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ON ONE VERSION OF A SEMIDISCRETE GALERKIN METHOD
FOR PDE PROBLEMS INVOLVING A GENERALIZED 2D
HAMILTONIAN OPERATOR*

ALEXANDER ZLOTNIK', BERNARD DUCOMET!, HELOISE GOUTTE$, AND
JEAN-FRANCOIS BERGERY

Abstract. We consider a boundary value problem, an eigenvalue problem and an initial-
boundary value problem involving a generalized 2D Hamiltonian operator (i.e., the second order
self-adjoint elliptic operator) in a rectangular domain. We apply a semi-discrete Galerkin method ex-
ploiting space approximations of the form ¢1 (z1)x1(z1,22)+ - +en(z1)xn (z1,22), where x1,..., XN
are some known complex-valued basis functions and ci,...,cy are unknown coefficients. The corre-
sponding approximate problems are stated and their properties such as existence and uniqueness of
solutions and bounds for them, positive definiteness of the related sesquilinear forms, etc. are ana-
lyzed. For a specific physically reasonable choice of the basis functions, error bounds of arbitrarily
high orders are proved for all the listed problems.
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1. Introduction

The description of large amplitude collective motion in atomic nuclei, such as
large-scale collective oscillations and nuclear fission remains one of the most challeng-
ing problems in contemporary nuclear physics. One way of tackling this kind of prob-
lem is to employ the so-called Generator Coordinate Method (GCM) [11]. This ap-
proach consists in first defining a set of static nuclear wave-functions @ (71,7, ...,74)
labeled by the composite index q=(q1,92,-..,qn ), representing the different kinds of
shapes the system is expected to adopt during time-evolution. These wave-functions
usually are determined by means of self-consistent mean-field Hartree-Fock-like tech-
niques using M constraints of the form ¢; = <@q|Ql|¢q>. In most cases the operators
Ql are taken as the usual multipole operators of order I. The time-dependent wave-
function of the system is then assumed to be the superposition of all static states ®q
weighted by a probability amplitude f(g;t):

\P(F17F2,...,FA;t) :/f(q,t) (pq(F17F2,...,FA)dMq. (11)

The justification for this form of nuclear wave-function is similar to the Bohr-
Oppenheimer approximation of molecular physics. It is assumed that the “collec-
tive” degrees of freedom described by the set q evolve with characteristic times 7.,
that are much larger than the one associated with the internal motion of nucleons:
Teoll > Tint ~ 10723 5. The GCM is therefore expected to be a good approximation in
the low-energy regime (E <15 MeV).
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An equation for the unknown function f in equation (1.1) is found by applying a
time-dependent Schrodinger variational principle to the trial wave function W. This
procedure leads to an integro-differential equation, the so-called Hill-Wheeler (HW)
equation, which is first order in time and contains a M-fold integral [9]. This equation
is quite difficult to solve numerically as soon as M >1. For these reason, further ap-
proximations are made — Gaussian dependence in ||q—q’|| of the the overlap kernel
(Pq|Pq ) and expansion up to second order in the non locality ||q—q’|| of the Hamil-
tonian kernel (®q|H|®q/) — which allow one to transform the HW equation into the
time-dependent Schrédinger-like equation [20)

vl ) =HOo(a,), (12

where H™) is the Hamiltonian, a linear differential operator with variable coefficients,
defined as

M

HOM) = _ Z 5‘?11- (BU(Q);;) +V(a),

4,5=1

containing inertia coeflicients B;;(q) and a potential term V(q) which are known
functions of ¢1, go, ..., qu, and 2 is the imaginary unit. The function v is related to
f through convolution with a Gaussian.

Equation (1.2) has been used for instance to analyze the problem of multidimen-
sional collective tunneling [10,19]. Employed with an appropriate initial condition
v(q,t=0)=1wvp(q), this equation is also the basis of present-day descriptions of the
fission phenomenon [2,8]. A stationary version of the GCM can be derived in the
same way as above by leaving aside the time-dependance in equation (1). Equation
(2) then is replaced by the stationary Schrédinger-like equation

HMyy(q) = Eqva(q), (1.3)

which is widely used to calculate bound states of collective nature in nuclei [14, 18,
17].

Although many numerical methods exist to solve such problems, physical insights
into the obtained solutions can be gained by attempting to expand them on a set of
stationary functions which solve a Schrodinger equation of type (1.3) in a reduced
collective space of dimension M’ < M. The interesting features of this technique are
twofold. First, the stationary functions in M’-dimensional space and their associ-
ated eigenvalues give physical information about the structure of the collective space
spanned by the variables ¢i,...,qp. Second, one expects from physical arguments
that only a small number N of these functions — those associated with the lower
eigenvalues — are useful in the expansion of the full function v, which clearly re-
duces the numerical effort necessary for solving equation (2). This technique has
been employed in a simple case in [19].

In principle the above method is expected to be particularly interesting when M
is large, but we will restrict ourselves in the present paper to the case M =2, which
is currently used in applications. In this case, the method amounts to analyzing
techniques which exploit expansions of the form

v (q1,q0) =e1(q1)x1(q1,92) + - +en(q1)x v (q1,42)- (1.4)
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In this expansion, x1, ..., X are basis functions obtained by solving a 1D stationary
equation (3) in the variable go for every value of ¢1, and c,...,cny are unknown
coefficients. Such an expansion can be applied in the Galerkin method as well as in
various other approximate methods. There exists an indirect relation to the spectral
Galerkin methods, in particular see [4, 5, 10].

In the present paper, we consider three problems involving the generalized 2D
Schrédinger operator, i.e., the general variable-coefficient second-order self-adjoint
elliptic operator:

(1) the boundary-value problem (BVP) with zero Dirichlet boundary conditions;
(2) the corresponding eigenvalue problem;

(3) the corresponding initial-boundary value problem (IBVP) for the associated
time-dependent Schrodinger equation.

Actually, these statements are only simplifications of practically interesting prob-
lems in nuclear physics. Moreover, problem (1) is not physically relevant, but we
begin with it and study it in detail for mathematical reasons.

We investigate the semi-discrete Galerkin method relying on approximations (1.4)
and identify the arising approximate problems as:

(1) a boundary-value problem for a system of second-order ordinary differential
equations (ODEs) for cy,...,cy with zero boundary values;

(2) the corresponding ODE eigenvalue problem;

(3) the corresponding initial-boundary value problem for the time-dependent
Schrodinger-like system of 1D (in space) equations.

The paper is organized as follows. In section 2, we recall some functional spaces,
state the self-adjoint elliptic BVP and list some of its basic properties. We also
introduce our version of the semi-discrete Galerkin method in several equivalent forms.
In section 3, we define two Gram matrices for the system of the basis functions, bound
their elements, and prove uniform in space positive definiteness. As a consequence, we
obtain that our infinite dimensional space of trial functions (1.4) is closed which leads
to the existence and uniqueness of the approximate solution of the elliptic BVP. We
also derive a BVP for a system of ODEs to define the unknown coefficients cy,...,cy,
bound entries of involved matrices, and study positive definiteness of the related
Hermitian symmetric sesquilinear form. Results on the existence and uniqueness of
weak and strong solutions of this Galerkin BVP are also presented, and an alternative
form of the system of ODEs is discussed. At the end of the section, we briefly show
how the version of the Galerkin method can be generalized to the multidimensional
case.

Section 4 is concerned with a specific choice of the basis functions as eigenfunctions
of an auxiliary 1D eigenvalue ODE problem with coefficients depending both on x;
and zo; in this case, the method can be considered as a Fourier-Galerkin semi-discrete
method. The basic properties of this problem are recalled. We study approximation
properties of the corresponding space of trial functions and prove the L2-error bounds
of optimal order O (N ’9), 6 >0, and the much more delicate H!'-error bounds of the

logarithmically optimal order O (N_(‘g_l) (1+log'/? N))7 where 6 >1 is the (arbitrar-

ily high) order of smoothness of an approximating function. These bounds imply L?-
and H'-error bounds for the semi-discrete Galerkin method for the BVP of orders
O (N~*(1+logN)) and O (N*(ofl)(1+log1/2N)), H>1.
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An example of further discretization in x; is considered in section 5. The finite
element method with the simplest linear elements and numerical integration is applied.
We show that this leads to a finite difference scheme in z; for the Galerkin BVP for
c1,-.-,CN, bouns entries of involved matrices, and study positive definiteness properties
of the corresponding mesh Hermitian symmetric sesquilinear form.

Section 6 deals with a 2D elliptic eigenvalue problem. We recall its basic prop-
erties, apply our version of the semi-discrete Galerkin method, and present similar
properties for the approximate eigenvalue problem. The latter is the eigenvalue prob-
lem for the Galerkin system of ODEs derived in section 3. For the specific choice
of the basis functions, we prove error bounds for the approximate eigenvalues of or-
der O(N*Z(e’l)(lJrlogN)), 6> 1, together with L2- and H'-error bounds for the
approximate eigenfunctions of the same orders as for the BVP.

The final section 7 is devoted to the time-dependent generalized Schrédinger equa-
tion once again 2D in space. For a weak solution of the corresponding IBVP, we recall
the conservation laws, the Fourier expansion with respect to the eigenfunctions intro-
duced in section 6, as well as the existence and uniqueness properties. We apply our
version of the semi-discrete Galerkin method and prove its similar properties. The
uniform in time L? and H'-error bounds of the same orders as for the BVP are also
proved. All our error estimates seem to be logarithmically optimal.

2. A 2D elliptic boundary-value problem and its semi-discrete Galerkin
approximation

We first recall some function spaces for the reader’s convenience. For a paral-
lelepiped U =(0,X1) x---x (0,X,) in R®, n>1, we exploit the standard (complex)
Lebesgue spaces LI(U), and the (complex) Sobolev spaces H™(U), m=1,2, which
are equipped with the norms

1/q
ol ey = [ /U |w<£>|Qd5} for 1< g <00, [[w]lpe(u) = esssupecy w(e)),

) 5 1/2
lwln @)= (Il + 11Dwlaw))

and

9 9 2 1/2
ol = (ol )+ [1D%0ll[}a)

Here Dw= (Dyw,...,D,w) and D?*w= {DiDjw}ijl are the gradient and the Hessian
of the function w (the derivatives are understood in the Sobolev sense), and |Dw]
and |D?w| are their norms in R™ and R™*". In the proofs, the simplified notation
Il -llv=1"llz2v) is adopted.

We also need the subspaces H}(U):={we H'(U); w|,,; =0} and H*NH}(U):
H?(U)NH}(U), which can be equipped with the simpler but equivalent norms

lwll @y = 1Dwll 2y Nwllzzamywy = [[1D*wl]| 2 ) -

We exploit the dual space H~1(U):= [H3(U)]" equipped with the norm || f|| gr—1 () :=

SUD 11 ) =1 |(f,); |, where (f, )y is the duality bracket on H=*(U) x Hj (U) (gen-
0

eralizing the integral fU fo*d¢ for f,o€ L?(U), with ¢* denoting the complex conju-

gate of ). The Sobolev spaces in use are separable Hilbert spaces. C (U) is the space

of continuous functions on U equipped with the norm ||w|\c(ﬁ) r=max, g |w(§)|-
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For n=2, we use the more general anisotropic Lebesgue spaces L?"(U) and
L™4(U) [6, 15], for g,r € [1,00], and an anisotropic Sobolev space H»?(U), equipped
with the norms

lollzor@) =l o ol vy =l

Lr(Is)’ Li(n)’

1/
lwllirowy = (lwlfew) +1Dwwl)

where I1:=(0,X;) and I5:=(0,X3). It is known that ||w||ir_,q(U)§ lwl| Loy for
1<r<g<o0.
We first consider the self-adjoint elliptic equation in a rectangle

2
Hu:=— Z D; (HUD]U)‘FV’M:f in Q, (21)

i,j=1
where §:=1; x I, supplemented with the zero Dirichlet boundary conditions
ulyn =0. (2.2)

We assume that the coeflicients of the Hamiltonian operator H are real and satisfy
the conditions

H}%XHK/inLOO(Q)+HV||LP(Q)S/LO for some pe (1,2], k12 =ka1, V >0.

For the first condition, we automatically assume that x;; € L>(Q), V € LP(2); a simi-
lar agreement is adopted in subsequent conditions as well. We also impose the uniform
in Q ellipticity condition

2
V(€2 4-€3) < Z kij(2)&;¢; for almost all (a.a.) x=(z1,22) €Q and all &, & €R,
ij=1

(2.3)
with some v > 0. Let »c= {Hij}ijzl be the matrix of the leading coefficients of H. Note
that V' could also be complex-valued. However, we do not consider this possibility
hereafter.

By definition, a weak solution ue€ H}(Q) of the BVP (2.1), (2.2) satisfies the
integral identity

2
EQ(u,gp)::/ﬂ Z KkijDju-Dip* +Vup* | de=(f,¢)q for any o€ H} (). (2.4)

ij=1

Hereafter we use abbreviations such as Dju-w:=(Dju)w in order to avoid extra
brackets. The sesquilinear form Lg(u,®) is bounded and Hermitian symmetric on
HY(Q)x HY(Q), and the associated quadratic form is positive definite on H}(Q), i.e.,

V”w”?fé(ﬂ) < Lo(w,w) for any we H(Q). (2.5)

We denote the energy norm in Hg () by [[w|leq) = [ﬁg(w,w)]l/z, which is equivalent
to the original one:

Vlwll g o) < llwlle) < Killwlgaq) for any we Hy (), (2.6)
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where K7 =K (uo,p,Q). This means that K7 depends only on pg,p, and Q (i.e., on
X1 and X5); a similar agreement is adopted throughout the paper.

It is well known (for example see [7, 13, 14]) that for any f€ H1(£2), there exists
a unique weak solution u € Hg () which satisfies the bound

lull g0y v I -2 (0 (2.7)

Moreover, under more restrictive conditions on the coefficients,
H}%X(Hfﬂj”mo(m +1Dikij || Lo () + VL2 (@) < (2.8)

and for any fe€ L?(Q), u is in fact a strong solution which belongs to H2NHZ (),
satisfies equation (2.1) in L?(2), and obeys the H?(Q2) bound

[ull () < Ko (v p, D fll 22 (- (2.9)

Let the basis functions (generally complex-valued) y, € H(Q), Xtlzy—0,x, =0 be
given for all £>1 (note that we do not suppose that x|, _, x, =0). We assume that

the system {x¢(z1, ~)}éV=1 is linearly independent on I for any x; € I; (for any N >1).
In this respect we recall the well known embedding inequality

wll ey p2r)) < @llwll gro) for any we HYY(Q), (2.10)

so that w(wy,-) € L?(15) is well defined for any z; € I,. Hereafter, for any Banach space

B(Iz) of functions defined on I, C(I1;B(I2)) denotes the Banach space of continuous

functions w: Iy — B(I2) equipped with the norm |[w||¢(1,.5(1,)) = max |w(z1,-) || 51,)-
’ z1€h

The generic constant c(2) depends on Q only.  Notice that [w][fs=.2q)<
c(Q)||wl grr.0(qy as well.

We seek an approximate solution to the BVP (2.1), (2.2) in the form of a finite
expansion

=2

v(N)(xl,J:g):ZCg(xl)Xg(wl,xg) on (2.11)
=1

with unknown coefficients ¢, GH&(Il), for 1</<N. For such U(N), we straightfor-
wardly obtain the formula

N
HoWN) = Z —D [k11xeD1ce+ (k11.D1xe + k12D2x¢) co]
=1

—Ds (k21X¢) - Dice — Da (ko1 D1xe+ ko Daxe) - ce + Vixece. (2.12)

Generally, this equality must be understood in the sense of H~1(Q), i.e.,

N
(HV™), ) = Z/Q {[r11xeDrce+ (k11 Dixe+ k12 Daxe) co] D"
=1

+[Kk21xeD1ce+ (K21 D1xe + K22 Daxe) ce) Daw™ +Vxecop™ tdx for any ¢ € HO1 (Q).
(2.13)
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In the case where the regularity conditions (2.8) and
xe€ H*(Q), co€ H*(I;) for all IS/<N (2.14)

are valid, equality (2.12) holds simply in the strong sense, i.e. in L(£2).

Generally, conditions of various kinds could be imposed on the residual Huy — f
in order to obtain a system of equations defining the unknown coeflicients {ce}évzl in
expansion (2.11) [17]. In this paper, we apply the Galerkin method. To this end, we
first introduce the linear space Sy of functions having the form of expansion (2.11),
with arbitrary ¢, € Hi(I1), 1<{<N. Clearly Sy is an infinite-dimensional linear
subset in H} () (thus N is not the dimension of Sy) since the following inequalities
hold

[0 g2 0y < Dl L X 2o + el Loy (D1 e + 1 D2x]lle)
<c@)lellim o x| @~ (2.15)

with the column vector-functions ¢:=(c1,...,cx)? and x:=(x1,...,x~5)7. Actually
Sy is a closed subspace in H}(€2); see Proposition 3.3 below.
We subject v(™) to the Galerkin orthogonality condition

<HU(N) —f,0)a=0 for any p € Sy. (2.16)

Obviously, this can be rewritten as the standard Galerkin integral identity
Lo (U(N),gp):<f,<p>g for any ¢ € Sy. (2.17)

On the other hand, condition (2.16) is equivalent to the collection of particular
orthogonality conditions

(Ho™N) — fonxk)a=0 for any ne H}(I,), with k=1,...,N, (2.18)
which can be also rewritten more specifically as

<(HU(N)—f> (xl,-),xk(x17-)>1 =0 for a.a. 1 €1, with k=1,...,N. (2.19)

In general condition (2.19) is nothing but a more abstract version of (2.18), but under
the regularity conditions (2.8), (2.14) and for f € L?(Q) it takes the familiar integral
form

/ (Hv(N) —f) (x1,22) X% (21,22)dre =0 for a.a. x1 €1, with k=1,...,N. (2.20)
Iz

The variational form of this method is also available (see (3.9) below).

3. Properties of the semi-discrete Galerkin approximation
Let po be a real weight function such that

ol L () + 1 D1poll 2 () < 1(po), po(x) =p,>0 in Q.

Let po :=||po|| (). We introduce the following Gram matrix for the system {x¢}":

Go={gne}eer, grelar)i= / (poxexi) (@ren)das for el (3.1)
I
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The importance of studying Gram matrices is well known in Galerkin methods [18].

LEMMA 3.1. The matriz Gog has the properties

lgrellzr1 (1) < () plpo)llxrll @ llxellmr) for any 1<E<N, 1<{<N, (3.2)

Go(z1)=G§(z1) >vonT on Iy, with von >0, (3.3)

where 1 is the unit matriz of order N.

Proof. Applying embedding (2.10), we obtain
lgrell 2o (1) < PollXwll 200 (0 1 Xe | £2.00 () < ()P0l xk | 71 () XN 71 (92) -

Moreover, using the generalized Minkowski inequality [6], we derive

| D1grell 1, :H/ [D1po-xexr+po(Dixe Xi+xeD1x3)] das
Iz

Iy

< [ ID1po-xexs 4 po(Dixe- xk+ xeDixi)ll;, dxs
Iz

<|IDipollallxellLoes) Xk Lo ()
+p0 (ID1xellalxkll Loz )+ IxellLoe2@ D1 xkll2) - (3.4)

Using the embedding H'(Q) C L°>%(£2) [15], we complete the proof of (3.2).

Now, we have Go=G§> Auin[Go]l, where Apmin[Go] is the minimal eigenvalue
of Go. Since the system {x¢(z1,-)}), is linearly independent on I, we have
Amin[Go](71) >0, for any x; €1. By virtue of (3.2), gre€C(I;) and consequently
Amin[Go] € C(I1) as well. Thus inequality (3.3) follows with  von :=ming, Amin[Go] >
0. 1]

COROLLARY 3.2. Gyt e[H'(I;)]V*N.

Proof. This property follows from the usual explicit formula for the entries of G !
by using the facts that the product of two or more functions in H'(I;) is in H'(I;) as
well and that det Go > V(J)VN (recall that det Gy equals the product of all N eigenvalues
of Go) O

PROPOSITION 3.3. Sy is a closed subspace of HL((2).

Moreover, if v'N) € H}(Q) has the expansion (2.11) with arbitrary ¢ (not neces-
sarily from [HE (1)), then actually c € [HL (1)), and an inequality of the reverse
type with respect to (2.15) holds:

el oy < Ks v o™l @), (3.5)

where Ks n = Ks (von, || x|z @)~ > 14(p0),€2).

Proof. Let {v,}2°_; be a sequence in Sy which is convergent in H}(Q). We
denote its limit by v¥) € H}(©2). By virtue of embedding (2.10), for any z; € I,
the sequence {v,,(x1,-)}5S_; converges to v™)(z1,-) in L?(I), and since the system
{xe(x1,-)}2_, is linearly independent, we get expansion (2.11) for v (z1,25), with
some c(x1).
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Clearly c(z1) satisfies the following system of linear algebraic equations

Go(z1)e(r)=y(x;) on I, (3.6)
where the column vector-function y = (y1,...,yx)7 in the right hand side has entries
yr(x1) :/ (pov(N)X}’;) (z1,22)dze for any 1<k <N. (3.7

Iz

Similar to bound (3.2), we have
13 1l 2 (g < e(€) (o) Ixl v 10 - (3.8)

Now, applying Corollary 3.2 we see that c:Galy €[Ha(I1)]N. Moreover, differ-
entiating system (3.6), we obtain the system

GoDic=D1y—D1Gy-c.
Property (3.3) applied to both systems implies that
von|Die| <|Dry|+[D1Golle| <|Dry| +vox | D1Gollyl,
thus

von llelliaz oy < <1+V&\1/\/X1/2|||D1Go|||11) ¥ [z oy~ -

According to bound (3.2), we obtain

1/2

N
I1D1Golll1, = Z | D1grell?, SC(Q)M(PO)||XH[2H1(Q)]N~
k=1
Invoking bound (3.8), we complete the proof. 0

COROLLARY 3.4. For any f€ H~ (), there exists a unique approzimate solution
vW) | which satisfies the uniform in N bound (compare with (2.7))

\|U(N)HH5(Q) <v "N fla-10)

Proof. Due to Proposition 3.3, Sy may be considered as a separable Hilbert
space equipped with the inner product Lg(v,9). Thus the result follows from the
Riesz-Fischer representation theorem and the Galerkin integral identity (2.17); see
also property (2.5). O

REMARK 3.5. In bound (3.5) (including the expression for K3 n), the norms
HU(N)||H3(Q) and |\ x|lja1 (o)~ may be replaced by the weaker ones HDlv(N)Hp(Q)
and ||x|[{z1.0(q)~, provided that one replaces the norm || Dypo| z2(q) by the stronger
one || D1po||p2.(q). In fact, we have

lgrell L,y < Pollxkllellxelle,

D190 - xexkll L2 ) < 1D1polln.o o Ixell o2 @) Xk | Lo 2 ()
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and therefore (see (3.4))

lgrell o 12y < e(€) (Bo + | Drpoll L= ) x|z ey [1xel 2.0 -
A similar change in bound (3.8) is possible as well.

Notice that since Lo(-,-) is a Hermitian symmetric and positive definite sesquilin-
ear form, the Galerkin method may also be restated equivalently in the Ritz-like
variational version: v®) € Sn and

T (™) chnelgzlv Jalp), for Jo(w):= %Eg(w,w) —Re(f,w)q. (3.9)
Ja(w) is the energy functional; hereafter Rez and Imz denote the real and imaginary
parts of z€ C.

For technical reasons (see sections 5 and 6 below), we also introduce a linear space
S%; of functions having the form of expansion (2.11) for any ¢, € L?(I;), for 1 <¢/<N.
Note that S C L?(Q2) due to inequality (2.10).

PROPOSITION 3.6. SY; is a closed subspace of L*(Q).
Proof. Let {v,}2°_, be a sequence in S%; converging in (), and v(™) € L2(Q)
be its limit. Since for a subsequence {vy,, }72, we have

[N

the function v(™)(z1,25) has an expansion (2.11) for some c(z1).
Going back to system (3.6), (3.7), we observe that

—0 as k— oo, fora.a.x; €l
I

Iy 11l < llpovlxdllzza () < e(@)pollo™ llalllxlllaow).-

Due to Corollary 3.2, c=Gy 'y € [Lz(Il)}N; recall that ||[c|||r, <vonll¥!lln- ad
Let (+,-)cn be the inner product in CV.

LEMMA 3.7. Let v and ¢ be any functions in Sy such that

Z

N
v(xl,xg)=Zc[(m1)xg(x1,x2), @(xl,xg):ng(xl)xg(xl,xg) n Q, (3.10)
=1 =1

with c=(c1,...,en)”, d=(dy,...,dn)" € [H} (1)) N Then the following identity holds
Lo(v,) =LY (c,d) ;:/ [(AchJrA(O)c,Dld)CN + (A<0>*D1c+3c,d)CN} dz1.

Iy
(3.11)
Here the N x N-matrices A,A©) and B have the entries that are functions on I, for
1<k<N and 1</{<N:

ake(I1):/ (meXe)(xl,xz)dwz, (3-12)
Iz
ag?(l’l):/ Xk (K11 D1xe + K12 Daxe)] (21, 22) dzo, (3.13)
I
2
bu(xl):/ Z kijDixe - Dixa+Vxixe | (x1,22)dxs. (3.14)
I3

i,j=1
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For these entries, the following bound holds for any 1<k<N and 1<{<N:

0
lakell oy + [0l | 1002l a1 ) < Ko, 2. ) el el oy (8:25)

Under the regqularity conditions (2.8) on k;j and V' (the condition on Dakaj may
be omitted) and

DDy € [L3(©Q)]° for 1<¢<N, (3.16)
the following bound also holds:

0
IDsaell oy + | Pra? |, vt oy

L2(I)
< Ks(p1,9) (Ixkll @) + 1D1xkll noe2)) (Ixell @) + 11D Drxelll 22 (o)) - (3.17)

Proof. Exploiting expansions (3.10) and rearranging the summands, we obtain

a(v,p)= Z ng j(cexe) - Di(dixi) +Veoxedixy, | da
Qpe=1|i,j=1

=/ Z {[x11 (D1ce- xe+ceDixe) + k12ce Daxe] (D1dy, - X5 +dip D1X},)
D=1 12
+ [521 (D1ce-xe+ceDixe) + kazceDaxeldy Daxg + Veexedy Xz } deada
/ aMchg +a,(€(?cz> Dydi + (aﬁz) Dicy +b$)0g) dﬂ dxq,
g =1

where a, a\)) and b z are given by the above formulas (3.12)—(3.14). Identity (3.11)

ke
is proved.
Bound (3.15) follows from the inequalities

HakEHLoo(Il) < llr1xgxell po. 1) = H"ﬂlHLoo Q) ||XkHL°°12(Q) ||X€||L°°v2(Q)7

Hau

10kell 21 1,y < 11200 Dxil | Dxel + V[ xexel | L1 (0)
<2p0 [|Dxkllg [Dxellq + ||V||Lp(g) ||XkHL2p'(Q) ||X€HL2p'(Q)

<Xk (k11 D1xe +K12Daxe) || 2 (o)

L2(Iy)

= (||"111||Lm(9)+||“12||Loo(§z)) HX/C||LOCv2(Q) [Dxelle»

and the embedding H*(2) C L4(Q) for any 1< ¢ <oc. Under the regularity condition
(2.8) and (3.16), we also have

D16kl oo (1) S D161l oo () X o2 ) XN 02

110 (ID10k | oo 1l ey + 10k | ey D1 Xl ey )

0
|Paaf? ], <1D1xel 20 V20 Dl

+||Xk||L°°v2(Q) KHDIKJHHLOO(Q)+||D1’€12||Loo(g)) 11Dxelll +M0|||DD1X€|HQ} )
1bkell 7, < 200 [IDXel Loe.2 ) DXk + 1V g k] poc 20y el e ()
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thus obtaining (3.17). ad

COROLLARY 3.8. Eﬁ(~,-) is a bounded Hermitian symmetric sesquilinear form on
[HE (N x [HE(Q)]N, with the self-adjoint matrices A and B.

Proof. LJI\I (c,d) is a Hermitian symmetric sesquilinear form since Lq(v,p) is.
The former is also bounded because of bound (3.15).

Since the matrix s is symmetric (and real together with V), A and B are self-
adjoint. 0

REMARK 3.9. In general the basis functions in the system {Xg}évzl can depend on N.
If they do not, then additional rows and columns appear in the N x N-matrices A,
A© and B as N increases but no change appears in the previous rows and columns.

We observe that the role of the coefficients £;; is not the same in L (-,-). The
leading matrix A only depends on k11, and A and B depend on k11 as well whereas
only B depends on kg (and V') together with other ;.

Now we study positive definiteness of the involved matrices and the sesquilinear
form L} ().

PROPOSITION 3.10. The matrices A(z1) and B(x1) are positive definite for a.a.
x1 € I1, uniformly with respect to x1. More precisely, for a.a. x1 €Iy, the following
matriz inequalities hold:

VN v 1
I<— Go(z1) < Go(z1) < A(x1), 3.18
po "~ Po 2 1)_||(Po/fm)(ﬂﬁh')||L°°(12) ol =Al) (319
2vy, 2v 2v
oN Go(z1) Go(x1) < B(21). (3.19)

EVON 2 <
X3po ~ X3 po ~ Xollpo(w1,) 21 (12)

Proof. Let v be given by the first expansion (3.10) for any ¢ € CY independent of
21. Then by the ellipticity condition (2.3) and the condition V' >0, we obtain

(A(ml)c,c)CNZ/I (k11]v]?) (21,22) dzo

2

1 / 9
> polv[”) (z1,22)d2,
[ (po/k11) (21, )| Lo (12) 12( )
N
(B(a:l)c,c)CN:/ E ki Djv-Div* +V|v|* | (v1,22) das
I =
2 \i,j=1

>y / (1D2v]?) (21, 2) des
Iz

2v / 9
> polvl”) (z1,22)dzs.
XallpoGon Moy i, P21
(3.20)
Applying the identity
/(,00|U|2)(Il,Ig)dIQZ(Go(QZl)C,C)CN on jl (321)
Iz
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and property (3.3), we complete the proof. d

PROPOSITION 3.11. The sesquilinear form Eﬁ( ,+) has the following weakened positive
definiteness property
QZ/ZION

N
Tﬁo\ncmg@gcﬁ(c,c) for any ce [HY(11)]" . (3.22)

Proof. By Lemma 3.7 and property (2.5), for any c€ [H& (Il)]N, we obtain
LY (c,¢)=Laq(v,v)> V/ | Dv|? de, (3.23)
Q

where ¢ and v€ Sy are related by the first expansion (3.10). Taking into account
identity (3.21), we have

X 1
71/ |Dyv|? dx > |U(x1,x2)|2dxgzﬁ— (p0|v|2) (z1,22)dxo
Q

Iy 0J1I,

== (Go()e(x1), e(x1))ew on L.
Po

Applying property (3.3), we complete the proof. d

Now we state and study the problem for the unknown coefficients in the Galerkin
method (2.11), (2.17).

PROPOSITION 3.12. For the vector-valued function ¢N) = (cy,...,en)T built with the
coefficients in the expansion (2.11) of the approzimate solution vN) | the Galerkin in-

tegral identity (2.17) means that c™N) is a weak solution in [H& (Il)} N of the following
BVP for a self-adjoint system of second order ODEs

Hyc™N):=—Dy (Ach(N) —l—A(O)c(N)) +A(O)*D1C(N) +BcM =t™) on 14, (3.24)

™

=0, 3.25
11:0,X1 ( )

i.e., ¢ V) satisfies an integral identity

N
N
cy (c<N>,d) - <f(N),d>Il =S (fuodi)y, for any de [HAI)]Y.  (3.26)
k=1
Here the generalized vector-valued function fV) = (fl,...,fN)T has components fi €
H~Y(I) such that
<fk7n>11 = <f,77Xk>Q fO’/‘ any ne Hé(jl)a with k= 13"'3N' (327)

In the case where f & LY“*/3(Q) the last relation reduces to

filen)= [ (D (@radse for aa el
I
Proof. This result is a direct consequence of Lemma 3.7. 0

REMARK 3.13. Clearly, the integral identity (3.26), for d such that d =ny; and
d¢ =0 for £+#k, together with formulas (3.12)—(3.14) for the elements of the involved
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matrices can be also obtained from the orthogonality conditions (2.18) and formula
(2.13) for Hv™) with ¢ =nx, (by using Dy (nxx) = D1n-Xx +nD1xk in that formula).
Moreover, under the regularity conditions (2.8) and (2.14), the system of ODEs (3.24)
together with formulas (3.12)—(3.14) directly appear from the orthogonality conditions
(2.20) by exploiting formula (2.12) for Hv™).

REMARK 3.14. One can rewrite the sesquilinear form in the integral identity (3.26)
as follows:

£ (c.d) = /1 [(AD1e, Did)en 2 (A9 Dye,d) | +(Be,d)ew | dn

1

~((Pa®)e.d),

where the self-adjoint matrix A©) := i (A(O) —A(O)*) has the entries, for 1<k<N
and 1</<N:

~ ? * * * *
a,(f}(xl)zi/l (k11 (D1x3 - xe — XeD1ixe) + k12 (DaxF - xe — XpD2xe)] dxo on I4.
1

In addition, generally

<(D1A(O)) c, d>I - —/ {(A“))ch, d)CN 4 (A(O)q Dld)cN] day,
1 I

or simply

<(D1A(O))c,d>I :/ (DlA(°)~c,d)CN day,
1 Il

provided that the regularity conditions (2.8) and (3.16) hold so that D; A ¢

[LQ(Il)]NXN (see (3.17)). This corresponds to rewriting the system of ODEs (3.24)
as

D (Ach(N)) 2% AO D™ ¢ (B - D1A<0>) M =f™ on. (3.28)

REMARK 3.15. In the simplest case, where N =1, the system of ODEs (3.24) is
reduced to the self-adjoint ODE

—Dy (a11D101 —l—ag(i)cl) —&—aﬁ) Dicy —i—bg(i)cl =f, on I,

and the coefficients and the right hand side are given by formulas (3.12)—(3.14) and
(3.27) for k={¢=1. After the previous remark, this ODE can also be rewritten as

7D1 (auchl) — 2Z(Imag(i))D101 + (bg(i) — Dla(ﬁ)) C1 = f1 on Il.

Let kg and Vj be two auxiliary real-valued functions such that

ko € L®(Q), ko(z1,22) >k >0 on Q, Voe LM°(Q), V5>0. (3.29)
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We introduce another Gram matrix for the system {x¢}, as
G(l):{gzile)}ﬁe:p 91(6?(901)12/ (koDa2xe- Daxi+Voxexs) (x1,22)dze on I,
I

PROPOSITION 3.16. G e [LY(1)]N*N, GO =GD" and the following matriz in-
equality holds:

KLG(l)(xl) < B(x1) for a.a. z1 €14, (3.30)
6

where K6 = ||K30||L<x>(Q) —+ (XQ/Q)”VOHEloo(Q) .
Moreover, G € [C(I)|VN*N and the following inequality holds:
G (1) > V](\})H on I, with 1/1(\}) >0, (3.31)
provided that

Doxe € C(I1; L3 (1)) for 1<U< N, ko€ C(I1;1L°(I,)), Vo€ C(I1; L (Iy)).  (3.32)

Proof. We have (compare with (3.4))

1
98 12 12y < IR0l s oy 1 D2xello | Dok o+ Vol 1.0 gy el e 1k o 2
< Kg| D2xellel D2xklo- (3.33)

Let UZZZICZX@, for any ¢ € CY. Then, similar to (3.20) and the last inequality, we
obtain

v
(B(z1)c,¢)en > 1// (|Dov|?) (w1, 22) dry > — (HO\D2U|2 +Vo|v|2) (x1,22)dxs
I Ke /1,
Y (cwm
e (G (mﬂc,c)CN for a.a. 1 €14, (3.34)

which completes the first part of the proof.
Under conditions (3.32), clearly x, € C(I1; H}(I2)), thus
1
lgie e < Isollecrsno iy + 1Vollowio i) el o aap Ixellem 1)
After that, the proof of inequality (3.31) follows that of (3.3). ad

We are now in position to derive the strong positive definiteness property of
ProPOSITION 3.17. The sesquilinear form Lﬁ(~,~) has the following H}(I1)-positive
definiteness property

N

vE7 NNl x SET(ee) for any e [Hi ()], (3.35)
where K7,N:K§7N (see (8.5)) or K7y =Kg N with
1 -1
Ksni=—o | Kg / <G<1> Dlx*,Dlx*) podas +h0 |,
VoN I cw Loo(Ih)
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and

* * s \T
X = (X1 XN)

)

provided that the regularity conditions (3.82) and D1Xg€i27°°(Q) for 1<U<N are
valid.

REMARK 3.18. Property (3.31) implies that
1
KSN_ (1 ||f0‘D1X|"L2w )+Po

Proof. Let ce [H&(Q)]N and v €Sy be related by the first expansion (3.10).
Inequality (3.23) and bound (3.5) imply (3.35) with K7 y = K3 y.
On the other hand, we can write down the inequality

1 1
/|Dv‘2dxzj/|Dlv|2p0d1’+—/ (I<E0|D21)|2+V'0"U|2) dx
Q po Ja K¢ Jo

see the second intermediate inequality in (3.34). Using the equality D1 (cexe) =Dice-
xe¢+ceD1xe and the elementary inequality

1
la4b*>(1—7)|al* — (7_1>|b|2 for any a,beC, v>0,

we have

2
1
/|D1U|2pod$2(1 gl / podx — (—1)/
Q Q v Q
Applying identity (3.21) and the equality in (3.34), for 0 <y <1, we obtain
/|Dv\2d:c> / (G(O)Dw ch)CN dxq

1 1 ) 1
—(==1)= Dix* de+— [ (GW dz; .
<’Y )ﬁo/nKC’ X evl o $+K6 11( C’C)‘CN o
(3.36)

podz.

2
ZC@Dl)@

(=1

Zche Xe

(=1

Furthermore, the following inequalities hold:
[ lte. DX el s
Q

S/Q (G(l)c’c>CN.(G(1)71D1X*7D1X*)CN podzx

<ess suph/ (G(l)ilDlxﬁDlx*)CNpde2~/ (G(l)c,c)CNdxl.
I I

1

Exploiting property (3.3) and taking ~ such that

1 1
()
Y £o

! * *
/2 (G Dix*, Dix )CN pPodxs
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from (3.36) we obtain (3.35) with K7 v =Kz n. |

Note that although property (3.35) for K7 v = Kg ny may appear more cumber-
some, it can ensure weaker dependence on N (or even independence from N); see
section 4 below. N
PROPOSITION 3.19. For any fV) € [H_I(Il)] , there exists a unique weak solution
cM e [H&(Il)]N of the Galerkin BVP problem (3.24), (3.25), which satisfies the
bound

1™ Mgy gy <2 Ko I g s (3.37)

Under the regularity conditions (2.8) and (3.16), for any £V) € [Lz(fl)]N, c
is in fact a strong solution which belongs to [HQOH& (Il)]N and satisfies the system
of ODEs (3.24) (or (3.28)) in [L*(I)]™. Moreover, the following bound holds:

1N g2 (v < Ko w IEM 27,3 (3.38)

(an expression for Kg n is omitted).

Proof. Corollary 3.8, Proposition 3.17, and the Riesz-Fischer representation the-
orem imply the first part of the proposition.

Next, under conditions (2.8) and (3.16) and for f(V) € [LZ(Il)}N7 we first ob-
tain from (3.26) that AD;c™) has a derivative Dy (AD;c™)) € [L}(1})]" . Equation
(3.28) holds in [L*(I3)] N as well and the bound

|21 (aDie™) [ <2lA s N0

[ . .

HI1B = Dr A |y e oy +HE M Loy (3.39)

is valid for g=1.
Consequently ‘ch(N )’ € L>(I1) and there exists the derivative

D2 = 41 [Dl(Ach(N)) —DlA.chUV)} e (22 ()],

by taking into account that bound (3.39) is now valid for ¢ =2 as well, | Dy A| € L*(I;)
(see bound (3.17)), and A= € [C(I1)]V*N (see also inequalities (3.18)). This implies
bound (3.38). A more general result can be found in [24]. 0

We do not intend to go deeply into the problem of error estimation for the method
and confine ourselves by the following standard result (for example see [1, 23]).

PROPOSITION 3.20. The following optimal E(Q)-error equality holds:
~0™lg(0) = min [ju— 3.40
lu—v"" g Juin lu—¢lle), (3.40)

together with the L?(Q)-error bound

min w —
HU—U(N)HH(Q) < sup PEoN | LpHg(Q) min ||U—<P||5(Q)~
we H(Q): Hwe L2 () [Hwl| 20 pESN
(3.41)
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Proof. We recall that equality (3.40) (even for the infinite-dimensional closed Sy )
follows from the identity

Lou—v™ u—v™N)=Lou—v™) u—y) forall pe Sy

(see the integral identities (2.4) and (2.17)) and that the L?(Q)-error bound (3.41)
follows from the related identity

Hu—v(N)H%Q(Q) =Lo(u—v™N) w)=La(u—v™ w—¢) forall pe Sy,

where w € H}(Q) is the solution of the auxiliary problem Hw =u—uvN). 0

REMARK 3.21. The Galerkin method described above may be extended to solve an
elliptic BVP in an n-dimensional cylindrical domain Q=G x I,,, where G is an (n—1)-
dimensional bounded domain, n>2 and I,,:=(0,X). This is of increasing physical
interest now. The approximate solution (2.11) may be considered once more with
#n=(x1,...,2,_1) replacing 1 and x,, replacing xo. For ¢, € H}(G) and x, € L>2(Q),
Dx¢ € [L™*(Q)]", with g, >2 for n=3 and g, =n—1 for n>3, x|, _ox=0, 1<
(< N, we obtain that v™¥) € H}(Q). In the case of the n-dimensional version of the
self-adjoint elliptic BVP (2.1), (2.2) (with n replacing 2 as upper limit in the sum), the
Galerkin BVP for the vector-function ¢¥) of the coefficients of v(™) has the following
form:

n—1 n—1
Hye®™ == 57D, [ 3746 Dy 4 460 )
i=1 j=1
n—1
+ AT D;e™ 4 BN =) on G, (3.42)
1=1
C(N)‘ =0,
oG

where the N x N matrices A, A0 and B have entries, for any 1<i<n-—1,1<
i<n—1,1<k<N,1</(<N,and a.a. 2,€G

o) () = / (ki xioxe) (s ) d,

al(ciEO) (i‘n) = /I

n

n
XZZHiijXK (invxn)dxm
=1

n
0) /A * * ~
by () = /1 > kiiDixe- Dixi+VXixe | (o) dn,

n \ij=1
and f(V) is a vector having the components f;, € H Y(G), 1<k <N, such that

(frsm)a="{f.nxr)q for any n€ H}(G);

compare with (3.12)—(3.14) and (3.27). Equation (3.42) can be classified as a self-
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adjoint strongly elliptic system of PDEs since A7) = A% =AD" B=PB* and

n-1 n—1
3 (‘4(”)5(”’5@)@:/, S ko @0
hj=1 g, j=1
n—1 v n—1
ZV/ Z @2 dz,, > ﬂz 1€D|2 for any €M), eV e,
I Po

nj=1 =1

compare with (3.18). Here v(?) ::Zé\f:lféi)xg, and von >0 is introduced quite simi-
larly to (3.3) (see also (3.1) and (3.21)).

4. A specific choice of the basis functions
An important choice of the basis functions is related, for physical reasons, to a
1D eigenvalue problem with respect to x5 depending parametrically on 1 € I3

Hox:=—Ds(koDa2x)+Vox=apox in I, (4.1)
X|x2=O7X2 :0’ (4'2)

where the coefficients kg, Vp and pg depend on z; and x5 and satisfy the above
conditions (3.29). Recall that in its general (i.e. weak) formulation, this problem con-
sists of finding the eigenfunctions x(z1,-) € H} (I2), x(x1,-) #0 and the corresponding
eigenvalues a(x1) satisfying the integral identity

Loz, [z1] (x(21,),¢(+)) 12/ [(koDax)(w1,72)(D2C") (w2) + (Vox) (z1,22)¢" (22)] dxo

I

= a(xl)/I (pox)(x1,22)C* (w2)dxy for any ¢ € Hy(Io). (4.3)

Below, we mainly omit [21] in the notations for brevity.
According to well known results, for a.a. x; € I; the problem has a sequence of
real eigenvalues such that

O<ai(zy)<---<ap(r1)<..., ag(x1)—00 as {— oo,

and the corresponding real eigenfunctions {x,(z1,-)}2, are orthogonal in L?(I5) with
the weight pg(z1,-):

| Coxapo) a2z =0 tor any kA (4.4)
I

Moreover, we assume that they are normalized:
/ (X%po) (z1,22)dza=1 for any k. (4.5)
Iz

From (4.3)—(4.5) one deduces that these eigenfunctions have a second orthogonality
property

/ (koDaxk - Daxe+Voxixe) (x1,22)dre = oy (x1)0 for any k.2, (4.6)
Iz

with dgr =1 and k=0 for k# /L.
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Furthermore, for any w € L?(Q2) and for a.a. z; € I; the Fourier expansion
w(wy,2) =Z@z(ﬂc1)x/z(x1,xz)7 with we(z1) :=/ (wxepo) (x1,22)dre,  (4.7)
=1 I
converges in L?(I5), and the Parseval equality holds:
oo
[ (tulo0) .2} s = 3 P, (@)
I =1

Moreover, if in addition Dyw € L?(Q2) and wl,,—,
in H}(I2), and the second Parseval equality holds:

x, =0, then the expansion converges

o0

/ (k0| Dawl|? + Vo |w[?] (21,22) dza :Zag(x1)|zﬁg|2(xl). (4.9)

Iz =1
We also recall the Courant-Fischer minmax principle, for ¢>1,

ap(z1)= min maxRp,(z1;¢), with Ry, (z1;¢):= Lor, [21](¢,¢) (4.10)

L, CHY(I)CEL - J1, (o) (wr,2)ds’

where Ry, (z1;¢) is the Rayleigh quotient. The minimum in (4.10) is taken over all
the (-dimensional subspaces L, in real H}(I3), and the case (=0 is automatically
excluded.

Consequently, for any £ > 1, we have that oy € L°° (1) and the following two-sided
bound holds:

Kf()1£2 <ay(zy) <K 0? for aa. x €14, (4.11)

K 7\ 2 K¢ (7 2
51:0<>7 R :() .
10 P \ Xa U, X

For such a choice of {x¢}72,, by virtue of properties (4.4)-(4.6) we obtain

with

Go=I, GW=diag{ay,...,an}, (4.12)

and thus voy =1 and 1/1(\}) =ess infr, aq > Kfol are independent of N. In particular, if
po=r11, then A=T as well and the Galerkin system of ODEs (3.24) becomes simpler.

Note that according to the integral identity (4.3), for a.a. ;€ I, the product
(koD2x¢)(x1,-) has the derivative

Ds(koDaxe)(x1,-) = (Voxe — cexe) (1,-) € L' (I2). (4.13)
Thus (koD2x¢)(z1,-) € C(I3) and Daxe(z1,-) € L% (I2). Moreover, if ko(z1,-) € O (1),

then Xg(lj, ) S Cl(fg)

Each function x¢(z1,-) is unique up to the factor £1. We choose x¢(z1,-) by spec-
ifying either that (xoD2xe)(x1,0) >0 (the equality (koD2x¢)(x1,0)=0 cannot hold)
or, when ko(z1,-) € C(I3), simply that (Dax,)(w1,0)>0. Then it is possible to de-
rive that x, € H'(Q) under some additional conditions on kg, Vo and pg (the rather
lengthy proof is omitted).
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REMARK 4.1. Optimally choosing the functions kg, pg, and Vj is a practically im-
portant question. We will not touch upon this topic in the paper and only mention
that some physical arguments are invoked to solve this question, which would deserve
some mathematical work to be rigorously presented. One may keep in mind the simple
choice kg :=kaa, Vo:=V and pp:=1 (or alternatively po:=r11).

Also recall that formally one of the coefficients kg and py can be reduced to 1.
For example, one can normalize equation (4.1) by multiplying it by

{1} (z )_i/ dxy
ko], ! ._Xz Is ko(x1,22)

(in order to keep the domain € the same) and then change the variable ys:=
22 Jeading to the simplified equation
0 50(11 )’
—Dj,x+Vox=apox in I,

where x(z1,22) = x(21,y2(x1,22)) and

) 1 . 17 T .
Ro:= [} ko, Vo:= [} FoVo, po:= {} Ropo-
Ro Is Ro I Ko I

But we have take into account then that Dy x = DX+ D1y2- Dy, X.

Now we turn to a study of approximation properties of the space Sy spanned
by the first N eigenfunctions of the auxiliary eigenvalue problem (4.1), (4.2). In
the spirit of [1], we introduce a family of associated Hilbert spaces H%?(Q), 0>

0, consisting of functions w€ L?(2) such that the series Y ,°, aZ/ngXg converges
1/2
in L*(Q), equipped with the norm ||w||go.e(q) = [fh Dy a?\wgﬁdxl} . Clearly

H%% (Q) cHO?(Q) and H*%1 (Q) ZH*?(Q) for any 0<6 < 6;.
It follows from the Parseval equalities (4.8) and (4.9) that

1/2
oo = IVAulsay. Tl = | [ [olDauf+oluP)ds|
Q
thus
HO0(Q)=L2(Q) and H'(Q):= {weLQ(Q);DgweLQ(Q), w\mzo,&:o},

up to an equivalence of norms.
Next, the space H%2(Q2) consists of functions weH"!1(Q) having a deriva-
tive Dy ( nngw) € L'(Q) and such that How € L*(Q), with the norm [Jwl|go.2(q) =

H \/% H . The last two conditions on w are reduced to the simple condition

D%wELQ(Q) provided that Dayrkg, Vo € L**(Q). Moreover, H?(Q) for #>2 is the
space of functions w € H*?(Q) such that py 'How € H*~2(Q) and

[wllgo.0 () = Hpo_lHow”HOﬁ—2(Q)'

We define a projector Py: L?(2) — S% by the formula

N
(Prnw) (z1,22): Zwe z1)xe(21,29) in Q, for we L*(Q),
=1
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where the coefficients w, are given by formula (4.7).
We also define the auxiliary energy norm

1/2
ey = | [ (i1l rolDaul? + VoluP) |
Q

which clearly coincides with [w||¢ ) in the particular case »=diag{po,xo} and V =
Vo. Let a,:=ess infr, ay.

PROPOSITION 4.2. Let w e H*?(Q), for some 0>0. Then the L*(Q)-approzimation
bound holds:

—0/2
170 (w=Pxw)ll 2@y Sanl3 lwlsgooo)- (4.14)
If in addition 0 >1 and Dyw € H*~1(Q), the £ (Q)-approzimation bound holds:

—(6—-1)/2
Jw—Prwle,@ <ants V' (Iwlgos o)+ ID10lsoo 10 ) + VA RN 2()

(4.15)
where Ryw := D1 Pyw—PyDyw.

Proof. Due to the first Parseval equality (4.8), we obtain

170 (1 — Pyw) 220y = / / polw - Pywf2deade,

. —0 2
= Z || dxy SQNJrl”wHHO»"(Q)‘ (4.16)
Ip=N+1

Moreover, we also obtain

l[w—=Prwle () <Ilvpo (D1w—PnDiw)l|g
+ H\/pio(Dlle’w —PNDlw) ||Q

1/2
+ { Lor, (w—Pyw,w—Pyw) dxl} )
I

Due to the second Parseval equality (4.9), we have

oo

Lop, (w—Pyw,w—Pyw)= Y agli|*. (4.17)
(=N+1

Then the second approximation bound (4.15) follows from the first one (4.14) with

Dyw replacing w and estimating (4.17) similarly to (4.16). |
A delicate matter is now to bound Ryw. We first get a representation for R yw.

Let x¢:=Dixe¢ and X1 :=(X¢),, for brevity.

LEMMA 4.3. Let we HY0(Q). The following formula holds

N 00
Ryw=Y @ (Xe—PnXe)— Y WPnXe, (4.18)
=1 {=N+1

where the series converges in L2()) (note that the representation does not contain
Dlw).
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Proof. By differentiating in z; the formulas for Pyw and wy as well as the
orthonormality conditions (4.4) and (4.5), we derive

N

DyPyw=> (Dl X¢+rie) on €,
(=1

Dywe= (m)eJr/ wD1(xepo)dry on Iy
I

2

and

/ [Xexkpo+ xeD1(xkpo)]dza=0 on I, for any k,¢. (4.19)
I

Expanding w with respect to the system {x;},-, and applying the last formula, we
further calculate

/WDl(XkPO)dl‘z—/ ZweXeD1(kao)dI2

Is IQZ 1

o0 oo
:—Z@e/ Xexkpodzo == Wexen on Iy
=1 I

£=1

Gathering these formulas and rearranging the summands, we find

N
DyPyw—PnxDiw=>_ Dyilig-xs+exe — (Drwe)xe
(=1

N N
:Z@D(H—Z/ wD1(Xxpo)dT2 - Xk
=1 k=1"12
N N oo
:Zz’ﬁg;’@—zzfﬁem,km

k=1(=1
—zwm—zw (zx@ kxk>
=1
This directly implies the result. a
COROLLARY 4.4. If we HYY(Q)NHY?(Q) for some 0>0, then the following bound
holds:
0 0
IvVPoRnwl| 20y < [ (1]\);] +[ g]\)r] llwl|go.6 ()
L>(Q)
where

N 1/2 N 0 1/2
0 _ .
s&e[z v wmnw] [z 5 ] 7

/=1 (=1 k=N+1

oo 1/2 1/2
0 _ .
[ 5 ammvxzuiw] [ S ar z] |

{=N+1 (=N+1
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01?2 N
s+ [s50]

In contrast to other bounds in the paper, the case =00 1S
L= (9)
not excluded (in general).
Proof. Applying the Cauchy-Schwartz inequality, we have
N 00
IVpoRNwlr <@l | vpo (ke —=Prxelll, + Y 1@el [Vpo Paelly,
=1 (=N+1
N /2 , N 1/2
s(Zaﬁl@F) (Zazglfpo(xe—mxe)i)
=1 =1
[} 1/2 0o 1/2
(3 atme) (3 ativare)
f=N+1 (=N+1
Consequently
) 1/2 5 3
IVAo Rl < (Za%w) (s3] + [s5%]
=1 I
012 0)1?
< [w ooy ||/ [5$3] + 53]
Lo (1)
a

REMARK 4.5. The following formula holds

oo
> wexex

(=N+1

2

N
§ WeXe,k

{=1

2 oo
>

k=N+1

d.’I}]_,

N
2
||\/%RNWHL2(Q):/I Z

T k=1

which is a consequence of representation (4.18) rewritten as

N oo oo N
Ryw=Y @ Y XexXe— D WeY  XekXk-
{=1 k=N+1 (=N+1 k=1

Now we suppose that ¢y := Dyay € L' (I1) and x¢(z1,-) € Hi (I2), for £>1 and a.a.
x1 € I, and derive some their properties. Up to the end of this section, we also assume
that

D150l Lo (@) + D1 Voll p1.00 () + D10l Lo () < 11,0 (4.20)

and set

1
1D Voll g1 qys Kz =05 2=,

1
Ki9:= H,k;(()l)HLoo(Q) + H )
Ko || 1,00 ()

with Iiél) :=(D1ko)/Ko and pél) :=(D1po)/po-
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PROPOSITION 4.6.
1. The following simple formula holds, for £>1:

dg:£012 (xe,Xxe) — D1p0~xfdx2 in I, (4.21)
I3

where

Lo, 1] (xe(z1,7),¢())
::/I [(D1ko - Dax) (z1,22)(D2€) (z2) + (D1 Vo - x) (x1,22)((x2)] dzs.

2. For £>1 and a.a. x1 €11, xo(2z1,+) € H}(I2) is a weak solution of the degen-
erate BVP

Hoxe—cepoXxe=Fr:=—Hoxe+ (aeDipo+dupo)xe in lo,  (4.22)
Xetlzy—0,x, =0 (4.23)

with Hox :=—Dy(D1kg-Dax)+D1Vy - X, i.e., ¢ satisfies the integral identity
Lor, (Xe:¢) — Oéz/ poxeCdry = (Fy,0) 1, :=—Lor, (xe:)
I3

+ay DlPO'XZCdx2+d€/ poxeCdxy  for any real CGH& (I2), (4.24)
12 I2

where Fy € H=Y(I3).
Moreover, the following formula holds

. . 1
XME/ PoXéXéd$2=—§ D1 po- X7 da; (4.25)
12 12
more generally
/p())'(ngdxz—F/ poXxkXxedro=— | Dipo-Xexrdre for any k>1. (4.26)
I I I

Proof. Formula (4.26) is another form of (4.19). Formula (4.25) is its particular
case for k=/.
By differentiating in 1 the second orthogonality relation (4.6) for k= ¢, we obtain

do=2Lor, (xe,Xe) +Lor, (XesXe) -

Applying the integral identity (4.3) for x = x¢ and ¢ = x, and formula (4.25), we obtain

. ) a
Lor, (Xe;sXe) = Oée/ poxexedra = *?Z Dipo- X7 dza,
12 12
which leads to (4.21).
The integral identity (4.24) is derived by differentiating (4.3) with respect to 1
for x=x¢ and a=ay.
The property Fy € H~!(I3) follows from the bounds, for any x,( € Hg (I2),

| £or, (6:)| < Krall Vs Daxl sl VRo DaC 1 (4:27)
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compare with the second inequality (3.34), and similarly

< Kuzllvpoxll . IveoCll 1, - (4.28)

D1po-xCdxa
Iy

d
PROPOSITION 4.7. The degenerate BVP (4.22), (4.23) under the additional condition
(4.25) has a unique weak solution. The coefficients of its Fourier expansion

o0
Xe= ZX@,ka (4.29)
k=1
can be calculated as
F,
Xep=—2 for k#, (4.30)
Qp — Oy
with
_7 Dipo-xuxed k#£4L
Fopim (Fuo i, = o (Xk>Xe) +au [;, Dipo-Xixedzs for k#L, (4.31)
0 for k=¥,
for k=120 see (4.25). Moreover, the following bounds hold:
. 1
|Forl < Kiov/oagou+ Kisag, |xeel < §K13 for any k.. (4.32)

Proof. Formula (4.31) follows from (4.4) for k# ¢ and from (4.21) for k=/¢.

The equality (Fy,xe)1, =0 is the necessary condition for solvability of the degen-
erate BVP (4.22), (4.23). Moreover, its weak solution exists and is unique provided
that [} poXexedzs is given (see a general theory in [13]).

Setting (= xj into (4.24) and applying (4.3) for x =xk, a=ax and {=xy, we
obtain (4.30).

Bound (4.32) follows from (4.27), (4.28) together with equalities (4.5) and (4.6)
for k=4¢. a

Now we assume the following spectral gap property

V() —ag(z1) >8s(£—k) for any 1<k</ and a.a. z; €14, (4.33)

for some d5 >0 (we omit its lengthy proof here). Let K14:=max{K12,K13}.

PROPOSITION 4.8. The following bound holds

Ivpoxe(x1, ) L2y < Kis (K10, K14,05)V/ ae(21) for a.a. x1 € 1. (4.34)
Consequently, Ks n < Ke(K35N +po) (in this respect, see Proposition 3.17).

Proof. Applying Proposition 4.7, we obtain

o2 Fop 2
WA= 3 ( e

1 1
2 2

<K | ae E — -
k> koo Nk T ) 4

k>1; k40 (\/Olk —\/ O



A. ZLOTNIK, B. DUCOMET, H. GOUTTE AND J.F. BERGER 273

The spectral gap property (4.33) implies that
—1 9]
1 2 1 7
> k(i ) < h e
k>1; k40 (Ver — o (k 1 (6—k)2 (k— 6 03 pzym* 30

Invoking the lower bound for «y in (4.11), we complete the proof of (4.34).
Concerning the bound for Kg y, from (4.12) we have

N
—1 — .
/ (G(l) D1X>D1X> podiy = E a;’ ||\/P0Xf||§2 < KN,
Is cx =1 I:l

REMARK 4.9. In the particular case of k¢ and pg independent of x;, the results
of Proposition 4.8 can be essentially improved. Namely, we first get (compare with
(4.32))

|Fe el D1 Voll g1, ey el o (1) X | e (1) < Kno /aka, for any k¢,

with Kqo:= 2/“,0/\/807507 since

2
el sy <2 / el | Daxcel des < < Jar.
Lo (I2) L PoFo

Using the obvious inequality /axay < (y/ax++/ar)/2, now we derive the uniform in
¢>1 bound

oy, < B2 (T 1) =

and then (applying the lower bound in (4.11)) the uniform in N >1 bound
w2 ~o
Kg v < Ks €K10K15 +po |-

Thus the H}(I1)-positive definiteness property (3.35) becomes the best possible.
The results of the rest of the section could be improved in this particular case as
well.

LEMMA 4.10. The following bound holds

_EKu -
H (e)HL » 5144\1(4?11)/2 <c0+log1/z N) for 6>1,

where cqg is a generic numerical constant.

Proof. Applying once more Proposition 4.7 and the spectral gap property, simi-
larly to the previous proof we obtain

2 0 B F 2 K 2 e} o N 1
()= 3 ey () e () 3 s

(=N+1 s (=N+1

K 2 oo ( )n+N—1 1
14 —(6—-1

n=1 m=n
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For 6> 1, we obtain

(9) K14 ,(9 1 oo n+N-—1
[SzN} S( 55) ON41 )Syn, with Sy : _Z Z m2

n=1 m=n

Since
1 1 1
ﬁ<m—g for m22, (436)
we have
"%_1 i 1 ! for n>2
— m2 n—1 n+N-1
and thus
N1
SlN<f ;E +10gN,
which completes the proof. 0

We now estimate Sge[\)] under the low regularity (with respect to x1) of coefficients

ko, Vo and po, see (4.20).
LEMMA 4.11. The following bounds hold

oK
H “’)HL (I)<2K§§ DR (V1) (1+1og1/2N) for1<0<3/2,

< K(e 1)/2 K14

‘ HLoc( 1) 5 (N+1) 1/2 fOT9>3/2

where cg depends only on 6.

Proof. Similar to relations (4.35), we obtain

) 27N Lo Fore \°_ (Ku 'S —(6-1) 1 137
)= k_zw(ak_w) < (%) > o z*mw e (430

Inequality (4.36) implies that

= 1 1 2
< .
mz=1 M N—02 S+ N—02 T4N—f - N+1—_¢

Therefore, for 6 > 1, exploiting the lower bound in (4.11), we obtain

12 Ku\? o -
[s%] <2(5) Kl sen(@), (4.38)

N
1 ~
with Son(0):=) ————— and :=0-1.
2N 41-1)
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In the case where 0 € [0,1/2], exploiting the Holder inequality for sums we have
; (1
Suv(0) < S50 524 (3.

Since Son(0) <1+4log N and

N
1 2
SQN() ZeNH 7 N+1;Z N+1 i <wapitlsN),  (439)

we derive
Son(0) <22 (N +1)"29(1+1og N).
In the case § = (14¢)/2 with & >0, we obtain
N 1-h/2
San (@)=Y getemn <t [ (@),

=1 h/2

with h:= N—H and g.(&):= Wllg) Here we have taken into account that the sum

is the compound midpoint quadrature formula for the integral and g” >0 on (0,1).
Furthermore, we can estimate the integral as follows

1—h/2 1/2 d¢ 1/2 d¢
h1+f/ g=(&)de < h'Te 2/ +21+8/ —
h/2 © nj2 €17 n2 1-¢

2 /(h\ " ° 1 1 1
<t |2 (=) +2"Clog—| =2 =+ hflog— ) h.
e\ 2 h € h

Son(0) <co(N+1)71

Consequently

Inserting the bounds for SQN(é) into (4.38), we complete the proof. a0

In order to obtain higher-order bounds than in Lemma 4.11, we need an additional
condition on Fy (finally, on kg, Vy and pg). To state this, we go back to the definition
of the spaces H*?(Q) and introduce a similar family of Hilbert spaces of functions
depending only on x5, for a.a. x1 €14

- 1/2
H’ [21)(I2) := { C€ L*(12); SNl 10 ) (1) 1= [Zaﬁ(m)l@(m)lﬂ <00, 620;

note that the Fourier coefficients Cy, see (4.7), are x1-dependent even for ¢ independent
of Xq.

Let 0< 6y < 6. Clearly H (I,) c H%(I5) and H? (I,) is dense in H%(I,); here-
after we omit the symbol [z1] for brevity. Moreover, the Holder inequality for series
implies the following multiplicative inequality, for 6y <60 <6,

6,6 6—6g
I¢lt0 (1) < NG e, NG s, for any ¢ € HP (). (4.40)



276 SEMIDSCRETE GALERKIN METHOD FOR 2D HAMILTONIAN OPERATOR

We have H(Iy)=L?(I3) and H'(I3)=Hg(I2), up to an equivalence of norms
(uniformly in xy € I1), and

¢ o) = Iv/PoC 212y, €I (1) = [Lora (1.

For completeness of our error bounds, we also need to consider functions (€
H~1(I,) such that

100 "Cla-o(ry = sup  [(¢m)p,|<oo for 0<O<1.
H’?HH9(12):1

For § =1, this norm is equivalent (uniformly in z; € I1) to the norm ||(|| z-1(z,). Note
that in general here p, ¢ is only a convenient notation rather than the product of
po " and ¢ (though under condition (4.20) on py this is well-defined). On the other
hand, for any ¢ € L?(15)

00 1/2
195 (PoO) -0 (1) = I¢ -0 (1) = lzazeéﬂﬂ :

{=1

We introduce the following condition on Fp, £>1:

—B/2—1 _ .
ess Sup,, 7, 0y B/ (ml)H(PoI(F‘_azpoxz))(xl")HHﬁ[zl](b)§2K16’5 (4.41)
for some (3> —1. This follows from

||p61H0XEHHB(]2) SKlG’gaf/Q—H, ||p(()l)Xz||HB(12) SKlgﬁaf/g on Il, fOI‘fZ 1. (4.42)

Notice that HPElHOXZHHﬁ([z) = || xellae (1) :af/2+1, for f>—1 and ¢>1.
The multiplicative inequality (4.40) implies that if one of the conditions is valid

for some 3= fy,H1 such that —1 <Gy < (1, then this is also valid for any By < (<61
G1-B  B-Bg
(with Kyg =K 1561755 'K féﬁf ). In particular, it is sufficient to consider only integer
values of 3.

For f=-1 and Dgpél) € L?»>(Q), using bound (4.27) and taking into account

that H'(Iy) = Hg (I2) up to an equivalence of norms, we have

(Foxean), | = ors (er| < Kral VD2l VR Dl < Kool
2

1 1
‘/ POP((J)XZWd$2 §||X£HH—1(12)||P((J)77||H1(I2)
Iy
1 2K6X2 (1)
< 225220 p _— ,
="Ja; o D206 " || 2. (Q)||77||H1(12)

for any n€ H}(Iz). Thus condition (4.42) holds for 3= —1.
For =0 and Dzngl),Vo,Dlvo € EQ’OO(Q), we obtain

Hoxe = —K(()l)DQ(HoDQXL’) - D2Hgl) ~koDaxe+D1Vo - xe-
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Consequently

0Xe

—14°
= 7
Hpo 0Xe HO(Iy)

< \ﬁ[(ﬂﬁo)ﬂm(n +V/Xsl| Dot e ) D20 D) 1,

D1 Voll 2. gy el a0 | -
Since Da(koD2x¢) = (Vo — aepe)xe also and
1 1 1
267 xelsocry <1106 L= Iv/Poxellz, = 196 | -
condition (4.42) holds for 3=0 as well.
LEMMA 4.12. Let 0>3/2 and condition (4.42) for B=60—5/2 be valid. Then

' Hm(z) \/>K10 Kigpayyy /P (N+1)71/2 (1+10g1/2 )

Proof. Using the spectral gap property (4.33), we can replace the inequality in
(4.37) by

N
{ ] ;faNHe Z“’:lFl’f

k=N+1

Estimating the right hand side and applying condition (4.42) for some > —1, we
obtain

2 1
(6) =B+
[511\1} 5* N+1 Z e N—i—l gk%lakFék

1 1

T da <6+1>Z°‘e_ oo™ (Fi = epoxe HH‘3<12>N+1 ¢
sQ N+1 (=1

(2K16,5) Br2—9 1
< _ 4.4
5sa§\€i‘11) Z N+1-0 (4.43)
Setting 3:=60—5/2 and applying the lower bound in (4.11) and bound (4.39), we
complete the proof. 0

REMARK 4.13. Since k> ¢ in (4.43), we have actually exploited only the weakened
version of condition (4.41) with Po_lFl —Pg(pgng) replacing p0_1<Fg — QepoXe)-

Summarizing the results of Proposition 4.2 (see (4.15)), Corollary 4.4 and Lemmas
4.10-4.12, we obtain the following proposition.

PROPOSITION 4.14. Let conditions (4.20) and (4.33) be valid. Also let weH®Y ()
and Dyw € H*~Y(Q) for some 0>1 and, in the case where §>3/2, let condition
(4.42) for B=0—5/2 be valid too. Then the following H'(Q)-approzimation bound
holds:

lw—Pywl| () < Kig(N+1)" 0 <1+log1/2N) (lwllezo.0 (@) + 1 D1wl[gr0.0-1(r)) -
(4.44)
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COROLLARY 4.15. Let conditions (4.20) and (4.33) be valid. Also let u€ H*?(Q) and
Dyu e H=1(Q) for some §>1 and, in the case where 6 >3/2, let condition (4.42)
for B=0-5/2 be valid as well. Then the following H*(Q))-error bound holds:

||U—U(N) ||H1(Q) < KlS(N_Fl)*(G*l) (1 +10g1/2N) (HUHHO,H(Q) + ||D1UHH0,6—1(Q)) .
(4.45)
Under additional regularity conditions (2.8) and

DyiY Vo, D1V, Dapll € L2(9), (4.46)
the following L?(2)-error bound holds as well:

||’U,—’U(N)||L2(Q) S K19<N+ 1)_0 (1+10gN) (HUHH0,0(Q) + ||D1U||H0,971(Q)) . (447)

Proof. The results are straightforward consequences of Propositions 3.20 and 4.14.
Concerning bound (4.47), we apply bound (4.44) together with its version for § =2,
also exploiting bound (2.9) and condition (4.42) for f=—1/2 (as a consequence of
the same condition verified above for §=—1,0). ]

REMARK 4.16. If for § >3/2 condition (4.42) is not imposed, then bounds (4.44) and
(4.45) with cg(N41)~1/2 replacing (N +1)~¢-1 (1 —Hogl/2 N) additionally hold,
due to the second bound in Lemma 4.11.

5. A discretized Galerkin method

To get a practically implementable method, it is necessary to discretize in xq
the Galerkin BVP (3.24), (3.25). This can be accomplished in many ways. In order
to preserve Hermitian symmetry and positive definiteness properties, one natural
approach consists in applying the finite element method.

We consider only its simplest version based on linear elements with numerical
integration in x; which is closer to practice. Let z19=0<211 <---<x1m:=X1 be a
general mesh @y on I, with steps Am ==T1m —Tim_1. Let Sh(I_l) be the space of
continuous functions on I, linear on each element [x1,,_1, T1,,] and equal to zero at
71 =0,X;. Clearly dim S, (I1)=m—1 and Sy,(I;) C H}(I1).

Let wj={Z1m-1/2}m—1 be another mesh with the nodes z1,,_1/2:=(Z1m—1+
T1m)/2 and steps N y1/2 = T1my1/2 — Tim—1/2 = (Am +hmy1) /2.

We seek an approximate solution of the BVP (2.1), (2.2) in the form

N

m—1 N
o™ (@1,22) =D (1) xe(w1,22) Z > ene(@im)enm (@) xe(z1,22),  (5.1)
=1 m=1/=1

where ¢y € Sh(I_l) and the “hat” functions

(1 —Z1m-1)/hm for t1m—1 <21 <21,
ehm (1) =14 (@1m41—21) /hms1 for T, <1 <Timga,
0 for 1 ¢ [Z1m—1,T1m+1],

for 1<m<m—1, form the standard basis in Sh(I_l). We denote by S’,JLV the space of
all functions on  having form (5.1). Clearly dim S} =(m—1)N and S C H}(Q2).
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We approximate the original integral identity (2.4) as follows:

Lan (v, ¢) =tan(p) for any e sy (5.2)

(compare with the semi-discrete version (2.17)), where

ACQh(w <P Z/ Z K/Z]D w-Dip* +Vwe* (xlm 1/27932) dxg by,
Is

1,7=1

m
th Z l‘1m71/2,'),¢($1m71/27')>1 P

2
m=1

In the above formulas, we have obviously approximated the integrals over I; by apply-
ing the compound midpoint quadrature formula. In this section we impose additional
regularity conditions

Dng eC (jl;L2(IQ)) , Kij € C (fl,Loo(IQ))

for all i,§,V €C (I1;L (1)), feC (I,;H (1)) (5.3)

(compare with (3.32)). Note that only the values /|
involved in (5.2), for 1<¢<N.

Clearly Lan (w, ) is a bounded, Hermitian symmetric, and a positive definite
sesquilinear form on S }ILV xS ’zlv . The last property means precisely that

(and ng\w;:xb) of x¢ are

wp X 12

lwliy, @ < Lonlw. ) for any we sy, (54)

where

iy o= |[I1DwIl 2 sy

1/2
L2 s lyllze 2(,) ¢ <Z|Z/m 1/2’ h ) ,
h

with 9m—1/2 =y(T1m—1/2). Consequently, for any fGC(fl, ’1(I2)), there exists a
unique approximate solution v,(L ) which satisfies the bound

N) -1
[ P PR

compare with Corollary 3.4.
Now we need to introduce the difference and averaging mesh operators

;
L3 (1)

m — Im— m—1+Nm
5177m—1/23:nh721» S1Mm—1/2 = %7
e Ymi12—Ym-172 . hoUm—1othmp1Ymegre
Y 2h ’
m+1/2 m+1/2

with 1, =n(z1,m). Also, let Hj, be the space of functions defined on the mesh @j, and
having zero values at x1=0,X; and HY :=[Hp|V

ProroOSITION 5.1. Let U:vgN) and ¢ be any functions in S,ILV having respective
decompositions (5.1) and

N m—1 N

p(r1,m2) =Y dno(z1)xe(r1,22) = Y D dne(@1m)enm (@1)xe(w1,72), (5.5)

=1 m=1/¢=1
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with dpg € Sp(1h) for 1<L< N, and let cp,:=(cp1,...,cnn)? and dp = (dp1,...,dpy)T
be corresponding vector-functions in H}]LV Then the following identity holds:

Lon(v,0) =Ly ) (cn,dp)

;:mil (4610, + A s1cp, 61

m=1
+ (A(O)*51ch + Bsicy, sldh>

CN

CN}mfl/Q "

(5.6)

where Ap,_1/2, AS)_UQ and B,,_1/2 are the values of the matrices introduced in
Lemma 3.7.

Moreover, the following uniform bounds for the entries of the matrices hold, for
any 1<k<N and 1<{<N

0
lakelloe,) +lag o) + 1okellomy < Kol Dxall ez 1PXell oz
(5.7)
where Ko depends only on Q and a bound for ki;; and V' in the norms of spaces in
conditions (5.3).
The sesquilinear form Eﬁh(',') is Hermitian symmetric and has the following
positive definiteness properties:

vron max |cp|* < LY (cn,en) for any cp € HY, (5.8)
X1po wn
I/K;}V |||61Ch|||ii(h) §£ﬁh(ch,ch) for any ¢, € HY; (5.9)

in the latter one, the regularity conditions (3.32) on kg and Vi are assumed to be
valid.

Proof. Tdentity (5.6) is proved as (3.11) taking into account the equalities

(Dln)(xlm—l/Q):6177m—1/2a n(xlm—l/Z):slnm—l/Q on wy,, for 77€Sh(1:1)- (5.10)

Therefore, for example

(D1(cnexe)) (T1m—1/2,72)
= (61¢ne)m—1/2Xe(T1m—1/2,72) + (51¢he)m—1/2 (D1Xe) (T1m—1/2,72), (5.11)
(Da(cnexe)) (T1m—1/2,72) = (51¢he)m—1/2 (D2Xe) (T1m—1/2,T2)- (5.12)

Bound (5.7) is proved similarly to (3.15).
Inequalities (5.8) and (5.9) are counterparts of (3.22) and (3.35) and are proved
in a similar way. In fact, relations (5.6) and (5.4) imply

2
LY (ch,cn)=Lan(v,v ZI/H Dv
i enen) = Lon(w0) 2w 11Dl ey |,

. (5.13)

Furthermore, we have

2 1
xoiwliaaly 2 [ sz = [ (o) e ) o
2 2

1
= ; (GO (xlm)chmy Chm)(CN on wy,.
0
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Applying the first equality (5.10) and property (3.3), we derive (5.8) from (5.13).
Next, exploiting the mesh equalities (5.11) and (5.12), we can get, similarly to
(3.36), for 0<y<1

Z/ | DV (€1 m—1/2,22) ds hm
m=1 Iz

1—v
Po A

m=

> (G(0)51Ch,510h>cN (T1m—1/2) hm

1 1 &
—(—1>E /(|(81€h,D1X*)cN|2Po)(331m71/2,$2)d$2hm
Y Po /I

m

1

il (1)
+K6mz_:1<G S1Ch,51ch,>(cN (T1m—1/2) hm.

The proof of (5.9) is completed as in the proof of Proposition 3.17 (taking into account
the continuity of G and GO on I, and the property Dyx € C(I1;L*(15))). O

PROPOSITION 5.2. The approxzimate Galerkin identity (5.2) means that the vector

function ChZCElN) of the coefficients in expansion (5.1) of the approximate solution

v,(lN) satisfies the following finite difference scheme for the Galerkin BVP (3.24),
(3.25)

=07 (A(SlcglN) +A(O)S1C§LN)) +s7 (A(O)*élcgN)) +s] (lecglN))

£ on {z1m )71 (5.14)

X
*51 m=1"

=0, (5.15)

(N)
where f," 7

m—1/2 @€ the values of the vector function £f) introduced in Proposition
3.12

Proof. The result follows from identities (5.2) and (5.6) by applying the elemen-
tary mesh identities

7 m—1
Z Ym—1/201Mm—1/2hm =— Z 61 Ym N M —1/2,
m=1 m=1
L -1
Z Ym—1/251"m—1/2hm = Z $1Ym N Pom—1/2
m=1 m=1
for any n € Hj, and any y defined on wy,. a

REMARK 5.3. Taking into account the elementary formula
5t (A(O)slch) = (A<0>51ch) 15: A0 ¢,
one can rewrite equation (5.14) in the form

6% (Adyen) — 28t (/1@)51%) 457 (Bsien) — 67 AO ¢, =s1E )
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compare with (3.28).

Note that elements of the technique were used for example in [25].

Clearly the simplest method with linear elements considered here is unable to
ensure high-order accuracy, and higher-order finite element methods in z; need to be
invoked to this end.

6. A 2D elliptic eigenvalue problem and its semi-discrete Galerkin ap-
proximation

In this section, we turn to an eigenvalue problem corresponding to the BVP (2.1),
(2.2)

HY =Xp¥ on Q, (6.1)
W]y =0, (6.2)

where the real weight function p satisfies conditions p€ L*°(2) and 0< p<p(x) in Q.
Let p:=||pll Lo (0)-

We briefly recall its main properties. In its general form, this eigenvalue prob-
lem consists in finding the eigenfunctions ¥ e H}(Q), ¥#0, and the corresponding
eigenvalues A satisfying the integral identity

[,Q(\Il,ga):)\/ Up*pdx for any ¢ € Hy (). (6.3)
Q

It is well known (for example see [13]) that all the eigenvalues are real and can be la-
beled, taking into account their multiplicity (i.e. the number of corresponding linearly
independent eigenfunctions), in nondecreasing order

D<A <A< <<, Ap—oo as £—o0.

The corresponding eigenfunctions {¥,},°, can be chosen to be real functions and to
form an orthonormal basis in L?() with the weight p, i.e.,

/\I/klllgpdaczékg for any k,/,
Q

and for any w € L%(2), the following expansion with respect to {¥,},~,
w(z) =Y BV (x), with @y, := / w¥,,pdz, (6.4)

m=1 Q2
converges in L?(€2). Moreover, the system {¥,},2, has a second orthogonality prop-
erty

LoV, Uy) =0k for any k¢,
and forms a basis in H}(Q) (i.e., for any we H}(Q), expansion (6.4) converges in
HY(Q) as well).

Under the regularity conditions (2.8), the eigenfunctions are in fact strong solu-
tions of the problem such that

U, c HENHY(Q), HY,=\p¥, in L*(Q), for any £>1.
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Moreover, for any w € H?N H{(£2), expansion (6.4) converges in H?({2) as well.
We finally recall the Courant-Fischer minmax principle

L
A= min maxRq(w) for £>1, with RQ(U;);:M

. 6.5
LyCHL(Q)wELy Jow?pdz (6:5)

Ra(w) is the Rayleigh quotient for the eigenvalue problem (6.1), (6.2), and the min-
imum is taken over all the /-dimensional subspaces L; in real H} ().

Following section 2, we seek approximate eigenfunctions U(N) € Sy, U(NV) £0, and
eigenvalues A(N) such that the integral identity

EQ(\I/(N),@):/\(N)/\I/(N)cp*pdm for any €Sy (6.6)
Q

is valid. Clearly this Galerkin identity appears by substituting ¥®¥) to v(™) and
AXMEN) p to f in the previous Galerkin identity (2.17). Quite similarly, other equiv-
alent forms (2.16), (2.18)—(2.20) imply the equivalent corresponding forms of (6.6); in
particular, (2.20) leads to the orthogonality relations

/ (H\I/(N)—)\(N)p\lf(N)) (x1,22) X% (21,22)dee =0 for a.a. x1 €1, (6.7)
I

2
with k=1,...,N.
PROPOSITION 6.1. Let ¢V) be the vector-valued function of coefficients in the expan-
sion
N
yN ) (z1,29 :Zcz x1)xe(z1,22) on Q

£=1

of an approzimate eigenfunction WN). Then the Galerkin identity (6.6) means that
cM e [H&(Il)]N, cM) £0, together with \N) satisfy the integral identity

cy (C(N)7d) ZA(N)/I (MC(N)7d)CN dzy for any de [H&(Il)]N, (6.8)

1

i.e., they satisfy in a weak sense the eigenvalue problem for the system of ODFEs
corresponding to the Galerkin BVP (3.24), (3.25)

Hyc™M =—-D, (Ach(N) —i—A(O)c(N)) + A Dy 4 B = AM ™) (6.9)

V)

=0, 6.10
11:O,X1 ( )

where the N X N mass matrix M has entries, for any 1<k<N and 1<{<N

mkg($1):/ OGixep) (x1,x2)dxe on Iy. (6.11)
I3

Proof. The result immediately follows from Lemma 3.7 together with the identity

/\P(N)go*pdxlz/ (MC(N),d)CNdxl for any ¢ € Sy, (6.12)
Il Il
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where ¢ and d are related through (3.10). ad
REMARK 6.2. Comparing formulas (3.12) and (6.11) and exploiting inequalities (2.10)
and (3.18), we get the following bound and the positive-definiteness property:
[muell poo 1,y < c(OplIxk 100 [ Xe | H10(02) for any kL,
PVON p 1

— <= Gy(z1) <
Po Po o(1) ||(P0/P)(9317')||Loo(12)

Go(x1) < (M(z1)e,€)en

for any c€CN and a.a. x, € 1.

PROPOSITION 6.3. The eigenvalues of the approzimate eigenvalue problem (6.6) are
real and can be labeled in the nondecreasing order taking into account their multiplicity

O<’\5N)§>‘(2N)§"'§>\§N)S---, >\§N)Hoo as ¢ — 0.

o0
The corresponding eigenfunctions {\IlgN)} can be chosen to form an orthonormal

basis in S, considered as a subspace of L*(Q) with the weight p, i.e.

/\I/](CN)\IIEN)pd{E:(Sk[ for any k¢,
Q

o0
and, for any v € S%, the Fourier expansion with respect to the system {\I/%V)}

m=1
Z MwN () on Q, with oY) —/ vI N pde, (6.13)
oo Q

oo

converges in L?(Q). Moreover, the system {\IIEN)}K has a second orthogonality
=1
property

Lo <\I/§€N), \IlﬁN)) :)\EN)(skg for any k.4,

and form a basis in Sy considered as a subspace of H}(Q), i.e., for any ve Sy,
expansion (6.13) converges in HE ().

Under the regularity conditions (2.8) and (3.16), the eigenfunctions are actually
strong solutions of the problem such that \I/éN) € H2NH(Q) and the corresponding
equation (6.9) is satisfied in [L?(I1)]Y, for any £>1.

In addition, the Courant-Fischer minmazx principle holds:

(M) — mi >
Ay i max Rao(w) for £>1. (6.14)

Proof. The results follow from Propositions 3.12, 3.19 and 6.1 and from the general
theory of self-adjoint elliptic operators (covering the case of operators of self-adjoint
systems of ODEs as well); in particular see [13]. Identities (3.11) and (6.12) are also
essential in order to translate the results from problem (6.9), (6.10) back to (6.6). O
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COROLLARY 6.4. The one-sided approzimation property Ay < )\EN) holds for any £>1.

The result is well known for the Rayleigh-Ritz method and follows directly from
the Courant-Fischer minmax principles (6.5) and (6.14).

We complete this section by the error bounds in the case of the specific basis
functions studied in section 4. For this purpose, we need to introduce a family of
Hilbert spaces associated to the eigenvalue problem (6.1), (6.2)

o 1/2
H’(Q):= weLZ(Q);HwHe(m;_lZAm@m?] <00 ¢, for >0,
m=1

with the coefficients @,, given in (6.4). Clearly, the spaces are similar to those intro-
duced in section 4. In particular, we have
lwllao @) =llVewlz2), llwla @) =wlew),

so that H(Q)=L?(Q) and HY(Q) = H}(Q), up to an equivalence of norms. Under
the regularity conditions (2.8), H*(Q) = H*N Hy (Q2) in a similar sense and ||w||g2(0) =
H%Hw‘ . Moreover, for > 2 the space H?(Q) consists of functions w € H} (1)
such that p~'"Hw e H'72(Q) and ||w]|go (o) = Hp_leHHs,z(

Below, we will need the following embedding inequality:

||w|\H019(s2) + ”DleHO»e*l(Q) < CGHU’”HG(Q) for any @UEHQ(Q% (6.15)

with some 6 > 1. Notice that this is valid for # =1 and, under the regularity conditions
(2.8) and Dy, Vo € L>*(Q), for =2 as well. According to the interpolation space
theory [3], if the inequality is valid for some 6 =60p,60; with 1 <6y <6, it is valid for
any 6y <60<6.

Let 77](\}): H}(Q)— Sy be another (different from Py) projector such that

Lo (w—P](\})w,go) =0 for any p€Sy. (6.16)

PROPOSITION 6.5. Let the regularity conditions (2.8), (4.20), (4.46) together with
(4.33) be wvalid. Let 6>1 and inequality (6.15) together with (for 6>3/2) (4.42)
for B=0—-5/2 be valid as well. Then the following error bound for the approxzimate
etgenvalues hold:

0< AN Z N < KM(N+1)"20-D(1410g N), (6.17)
for any £>1 and sufficiently large N > No(A¢,0), where K does not depend on ¢ and

G- 0 for 6>2,
") 6/24+1 forb<2.

Proof. We apply the technique described in [23], section 6.3 which allows to reduce
the study to the case of the BVP. Let E; be the (real) linear hull of {\Ifm}fn:l. We

set
/ [wg - (P](\,l)w)g} pdx
Q

O'(N) = max
weEy, || y/pwla=1
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Then, provided that UEN) <1, the following upper bound holds:
Ae
AN < , (6.18)
¢ 1-— O'EN)

see [23], Lemma 6.1 (notice that the bound is a consequence of formulas (6.5) and
(6.14)). Moreover, if we€ Ey and |\/pw||q =1, the following formula holds

/w(w—P&Pw) pdx=Lq (W—PJ(\PW,w—P](\,l)w), (6.19)
Q

where W € Ej is such that HW = pw in 2 (see [23], Lemma 6.2). Clearly W, =W, /Am
for any m, thus

W |0y < AW |2y = AV Jwllgoy = A0/ >~ for 6>2,  (6.20)

(1-60/2 —(1-0/2)

W |20y S AT NW |20y =M for 0<0<2. (6.21)

Due to Corollary 6.4 and bound (6.18), it is sufficient to bound O'EN) starting from
the obvious formula

w?— (’P](\})w>2 =2w (w—’Pj(\})w) — (w—Pl(\})wf.

For w € By with ||\/pw|qo=1 and § > 1, sequentially applying formula (6.19), the def-
inition of P\ and Proposition 4.14, we first have

/ w (wa](\;)w) pdx
Q

<lw-riu, o=

u
£ £(Q)
< HW_PNW||5(Q) ||w_77Nng(Q)

2
< [K1K17(N—|- 1)_(9_1)(1 +10g1/2N)] (HW”HO‘O(Q) + ”DIWHHUvQ—l(Q))
X ([[wlleo.0 ) + [ Drw]|go.0-1(c)) -
By virtue of embedding (6.15) and estimates (6.20), (6.21) and
0/2 0/2
lellmege) <272 lwleo @) =25, (6.22)

we have

/ w (w —’PI(\})w> pdx
Q

Next, the L?(Q2)-bound (4.47) together with, once again, (6.15) and (6.22) imply that

<2(CpK K1) A7 DN (N 1) ~20-D (1 + 1og V).

2 B _ 2
/Q (w=P{w) pde < pK(N+1)72 (1+1og N)? (Jwllso.0 () + | D110 o)

<p(CoK19)* A (N +1)"2(1+1og N)2. (6.23)
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Summarizing all of these relations, we obtain
oM <03 @R K AT 4 R AT (N +1) 72 (14 log N)

) ATV 4+1)"20-D (1 41og N).

For sufficiently large N > Ny(A¢,0), we finally obtain

|U§N)|gKA,fZ*l(NJr1)—2("—1>(1+1ogN)g%, (6.24)

with K independent of ¢. The upper bound (6.18) now gives that
AN < x (1420 =+ 220N, (6.25)
which completes the proof. ]

We omit any explicit expression for Ny(A¢,0) and note only that it increases with
respect to Ag.

In order to state error bounds for the approximate eigenfunctions, we recall that,
for simple \g, the eigenfunctions ¥, are defined up to the multiplier 1. For such a
Ae, let

min{l— )\2_1,)\“_1 —1} for £>2,
/\ﬂ 1l = e e
Ae N

rp:=min
m#£L

A
)\—j—l for (=1,

be the relative distance from A, to other eigenvalues.

PROPOSITION 6.6. Let the hypotheses of Proposition 6.5 be valid. Then for any £>1
such that \g is simple, the following error bounds for the approzimate eigenfunctions

hold

H@ —g™ HLQ(Q) <KX/} (N+1)~(1+1logN), (6.26)
H‘Df ~ Hm(m <KN(N+1)7D(1+10g"/? N), (6.27)

where either @y =V, or ®y=—Uy, for sufficiently large N > N1(Aj—1,Me,0) (Ao—1 dis-
appears for £=1).
The multipliers K depend on ry but not directly on .

Proof. According to [23], section 6.3, the following relations hold for the exact
and approximate fth eigenfunctions

2

2
|@e—wi™| | =x||vp(@—ui) HQ+A§N) — (6.28)

£(Q)

|vo(e-e) ], <2 |+ () o (mpe)] . 020

with
(N)
(V) _ | Am
T ._g;lé%Tg_l'
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Inequality (6.29) assumes that A\, is simple and that ®,=+V, is chosen such that
[, @0 pda >0,
By Corollary 6.4 we have that

(N)
min min )\L -1, Attt —1; fort>2,
TéN) > 1<m<eé—1| Ap Ae
A
f —1 for £=1.

Furthermore, for £>2, we obtain

. )\m(N) 1 Ae—1
- > —_
1<mmgéfl Ae L 2 1 Ae ’

provided that )\é]ji is so close to A\y_1 that
Ae—1+ e 1 A
—— =XM1 |1+ = 1.
2 S A G

This inequality follows from (6.25) for sufficiently large N > No(A¢—1,A¢,6) such that

)< tmind (2 1) 1l
1_210[111(1{2 N 105
compare with (6.24). Consequently réN) >r¢/2 for any £>1 (this fills in a gap in the
argument of [23]). After that, the L?(Q) error bound (6.26) is a consequence of (6.29)

and (6.23), for w=,.
Equality (6.28) together with the error bounds (6.26) and (6.17) imply that

HE () = \/YZH\/EGI)E_\I}gN)) HQ+ v )\‘SN) —Ae
0

<K [A§9_§+1)/2(N+1)*1 (1+log1/2N) +1} ,\f/Q(NJrl)—(efl) <1+log1/2N),

A <

Vo)

which leads to (6.27). |

REMARK 6.7. In Proposition 6.6, the assumption of simplicity of A, is not essential
and error bounds of the same orders are valid in the case of multiple A\, as well
(according to [23]). The orders are also the same as in the case of the BVP in
Corollary 4.15.

Recall that in the case where Ap_1 <Ap=---=Ap1p < Ap4py1 with p>1, the eigen-
functions Wy,..., ¥y, are defined up to an arbitrary linear transformation, orthogonal
with respect to the norm ||\/pwl|z2(q).

Note that, for =1, bound (6.26) holds for any N >1.

7. An initial-boundary value problem for the time-dependent general-
ized Schrodinger equation and its semi-discrete Galerkin approximation

Finally we consider the generalized time-dependent Schrédinger equation

Dy =H1p in Q:=QxRT, (7.1)
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supplemented with the boundary and initial conditions

Ylgaxrr =0, Yli—g :7/}0(@ on Q. (7.2)
Recall that the operator H and the function p have been introduced in equations (2.1)
and (6.1).
By definition, a weak solution to the IBVP (7.1), (7.2) with the properties
—+ =t
PeC(R ;Hy(R)), Di(py) e C(R;H(Q)
satisfies the integral identity

UD(p) (1), 0())a=La(W(1),¢() for any p€ Hy(Q) and ¢ >0, (7.3)

together with the initial condition v|,_,=v"€ H} ().
This solution exists and is unique. Moreover, the following conservation laws and
bound hold:

(/) )20y = IV/PY° |2 (@) for any ¢>0, (7.4)
(- 0)lle) = Hi/JOHg(Q) for any t >0,
iggllDt(pw)(-,t)llH—l(Q) <K |40 e () (7.6)

The solution can be Fourier-expanded as

Glat) =Y e W, (x), with 4, = / YO pda, (7.7)
Q

m=1

with respect to the system of eigenfunctions of the corresponding eigenvalue problem
(6.1), (6.2). The expansion converges in Hg (2) uniformly in ¢ > 0.
Concerning bound (7.6), notice that, for any ¢t >0

L . .
[ Dt () ()| g-1(0) = sup [£a (W0,0), ()]
PEHL(Q) ||80||Hg(sz)

<Ki|9(t) e

due to identity (7.3) and inequalities (2.6).

The proof of the existence and of the conservation laws are obtained by the Fourier
method justifying expansion (7.7). The uniqueness can be proved using the energy
method.

Our semi-discrete Galerkin method for the IBVP (7.1), (7.2) exploits an approx-
imate solution y(™)(-,¢) € Sy for any t >0, more precisely, of the form

N
y N (@1, 22,8) = er(mrt)xe(a1,72) in Q, (7.8)
=1

with the vector-function of coefficients ¢ such that
—+ N —+ _ N
ceC(R [HE (1) ) Dt(Mc)eC(R JHY(1)] ) (7.9)

where the matrix M has been introduced in (6.11). We seek an approximate solution
satisfying the integral identity

th/Q (py(N)go*) (z,t)de=Lq (y(N)(-,t),go(-)> for any p€ Sy and t>0  (7.10)
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(compare with (7.3)), together with the initial condition

(V)

=y = ZQX«GSN, (7.11)

Y

where y(N)-0 is a given approximation of ¢°, with a vector of coefficients c?:=
(& 0T
€1y s CN )

PROPOSITION 7.1. Properties (7.9) imply that
(N)EC’(@-F;H(}(Q)), Dt/py(N)cp*dzEC'(E+) for any ¢ € Sy, (7.12)
Q

so that identity (7.10) and the initial condition (7.11) are well-defined.

Moreover, the approzimate Galerkin time-dependent problem (7.10), (7.11) is
equivalent to an IBVP for the time-dependent Schridinger-like system of 1D (in space)
equations

WDy (Mc)=Hye in C (R*; [H*l(Il)}N) , (7.13)
cl,_o=c"e [H(1)]", (7.14)

where the operator Hy has been introduced in equation (3.24).

REMARK 7.2. Equation (7.13) can be also rewritten in the form of integral identity
oDy (Mc) (-,t),d())r, =L7 (c(-,t),d(-)) for any d€ [Hé(]l)]N and t>0, (7.15)

with the sesquilinear form £} (-,-) introduced in Lemma 3.7.

Proof. The first property (7.12) follows from inequality (2.15). The second one is
a consequence of the identity

* N
Dt/ (py“% )(x,t)da::(Dt (M) (-,t),d(-))s, for any de [H(1)]Y,  (7.16)
Q
where ¢ and d are related by expansion (3.10) and that follows from identity (6.12).

Integral identity (7.10) can be rewritten as (7.15) due to (7.16) and (3.11). Fi-
nally, equation (7.13) is the operator form of (7.15) taking into account that Hy:

[H&(Il)]N — [H_I(Il)]N is a bounded operator. 0
PROPOSITION 7.3. The Galerkin IBVP (7.13), (7.14) has a unique solution in the
class (7.9).
Moreover, the following conservation laws hold
H\/ﬁy(N)(-,t)HL?(sz) = ||\/ﬁy(N)’0||L2(52) fO’I“ any t> 0, (717)
Iyt e = ly™ ey for any t>0; (7.18)

compare with (7.4), (7.5).
yN) can be Fourier-expanded as

y M (2 Ze")‘(mt (NG (1), with V)0 = /yan)’O\IJS,le)pdx, (7.19)

m=1 Q
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with respect to the system of eigenfunctions of the Galerkin eigenvalue problem (6.6).
The expansion converges in HZ () uniformly in t>0.

Proof. The proof of the existence and of the conservation laws

I?Zagc/l (Mc,c)en (x1,t)dxy _/I1 (MCO,CO)CN dry for any t >0,

0 >
r{lgg{ﬁl((t), c(-,)) =LY (c?c°) for any t >0,

together with a bound

Sup | De(Me) () =1 < Kl )

can be found similarly to the case of the original IBVP (7.1), (7.2) by exploiting
the Fourier expansion of the solution of (7.13), (7.14) with respect to the system of
eigenfunctions of the corresponding Galerkin eigenvalue problem (6.9), (6.10). The
uniqueness can be proved once more by the energy method.

Translating these conservation laws with the help of identities (3.21) (with p
replacing pg and M replacing Gy) and (3.11), we get (7.17) and (7.18); translating
the mentioned eigenfunctions into the eigenfunctions of problem (6.6), we obtain
(7.19). O

Specific choices of y(™):0 are as follows.

1. The po-weighted L?(Q)-projection of ¢° on Sy, i.e., y™V)0 =Py satisfies
the integral identity

/y(N%O(ppde:/wogppoda: for any ¢ € Sn. (7.20)
Q Q

In this case [[\/poy™)0(| 22 () <I1v/P0Y° || L2 () and

Goc’=gy on I}, with gor= woxzpodmg for 1I<kE<N.
Iz

2. The £(Q)-projection of ¥° on Sy, i.e. y(N)"):PJ(\;)z/JO satisfies the integral
identity

Lao (y(N)’O,cp> =Lq (1/10,4,0) for any ¢ € Sy. (7.21)

In this case [|y™)||gq) < [1¥°]|¢(q) and

Hyc’=g; on I,

2
with glk:/ > ki D% Dixi + Vx| day for 1<k<N,
2 \i,j=1
0 —
c ’xlzo,xl =0.
Here g, = (gm1,---9mn) T for m=0,1.
We complete this last section by presenting error bounds in the case of the specific
basis functions studied in section 4.
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PROPOSITION 7.4. Let conditions (4.20), (4.46) and (4.33) be valid. Also let
W eHY(Q), D1y eHY71(Q), Dy e L' (0,T;H*?(Q)),
and
DDy e L0, T;HY (),

for some 6 >1 and, in the case where §>3/2, let condition (4.42) for 5=0—5/2 be
valid as well.

1. Let condition (2.8) be also valid. Then the following C([0,T];L*(2))-error
bound holds:

VoI =™l eqoryca @) <vally™° ~ PV L2y
+E(N+1)"%(1+1og N) [[[4° |l 10.0 0) + 1 D1¢° [ 1z0.0-1 ()
D 1 0,7510.0 () + 1 D1 Det) || L1 0, 1810.0-1 (2 ] -
(7.22)
2. Let po=p. Then the following C([0,T]); H*())-error bound holds:
1Y =y ™ lleqorre)
<|ly™M0 — Py g
+E(N+1)"=D(1+10g"/? N) [119° 0.0 () + 1 D1¢° | g0.0-1 ()
+| Dot || 11 (0,75110-0 (02)) + 1 D1 Dt || 11 (0,7 580.6-1 (02 ] - (7.23)

Here K is independent of T. For both specific choices (7.20) and (7.21) of y™N)-°,
the first summands can be omitted from the right hand sides of (7.22) and (7.23).

Proof. 1. The argument is rather standard in semi-discrete Galerkin methods for
IBVP. Namely, for any y with the properties like (7.8) and (7.9) of y™), we have the
following chain of identities following from the Galerkin and original integral identities
(7.10) and (7.3):

z<Dt [p(y™ —y)],cp>Q —La(y™ —y,0)

Here the term 1(Dy(py™)),¢),, is actually understood as the left-hand side of iden-
tity (7.15), and the terms Z<Dt[p(y(N)—y)],<p>Q and 2(Dy(py),¢), are understood
similarly.

For Dy € LY(0,T; HL(Q)), setting y::PJ(\})l// and (V) :=y(N) —771(\})1/) and using
the Definition (7.21) of PI(\}), we have

(N) _ (N) — _pD
Z<Dt(p7’ ),<p>Q Lo (r ,<p> Z<Dt[p(1/) Py w)],<p>Q on (0,T), for any p € Sy.
Choosing ¢ =7") and separating the imaginary part of the result, we obtain
1d
55 IV =t (o [ (Daw=PQ D) () pie
2dt Q

<|va(p=P D) | 1ver™ e on 0.1).
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Consequently the following C'([0,77; L?(£2))-bound for V) holds

o <5

ol 2 VP (PP D)

C(0,TL2(Q) L1(0,T3L2()

This directly implies the corresponding error bound
=yl < |Vor ™| H Vo)
VoW =y )leo,rr20) < ||Ver + \//3( ~Pxn ) oL@

1B () [y (-0
+3][va (D PV Dws)|

C(0,T);L2 ()

. (7.25)
L1(0,T5L2(2)

Exploiting assumptions on ¢° and Dt as well as the L?(Q)-error bound (4.47) for
the BVP, we derive (7.22).

2. For Dyp€ LY(0,T; HA(S2)), now we set y:=Pntp and ¢ :=yN) — Py, In
the case where pg = p, using Definition (7.20) of Py, from (7.24) we obtain

z<Dt (pq(N)) ,<,0>Q —Lq (q(N),<p> =—Lo(W—Pn0,p) on (0,T), for any ¢ € Sy.

(7.26)
Supposing that the property Dyy™Y) € L' (0,T; H{ () is valid, then choosing ¢ =
Dq™) and separating the real part of the result, we obtain

1d
5 7 (1820 ) =ReLa(t—Pap. Dig™) on (0.7).

Integrating this equality and then integrating by parts, we have

—La (¥0—Pyy®,g™0) /t o (Di(v—Prv),g™) d }

< Hq(N)’OH%g(Q) +2)19° = Pl 1a™ e @)
+2([[(¥ =Pn) ()l e) + |1 D (¥ = Prn) L1 0,155 92)))
”q(N)”C([O,t];E(Q)) on (0,7,

where ¢(V):0: —q(N)\t 0=yMN)-0 — Py, Consequently

—Pny’|le) + 4D (Y = Pr)l| L 0.1:6 ()
(7.27)
To remove the temporary assumption Dyy(™) € L1(0,T; H}(£2)), we can once more
apply the Fourier method based on expansions with respect to the system of eigen-
functions of the eigenvalue problem (6.9), (6.10). We rewrite identity (7.26) as an
inhomogeneous equation like (7.13) for ¢/¥), derive a bound like (7.27) for partial
sums of the expansion for ¢™), and then pass to the limit in the sums (see similar
arguments, for example, in [13] and [26]).
Bound (7.27) implies the C([0,T];E(§2))-error bound (compare with (7.25))

HQ(N) leqo.me@) < ||q(N)

%=y ™ loo.re) < lyN0 = Prille) +4l1¢° = Puillee)
+5(| Dty = PnDetd|[ L1 (0,78 () - (7.28)
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Exploiting assumptions on ¥° and Dy as well as the H'(Q)-approximation bound
(4.44), we obtain (7.23).

Since Pyt — Py 10 =Py (10— PY00) = —PY (10 — Pyy?), for yN)-0 =Pyy?
or P](\})wo, the first terms on the right hand sides in (7.25) and (7.28) either can be
bounded by the second ones or are simply zero. This completes the proof. O

Finally we notice that our method can be also applied to second order parabolic
or hyperbolic initial-boundary value problems although this seems beyond the scope
of problems presently considered in nuclear physics.
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