,ℓ. (4.19)

Expanding w with respect to the system {χℓ}∞ℓ=1 and applying the last formula, we
further calculate

∫

I2

wD1(χkρ0)dx2 =

∫

I2

∞∑

ℓ=1

w̃ℓχℓD1(χkρ0)dx2

=−
∞∑

ℓ=1

w̃ℓ

∫

I2

χ̇ℓχkρ0dx2 =−
∞∑

ℓ=1

w̃ℓχ̇ℓ,k on I1.

Gathering these formulas and rearranging the summands, we find

D1PNw−PND1w=
N∑

ℓ=1

D1w̃ℓ ·χℓ + w̃ℓχ̇ℓ− ˜(D1wℓ)χℓ

=

N∑

ℓ=1

w̃ℓχ̇ℓ +

N∑

k=1

∫

I2

wD1(χkρ0)dx2 ·χk

=

N∑

ℓ=1

w̃ℓχ̇ℓ−
N∑

k=1

∞∑

ℓ=1

w̃ℓχ̇ℓ,kχk

=

N∑

ℓ=1

w̃ℓχ̇ℓ−
∞∑

ℓ=1

w̃ℓ

(
N∑

k=1

χ̇ℓ,kχk

)
.

This directly implies the result.

Corollary 4.4. If w∈H1,0(Ω)∩H0,θ(Ω) for some θ≥0, then the following bound
holds:

‖√ρ0RNw‖L2(Ω)≤
∥∥∥∥∥

√[
s
(θ)
1N

]2

+
[
s
(θ)
2N

]2
∥∥∥∥∥

L∞(Ω)

‖w‖H0,θ(Ω),

where

s
(θ)
1N :=

[
N∑

ℓ=1

α−θ
ℓ ‖√ρ0 (χ̇ℓ−PN χ̇ℓ)‖2

L2(I2)

]1/2

=

[
N∑

ℓ=1

α−θ
ℓ

∞∑

k=N+1

χ̇2
ℓ,k

]1/2

,

s
(θ)
2N :=

[ ∞∑

ℓ=N+1

α−θ
ℓ ‖√ρ0PN χ̇ℓ‖2

L2(I2)

]1/2

=

[ ∞∑

ℓ=N+1

α−θ
ℓ

N∑

k=1

χ̇2
ℓ,k

]1/2

.



270 SEMIDSCRETE GALERKIN METHOD FOR 2D HAMILTONIAN OPERATOR

In contrast to other bounds in the paper, the case

∥∥∥∥∥

√[
s
(θ)
1N

]2

+
[
s
(θ)
2N

]2
∥∥∥∥∥

L∞(Ω)

=∞ is

not excluded (in general).

Proof. Applying the Cauchy-Schwartz inequality, we have

‖√ρ0RNw‖I2
≤

N∑

ℓ=1

|w̃ℓ|‖
√

ρ0 (χ̇ℓ−PN χ̇ℓ)‖I2
+

∞∑

ℓ=N+1

|w̃ℓ|‖
√

ρ0PN χ̇ℓ‖I2

≤
(

N∑

ℓ=1

αθ
ℓ |w̃ℓ|2

)1/2(
N∑

ℓ=1

α−θ
ℓ ‖√ρ0 (χ̇ℓ−PN χ̇ℓ)‖2

I2

)1/2

+

( ∞∑

ℓ=N+1

αθ
ℓ |w̃ℓ|2

)1/2( ∞∑

ℓ=N+1

α−θ
ℓ ‖√ρ0PN χ̇ℓ‖2

I2

)1/2

.

Consequently

‖√ρ0RNw‖Ω≤

∥∥∥∥∥∥

( ∞∑

ℓ=1

αθ
ℓ |w̃ℓ|

)1/2√[
s
(θ)
1N

]2

+
[
s
(θ)
2N

]2

∥∥∥∥∥∥
I1

≤‖w‖H0,θ(Ω)

∥∥∥∥∥

√[
s
(θ)
1N

]2

+
[
s
(θ)
2N

]2
∥∥∥∥∥

L∞(I1)

.

Remark 4.5. The following formula holds

‖√ρ0RNw‖2
L2(Ω) =

∫

I1





N∑

k=1

∣∣∣∣∣

∞∑

ℓ=N+1

w̃ℓχ̇ℓ,k

∣∣∣∣∣

2

+
∞∑

k=N+1

∣∣∣∣∣

N∑

ℓ=1

w̃ℓχ̇ℓ,k

∣∣∣∣∣

2


dx1,

which is a consequence of representation (4.18) rewritten as

RNw=
N∑

ℓ=1

w̃ℓ

∞∑

k=N+1

χ̇ℓ,kχk−
∞∑

ℓ=N+1

w̃ℓ

N∑

k=1

χ̇ℓ,kχk.

Now we suppose that α̇ℓ :=D1αℓ ∈L1(I1) and χ̇ℓ(x1,·)∈H1
0 (I2), for ℓ≥1 and a.a.

x1∈ I1, and derive some their properties. Up to the end of this section, we also assume
that

‖D1κ0‖L∞(Ω) +‖D1V0‖L̃1,∞(Ω) +‖D1ρ0‖L∞(Ω)≤µ1,0 (4.20)

and set

K12 :=‖κ(1)
0 ‖L∞(Ω) +

∥∥∥∥
1

κ0

∥∥∥∥
L̃1,∞(Ω)

‖D1V0‖L̃1,∞(Ω), K13 :=‖ρ(1)
0 ‖L∞(Ω),

with κ
(1)
0 := (D1κ0)/κ0 and ρ

(1)
0 := (D1ρ0)/ρ0.
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Proposition 4.6.

1. The following simple formula holds, for ℓ≥1:

α̇ℓ = L̇0I2
(χℓ,χℓ)−αℓ

∫

I2

D1ρ0 ·χ2
ℓ dx2 in I1, (4.21)

where

L̇0I2
[x1](χℓ(x1,·),ζ(·))

:=

∫

I2

[(D1κ0 ·D2χ)(x1,x2)(D2ζ)(x2)+(D1V0 ·χ)(x1,x2)ζ(x2)] dx2.

2. For ℓ≥1 and a.a. x1∈ I1, χ̇ℓ(x1,·)∈H1
0 (I2) is a weak solution of the degen-

erate BVP

H0χ̇ℓ−αℓρ0χ̇ℓ =Fℓ :=−Ḣ0χℓ +(αℓD1ρ0 + α̇ℓρ0)χℓ in I2, (4.22)

χ̇ℓ|x2=0,X2
=0, (4.23)

with Ḣ0χ :=−D2(D1κ0 ·D2χ)+D1V0 ·χ, i.e., χ̇ℓ satisfies the integral identity

L0I2
(χ̇ℓ,ζ)−αℓ

∫

I2

ρ0χ̇ℓζ dx2 = 〈Fℓ,ζ〉I2
:=−L̇0I2

(χℓ,ζ)

+αℓ

∫

I2

D1ρ0 ·χℓζ dx2 + α̇ℓ

∫

I2

ρ0χℓζ dx2 for any real ζ ∈H1
0 (I2), (4.24)

where Fℓ ∈H−1(I2).
Moreover, the following formula holds

χ̇ℓ,ℓ ≡
∫

I2

ρ0χ̇ℓχℓdx2 =−1

2

∫

I2

D1ρ0 ·χ2
ℓ dx2; (4.25)

more generally
∫

I2

ρ0χ̇ℓχk dx2 +

∫

I2

ρ0χ̇kχℓdx2 =−
∫

I2

D1ρ0 ·χℓχk dx2 for any k≥1. (4.26)

Proof. Formula (4.26) is another form of (4.19). Formula (4.25) is its particular
case for k = ℓ.

By differentiating in x1 the second orthogonality relation (4.6) for k = ℓ, we obtain

α̇ℓ =2L0I2
(χℓ,χ̇ℓ)+ L̇0I2

(χℓ,χℓ) .

Applying the integral identity (4.3) for χ=χℓ and ζ = χ̇ℓ and formula (4.25), we obtain

L0I2
(χℓ,χ̇ℓ)=αℓ

∫

I2

ρ0χℓχ̇ℓdx2 =−αℓ

2

∫

I2

D1ρ0 ·χ2
ℓ dx2,

which leads to (4.21).
The integral identity (4.24) is derived by differentiating (4.3) with respect to x1

for χ=χℓ and α=αℓ.
The property Fℓ ∈H−1(I2) follows from the bounds, for any χ,ζ ∈H1

0 (I2),
∣∣∣L̇0I2

(χ,ζ)
∣∣∣≤K12‖

√
κ0D2χ‖I2

‖√κ0D2ζ‖I2
, (4.27)
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compare with the second inequality (3.34), and similarly

∣∣∣∣
∫

I2

D1ρ0 ·χζdx2

∣∣∣∣≤K13‖
√

ρ0χ‖I2
‖√ρ0ζ‖I2

. (4.28)

Proposition 4.7. The degenerate BVP (4.22), (4.23) under the additional condition
(4.25) has a unique weak solution. The coefficients of its Fourier expansion

χ̇ℓ =
∞∑

k=1

χ̇ℓ,kχk (4.29)

can be calculated as

χ̇ℓ,k =
Fℓ,k

αk−αℓ
for k 6= ℓ, (4.30)

with

Fℓ,k := 〈Fℓ,χk〉I2
=

{
−L̇0I2

(χk,χℓ)+αℓ

∫
I2

D1ρ0 ·χkχℓdx2 for k 6= ℓ,

0 for k = ℓ;
(4.31)

for k = ℓ see (4.25). Moreover, the following bounds hold:

|Fℓ,k|≤K12
√

αkαℓ +K13αℓ, |χ̇ℓ,ℓ|≤
1

2
K13 for any k,ℓ. (4.32)

Proof. Formula (4.31) follows from (4.4) for k 6= ℓ and from (4.21) for k = ℓ.
The equality 〈Fℓ,χℓ〉I2

=0 is the necessary condition for solvability of the degen-
erate BVP (4.22), (4.23). Moreover, its weak solution exists and is unique provided
that

∫
I2

ρ0χ̇ℓχℓdx2 is given (see a general theory in [13]).

Setting ζ =χk into (4.24) and applying (4.3) for χ=χk, α=αk and ζ = χ̇ℓ, we
obtain (4.30).

Bound (4.32) follows from (4.27), (4.28) together with equalities (4.5) and (4.6)
for k = ℓ.

Now we assume the following spectral gap property

√
αℓ(x1)−

√
αk(x1)≥ δs(ℓ−k) for any 1≤k <ℓ and a.a. x1∈ I1, (4.33)

for some δs >0 (we omit its lengthy proof here). Let K14 :=max{K12,K13}.
Proposition 4.8. The following bound holds

‖√ρ0χ̇ℓ(x1,·)‖L2(I1)≤K15(K10,K14,δs)
√

αℓ(x1) for a.a. x1∈ I1. (4.34)

Consequently, K8,N ≤K6(K
2
15N + ρ̄0) (in this respect, see Proposition 3.17).

Proof. Applying Proposition 4.7, we obtain

‖√ρ0χ̇ℓ‖2
I2

=
∑

k≥1;k 6=ℓ

(
Fℓ,k

αk−αℓ

)2

+ |χ̇ℓ,ℓ|2≤K2
14


αℓ

∑

k≥1;k 6=ℓ

1
(√

αk−
√

αℓ

)2 +
1

4


 .
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The spectral gap property (4.33) implies that

∑

k≥1;k 6=ℓ

1
(√

αk−
√

αℓ

)2 ≤ 1

δ2
s

(
ℓ−1∑

k=1

1

(ℓ−k)2
+

∞∑

k=ℓ+1

1

(k−ℓ)2

)
<

2

δ2
s

∞∑

m=1

1

m2
=

π2

3δ2
s

.

Invoking the lower bound for αℓ in (4.11), we complete the proof of (4.34).
Concerning the bound for K8,N , from (4.12) we have

∫

I2

(
G(1)−1

D1χ,D1χ

)
CN

ρ0dx2 =
N∑

ℓ=1

α−1
ℓ ‖√ρ0χ̇ℓ‖2

I2
≤K2

15N.

Remark 4.9. In the particular case of κ0 and ρ0 independent of x1, the results
of Proposition 4.8 can be essentially improved. Namely, we first get (compare with
(4.32))

|Fℓ,k|≤‖D1V0‖L̃1,∞(Ω)‖χℓ‖L∞(I2)‖χk‖L∞(I2)≤ K̃12
4
√

αkαℓ, for any k,ℓ,

with K̃12 :=2µ1,0/
√ρ

0
κ0, since

‖χℓ‖2
L∞(I2)

≤2

∫

I2

|χℓ||D2χℓ|dx2≤
2

√ρ
0
κ0

‖√ρ0χℓ‖I2
‖√κ0D2χℓ‖I2

≤ 2
√ρ

0
κ0

√
αℓ.

Using the obvious inequality 4
√

αkαℓ ≤ (
√

αk +
√

αℓ)/2, now we derive the uniform in
ℓ≥1 bound

‖√ρ0χ̇ℓ‖I2
≤ K̃12

2

(
π√
3δs

+1

)
=: K̃15

and then (applying the lower bound in (4.11)) the uniform in N ≥1 bound

K8,N ≤K6

(
π2

6
K10K̃

2
15 + ρ̄0

)
.

Thus the H1
0 (I1)-positive definiteness property (3.35) becomes the best possible.

The results of the rest of the section could be improved in this particular case as
well.

Lemma 4.10. The following bound holds

∥∥∥s
(θ)
2N

∥∥∥
L∞(I1)

≤ K14

δs
α
−(θ−1)/2
N+1

(
c0 +log1/2N

)
for θ≥1,

where c0 is a generic numerical constant.

Proof. Applying once more Proposition 4.7 and the spectral gap property, simi-
larly to the previous proof we obtain

[
s
(θ)
2N

]2

=

∞∑

ℓ=N+1

α−θ
ℓ

N∑

k=1

(
Fℓ,k

αk−αℓ

)2

≤
(

K14

δs

)2 ∞∑

ℓ=N+1

α
−(θ−1)
ℓ

N∑

k=1

1

(ℓ−k)2

=

(
K14

δs

)2 ∞∑

n=1

α
−(θ−1)
n+N

n+N−1∑

m=n

1

m2
. (4.35)
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For θ≥1, we obtain

[
s
(θ)
2N

]2

≤
(

K14

δs

)2

α
−(θ−1)
N+1 S1N , with S1N :=

∞∑

n=1

n+N−1∑

m=n

1

m2
.

Since

1

m2
<

1

m−1
− 1

m
for m≥2, (4.36)

we have

n+N−1∑

m=n

1

m2
<

1

n−1
− 1

n+N −1
for n≥2,

and thus

S1N <
π2

6
+

N∑

k=1

1

k
≤ c0 +logN,

which completes the proof.

We now estimate s
(θ)
1N under the low regularity (with respect to x1) of coefficients

κ0,V0 and ρ0, see (4.20).

Lemma 4.11. The following bounds hold

∥∥∥s
(θ)
1N

∥∥∥
L∞(I1)

≤2K
(θ−1)/2
10

K14

δs
(N +1)−(θ−1)

(
1+log1/2N

)
for 1≤θ≤3/2,

∥∥∥s
(θ)
1N

∥∥∥
L∞(I1)

≤ cθK
(θ−1)/2
10

K14

δs
(N +1)−1/2 for θ>3/2,

where cθ depends only on θ.

Proof. Similar to relations (4.35), we obtain

[
s
(θ)
1N

]2

=
N∑

ℓ=1

α−θ
ℓ

∞∑

k=N+1

(
Fℓ,k

αk−αℓ

)2

≤
(

K14

δs

)2 N∑

ℓ=1

α
−(θ−1)
ℓ

∞∑

m=1

1

(m+N −ℓ)2
. (4.37)

Inequality (4.36) implies that

∞∑

m=1

1

(m+N −ℓ)2
<

1

(1+N −ℓ)2
+

1

1+N −ℓ
≤ 2

N +1−ℓ
.

Therefore, for θ≥1, exploiting the lower bound in (4.11), we obtain

[
s
(θ)
1N

]2

<2

(
K14

δs

)2

Kθ−1
10 S2N (θ̃), (4.38)

with S2N (θ̃) :=
N∑

ℓ=1

1

ℓ2θ̃(N +1−ℓ)
and θ̃ :=θ−1.
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In the case where θ̃∈ [0,1/2], exploiting the Hölder inequality for sums we have

S2N (θ̃)≤S1−2θ̃
2N (0) S2θ̃

2N

(
1

2

)
.

Since S2N (0)<1+logN and

S2N

(
1

2

)
≤

N∑

ℓ=1

1

ℓ(N +1−ℓ)
=

1

N +1

N∑

ℓ=1

1

ℓ
+

1

N +1−ℓ
<

2

N +1
(1+logN), (4.39)

we derive

S2N (θ̃)<22θ̃(N +1)−2θ̃(1+logN).

In the case θ̃ =(1+ε)/2 with ε>0, we obtain

S2N (θ̃)=h1+ε
N∑

ℓ=1

gε(ℓh)h<h1+ε

∫ 1−h/2

h/2

gε(ξ)dξ,

with h := 1
N+1 and gε(ξ) := 1

ξ1+ε(1−ξ) . Here we have taken into account that the sum

is the compound midpoint quadrature formula for the integral and g′′ε >0 on (0,1).
Furthermore, we can estimate the integral as follows

h1+ε

∫ 1−h/2

h/2

gε(ξ)dξ <h1+ε

(
2

∫ 1/2

h/2

dξ

ξ1+ε
+21+ε

∫ 1/2

h/2

dξ

1−ξ

)

<h1+ε

[
2

ε

(
h

2

)−ε

+21+ε log
1

h

]
=21+ε

(
1

ε
+hε log

1

h

)
h.

Consequently

S2N (θ̃)≤ cε(N +1)−1.

Inserting the bounds for S2N (θ̃) into (4.38), we complete the proof.

In order to obtain higher-order bounds than in Lemma 4.11, we need an additional
condition on Fℓ (finally, on κ0, V0 and ρ0). To state this, we go back to the definition
of the spaces H0,θ(Ω) and introduce a similar family of Hilbert spaces of functions
depending only on x2, for a.a. x1∈ I1

Hθ[x1](I2) :=



ζ ∈L2(I2); ‖ζ‖Hθ [x1](I2) :=

[ ∞∑

ℓ=1

αθ
ℓ (x1)|ζ̃ℓ(x1)|2

]1/2

<∞



, θ≥0;

note that the Fourier coefficients ζ̃ℓ, see (4.7), are x1-dependent even for ζ independent
of x1.

Let 0≤θ0 <θ1. Clearly Hθ1(I2)⊂Hθ0(I2) and Hθ1(I2) is dense in Hθ0(I2); here-
after we omit the symbol [x1] for brevity. Moreover, the Hölder inequality for series
implies the following multiplicative inequality, for θ0≤θ≤θ1

‖ζ‖Hθ(I2)≤‖ζ‖
θ1−θ

θ1−θ0

Hθ0 (I2)
‖ζ‖

θ−θ0
θ1−θ0

Hθ1 (I2)
for any ζ ∈Hθ1(I2). (4.40)
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We have H0(I2)=L2(I2) and H1(I2)=H1
0 (I2), up to an equivalence of norms

(uniformly in x1∈ I1), and

‖ζ‖H0(I2) =‖√ρ0ζ‖L2(I2), ‖ζ‖H1(I2) =[L0I2
(ζ,ζ)]

1/2
.

For completeness of our error bounds, we also need to consider functions ζ ∈
H−1(I2) such that

‖ρ−1
0 ζ‖H−θ(I2) := sup

‖η‖
Hθ(I2)

=1

∣∣〈ζ,η〉I2

∣∣<∞ for 0<θ≤1.

For θ =1, this norm is equivalent (uniformly in x1∈ I1) to the norm ‖ζ‖H−1(I2). Note

that in general here ρ−1
0 ζ is only a convenient notation rather than the product of

ρ−1
0 and ζ (though under condition (4.20) on ρ0 this is well-defined). On the other

hand, for any ζ ∈L2(I2)

‖ρ−1
0 (ρ0ζ)‖H−θ(I2) =‖ζ‖H−θ(I2) =

[ ∞∑

ℓ=1

α−θ
ℓ |ζ̃ℓ|2

]1/2

.

We introduce the following condition on Fℓ, ℓ≥1:

ess supx1∈I1
α
−β/2−1
ℓ (x1)

∥∥(ρ−1
0 (Fℓ− α̇ℓρ0χℓ))(x1,·)

∥∥
Hβ [x1](I2)

≤2K16,β (4.41)

for some β≥−1. This follows from

‖ρ−1
0 Ḣ0χℓ‖Hβ(I2)≤K16,β α

β/2+1
ℓ , ‖ρ(1)

0 χℓ‖Hβ(I2)≤K16,β α
β/2
ℓ on I1, for ℓ≥1. (4.42)

Notice that ‖ρ−1
0 H0χℓ‖Hβ(I2) =αℓ‖χℓ‖Hβ(I2) =α

β/2+1
ℓ , for β≥−1 and ℓ≥1.

The multiplicative inequality (4.40) implies that if one of the conditions is valid
for some β =β0,β1 such that −1≤β0 <β1, then this is also valid for any β0≤β≤β1

(with K16,β =K
β1−β

β1−β0

16,β0
K

β−β0
β1−β0

16,β1
). In particular, it is sufficient to consider only integer

values of β.

For β =−1 and D2ρ
(1)
0 ∈ L̃2,∞(Ω), using bound (4.27) and taking into account

that H1(I2)=H1
0 (I2) up to an equivalence of norms, we have

∣∣∣∣
〈
Ḣ0χℓ,η

〉
I2

∣∣∣∣=
∣∣∣L̇0I2

(χℓ,η)
∣∣∣≤K12‖

√
κ0D2χℓ‖I2

‖√κ0D2η‖I2
≤K12

√
αℓ‖η‖H1(I2),

∣∣∣∣
∫

I2

ρ0ρ
(1)
0 χℓηdx2

∣∣∣∣≤‖χℓ‖H−1(I2)‖ρ
(1)
0 η‖H1(I2)

≤ 1√
αℓ

√
2K6X2

κ0

‖D2ρ
(1)
0 ‖L̃2,∞(Ω)‖η‖H1(I2),

for any η∈H1
0 (I2). Thus condition (4.42) holds for β =−1.

For β =0 and D2κ
(1)
0 ,V0,D1V0∈ L̃2,∞(Ω), we obtain

Ḣ0χℓ =−κ
(1)
0 D2(κ0D2χℓ)−D2κ

(1)
0 ·κ0D2χℓ +D1V0 ·χℓ.
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Consequently

∥∥∥ρ−1
0 Ḣ0χℓ

∥∥∥
H0(I2)

=

∥∥∥∥
1√
ρ0

Ḣ0χℓ

∥∥∥∥
I2

≤ 1√
ρ̄0

[(
‖κ(1)

0 ‖L∞(Ω) +
√

X2‖D2κ
(1)
0 ‖L̃2,∞(Ω)

)
‖D2(κ0D2χℓ)‖I2

+‖D1V0‖L̃2,∞(Ω)‖χℓ‖L∞(Ω)

]
.

Since D2(κ0D2χℓ)=(V0−αℓρℓ)χℓ also and

‖ρ(1)
0 χℓ‖H0(I2)≤‖ρ(1)

0 ‖L∞(Ω)‖
√

ρ0χℓ‖I2
=‖ρ(1)

0 ‖L∞(Ω),

condition (4.42) holds for β =0 as well.

Lemma 4.12. Let θ>3/2 and condition (4.42) for β =θ−5/2 be valid. Then

∥∥∥s
(θ)
1N

∥∥∥
L∞(I1)

≤2

√
2

δs
K

1/4
10 K16,β α

−(θ−3/2)/2
N+1 (N +1)−1/2

(
1+log1/2N

)
.

Proof. Using the spectral gap property (4.33), we can replace the inequality in
(4.37) by

[
s
(θ)
1N

]2

≤
N∑

ℓ=1

α−θ
ℓ

1

δs(N +1−ℓ)

∞∑

k=N+1

α−1
k F 2

ℓ,k.

Estimating the right hand side and applying condition (4.42) for some β≥−1, we
obtain

[
s
(θ)
1N

]2

≤ 1

δs
α
−(β+1)
N+1

N∑

ℓ=1

α−θ
ℓ

1

N +1−ℓ

∞∑

k=N+1

αβ
kF 2

ℓ,k

≤ 1

δsα
(β+1)
N+1

N∑

ℓ=1

α−θ
ℓ

∥∥ρ−1
0 (Fℓ− α̇ℓρ0χℓ)

∥∥2

Hβ(I2)

1

N +1−ℓ

≤ (2K16,β)2

δsα
(β+1)
N+1

N∑

ℓ=1

αβ+2−θ
ℓ

1

N +1−ℓ
. (4.43)

Setting β :=θ−5/2 and applying the lower bound in (4.11) and bound (4.39), we
complete the proof.

Remark 4.13. Since k >ℓ in (4.43), we have actually exploited only the weakened
version of condition (4.41) with ρ−1

0 Fℓ−Pℓ(ρ
−1
0 Fℓ) replacing ρ−1

0 (Fℓ− α̇ℓρ0χℓ).

Summarizing the results of Proposition 4.2 (see (4.15)), Corollary 4.4 and Lemmas
4.10–4.12, we obtain the following proposition.

Proposition 4.14. Let conditions (4.20) and (4.33) be valid. Also let w∈H0,θ(Ω)
and D1w∈H0,θ−1(Ω) for some θ>1 and, in the case where θ>3/2, let condition
(4.42) for β =θ−5/2 be valid too. Then the following H1(Ω)-approximation bound
holds:

‖w−PNw‖H1(Ω)≤K17(N +1)−(θ−1)
(
1+log1/2N

)(
‖w‖H0,θ(Ω) +‖D1w‖H0,θ−1(Ω)

)
.

(4.44)
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Corollary 4.15. Let conditions (4.20) and (4.33) be valid. Also let u∈H0,θ(Ω) and
D1u∈H0,θ−1(Ω) for some θ>1 and, in the case where θ>3/2, let condition (4.42)
for β =θ−5/2 be valid as well. Then the following H1(Ω)-error bound holds:

‖u−v(N)‖H1(Ω)≤K18(N +1)−(θ−1)
(
1+log1/2N

)(
‖u‖H0,θ(Ω) +‖D1u‖H0,θ−1(Ω)

)
.

(4.45)
Under additional regularity conditions (2.8) and

D2κ
(1)
0 ,V0,D1V0,D2ρ

(1)
0 ∈ L̃2,∞(Ω), (4.46)

the following L2(Ω)-error bound holds as well:

‖u−v(N)‖L2(Ω)≤K19(N +1)−θ (1+logN)
(
‖u‖H0,θ(Ω) +‖D1u‖H0,θ−1(Ω)

)
. (4.47)

Proof. The results are straightforward consequences of Propositions 3.20 and 4.14.
Concerning bound (4.47), we apply bound (4.44) together with its version for θ =2,
also exploiting bound (2.9) and condition (4.42) for β =−1/2 (as a consequence of
the same condition verified above for β =−1,0).

Remark 4.16. If for θ>3/2 condition (4.42) is not imposed, then bounds (4.44) and

(4.45) with cθ(N +1)−1/2 replacing (N +1)−(θ−1)
(
1+log1/2N

)
additionally hold,

due to the second bound in Lemma 4.11.

5. A discretized Galerkin method

To get a practically implementable method, it is necessary to discretize in x1

the Galerkin BVP (3.24), (3.25). This can be accomplished in many ways. In order
to preserve Hermitian symmetry and positive definiteness properties, one natural
approach consists in applying the finite element method.

We consider only its simplest version based on linear elements with numerical
integration in x1 which is closer to practice. Let x10 =0<x11 < · · ·<x1m =X1 be a
general mesh ωh on Ī1, with steps hm :=x1m−x1m−1. Let Sh(Ī1) be the space of
continuous functions on Ī1, linear on each element [x1m−1, x1m] and equal to zero at
x1 =0,X1. Clearly dim Sh(Ī1)=m−1 and Sh(Ī1)⊂H1

0 (I1).
Let ω∗

h ={x1m−1/2}m
m=1 be another mesh with the nodes x1m−1/2 := (x1m−1 +

x1m)/2 and steps hm+1/2 :=x1m+1/2−x1m−1/2 =(hm +hm+1)/2.
We seek an approximate solution of the BVP (2.1), (2.2) in the form

v
(N)
h (x1,x2)=

N∑

ℓ=1

chℓ(x1)χℓ(x1,x2)=
m−1∑

m=1

N∑

ℓ=1

chℓ(x1m)ehm(x1)χℓ(x1,x2), (5.1)

where chℓ ∈Sh(Ī1) and the “hat” functions

ehm(x1)=





(x1−x1m−1)/hm for x1m−1≤x1≤x1m,

(x1m+1−x1)/hm+1 for x1m ≤x1≤x1m+1,

0 for x1 /∈ [x1m−1,x1m+1],

for 1≤m≤m−1, form the standard basis in Sh(Ī1). We denote by SN
h the space of

all functions on Ω having form (5.1). Clearly dim SN
h =(m−1)N and SN

h ⊂H1
0 (Ω).
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We approximate the original integral identity (2.4) as follows:

LΩh

(
v
(N)
h , ϕ

)
= ℓΩh(ϕ) for any ϕ∈SN

h (5.2)

(compare with the semi-discrete version (2.17)), where

LΩh (w,ϕ) :=
m∑

m=1

∫

I2




2∑

i,j=1

κijDjw ·Diϕ
∗+V wϕ∗


(

x1m−1/2,x2

)
dx2hm,

ℓΩh(ϕ) :=

m∑

m=1

〈
f

(
x1m−1/2,·

)
, ϕ

(
x1m−1/2,·

)〉
I2

hm.

In the above formulas, we have obviously approximated the integrals over I1 by apply-
ing the compound midpoint quadrature formula. In this section we impose additional
regularity conditions

Diχℓ ∈C
(
Ī1;L

2(I2)
)
, κij ∈C

(
Ī1;L

∞(I2)
)

for all i,j, V ∈C
(
Ī1;L

1(I2)
)
, f ∈C

(
Ī1;H

−1(I2)
)

(5.3)

(compare with (3.32)). Note that only the values χℓ|ω∗

h
×I2

(and Dχℓ|ω∗

h
×I2

) of χℓ are

involved in (5.2), for 1≤ ℓ≤N .
Clearly LΩh (w,ϕ) is a bounded, Hermitian symmetric, and a positive definite

sesquilinear form on SN
h ×SN

h . The last property means precisely that

ν‖w‖2
H1

0h
(Ω)≤LΩh (w,ϕ) for any w∈SN

h , (5.4)

where

‖w‖H1
0h

(Ω) :=
∥∥∥‖|Dw|‖L2(I2)

∥∥∥
L2

h
(I1)

, ‖y‖L2
h
(I1)

:=

(
m∑

m=1

∣∣ym−1/2

∣∣2hm

)1/2

,

with ym−1/2 =y(x1m−1/2). Consequently, for any f ∈C
(
Ī1;H

−1(I2)
)
, there exists a

unique approximate solution v
(N)
h which satisfies the bound

∥∥∥v
(N)
h

∥∥∥
H1

0h
(Ω)

≤ν−1
∥∥∥‖f‖H−1(I2)

∥∥∥
L2

h
(I1)

;

compare with Corollary 3.4.
Now we need to introduce the difference and averaging mesh operators

δ1ηm−1/2 :=
ηm−ηm−1

hm
, s1ηm−1/2 :=

ηm−1 +ηm

2
,

δ∗1ym :=
ym+1/2−ym−1/2

hm+1/2
, s∗1ym :=

hmym−1/2 +hm+1ym+1/2

2hm+1/2
,

with ηm =η(x1m). Also, let Hh be the space of functions defined on the mesh ωh and
having zero values at x1 =0,X1 and HN

h := [Hh]N .

Proposition 5.1. Let v =v
(N)
h and ϕ be any functions in SN

h having respective
decompositions (5.1) and

ϕ(x1,x2)=
N∑

ℓ=1

dhℓ(x1)χℓ(x1,x2)=
m−1∑

m=1

N∑

ℓ=1

dhℓ(x1m)ehm(x1)χℓ(x1,x2), (5.5)
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with dhℓ ∈Sh(Ī1) for 1≤ ℓ≤N , and let ch := (ch1,... ,chN )T and dh := (dh1,... ,dhN )T

be corresponding vector-functions in HN
h . Then the following identity holds:

LΩh(v,ϕ)=LN
I1h (ch,dh)

:=

m−1∑

m=1

[(
Aδ1ch +A(0)s1ch, δ1dh

)
CN

+
(
A(0)∗δ1ch +Bs1ch, s1dh

)
CN

]
m−1/2

hm,

(5.6)

where Am−1/2, A
(0)
m−1/2 and Bm−1/2 are the values of the matrices introduced in

Lemma 3.7.
Moreover, the following uniform bounds for the entries of the matrices hold, for

any 1≤k≤N and 1≤ ℓ≤N

‖akℓ‖C(Ī1) +‖a(0)
kℓ ‖C(Ī1) +‖bkℓ‖C(Ī1)≤K10‖|Dχk|‖C(Ī1;L2(I2))

‖|Dχℓ|‖C(Ī1;L2(I2))
,

(5.7)
where K10 depends only on Ω and a bound for κij and V in the norms of spaces in
conditions (5.3).

The sesquilinear form LN
I1h (·,·) is Hermitian symmetric and has the following

positive definiteness properties:

νν0N

X1ρ̄0
max
ωh

|ch|2≤LN
I1h (ch,ch) for any ch ∈HN

h , (5.8)

νK−1
8,N ‖|δ1ch|‖2

L2
h
(I1)

≤LN
I1h (ch,ch) for any ch ∈HN

h ; (5.9)

in the latter one, the regularity conditions (3.32) on κ0 and V0 are assumed to be
valid.

Proof. Identity (5.6) is proved as (3.11) taking into account the equalities

(D1η)(x1m−1/2)= δ1ηm−1/2, η(x1m−1/2)=s1ηm−1/2 on ω∗
h, for η∈Sh(Ī1). (5.10)

Therefore, for example

(D1(chℓχℓ))(x1m−1/2,x2)

=(δ1chℓ)m−1/2χℓ(x1m−1/2,x2)+(s1chℓ)m−1/2 (D1χℓ)(x1m−1/2,x2), (5.11)

(D2(chℓχℓ))(x1m−1/2,x2)=(s1chℓ)m−1/2 (D2χℓ)(x1m−1/2,x2). (5.12)

Bound (5.7) is proved similarly to (3.15).
Inequalities (5.8) and (5.9) are counterparts of (3.22) and (3.35) and are proved

in a similar way. In fact, relations (5.6) and (5.4) imply

LN
I1h (ch,ch)=LΩh(v,v)≥ν

∥∥∥‖|Dv|‖L2(I2)

∥∥∥
2

L2
h
(I1)

. (5.13)

Furthermore, we have

X1

∥∥∥‖δ1v‖L2(I2)

∥∥∥
2

L2
h
(I1)

≥
∫

I2

|v(x1m,x2)|2dx2≥
1

ρ̄0

∫

I2

(ρ0|v|2)(x1m,x2)dx2

=
1

ρ̄0
(G0(x1m)chm, chm)

CN on ωh.
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Applying the first equality (5.10) and property (3.3), we derive (5.8) from (5.13).
Next, exploiting the mesh equalities (5.11) and (5.12), we can get, similarly to

(3.36), for 0<γ <1

m∑

m=1

∫

I2

|Dv|2(x1m−1/2,x2)dx2hm

≥ 1−γ

ρ̄0

m∑

m=1

(
G(0)δ1ch, δ1ch

)
CN

(x1m−1/2) hm

−
(

1

γ
−1

)
1

ρ̄0

m∑

m=1

∫

I2

(
|(s1ch,D1χ

∗)
CN |2ρ0

)
(x1m−1/2,x2)dx2hm

+
1

K6

m∑

m=1

(
G(1)s1ch, s1ch

)
CN

(x1m−1/2) hm.

The proof of (5.9) is completed as in the proof of Proposition 3.17 (taking into account

the continuity of G(1) and G(1)−1
on Ī1 and the property D1χ∈C(Ī1;L

2(I2))).

Proposition 5.2. The approximate Galerkin identity (5.2) means that the vector

function ch =c
(N)
h of the coefficients in expansion (5.1) of the approximate solution

v
(N)
h satisfies the following finite difference scheme for the Galerkin BVP (3.24),

(3.25)

−δ∗1

(
Aδ1c

(N)
h +A(0)s1c

(N)
h

)
+s∗1

(
A(0)∗δ1c

(N)
h

)
+s∗1

(
Bs1c

(N)
h

)

=s∗1f
(N)
h on {x1m}m−1

m=1 , (5.14)

c
(N)
h

∣∣∣
m=0,m

=0, (5.15)

where f
(N)
hm−1/2 are the values of the vector function f (N) introduced in Proposition

3.12.

Proof. The result follows from identities (5.2) and (5.6) by applying the elemen-
tary mesh identities

m∑

m=1

ym−1/2δ1ηm−1/2hm =−
m−1∑

m=1

δ∗1ym ·ηmhm−1/2,

m∑

m=1

ym−1/2s1ηm−1/2hm =
m−1∑

m=1

s∗1ym ·ηmhm−1/2

for any η∈Hh and any y defined on ω∗
h.

Remark 5.3. Taking into account the elementary formula

δ∗1

(
A(0)s1ch

)
=s∗1

(
A(0)δ1ch

)
+δ∗1A(0) ·ch,

one can rewrite equation (5.14) in the form

−δ∗1 (Aδ1ch)−2ıs∗1

(
Ã(0)δ1ch

)
+s∗1 (Bs1ch)−δ∗1A(0) ·ch =s∗1f

(N)
h ;
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compare with (3.28).

Note that elements of the technique were used for example in [25].
Clearly the simplest method with linear elements considered here is unable to

ensure high-order accuracy, and higher-order finite element methods in x1 need to be
invoked to this end.

6. A 2D elliptic eigenvalue problem and its semi-discrete Galerkin ap-

proximation

In this section, we turn to an eigenvalue problem corresponding to the BVP (2.1),
(2.2)

HΨ=λρΨ on Ω, (6.1)

Ψ|∂Ω =0, (6.2)

where the real weight function ρ satisfies conditions ρ∈L∞(Ω) and 0<ρ≤ρ(x) in Ω.
Let ρ̄ :=‖ρ‖L∞(Ω).

We briefly recall its main properties. In its general form, this eigenvalue prob-
lem consists in finding the eigenfunctions Ψ∈H1

0 (Ω), Ψ 6≡0, and the corresponding
eigenvalues λ satisfying the integral identity

LΩ(Ψ,ϕ)=λ

∫

Ω

Ψϕ∗ρdx for any ϕ∈H1
0 (Ω). (6.3)

It is well known (for example see [13]) that all the eigenvalues are real and can be la-
beled, taking into account their multiplicity (i.e. the number of corresponding linearly
independent eigenfunctions), in nondecreasing order

0<λ1≤λ2≤···≤λℓ ≤ ... , λℓ →∞ as ℓ→∞.

The corresponding eigenfunctions {Ψℓ}∞ℓ=1 can be chosen to be real functions and to
form an orthonormal basis in L2(Ω) with the weight ρ, i.e.,

∫

Ω

ΨkΨℓρdx= δkℓ for any k,ℓ,

and for any w∈L2(Ω), the following expansion with respect to {Ψℓ}∞ℓ=1

w(x)=

∞∑

m=1

ŵmΨm(x), with ŵm :=

∫

Ω

wΨmρdx, (6.4)

converges in L2(Ω). Moreover, the system {Ψℓ}∞ℓ=1 has a second orthogonality prop-
erty

LΩ (Ψk,Ψℓ)=λkδkℓ for any k,ℓ,

and forms a basis in H1
0 (Ω) (i.e., for any w∈H1

0 (Ω), expansion (6.4) converges in
H1

0 (Ω) as well).
Under the regularity conditions (2.8), the eigenfunctions are in fact strong solu-

tions of the problem such that

Ψℓ ∈H2∩H1
0 (Ω), HΨℓ =λℓρΨℓ in L2(Ω), for any ℓ≥1.
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Moreover, for any w∈H2∩H1
0 (Ω), expansion (6.4) converges in H2(Ω) as well.

We finally recall the Courant-Fischer minmax principle

λℓ = min
Lℓ⊂H1

0 (Ω)
max
w∈Lℓ

RΩ(w) for ℓ≥1, with RΩ(w) :=
LΩ(w,w)∫
Ω

w2ρdx
. (6.5)

RΩ(w) is the Rayleigh quotient for the eigenvalue problem (6.1), (6.2), and the min-
imum is taken over all the ℓ-dimensional subspaces Lℓ in real H1

0 (Ω).
Following section 2, we seek approximate eigenfunctions Ψ(N)∈SN , Ψ(N) 6≡0, and

eigenvalues λ(N) such that the integral identity

LΩ(Ψ(N),ϕ)=λ(N)

∫

Ω

Ψ(N)ϕ∗ρdx for any ϕ∈SN (6.6)

is valid. Clearly this Galerkin identity appears by substituting Ψ(N) to v(N) and
λ(N)Ψ(N)ρ to f in the previous Galerkin identity (2.17). Quite similarly, other equiv-
alent forms (2.16), (2.18)–(2.20) imply the equivalent corresponding forms of (6.6); in
particular, (2.20) leads to the orthogonality relations

∫

I2

(
HΨ(N)−λ(N)ρΨ(N)

)
(x1,x2)χ

∗
k(x1,x2)dx2 =0 for a.a. x1∈ I1, (6.7)

with k =1,... ,N .

Proposition 6.1. Let c(N) be the vector-valued function of coefficients in the expan-
sion

Ψ(N)(x1,x2)=

N∑

ℓ=1

cℓ(x1)χℓ(x1,x2) on Ω

of an approximate eigenfunction Ψ(N). Then the Galerkin identity (6.6) means that

c(N)∈
[
H1

0 (I1)
]N

, c(N) 6≡0, together with λ(N) satisfy the integral identity

LN
I1

(
c(N),d

)
=λ(N)

∫

I1

(
Mc(N),d

)
CN

dx1 for any d∈
[
H1

0 (I1)
]N

, (6.8)

i.e., they satisfy in a weak sense the eigenvalue problem for the system of ODEs
corresponding to the Galerkin BVP (3.24), (3.25)

HNc(N)≡−D1

(
AD1c

(N) +A(0)c(N)
)

+A(0)∗D1c
(N) +Bc(N) =λ(N)Mc(N),(6.9)

c(N)
∣∣∣
x1=0,X1

=0, (6.10)

where the N ×N mass matrix M has entries, for any 1≤k≤N and 1≤ ℓ≤N

mkℓ(x1)=

∫

I2

(χ∗
kχℓρ)(x1,x2)dx2 on I1. (6.11)

Proof. The result immediately follows from Lemma 3.7 together with the identity
∫

I1

Ψ(N)ϕ∗ρdx1 =

∫

I1

(
Mc(N),d

)
CN

dx1 for any ϕ∈SN , (6.12)
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where ϕ and d are related through (3.10).

Remark 6.2. Comparing formulas (3.12) and (6.11) and exploiting inequalities (2.10)
and (3.18), we get the following bound and the positive-definiteness property:

‖mkℓ‖L∞(I1)
≤ c(Ω)ρ̄‖χk‖H1,0(Ω)‖χℓ‖H1,0(Ω) for any k,ℓ,

ρν0N

ρ̄0
I≤

ρ

ρ̄0
G0(x1)≤

1

‖(ρ0/ρ)(x1,·)‖L∞(I2)

G0(x1)≤ (M(x1)c, c)CN ,

for any c∈CN and a.a. x1∈ I1.

Proposition 6.3. The eigenvalues of the approximate eigenvalue problem (6.6) are
real and can be labeled in the nondecreasing order taking into account their multiplicity

0<λ
(N)
1 ≤λ

(N)
2 ≤···≤λ

(N)
ℓ ≤ ... , λ

(N)
ℓ →∞ as ℓ→∞.

The corresponding eigenfunctions
{

Ψ
(N)
ℓ

}∞

ℓ=1
can be chosen to form an orthonormal

basis in S0
N considered as a subspace of L2(Ω) with the weight ρ, i.e.

∫

Ω

Ψ
(N)
k Ψ

(N)
ℓ ρdx= δkℓ for any k,ℓ,

and, for any v∈S0
N , the Fourier expansion with respect to the system

{
Ψ

(N)
m

}∞

m=1

v(x)=

∞∑

m=1

v̂(N)
m Ψ(N)

m (x) on Ω, with v̂(N)
m =

∫

Ω

vΨ(N)
m ρdx, (6.13)

converges in L2(Ω). Moreover, the system
{

Ψ
(N)
ℓ

}∞

ℓ=1
has a second orthogonality

property

LΩ

(
Ψ

(N)
k ,Ψ

(N)
ℓ

)
=λ

(N)
ℓ δkℓ for any k,ℓ,

and form a basis in SN considered as a subspace of H1
0 (Ω), i.e., for any v∈SN ,

expansion (6.13) converges in H1
0 (Ω).

Under the regularity conditions (2.8) and (3.16), the eigenfunctions are actually

strong solutions of the problem such that Ψ
(N)
ℓ ∈H2∩H1

0 (Ω) and the corresponding
equation (6.9) is satisfied in [L2(I1)]

N , for any ℓ≥1.
In addition, the Courant-Fischer minmax principle holds:

λ
(N)
ℓ = min

Lℓ⊂SN

max
w∈Lℓ

RΩ(w) for ℓ≥1. (6.14)

Proof. The results follow from Propositions 3.12, 3.19 and 6.1 and from the general
theory of self-adjoint elliptic operators (covering the case of operators of self-adjoint
systems of ODEs as well); in particular see [13]. Identities (3.11) and (6.12) are also
essential in order to translate the results from problem (6.9), (6.10) back to (6.6).
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Corollary 6.4. The one-sided approximation property λℓ ≤λ
(N)
ℓ holds for any ℓ≥1.

The result is well known for the Rayleigh-Ritz method and follows directly from
the Courant-Fischer minmax principles (6.5) and (6.14).

We complete this section by the error bounds in the case of the specific basis
functions studied in section 4. For this purpose, we need to introduce a family of
Hilbert spaces associated to the eigenvalue problem (6.1), (6.2)

Hθ(Ω) :=



w∈L2(Ω); ‖w‖Hθ(Ω) :=

[ ∞∑

m=1

λθ
m|ŵm|2

]1/2

<∞



, for θ≥0,

with the coefficients ŵm given in (6.4). Clearly, the spaces are similar to those intro-
duced in section 4. In particular, we have

‖w‖H0(Ω) =‖√ρw‖L2(Ω), ‖w‖H1(Ω) =‖w‖E(Ω),

so that H0(Ω)=L2(Ω) and H1(Ω)=H1
0 (Ω), up to an equivalence of norms. Under

the regularity conditions (2.8), H2(Ω)=H2∩H1
0 (Ω) in a similar sense and ‖w‖H2(Ω) =∥∥∥ 1√

ρ Hw
∥∥∥

L2(Ω)
. Moreover, for θ>2 the space Hθ(Ω) consists of functions w∈H1

0 (Ω)

such that ρ−1Hw∈Hθ−2(Ω) and ‖w‖Hθ(Ω) =
∥∥ρ−1Hw

∥∥
Hθ−2(Ω)

.

Below, we will need the following embedding inequality:

‖w‖H0,θ(Ω) +‖D1w‖H0,θ−1(Ω)≤Cθ‖w‖Hθ(Ω) for any w∈Hθ(Ω), (6.15)

with some θ≥1. Notice that this is valid for θ =1 and, under the regularity conditions
(2.8) and D2κ0,V0∈ L̃2,∞(Ω), for θ =2 as well. According to the interpolation space
theory [3], if the inequality is valid for some θ =θ0,θ1 with 1≤θ0 <θ1, it is valid for
any θ0≤θ≤θ1.

Let P(1)
N : H1

0 (Ω)→SN be another (different from PN ) projector such that

LΩ

(
w−P(1)

N w,ϕ
)

=0 for any ϕ∈SN . (6.16)

Proposition 6.5. Let the regularity conditions (2.8), (4.20), (4.46) together with
(4.33) be valid. Let θ>1 and inequality (6.15) together with (for θ>3/2) (4.42)
for β =θ−5/2 be valid as well. Then the following error bound for the approximate
eigenvalues hold:

0≤λ
(N)
ℓ −λℓ ≤Kλθ̃

ℓ (N +1)−2(θ−1)(1+logN), (6.17)

for any ℓ≥1 and sufficiently large N ≥N0(λℓ,θ), where K does not depend on ℓ and

θ̃ :=

{
θ for θ≥2,

θ/2+1 for θ<2.

Proof. We apply the technique described in [23], section 6.3 which allows to reduce

the study to the case of the BVP. Let Eℓ be the (real) linear hull of {Ψm}ℓ
m=1. We

set

σ
(N)
ℓ := max

w∈Eℓ,‖√ρw‖Ω=1

∣∣∣∣
∫

Ω

[
w2−(P(1)

N w)2
]
ρdx

∣∣∣∣ .
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Then, provided that σ
(N)
ℓ <1, the following upper bound holds:

λ
(N)
ℓ ≤ λℓ

1−σ
(N)
ℓ

, (6.18)

see [23], Lemma 6.1 (notice that the bound is a consequence of formulas (6.5) and
(6.14)). Moreover, if w∈Eℓ and ‖√ρw‖Ω =1, the following formula holds

∫

Ω

w
(
w−P(1)

N w
)

ρdx=LΩ

(
W −P(1)

N W,w−P(1)
N w

)
, (6.19)

where W ∈Eℓ is such that HW =ρw in Ω (see [23], Lemma 6.2). Clearly Ŵm = ŵm/λm

for any m, thus

‖W‖Hθ(Ω)≤λ
θ/2−1
ℓ ‖W‖H2(Ω) =λ

θ/2−1
ℓ ‖w‖H0(Ω) =λ

θ/2−1
ℓ for θ≥2, (6.20)

‖W‖Hθ(Ω)≤λ
−(1−θ/2)
1 ‖W‖H2(Ω) =λ

−(1−θ/2)
1 for 0≤θ≤2. (6.21)

Due to Corollary 6.4 and bound (6.18), it is sufficient to bound σ
(N)
ℓ starting from

the obvious formula

w2−
(
P(1)

N w
)2

=2w
(
w−P(1)

N w
)
−

(
w−P(1)

N w
)2

.

For w∈Eℓ with ‖√ρw‖Ω =1 and θ>1, sequentially applying formula (6.19), the def-

inition of P(1)
N and Proposition 4.14, we first have

∣∣∣∣
∫

Ω

w
(
w−P(1)

N w
)

ρdx

∣∣∣∣

≤
∥∥∥W −P(1)

N W
∥∥∥
E(Ω)

∥∥∥w−P(1)
N w

∥∥∥
E(Ω)

≤‖W −PNW‖E(Ω)‖w−PNw‖E(Ω)

≤
[
K1K17(N +1)−(θ−1)(1+log1/2N)

]2(
‖W‖H0,θ(Ω) +‖D1W‖H0,θ−1(Ω)

)

×
(
‖w‖H0,θ(Ω) +‖D1w‖H0,θ−1(Ω)

)
.

By virtue of embedding (6.15) and estimates (6.20), (6.21) and

‖w‖Hθ(Ω)≤λ
θ/2
ℓ ‖w‖H0(Ω) =λ

θ/2
ℓ , (6.22)

we have
∣∣∣∣
∫

Ω

w
(
w−P(1)

N w
)

ρdx

∣∣∣∣≤2(CθK1K17)
2
λ
−(θ̃−θ)
1 λθ̃−1

ℓ (N +1)−2(θ−1)(1+logN).

Next, the L2(Ω)-bound (4.47) together with, once again, (6.15) and (6.22) imply that

∫

Ω

(
w−P(1)

N w
)2

ρdx≤ ρ̄K2
19(N +1)−2θ(1+logN)2

(
‖w‖H0,θ(Ω) +‖D1w‖H0,θ(Ω)

)2

≤ ρ̄(CθK19)
2
λθ

ℓ (N +1)−2θ(1+logN)2. (6.23)
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Summarizing all of these relations, we obtain

|σ(N)
ℓ |≤C2

θ

[
(2K1K17)

2
λ
−(θ̃−θ)
1 + ρ̄K2

19λ
θ−θ̃+1
ℓ (N +1)−2(1+logN)

]

×λθ̃−1
ℓ (N +1)−2(θ−1)(1+logN).

For sufficiently large N ≥N0(λℓ,θ), we finally obtain

|σ(N)
ℓ |≤Kλθ̃−1

ℓ (N +1)−2(θ−1)(1+logN)≤ 1

2
, (6.24)

with K independent of ℓ. The upper bound (6.18) now gives that

λ
(N)
ℓ ≤λℓ(1+2|σ(N)

ℓ |)=λℓ +2λℓ|σ(N)
ℓ |, (6.25)

which completes the proof.

We omit any explicit expression for N0(λℓ,θ) and note only that it increases with
respect to λℓ.

In order to state error bounds for the approximate eigenfunctions, we recall that,
for simple λℓ, the eigenfunctions Ψℓ are defined up to the multiplier ±1. For such a
λℓ, let

rℓ :=min
m 6=ℓ

∣∣∣∣
λm

λℓ
−1

∣∣∣∣=





min

{
1− λℓ−1

λℓ
,
λℓ+1

λℓ
−1

}
for ℓ≥2,

λ2

λ1
−1 for ℓ=1,

be the relative distance from λℓ to other eigenvalues.

Proposition 6.6. Let the hypotheses of Proposition 6.5 be valid. Then for any ℓ≥1
such that λℓ is simple, the following error bounds for the approximate eigenfunctions
hold

∥∥∥Φℓ−Ψ
(N)
ℓ

∥∥∥
L2(Ω)

≤Kλ
θ/2
ℓ (N +1)−θ(1+logN), (6.26)

∥∥∥Φℓ−Ψ
(N)
ℓ

∥∥∥
H1(Ω)

≤Kλ
θ̃/2
ℓ (N +1)−(θ−1)(1+log1/2N), (6.27)

where either Φℓ =Ψℓ or Φℓ =−Ψℓ, for sufficiently large N ≥N1(λℓ−1,λℓ,θ) (λℓ−1 dis-
appears for ℓ=1).

The multipliers K depend on rℓ but not directly on ℓ.

Proof. According to [23], section 6.3, the following relations hold for the exact
and approximate ℓth eigenfunctions

∥∥∥Φℓ−Ψ
(N)
ℓ

∥∥∥
2

E(Ω)
=λℓ

∥∥∥√ρ
(
Φℓ−Ψ

(N)
ℓ

)∥∥∥
2

Ω
+λ

(N)
ℓ −λℓ, (6.28)

∥∥∥√ρ
(
Φℓ−Ψ

(N)
ℓ

)∥∥∥
Ω
≤2

[
1+

(
r
(N)
ℓ

)−1
]∥∥∥√ρ

(
Φℓ−P(1)

N Φℓ

)∥∥∥
Ω

, (6.29)

with

r
(N)
ℓ :=min

m 6=ℓ

∣∣∣∣∣
λ

(N)
m

λℓ
−1

∣∣∣∣∣ .
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Inequality (6.29) assumes that λℓ is simple and that Φℓ =±Ψℓ is chosen such that∫
Ω

ΦℓΨ
(N)
ℓ ρdx≥0.

By Corollary 6.4 we have that

r
(N)
ℓ ≥





min

{
min

1≤m≤ℓ−1

∣∣∣∣∣
λ

(N)
m

λℓ
−1

∣∣∣∣∣ ,
λℓ+1

λℓ
−1

}
for ℓ≥2,

λ2

λ1
−1 for ℓ=1.

Furthermore, for ℓ≥2, we obtain

min
1≤m≤ℓ−1

∣∣∣∣∣
λ

(N)
m

λℓ
−1

∣∣∣∣∣≥
1

2

(
1− λℓ−1

λℓ

)
,

provided that λ
(N)
ℓ−1 is so close to λℓ−1 that

λ
(N)
ℓ−1≤

λℓ−1 +λℓ

2
=λℓ−1

[
1+

1

2

(
λℓ

λℓ−1
−1

)]
.

This inequality follows from (6.25) for sufficiently large N ≥ Ñ0(λℓ−1,λℓ,θ) such that

σ
(N)
ℓ−1 ≤

1

2
min

{
1

2

(
λℓ

λℓ−1
−1

)
,1

}
;

compare with (6.24). Consequently r
(N)
ℓ ≥ rℓ/2 for any ℓ≥1 (this fills in a gap in the

argument of [23]). After that, the L2(Ω) error bound (6.26) is a consequence of (6.29)
and (6.23), for w=Φℓ.

Equality (6.28) together with the error bounds (6.26) and (6.17) imply that

√
ν
∥∥∥Φℓ−Ψ

(N)
ℓ

∥∥∥
H1

0 (Ω)
≤

√
λℓ

∥∥∥√ρ
(
Φℓ−Ψ

(N)
ℓ

)∥∥∥
Ω

+

√
λ

(N)
ℓ −λℓ

≤K
[
λ

(θ−θ̃+1)/2
ℓ (N +1)−1

(
1+log1/2N

)
+1

]
λ

θ̃/2
ℓ (N +1)−(θ−1)

(
1+log1/2N

)
,

which leads to (6.27).

Remark 6.7. In Proposition 6.6, the assumption of simplicity of λℓ is not essential
and error bounds of the same orders are valid in the case of multiple λℓ as well
(according to [23]). The orders are also the same as in the case of the BVP in
Corollary 4.15.

Recall that in the case where λℓ−1 <λℓ = · · ·=λℓ+p <λℓ+p+1 with p≥1, the eigen-
functions Ψℓ,... ,Ψℓ+p are defined up to an arbitrary linear transformation, orthogonal
with respect to the norm ‖√ρw‖L2(Ω).

Note that, for ℓ=1, bound (6.26) holds for any N ≥1.

7. An initial-boundary value problem for the time-dependent general-

ized Schrödinger equation and its semi-discrete Galerkin approximation

Finally we consider the generalized time-dependent Schrödinger equation

ıρDtψ =Hψ in Q :=Ω×R+, (7.1)
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supplemented with the boundary and initial conditions

ψ|∂Ω×R+ =0, ψ|t=0 =ψ0(x) on Ω. (7.2)

Recall that the operator H and the function ρ have been introduced in equations (2.1)
and (6.1).

By definition, a weak solution to the IBVP (7.1), (7.2) with the properties

ψ∈C(R
+
;H1

0 (Ω)), Dt(ρψ)∈C(R
+
;H−1(Ω))

satisfies the integral identity

ı〈Dt(ρψ)(·,t),ϕ(·)〉Ω =LΩ (ψ(·,t),ϕ(·)) for any ϕ∈H1
0 (Ω) and t≥0, (7.3)

together with the initial condition ψ|t=0 =ψ0∈H1
0 (Ω).

This solution exists and is unique. Moreover, the following conservation laws and
bound hold:

‖(√ρψ)(·,t)‖L2(Ω) =‖√ρψ0‖L2(Ω) for any t≥0, (7.4)

‖ψ(·,t)‖E(Ω) =‖ψ0‖E(Ω) for any t≥0, (7.5)

sup
t≥0

‖Dt(ρψ)(·,t)‖H−1(Ω)≤K1‖ψ0‖E(Ω). (7.6)

The solution can be Fourier-expanded as

ψ(x,t)=

∞∑

m=1

e−ıλmtψ̂0
mΨm(x), with ψ̂0

m =

∫

Ω

ψ0Ψmρdx, (7.7)

with respect to the system of eigenfunctions of the corresponding eigenvalue problem
(6.1), (6.2). The expansion converges in H1

0 (Ω) uniformly in t≥0.
Concerning bound (7.6), notice that, for any t≥0

‖Dt(ρψ)(·,t)‖H−1(Ω) = sup
ϕ∈H1

0 (Ω)

|LΩ (ψ(·,t),ϕ(·)) |
‖ϕ‖H1

0 (Ω)

≤K1‖ψ(·,t)‖E(Ω),

due to identity (7.3) and inequalities (2.6).
The proof of the existence and of the conservation laws are obtained by the Fourier

method justifying expansion (7.7). The uniqueness can be proved using the energy
method.

Our semi-discrete Galerkin method for the IBVP (7.1), (7.2) exploits an approx-
imate solution y(N)(·,t) ∈SN for any t≥0, more precisely, of the form

y(N)(x1,x2,t)=

N∑

ℓ=1

cℓ(x1,t)χℓ(x1,x2) in Q, (7.8)

with the vector-function of coefficients c such that

c∈C
(
R

+
;
[
H1

0 (I1)
]N

)
, Dt (Mc)∈C

(
R

+
;
[
H−1(I1)

]N
)

, (7.9)

where the matrix M has been introduced in (6.11). We seek an approximate solution
satisfying the integral identity

ıDt

∫

Ω

(
ρy(N)ϕ∗

)
(x,t)dx=LΩ

(
y(N)(·,t), ϕ(·)

)
for any ϕ∈SN and t≥0 (7.10)
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(compare with (7.3)), together with the initial condition

y(N)
∣∣∣
t=0

=y(N),0 :=

N∑

ℓ=1

c0
ℓχℓ ∈SN , (7.11)

where y(N),0 is a given approximation of ψ0, with a vector of coefficients c0 :=
(c0

1,... ,c
0
N )T .

Proposition 7.1. Properties (7.9) imply that

y(N)∈C(R
+
;H1

0 (Ω)), Dt

∫

Ω

ρy(N)ϕ∗dx∈C(R
+
) for any ϕ∈SN , (7.12)

so that identity (7.10) and the initial condition (7.11) are well-defined.
Moreover, the approximate Galerkin time-dependent problem (7.10), (7.11) is

equivalent to an IBVP for the time-dependent Schrödinger-like system of 1D (in space)
equations

ıDt (Mc)=HNc in C
(
R

+
;
[
H−1(I1)

]N
)

, (7.13)

c|t=0 =c0∈
[
H1

0 (I1)
]N

, (7.14)

where the operator HN has been introduced in equation (3.24).

Remark 7.2. Equation (7.13) can be also rewritten in the form of integral identity

ı〈Dt (Mc)(·,t),d(·)〉I1
=LN

I1
(c(·,t),d(·)) for any d∈

[
H1

0 (I1)
]N

and t≥0, (7.15)

with the sesquilinear form LN
I1

(·,·) introduced in Lemma 3.7.

Proof. The first property (7.12) follows from inequality (2.15). The second one is
a consequence of the identity

Dt

∫

Ω

(
ρy(N)ϕ∗

)
(x,t)dx= 〈Dt (Mc)(·,t),d(·)〉I1

for any d∈
[
H1

0 (I1)
]N

, (7.16)

where ϕ and d are related by expansion (3.10) and that follows from identity (6.12).
Integral identity (7.10) can be rewritten as (7.15) due to (7.16) and (3.11). Fi-

nally, equation (7.13) is the operator form of (7.15) taking into account that HN :[
H1

0 (I1)
]N →

[
H−1(I1)

]N
is a bounded operator.

Proposition 7.3. The Galerkin IBVP (7.13), (7.14) has a unique solution in the
class (7.9).

Moreover, the following conservation laws hold

‖√ρy(N)(·,t)‖L2(Ω) =‖√ρy(N),0‖L2(Ω) for any t≥0, (7.17)

‖y(N)(·,t)‖E(Ω) =‖y(N),0‖E(Ω) for any t≥0; (7.18)

compare with (7.4), (7.5).
y(N) can be Fourier-expanded as

y(N)(x,t)=

∞∑

m=1

e−ıλ(N)
m tŷ(N),0

m Ψ(N)
m (x,t), with ŷ(N),0

m :=

∫

Ω

y(N),0
m Ψ(N)

m ρdx, (7.19)
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with respect to the system of eigenfunctions of the Galerkin eigenvalue problem (6.6).
The expansion converges in H1

0 (Ω) uniformly in t≥0.

Proof. The proof of the existence and of the conservation laws

max
t≥0

∫

I1

(Mc, c)
CN (x1,t)dx1 =

∫

I1

(
Mc0, c0

)
CN dx1 for any t≥0,

max
t≥0

LN
I1

(c(·,t), c(·,t))=LN
I1

(
c0, c0

)
for any t≥0,

together with a bound

sup
t≥0

‖Dt(Mc)(·,t)‖[H−1(I1)]N ≤KN‖c0‖[H1
0 (I1)]N ,

can be found similarly to the case of the original IBVP (7.1), (7.2) by exploiting
the Fourier expansion of the solution of (7.13), (7.14) with respect to the system of
eigenfunctions of the corresponding Galerkin eigenvalue problem (6.9), (6.10). The
uniqueness can be proved once more by the energy method.

Translating these conservation laws with the help of identities (3.21) (with ρ
replacing ρ0 and M replacing G0) and (3.11), we get (7.17) and (7.18); translating
the mentioned eigenfunctions into the eigenfunctions of problem (6.6), we obtain
(7.19).

Specific choices of y(N),0 are as follows.

1. The ρ0-weighted L2(Ω)-projection of ψ0 on SN , i.e., y(N),0 =PNψ0 satisfies
the integral identity

∫

Ω

y(N),0ϕρ0dx=

∫

Ω

ψ0ϕρ0dx for any ϕ∈SN . (7.20)

In this case ‖√ρ0y
(N),0‖L2(Ω)≤‖√ρ0ψ

0‖L2(Ω) and

G0c
0 =g0 on I1, with g0k =

∫

I2

ψ0χ∗
kρ0dx2 for 1≤k≤N.

2. The E(Ω)-projection of ψ0 on SN , i.e. y(N),0 =P(1)
N ψ0 satisfies the integral

identity

LΩ

(
y(N),0,ϕ

)
=LΩ

(
ψ0,ϕ

)
for any ϕ∈SN . (7.21)

In this case ‖y(N),0‖E(Ω)≤‖ψ0‖E(Ω) and

HNc0 =g1 on I1,

with g1k =

∫

I2




2∑

i,j=1

κijDjψ
0 ·Diχ

∗
k +V ψ0χ∗

k


 dx2 for 1≤k≤N,

c0
∣∣
x1=0,X1

=0.

Here gm =(gm1,... ,gmN )T for m=0,1.
We complete this last section by presenting error bounds in the case of the specific

basis functions studied in section 4.
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Proposition 7.4. Let conditions (4.20), (4.46) and (4.33) be valid. Also let

ψ0∈H0,θ(Ω), D1ψ
0∈H0,θ−1(Ω), Dtψ∈L1(0,T ;H0,θ(Ω)),

and

D1Dtψ∈L1(0,T ;H0,θ−1(Ω)),

for some θ>1 and, in the case where θ>3/2, let condition (4.42) for β =θ−5/2 be
valid as well.

1. Let condition (2.8) be also valid. Then the following C([0,T ];L2(Ω))-error
bound holds:
√

ρ‖ψ−y(N)‖C([0,T ];L2(Ω))≤
√

ρ̄‖y(N),0−P(1)
N ψ0‖L2(Ω)

+K(N +1)−θ(1+logN)
[
‖ψ0‖H0,θ(Ω) +‖D1ψ

0‖H0,θ−1(Ω)

+‖Dtψ‖L1(0,T ;H0,θ(Ω)) +‖D1Dtψ‖L1(0,T ;H0,θ−1(Ω))

]
.

(7.22)

2. Let ρ0 =ρ. Then the following C([0,T ];H1(Ω))-error bound holds:

‖ψ−y(N)‖C([0,T ];E(Ω))

≤‖y(N),0−PNψ0‖E(Ω)

+K(N +1)−(θ−1)(1+log1/2N)
[
‖ψ0‖H0,θ(Ω) +‖D1ψ

0‖H0,θ−1(Ω)

+‖Dtψ‖L1(0,T ;H0,θ(Ω)) +‖D1Dtψ‖L1(0,T ;H0,θ−1(Ω))

]
. (7.23)

Here K is independent of T . For both specific choices (7.20) and (7.21) of y(N),0,
the first summands can be omitted from the right hand sides of (7.22) and (7.23).

Proof. 1. The argument is rather standard in semi-discrete Galerkin methods for
IBVP. Namely, for any y with the properties like (7.8) and (7.9) of y(N), we have the
following chain of identities following from the Galerkin and original integral identities
(7.10) and (7.3):

ı
〈
Dt[ρ(y(N)−y)],ϕ

〉
Ω
−LΩ(y(N)−y,ϕ)

= ı
〈
Dt(ρy(N)),ϕ

〉
Ω
−LΩ

(
y(N),ϕ

)
− [ı〈Dt(ρy),ϕ〉Ω−LΩ (y,ϕ)]

= ı〈Dt(ρψ),ϕ〉Ω− ı〈Dt(ρy),ϕ〉Ω−LΩ (ψ−y,ϕ) on (0,T ), for any ϕ∈SN .(7.24)

Here the term ı
〈
Dt(ρy(N)),ϕ

〉
Ω

is actually understood as the left-hand side of iden-

tity (7.15), and the terms ı
〈
Dt[ρ(y(N)−y)],ϕ

〉
Ω

and ı〈Dt(ρy),ϕ〉Ω are understood
similarly.

For Dtψ∈L1(0,T ;H1
0 (Ω)), setting y :=P(1)

N ψ and r(N) :=y(N)−P(1)
N ψ and using

the Definition (7.21) of P(1)
N , we have

ı
〈
Dt(ρr(N)),ϕ

〉
Ω
−LΩ

(
r(N),ϕ

)
= ı

〈
Dt[ρ(ψ−P(1)

N ψ)],ϕ
〉

Ω
on (0,T ), for any ϕ∈SN .

Choosing ϕ= r(N) and separating the imaginary part of the result, we obtain

1

2

d

dt
‖√ρr(N)‖2

Ω =Im

(
ı

∫

Ω

(
Dtψ−P(1)

N Dtψ
)

(r(N))∗ρdx

)

≤
∥∥∥√ρ

(
Dtψ−P(1)

N Dtψ
)∥∥∥

Ω
‖√ρr(N)‖Ω on (0,T ).
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Consequently the following C([0,T ];L2(Ω))-bound for r(N) holds

∥∥∥√ρr(N)
∥∥∥

C([0,T ];L2(Ω))
≤

∥∥∥√ρr(N)
∣∣∣
t=0

∥∥∥
Ω

+2
∥∥∥√ρ

(
Dtψ−P(1)

N Dtψ
)∥∥∥

L1(0,T ;L2(Ω))
.

This directly implies the corresponding error bound

‖√ρ(ψ−y(N))‖C([0,T ];L2(Ω))≤
∥∥∥√ρr(N)

∥∥∥
C([0,T ];L2(Ω))

+
∥∥∥√ρ

(
ψ−P(1)

N ψ
)∥∥∥

C([0,T ];L2(Ω))

≤‖√ρ
(
y(N),0−P(1)

N ψ0
)
‖Ω +

∥∥∥√ρ
(
ψ0−P(1)

N ψ0
)∥∥∥

Ω

+3
∥∥∥√ρ

(
Dtψ−P(1)

N Dtψ
)∥∥∥

L1(0,T ;L2(Ω))
. (7.25)

Exploiting assumptions on ψ0 and Dtψ as well as the L2(Ω)-error bound (4.47) for
the BVP, we derive (7.22).

2. For Dtψ∈L1(0,T ;H1
0 (Ω)), now we set y :=PNψ and q(N) :=y(N)−PNψ. In

the case where ρ0 =ρ, using Definition (7.20) of PN , from (7.24) we obtain

ı
〈
Dt

(
ρq(N)

)
,ϕ

〉
Ω
−LΩ

(
q(N),ϕ

)
=−LΩ (ψ−PNψ,ϕ) on (0,T ), for any ϕ∈SN .

(7.26)
Supposing that the property Dty

(N)∈L1(0,T ;H1
0 (Ω)) is valid, then choosing ϕ=

Dtq
(N) and separating the real part of the result, we obtain

1

2

d

dt

(
‖q(N)‖2

E(Ω)

)
=ReLΩ(ψ−PNψ,Dtq

(N)) on (0,T ).

Integrating this equality and then integrating by parts, we have

‖q(N)(·,t)‖2
E(Ω) =‖q(N),0‖2

E(Ω) +2Re
[
LΩ

(
(ψ−PNψ)(·,t),q(N)(·,t)

)

−LΩ

(
ψ0−PNψ0,q(N),0

)
−

∫ t

0

LΩ

(
Dt(ψ−PNψ),q(N)

)
dτ

]

≤‖q(N),0‖2
E(Ω) +2‖ψ0−PNψ0‖E(Ω)‖q(N),0‖E(Ω)

+2
(
‖(ψ−PNψ)(·,t)‖E(Ω) +‖Dt(ψ−PNψ)‖L1(0,t;E(Ω))

)

‖q(N)‖C([0,t];E(Ω)) on (0,T ),

where q(N),0 := q(N)|t=0 =y(N),0−PNψ0. Consequently

‖q(N)‖C([0,T ];E(Ω))≤‖q(N),0‖E(Ω) +3‖ψ0−PNψ0‖E(Ω) +4‖Dt(ψ−PNψ)‖L1(0,T ;E(Ω)).
(7.27)

To remove the temporary assumption Dty
(N)∈L1(0,T ;H1

0 (Ω)), we can once more
apply the Fourier method based on expansions with respect to the system of eigen-
functions of the eigenvalue problem (6.9), (6.10). We rewrite identity (7.26) as an
inhomogeneous equation like (7.13) for q(N), derive a bound like (7.27) for partial
sums of the expansion for q(N), and then pass to the limit in the sums (see similar
arguments, for example, in [13] and [26]).

Bound (7.27) implies the C([0,T ];E(Ω))-error bound (compare with (7.25))

‖ψ−y(N)‖C([0,T ];E(Ω))≤‖y(N),0−PNψ0‖E(Ω) +4‖ψ0−PNψ0‖E(Ω)

+5‖Dtψ−PNDtψ‖L1(0,T ;E(Ω)). (7.28)



294 SEMIDSCRETE GALERKIN METHOD FOR 2D HAMILTONIAN OPERATOR

Exploiting assumptions on ψ0 and Dtψ as well as the H1(Ω)-approximation bound
(4.44), we obtain (7.23).

Since PNψ0−P(1)
N ψ0 =PN (ψ0−P(1)

N ψ0)=−P(1)
N (ψ0−PNψ0), for y(N),0 =PNψ0

or P(1)
N ψ0, the first terms on the right hand sides in (7.25) and (7.28) either can be

bounded by the second ones or are simply zero. This completes the proof.

Finally we notice that our method can be also applied to second order parabolic
or hyperbolic initial-boundary value problems although this seems beyond the scope
of problems presently considered in nuclear physics.
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