
COMMUN. MATH. SCI. c© 2008 International Press

Vol. 6, No. 4, pp. 1059–1086

FINITE VOLUME SCHEMES ON LORENTZIAN MANIFOLDS∗
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Abstract. We investigate the numerical approximation of (discontinuous) entropy solutions to
nonlinear hyperbolic conservation laws posed on a Lorentzian manifold. Our main result establishes
the convergence of monotone and first-order finite volume schemes for a large class of (space and
time) triangulations. The proof relies on a discrete version of entropy inequalities and an entropy
dissipation bound, which take into account the manifold geometry and were originally discovered by
Cockburn, Coquel, and LeFloch in the (flat) Euclidian setting.
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1. Introduction

We are interested in discontinuous solutions to nonlinear hyperbolic conserva-
tion laws posed on a globally hyperbolic Lorentzian manifold, and we introduce a
class of first-order, monotone finite volume schemes which enjoy geometrically natu-
ral stability properties. In turn, we conclude that the proposed finite volume schemes
converge (in a strong topology) toward entropy solutions to hyperbolic conservation
laws. Recall that the well-posedness theory for nonlinear hyperbolic equations posed
on a manifold was recently established by Ben-Artzi and LeFloch [2] and LeFloch and
Okutmustur [17, 18]. On the other hand, our proof of convergence of the finite volume
method can be viewed as a generalization to Lorentzian manifolds of the technique
introduced by Cockburn, Coquel and LeFloch [5, 7] for the (flat) Euclidean setting
and already extended to Riemannian manifolds by Amorim, Ben-Artzi, and LeFloch
[1].

Major conceptual and technical difficulties arise in the analysis of partial differ-
ential equations posed on a Lorentzian manifold. Several new difficulties also appear
when trying to generalize the convergence results in [1, 5, 7] to Lorentzian manifolds.
Most importantly, a space and time triangulation must be introduced and the geom-
etry of the manifold must be taken into account in the discretization. We point out
that, on a Lorentzian manifold, one cannot canonically choose a preferred foliation by
spacelike hypersurfaces in general, so that it is important for the discretization to be
robust enough to allow for a large class of foliations and of spacetime triangulations.
From the numerical analysis standpoint, it is challenging to design and analyze dis-
cretization schemes that are consistent with the geometry of the given manifold. Our
guide in deriving the necessary estimates was to ensure that all of our arguments are
intrinsic in nature, and thus do not explicitly rely on a choice of local coordinates.

The main assumption of global hyperbolicity made on the given Lorentzian back-
ground is natural, and ensures that the manifold enjoys reasonable causality proper-
ties. Furthermore, the class of schemes considered in the present paper is quite general
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and, essentially, requires that the numerical flux functions are monotone. It encom-
passes a large class of spacetime triangulations, in which the elements may become
degenerate (in the limit) in the spatial direction.

More specifically, we show here that the proposed finite volume schemes can be
expressed as a convex decomposition of essentially one-dimensional schemes, and we
derive a discrete version of entropy inequalities as well as sharp estimates on the
entropy dissipation. Strong convergence towards an entropy solution follows from
DiPerna’s uniqueness theorem [11].

For another approach to conservation laws on manifolds we refer to Panov [19]
and for high-order numerical methods to Rossmanith, Bale, and LeVeque [20] and
the references therein. DiPerna’s measure-valued solutions were used to establish the
convergence of schemes by Szepessy [21, 22], Coquel and LeFloch [8, 9, 10], and Cock-
burn, Coquel, and LeFloch [5, 7]. For many related results and a review about the
convergence techniques for hyperbolic problems, we refer to Tadmor [23] and Tad-
mor, Rascle, and Bagneiri [24]. Further hyperbolic models, including also a coupling
with elliptic equations, as well as many applications were successfully investigated by
Kröner [13], and Eymard, Gallouet, and Herbin [12]. For higher-order schemes, see
the paper by Kröner, Noelle, and Rokyta [14]. Also, an alternative approach to the
convergence of finite volume schemes was proposed by Westdickenberg and Noelle [25].
Finally, note that Kuznetsov’s error estimate, established in [4, 6] in the Euclidian
setting, was recently extended to hyperbolic conservation laws on manifolds [16].

An outline of this paper follows. In section 2, we state some preliminary results
from the theory of conservation laws on manifolds. In section 3, we introduce a class
of finite volume schemes, and state the assumptions made on the discretization. Next,
we state our main convergence result in Theorem 3.3. In section 4, we gather several
important remarks and examples of particular interest. In section 5, we derive various
stability estimates, which are of independent interest and are also later used, in section
6, to conclude with the convergence proof for the proposed schemes.

2. Preliminaries on conservation laws on a Lorentzian manifold

We will need some existence results, for which we refer to [2, 17, 18]. Let (M,g)
be a time-oriented, (d+1)-dimensional Lorentzian manifold. Here, g is a metric with
signature (−,+,... ,+), and we recall that tangent vectors X ∈TpM at a point p∈M
can be separated into timelike vectors (g(X,X)<0), null vectors (g(X,X)=0), and
spacelike vectors (g(X,X)>0). The manifold is assumed to be time-oriented, so that
we can distinguish between past-oriented and future-oriented vectors. The Levi-Cevita
connection associated to g is denoted by ∇ and, for instance, allows us to define the
divergence operator divg. Finally we denote by dVg the volume element associated
with the metric g.

Following [2], a flux-vector on a manifold is defined as a vector field f =f(u,p)
depending on a real parameter u, and the conservation law on (M,g) associated with
f reads

divg

(
f(u,p)

)
=0, u :M →R. (2.1)

Moreover, the flux-vector f is said to be geometry compatible if

divg f(u,p)=0, u∈R, p∈M, (2.2)

and to be timelike if its u-derivative is a timelike vector field

g
(
∂uf(u,p),∂uf(u,p)

)
<0, p∈M,u∈R. (2.3)
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We are interested in the initial-value problem associated with (2.1). So, we fix
a spacelike hypersurface H0⊂M and a measurable and bounded function u0 defined
on H0. Then, we search for a function u=u(p)∈L∞(M) satisfying (2.1) in the dis-
tributional sense and such that the (weak) trace of u on H0 coincides with u0, that
is,

u|H0
=u0. (2.4)

It is natural to require that the vectors ∂uf(u,p), which determine the propagation
of waves in solutions of (2.1), are timelike and future-oriented.

We assume that the manifold M is globally hyperbolic, in the sense that there
exists a foliation of M by spacelike, compact, oriented hypersurfaces Ht (t∈R):

M =
⋃

t∈R

Ht.

Any hypersurface Ht0 is referred to as a Cauchy surface in M , while the family of
slices Ht (t∈R) is called an admissible foliation associated with Ht0 . The future of
the given hypersurface will be denoted by

M+ :=
⋃

t≥0

Ht.

Finally we denote by nt the future-oriented, normal vector field to each Ht, and by gt

the induced metric. Finally, along Ht, we denote the normal component of a vector
field X by Xt, thus Xt :=g(X,nt). In the following, when there is no risk of confusion,
we write F (u) instead of F (u,p).

Definition 2.1. A flux F =F (u,p) is called a convex entropy flux associated with
the conservation law (2.1) if there exists a convex function U :R→R such that

F (u,p)=

∫ u

0

∂uU(u′)∂uf(u′,p)du′, p∈M,u∈R.

A measurable and bounded function u=u(p) is called an entropy solution of conser-
vation law (2.1)–(2.2) if the following entropy inequality

∫

M+

g(F (u),∇gφ)dVg +

∫

M+

(divg F )(u)φdVg

+

∫

H0

g0(F (u0),n0)φH0
dVg0

−

∫

M+

U ′(u)(divg f)(u)φdVg ≥0

holds for all convex entropy flux F =F (u,p) and all smooth functions φ≥0 compactly
supported in M+.

In particular, the requirements in the above definition imply the inequality

divg

(
F (u)

)
−(divg F )(u)+U ′(u)(divg f)(u)≤0

in the distributional sense. Next, denoting the space of integrable functions defined
on the Riemannian slice (Ht,gt) by L1

gt
(Ht), from [2, 17, 18] we recall the following

result.
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Theorem 2.2 (Well-posedness theory for conservation laws on a manifold). Con-
sider a conservation law (2.1) posed on a globally hyperbolic Lorentzian manifold M
with compact slices. Let H0 be a Cauchy surface in M , and u0 :H0→R be a func-
tion in L∞(H0). Then the initial-value problem (2.1)–(2.4) admits a unique entropy
solution u=u(p)∈L∞

loc(M+). Moreover, for every admissible foliation Ht the trace
u|Ht

∈L1
gt

(Ht) exists as a Lipschitz continuous function of t. When the flux is geom-
etry compatible, the functions

‖F t(u|Ht
)‖L1

gt
(Ht),

are non-increasing in time, for any convex entropy flux F . Moreover, given any two
entropy solutions u,v, the function

‖f t(u|Ht
)−f t(v|Ht

)‖L1
gt

(Ht)

is non-increasing in time.

Throughout the rest of this paper, a globally hyperbolic Lorentzian manifold is
given, and we tackle the problem of the discretization of the initial value problem
associated with the conservation law (2.1) and a given initial condition where u0∈
L∞(H0). In this paper, we do not assume that the flux f is geometry compatible, and
we refer to [18] for the generalization of the above theory. Throughout the present
paper, we require the following growth condition: there exist constants C1,C2 >0 such
that for all (u,p)∈R×M

|(divg f)(u,p)|≤C1 +C2 |u|. (2.5)

Two important remarks are in order.

• First of all, the terminology here differs from the one in the Riemannian
(and Euclidean) cases, where the conservative variable is singled out. The
class of conservation laws on a Riemannian manifold is recovered by taking
M =R×M̃ , where (M̃,ḡ) is a Riemannian manifold and f(u,p)=(u,f̄(u,p))∈

R×TpM̃ . We can then write divg

(
f(u,p)

)
=∂tu+divḡ

(
f̄(u,p)

)
.

• Second, in the Lorentzian case no time-translation property is available in
general, contrary to the Riemannian case. Hence, no time-regularity is im-
plied by the L1

gt
contraction property.

3. Formulation and main result

3.1. Definition of the finite volume schemes. Before we can state our
main result, we must introduce some notation and motivate the formulation of the
finite volume schemes under consideration. We consider a spacetime triangulation
T h =

⋃
K∈T h K of the manifold M+, which is made of (compact) spacetime elements

K and satisfies the following conditions:

• The boundary ∂K of an element K is a piecewise smooth d-dimensional man-
ifold without a boundary, ∂K =

⋃
e⊂∂K e, and each d-dimensional element e

is a smooth manifold with piecewise smooth boundary and is either every-
where timelike or everywhere spacelike. The outward unit normal to e∈∂K
is denoted by nK,e.

• Each element K contains exactly two spacelike elements, with disjoint interi-
ors, denoted by e+

K and e−K , such that the outward unit normals to K, nK,e+

K

and nK,e−

K
, are future- and past-oriented, respectively. They will be called

the outflow and the inflow elements, respectively.
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• For each element K, the set of the lateral elements ∂0K :=∂K \{e+
K ,e−K} is

nonempty and timelike.

• For every pair of distinct elements K,K ′∈T h, the set K∩K ′ is either a
common element of K,K ′ or else a submanifold with dimension at most (d−
1).

• H0⊂
⋃

K∈T h ∂K, where H0 is the initial Cauchy hypersurface.

• For every K ∈T h, diame±K ≤h.

For computing the diameter above, we assume that some reference Riemannian
metric is fixed on the Lorentzian manifold; such a metric can be easily introduced from
the expression of the Lorentzian metric (by replacing the signature (−,+,... ,+) by
(+,+,... ,+) in the expression in local coordinates). Given an element K, we denote
the unique element distinct from K sharing the element e+

K (resp. e−K) with K by K+

(resp. K−), and for each e0∈∂0K, we denote the unique element sharing the element
e0 with K by Ke0 . In addition, it is convenient to assume that the boundary of the
element does not wildly “oscillate”, in the sense that for all smooth vector fields X
defined on e+

K ,

‖gp(X(p),nK,e+

K
(p))‖C2(e+

K
) .‖X(p)‖C2(e+

K
), (3.1)

where the implied constant (in .) is fixed throughout this paper. This condition is
intended to rule out oscillations on the normal vector field due to the geometry of
e+
K . It restricts the variation of the normal on each element e+

K , but not the variation
from one element to the next.

The most natural way of introducing the finite volume method is to view the
discrete solution as defined on the spacelike elements e±K separating two elements. So,
to a particular element K we may associate two values, u+

K and u−
K associated to the

unique outflow and inflow elements e+
K , e−K . Then, one may determine that the value

uK of the discrete solution on the element K is the solution u+
K determined on the

inflow element e−K (one could just as well say that uK is the solution u+
K determined

on the outflow element e+
K , or some average of the two, as long as one does this

coherently throughout the manifold).
Thus, for any element K, integrate equation (2.1), apply the divergence theorem

and decompose the boundary ∂K into its parts e+
K ,e−K , and ∂0K:

−

∫

e
+

K

gp(f(u,p),nK,e+

K
(p))dVg −

∫

e
−

K

gp(f(u,p),nK,e−

K
(p))dVg

+
∑

e0∈∂0K

∫

e0

gp(f(u,p),nK,e0(p))dp=0.
(3.2)

For any hypersurface e⊂M , we will often denote simply by dVe =dVge
the volume

element of the induced metric ge associated with the Lorentzian metric g. Note the
minus sign in the first two terms which comes from the fact that, for a Lorentzian
manifold, the divergence theorem reads

∫

Ω

divg fdVΩ =

∫

∂Ω

g(f,ñ)dV∂Ω,

in which ñ is the outward normal if it is spacelike, and the inward normal if it is
timelike. This formula is nothing but the standard divergence theorem, with the
signs of the normals properly taken into account.
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Given an element K, we want to compute an approximation u+
K of the average

of u(p) in the outflow element e+
K , given the values of u−

K on e−K and of u−
K

e0
for each

e0∈∂0K.
The following notation will be useful. Let f be a flux on the manifold M , K an

element of the triangulation, and e⊂∂K, respectively. Define the function µf
K,e :R→

R by

µf
K,e(u) :=

1

|e|

∫

e

gp

(
f(u,p),nK,e(p)

)
dVe =Á

∫

e

gp

(
f(u,p),nK,e(p)

)
dVe, (3.3)

where |e| is the measure of e. Also, if w :M →R is a real-valued function, we write

µw
e :=Á

∫

e

w(p)dVe.

Using this notation, the second term in (3.2) is approximated by
∫

e−

K

gp

(
f(u,p),nK,e−

K
(p)

)
dVg ≃|e−K |µf

K,e−

K

(u−
K),

and the last term is approximated by using
∫

e0

gp(f(u,p),nK,e0(p))dVe0 ≃|e0|qK,e0(u−
K ,u−

K
e0

),

where to each element K, and each element e0∈∂0K we associate a locally Lips-
chitz numerical flux function qK,e0(u,v) :R2→R satisfying certain assumptions listed
below.

Therefore, in view of the above approximation formulas we may write, as a discrete
approximation of (3.2),

|e+
K |µf

K+,e
+

K

(u+
K) := |e−K |µf

K,e
−

K

(u−
K)−

∑

e0∈∂0K

|e0|qK,e0(u−
K ,u−

K
e0

), (3.4)

which is the finite volume method of interest and, equivalently

u+
K := (µf

K+,e+

K

)−1
( |e−K |

|e+
K |

µf

K,e−

K

(u−
K)−

∑

e0∈∂0K

|e0|

|e+
K |

qK,e0(u−
K ,u−

K
e0

)
)
. (3.5)

The second formula which may be computed out numerically (using for instance a
Newton algorithm) is justified by the following observation:

Lemma 3.1. For any K ∈T h, the function u 7→µf

K,e−

K

(u) is monotone increasing.

Proof. From (3.3) we deduce that

∂uµf

K,e−

K

(u)=Á

∫

e

gp

(
∂uf(u,p),nK,e−

K
(p)

)
dVe >0,

since ∂uf(u,p) is future-oriented and nK,e−

K
is past-oriented.

Now, if e−K ⊂H0, the initial condition (2.4) gives

u−
K :=µu0

e−

K

=Á

∫

e
−

K

u0(p)dVe−

K
. (3.6)
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Finally, we define the function uh :M →R by

uh(p) :=u−
K , p∈K. (3.7)

On the other hand, for all e∈∂K we introduce the notation

fe(u,p) :=gp(f(u,p),nK,e(p)). (3.8)

3.2. Assumptions on the numerical flux. For the numerical flux
qK,e0(u,v) :R2→R we impose the following properties.

• Consistency property :

qK,e0(u,u)=Á

∫

e0

fe0(u,p)dVg =µf

K,e0(u). (3.9)

• Conservation property :

qK,e0(u,v)=−qK
e0 ,e0(v,u), u,v∈R. (3.10)

• Monotonicity property :

∂uqK,e0(u,v)≥0, ∂vqK,e0(u,v)≤0. (3.11)

For each element K, define the time-increment

τK =
|K|

|e+
K |

,

where |K| is the ((d+1)-dimensional) measure of K. We suppose that, as h→0,

τ :=max
K

τK →0 (3.12)

and

h2

min
K

τK

→0. (3.13)

For stability purposes, we also impose the following CFL condition, for all K ∈T h, e0∈
∂0K,

|∂0K|

|e+
K |

sup
u∈R

∣∣∂uµf

K,e0(u)
∣∣ sup

u∈R

∂u(µf

K+,e+

K

)−1(u)≤1. (3.14)

3.3. Assumptions on the triangulation and main convergence result.

For the triangulation T h, we will introduce an admissibility condition that is global
and geometric in nature, and which is essentially optimal to ensure the convergence
of the proposed schemes (see the following subsection for details). The condition only
involves the time-evolution of the triangulation and is independent of the structure
of the triangulation on spacelike elements. We stress that our method poses almost
no restriction on the spacelike structure of the discretization.

The following notation will be used throughout this paper. Let K ∈T h. We
denote by p0

K and p+
K the centers of mass of ∂0K and e+

K , respectively. Note that
p0

K does not lie on ∂0K (or even “close” to it), and that p+
K does not necessarily lie
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on e+
K . Next, we define the vector wK ∈Tp+

K
M as the vector at p+

K tangent to the

geodesic line connecting p+
K to p0

K and with length dist(p+
K ,p0

K) given by the reference
Riemannian metric. This vector is well-defined if the discretization parameter h is
small enough.

We will also make the following assumption on the triangulation, namely that for
h sufficiently small, and for each element e+

K , we may extend the normal vector field
nK,e+

K
by parallel transporting it (using the metric structure on the manifold) to a

neighborhood of e+
K containing p+

K . This is a natural assumption, which ensures that
each element e+

K of the triangulation tends to become flat in the limit.
Consider the quantity

E(K) :=
1

τK

wK ⊗nK,e
+

K
,

which can be viewed as a quadratic form on Tp+

K
M . If X,Y are two vectors at the

point p+
K , we have

E(K)(X,Y )=
1

τK

wK ⊗nK,e+

K
(X,Y )=

1

τK

gp+

K
(X,wK)gp+

K
(Y,nK,e+

K
).

We define the local deviation associated with K, K− by

|K|E(K)−|K−|E(K−),

which measures the rate of change of the quantity |K|E(K)(X,Y ) with respect to the
timelike direction defined locally by the normals to the elements e±K . Our admissibility
criterion below requires that this rate of change should tend to zero with h (after
summation over all K ∈T h).

Definition 3.2. A triangulation T h is called an admissible triangulation if for every
vector field Φ with compact support and every family of smooth vector fields ΨK ,
K ∈T h (each of them being defined on the manifold and associated with a given K),
the local deviation satisfies

∣∣∣
∑

K∈T h

|K|E(K)(Φ,ΨK)−|K−|E(K−)(Φ,ΨK)
∣∣∣.η(h)‖Φ‖L∞ sup

K

‖ΨK‖L∞ (3.15)

for some fixed function η(h) with η(h)→0.

Observe that, in (3.15), the vector nK,e
+

K
(p+

K)∈Tp
+

K
M makes sense, since the

normal vector field was extended to include a neighborhood of e+
K . The assumption

(3.15) is a global geometric condition on the local deviation of the triangulation. As
further discussed in section 4 below, this condition allows us to encompass a large
class of implementable spacetime triangulations.

Finally, we are in a position to state the following theorem.

Theorem 3.3 (Convergence of the finite volume schemes). Let uh be the sequence
of functions generated by the finite volume method (3.4)–(3.7) on an admissible trian-
gulation, with initial data u0∈L∞(H0), with numerical flux satisfying the conditions
(3.9)–(3.11), and the CFL condition (3.14). Then, for every T >0 the sequence uh is
uniformly bounded in L∞

(⋃
t∈[0,T ]Ht

)
in terms of the sup-norm of the initial data,

and converges almost everywhere (when h→0) towards the unique entropy solution
u∈L∞

loc
(M+) to the Cauchy problem (2.1), (2.4).
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In section 5 below, we will derive the key estimates required for the proof of
Theorem 3.3 which will be finally be given in section 6. We follow here the strategy
originally developed by Cockburn, Coquel and LeFloch [5, 7] for conservation laws
posed on a fixed (time-independent) Euclidian background. New estimates are re-
quired here to take into account the geometric effects,especially those arising from
the time evolution of the scheme. We will start with local (both in time and in space)
entropy estimates, and next deduce a global-in-space entropy inequality. We will also
establish the L∞ stability of the scheme and, finally, the global (spacetime) entropy
inequality required for the convergence proof.

4. Examples and remarks on our assumptions

4.1. Admissible triangulations and lack of total variation estimate.

Our assumption on the triangulation is essentially optimal. We argue by describing
the setting in which the condition (3.15) will actually be used within our proof of
Theorem 3.3. We also provide evidence that, in general, the finite volume method
may not converge without this assumption.

In the proof of convergence (see section 6), it is necessary to bound a term of the
form

Ah(X)=
∑

K∈T h

(
|e+

K |g
(
wK ,X(p+

K)
)
g
(
F (u−

K ,p+
K),nK,e

+

K

)

+ |e−K |g
(
wK− ,X(p−K)

)
g
(
F (u−

K ,p−K),nK,e−

K

))
,

where X is a smooth vector field, p±K is the center of mass of e±K , and the sum is
taken over the whole spacetime triangulation. Recall that the vector wK was defined
earlier in this section. The above term must vanish in the limit for the finite volume
schemes to converge and, furthermore, is an entirely new term that does not arise in
the Euclidean nor Riemannian settings.

Note that both terms in the expression Ah(X) involve F (u−
K ,·) and, consequently,

the terms cannot be cancelled by re-ordering the expression. Therefore, if one were to
integrate by parts the (discrete) sums, we would find ourselves in need of the uniform
bound

∑

K∈T h

h
∣∣∣|e+

K |u+
K −|e−K |u−

K

∣∣∣=o(1). (4.1)

However, it is well-known that this BV (bounded variation) time estimate is a very
difficult open problem in the numerical analysis of finite volume schemes. Indeed,
deriving (4.1) is open, even in the simplest Euclidean setting whenever the spatial
discretization is not Cartesian.

On the other hand, one key observation made by Cockburn, Coquel, and LeFloch
[5, 7] was that (4.1) was not necessary for the analysis of the convergence of the
finite volume method, provided one considers L∞ solutions rather than solutions
with bounded variation.

The notion of admissible triangulation introduced in the present paper supple-
ments the observation in [5, 7] and provides the precise condition ensuring the con-
vergence of the schemes. In the Euclidian or Riemannian cases, our admissibility
condition imposes no new constraint on triangulations. In view of our condition in
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Definition 3.2, it is easily checked that the term Ah(X) converges to zero. Indeed,
recalling the definition of uh, we find

|Ah(X)|=

∣∣∣∣
∑

K∈T h

(
|K|E(K)−|K−|E(K−)

)
(X,F (uh))

∣∣∣∣

.η(h)→0.

Thus, no control on the total variation of the discrete solution is required. and instead
the proposed geometric condition on the triangulation suffices. See section 4.4 for a
further discussion.

4.2. Foliation by hypersurfaces and choice of triangulations. Our
analysis is valid for any time-evolution that one may want to choose for the dis-
cretization, provided the assumptions on the triangulation in Definition 3.2 are met.
These assumptions are independent of the actual foliation of the manifold appear to
be essentially optimal, within the framework developed in the present paper. In fact,
our method of proof is not tied to any particular time structure on the manifold – it
only supposes that such a structure exists, which is a completely general assumption
required for solving the initial value problem.

In particular, if a certain hypersurface H belongs to a given triangulation T h

(for some h), then this hypersurface need not be included in the triangulations T h′

with h′ <h. That is to say, the discretization is not associated with any a priori fixed
foliation, nor does the relation T h′

⊂T h hold for h′ <h.
On the other hand, in Proposition 4.1 below, we are going to examine the special

case where the triangulation is subordinate to a given foliation, and prove that it is
admissible in the sense of Definition 3.2.

Furthermore, our formulas do coincide with the formulas already known in the
Riemannian and Euclidean cases. In these cases, the function µf

K,e−

K

(u) coincides with

the identity function µf

K,e−

K

(u)=u and, therefore, the finite volume scheme reduces to

the scheme studied in [1, 5, 7]. Also, our expression for the time increment τ and the
CFL condition (3.14) reduce to the usual formulas when specialized to the Euclidean
or Riemannian setting.

4.3. Choice of flux-functions. Examples of scalar equations can be
exhibited by taking any smooth, timelike vector field X and any smooth real
function f̃(u) and setting f(u,p) :=X(p)f̃(u). The conservation law then reads
divg

(
X(p)f̄(u(p))

)
=0, and the flux is non-trivial and involves the geometry of the

manifold.
In the interest of practical implementation, one may replace the right-hand side

of the equations (3.3) and (3.6) with more realistic averages. For instance, one could
take an average of g(f(u,p),nK,e) over N spatial points pj given from some partition
ej of e,

µf
K,e(u)=

1

|e|

N∑

j=1

|ej |g(f(u,pj),nK,e(pj)).

Hence, more generally, one could fix an averaging operator µf

K,e
−

K

, and then use the

equation (3.5) to iterate the method, with initial data given by

u−
K :=µu0

e
−

K

.
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However, any such average is just an approximation of the integral expression used
in (3.3). This approximation can be chosen to be of arbitrary high-order in the
parameter h, by choosing appropriate quadrature formulas. For the sake of clarity,
we will present the proofs with the choice µf

K,e defined by (3.3) and we will omit the
(straightforward) treatment of the error terms issuing from the above approximations.

As an example of numerical flux, one can consider the following generalization of
the Lax–Friedrichs flux,

qK,e0(u,v)=
1

2

(
µf

K,e0(u)+µf

K,e0(v)
)
+

DK,e0

2
(u−v), (4.2)

where the constants DK,e0 satisfy DK,e0 =DK
e0 ,e0 and

DK,e0 ≥
|e+

K |

|∂0K|

(
sup
u∈R

∂u(µf

K+,e
+

K

)−1(u)
)−1

.

This numerical flux is conservative and consistent, and it is monotone, as may be
checked using the CFL condition (3.14).

4.4. A class of examples based on a geometric condition. We provide
here an explicit condition which is geometric in nature and suffices for a triangulation
to be admissible in the sense of (3.15). Recall that p±K denotes the center of mass of
e±K and that the vector wK denotes the tangent at p+

K to the geodesic from p+
K to the

center of ∂0K.

Proposition 4.1. Let T h be a triangulation and suppose that, for each element K,
the rescaled exterior normals |e+

K |nK,e+

K
and |e−K |nK,e−

K
and the vectors wK and wK−

satisfy the following conditions: for every smooth vector field X,

∣∣g(|e+
K |nK,e+

K
,X)−g(|e−K |nK,e−

K
,X)

∣∣. η(h)

h
|K|‖X‖L∞(K), (4.3)

∣∣g(wK ,X)−g(wK− ,X)
∣∣.η(h)τK ‖X‖L∞(K), (4.4)

where the expressions under consideration are evaluated at the centers of mass of e+
K

and e−K , and η(h) is such that η(h)→0. Then, T h is an admissible triangulation in
the sense of (3.15).

For instance, one can easily check that if a triangulation is subordinate to a given
foliation (in the sense that the set of all outgoing elements {e+

K :K ∈T h} is contained
in a certain Cauchy surface), and if, moreover, each lateral element e0 is everywhere
tangent to a given, fixed, smooth timelike vector field, then the hypotheses of Propo-
sition 4.1 hold. However, our condition (3.15) or the ones in Proposition 4.1 allow for
more general triangulations, which need not satisfy such regularity assumptions.

Proof. Let Φ be a smooth vector field and, for each K, let ΨK be a family of
smooth vector fields defined on M. We have

∑

K∈T h

|K|E(K)(Φ,ΨK)−|K−|E(K−)(Φ,ΨK)

=
∑

K∈T h

(
|e+

K |wK ⊗nK,e+

K
−|e−K |wK− ⊗nK,e−

K

)
(Φ,ΨK)

=
∑

K∈T h

g(wK ,Φ)g(|e+
K |nK,e+

K
,ΨK)−g(wK− ,Φ)g(|e−K |nK,e−

K
,ΨK),
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thus
∣∣∣∣∣∣

∑

K∈T h

|K|E(K)(Φ,ΨK)−|K−|E(K−)(Φ,ΨK)

∣∣∣∣∣∣

=
∣∣∣

∑

K∈T h

g(wK− ,Φ)
(
g(|e+

K |nK,e+

K
,ΨK)−g(|e−K |nK,e−

K
,ΨK)

)

+
(
g(wK ,Φ)−g(wK− ,Φ)

)
g(|e+

K |nK,e
+

K
,ΨK)

∣∣∣

.η(h)
∑

K∈T h

|K|‖Φ‖L∞‖ΨK‖L∞ .η(h)‖Φ‖L∞ sup
K

‖ΨK‖L∞ .

In view of (3.15), this shows that T h is an admissible triangulation.

5. Discrete entropy estimates

5.1. Local entropy dissipation and entropy inequalities. We now in-
troduce some notation which will simplify the statement of the results as well as the
proofs. By defining

µ+
K(u) :=µf

K+,e+

K

(u)=−µf

K,e+

K

(u),

µ−
K(u) :=µf

K,e−

K

,

the finite volume method (3.5) reads as

|e+
K |µ+

K(u+
K)= |e−K |µ−

K(u−
K)−

∑

e0∈∂0K

|e0|qK,e0(u−
K ,u−

K
e0

). (5.1)

As in [1, 5, 7], we rely on a convex decomposition of µ+
K(u+

K), which allows us to
control the entropy dissipation.

Define µ̃+
K,e0 by the identity

µ̃+
K,e0 :=µ+

K(u−
K)−

|∂0K|

|e+
K |

(
qK,e0(u−

K ,u−
K

e0
)−qK,e0(u−

K ,u−
K)

)
,

and define

µ+
K,e0 := µ̃+

K,e0 −
1

|e+
K |

∫

K

divg f(u−
K ,p)dVK . (5.2)

Then, one has the following convex decomposition of µ+
K(u+

K), whose proof is imme-
diate from (5.1).

µ+
K(u+

K)=
1

|∂0K|

∑

e0∈∂0K

|e0|µ+
K,e0 . (5.3)

Lemma 5.1. Let (U(u),F (u,p)) be a convex entropy pair (cf. Definition 2.1). For
each K and for each e=e−K ,e+

K , let VK,e :R→R be the convex function defined by

VK,e(a) :=µF
K,e

(
(µf

K,e)
−1(a)

)
, a∈R. (5.4)

Then there exists a family of numerical entropy fluxes QK,e0(u,v) :R2→R satisfying
the following conditions.
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• QK,e0 is consistent with the entropy flux F :

QK,e0(u,u)=µF
K,e0(u), K ∈T h,e0∈∂0K,u∈R.

• Conservation property:

QK,e0(u,v)=−QK
e0 ,e0(v,u), u,v∈R.

• Discrete entropy inequality:

VK+,e+

K

(
µ̃+

K,e0

)
−VK+,e+

K

(
µ+

K(u−
K)

)

+
|∂0K|

|e+
K |

(
QK,e0(u−

K ,u−
K

e0
)−QK,e0(u−

K ,u−
K)

)
≤0.

(5.5)

From the inequality (5.5) we infer that

VK+,e+

K
(µ+

K,e0)−VK+,e+

K

(
µ+

K(u−
K)

)

+
|∂0K|

|e+
K |

(
QK,e0(u−

K ,u−
K

e0
)−QK,e0(u−

K ,u−
K)

)
≤R+

K,e0 ,
(5.6)

where R+
K,e0 is given by

R+
K,e0 :=VK+,e+

K
(µ+

K,e0)−VK+,e+

K
(µ̃+

K,e0). (5.7)

Proof. To begin, we prove that the functions VK,e in (5.4) are indeed convex.
First, note that it is sufficient to show that

VK,e(µ)=

∫ µ

U ′
(
(µf

K,e)
−1(σ)

)
dσ. (5.8)

Indeed, using the convexity of U and the monotonicity of (µf
K,e)

−1, for e=e+
K ,e−K (cf.

Lemma 3.1), the convexity of VK,e follows by differentiating this expression twice. To

prove (5.8), note that setting α=(µf
K,e)

−1(σ), we find

∫ µ

U ′
(
(µf

K,e)
−1(σ)

)
dσ =

∫ (µf

K,e
)−1(µ)

U ′(α)∂αµf
K,e(α)dα

=Á

∫

e

g
(∫ (µf

K,e
)−1(µ)

U ′(α)∂αf(α,p)dα,nK,e(p)
)

dVe

=Á

∫

e

g
(
F ((µf

K,e)
−1(µ),p),nK,e(p)

)
dVe =µF

K,e

(
(µf

K,e)
−1(µ)

)
,

which establishes (5.8).
We now proceed with the proof of the lemma. First of all, note that using (5.4)

we may write the inequality (5.5) equivalently as

µF

K+,e+

K

(
(µf

K+,e+

K

)−1(µ̃+
K,e0)

)
−µF

K+,e+

K

(u−
K)

+
|∂0K|

|e+
K |

(
QK,e0(u−

K ,u−
K

e0
)−QK,e0(u−

K ,u−
K)

)
≤0.

(5.9)
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Indeed, we have for instance

VK+,e+

K

(
µ+

K(u−
K)

)
=µF

K+,e+

K

(
(µf

K+,e+

K

)−1(µ+
K(u−

K))
)
=µF

K+,e+

K

(u−
K).

Next, introduce the following operator. For u,v∈R, e0∈∂0K, let

HK,e0(u,v) :=µ+
K(u)−

|∂0K|

|e+
K |

(
qK,e0(u,v)−qK,e0(u,u)

)
.

We claim that HK,e0 satisfies the following properties:

∂

∂u
HK,e0(u,v)≥0,

∂

∂v
HK,e0(u,v)≥0, (5.10)

HK,e0(u,u)=µ+
K(u). (5.11)

The second and last properties are immediate. The first is a consequence of the CFL
condition (3.14) and the monotonicity of the method. Indeed, from the definition of
HK,e0(u,v) we may perform exactly the same calculation as in the proof of Lemma
5.2 to prove that HK,e0(u,v) is a convex combination of µ+

K(u) and µ+
K(v), which in

turn are increasing functions. This establishes the first inequality in (5.10).
We now turn to the proof of the entropy inequality (5.9). Suppose first that (5.9)

is already established for the Kruzkov family of entropies U(u,λ)= |u−λ|, F (u,λ,p)=
sgn(u−λ)(f(u,p)−f(λ,p)), λ∈R. In this case, the Kruzkov numerical entropy fluxes
are given by

QK,e0(u,v,λ) :=qK,e0(u∨λ,v∨λ)−qK,e0(u∧λ,v∧λ),

where a∨b=max(a,b), and a∧b=min(a,b). It is easy to check that QK,e0 satisfies
the first two conditions of the lemma.

We now show that it is enough to prove inequality (5.9) for Kruzkov’s entropies
only. Indeed, if U is a smooth function which is linear at infinity, we have (formally)

1

2

∫

R

U(u,λ)U ′′(λ)dλ=
1

2

∫

R

U
′′
(u,λ)U(λ)dλ

=
1

2
〈δλ=u,U(λ)〉=U(u),

modulo an additive constant. Similarly, if (U,F ) is a convex entropy pair, we obtain

1

2

∫

R

F (u,λ,p)U ′′(λ)dλ=F (u,p).

Since we shall prove an L∞ bound for our approximate solutions, we may suppose that
the u above varies in a bounded set B⊂R. Thus, we may apply the same reasoning
with any function which is not linear at infinity, by changing it into a linear function
outside B. This shows that we can obtain the inequality (5.9) for any convex entropy
pair (U,F ) by first proving it in the special case of Kruzkov’s entropies, multiplying
by U ′′(λ)/2, and integrating. In that case, the numerical flux will be given by

QK,e0(u,v)=
1

2

∫

R

QK,e0(u,v,λ)U ′′(λ)dλ.
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Again, this numerical flux satisfies the first two assumptions of the lemma, since
they are inherited from the corresponding properties for the Kruzkov numerical flux
QK,e0(u,v,λ).

Therefore, we now proceed to prove the inequality (5.9) for Kruzkov’s family of
entropies. This is done in two steps. First, we will show that

µF

K+,e+

K

(u−
K ,λ)−

|∂0K|

|e+
K |

(
QK,e0(u−

K ,u−
K

e0
,λ)−QK,e0(u−

K ,u−
K ,λ)

)

=H(u−
K ∨λ,u−

K
e0
∨λ)−H(u−

K ∧λ,u−
K

e0
∧λ).

(5.12)

Second, we will see that for any u,v,λ∈R, we have

H(u∨λ,v∨λ)−H(u∧λ,v∧λ)≥µF

K+,e+

K

(
(µ+

K)−1(H(u,v)),λ
)
. (5.13)

For ease of notation, we omit K,e0 from the expression of H. The identity (5.12)
and the inequality (5.13) (with u=u−

K ,v =u−
K

e0
) combined give (5.9), for Kruzkov’s

entropies.

To prove (5.12), simply observe that

µF

K+,e+

K

(u−
K ,λ)=sgn(u−

K −λ)
(
µf

K+,e
+

K

(u−
K)−µf

K+,e
+

K

(λ)
)

=sgn(µ+
K(u−

K)−µ+
K(λ))

(
µ+

K(u−
K)−µ+

K(λ)
)

=
(
µ+

K(u−
K)∨µ+

K(λ)−µ+
K(u−

K)∧µ+
K(λ)

)

=
(
µ+

K(u−
K ∨λ)−µ+

K(u−
K ∧λ)

)
.

Here, we have repeatedly used that µ+
K is a monotone increasing function. The identity

(5.12) now follows from the expressions of the Kruzkov numerical entropy flux, QK,e0 ,
and of H.

Consider now the inequality (5.13). We have

H(u∨λ,v∨λ)−H(u∧λ,v∧λ)

≥
(
H(u,v)∨H(λ,λ)

)
−

(
H(u,v)∧H(λ,λ)

)
.

This is a consequence of the fact that if ϕ is an increasing function, then ϕ(u∨λ)=
ϕ(u∨λ)∨ϕ(u∨λ)≥ϕ(u)∨ϕ(λ), and (5.10). Thus, we have

H(u∨λ,v∨λ)−H(u∧λ,v∧λ)

≥
∣∣H(u,v)−H(λ,λ)

∣∣=
∣∣H(u,v)−µ+

K(λ)
∣∣

=sgn
(
H(u,v)−µ+

K(λ)
)(

H(u,v)−µ+
K(λ)

)

=sgn
(
(µ+

K)−1
(
H(u,v)

)
−λ

)(
µ+

K

(
(µ+

K)−1
(
H(u,v)

))
−µ+

K(λ)
)

=µF

K+,e
+

K

(
(µ+

K)−1
(
H(u,v)

)
,λ

)
.

This establishes (5.13). We now choose u=u−
K ,v =u−

K
e0

in (5.13), observe that

HK,e0(u−
K ,u−

K
e0

)= µ̃+
K,e0 , and combine this with (5.12) to obtain inequality (5.9) for

the Kruzkov entropies. As described above, (5.9) will hold for all convex entropy pairs
(U,F ). This completes the proof of Lemma 5.1.
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5.2. Entropy dissipation estimate and L∞ estimate. We now discuss
the time evolution of the triangulation. As we have said, the initial hypersurface H0

is composed of inflow elements e−K . We then define the hypersurfaces Hn, for n>0,
by

Hn :=
⋃

e−

K
⊂Hn−1

e+
K ,

and set

Kn :=
{
K :e−K ⊂Hn−1, e+

K ⊂Hn

}
.

It is important to note that the hypersurfaces Hn are not necessarily associated
with a foliation {Ht} of the manifold; they are only restricted by our admissibility
assumptions in Definition 3.2.

Next, we introduce the following notation, which we will use from now on. For
K ∈Kn, we write

µn
K :=µ−

K =µf

K,e−

K

, un
K :=u−

K , µ̄n+1
K,e0 := µ̄+

K,e0 ,

so that, for instance, µ+
K(u+

K)=µn+1
K (un+1

K ). Accordingly, we define

V n
K(µ) :=VK,e−

K
(µ), Rn+1

K,e0 :=R+
K,e0 , (5.14)

where the timelike entropy flux VK,e and the error term R+
K,e0 are defined in Lemma

5.1.

Lemma 5.2. The finite volume approximations satisfy the L∞ bound

max
K∈Kn

|un
K |≤

(
max

K0∈K0
|u0

K |+C1tn
)
eC2tn (5.15)

for some constants C1,C2≥0, where

tn :=

n∑

j=0

τj =

n∑

j=0

max
Kj∈Kj

|Kj |

|e+
Kj |

. (5.16)

Proof. First of all, observe that from the consistency condition (3.9), the definition

of µf
K,e in (3.3) and the divergence theorem, we have for any u∈R,

∫

K

divg f(u,p)dVK =

∫

∂K

gp

(
f(u,p),ñ(p)

)
dV∂K

= |e+
K |µn+1

K (u)−|e−K |µn
K(u)+

∑

e0∈∂0K

|e0|qK,e0(u,u)

(recall that ñ is the interior unit normal if it is timelike, and the exterior unit normal
if it is spacelike). Moreover, with our notation the finite volume scheme (3.4) reads
as

|e+
K |µn+1

K (un+1
K )= |e−K |µn

K(un
K) −

∑

e0∈∂0K

|e0|qK,e0(un
K ,un

K
e0

).
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Combining these two identities gives

µn+1
K (un+1

K )=µn+1
K (un

K)−
1

|e+
K |

∫

K

divg f(un
K ,p)dVK

−
∑

e0∈∂0K

|e0|

|e+
K |

(
qK,e0(un

K ,un
K

e0
)−qK,e0(un

K ,un
K)

)
.

(5.17)

Next, we rewrite the right-hand side as follows:

µn+1
K (un+1

K )=(1−
∑

e0∈∂0K

αK,e0)µn+1
K (un

K)+
∑

e0∈∂0K

αK,e0µn+1
K (un

K
e0

)

−
1

|e+
K |

∫

K

divg f(un
K ,p)dVK ,

(5.18)

where

αK,e0 :=
|e0|

|e+
K |

qK,e0(un
K ,un

K
e0

)−qK,e0(un
K ,un

K)

µn+1
K (un

K)−µn+1
K (un

K
e0

)
.

This gives a convex combination of µn+1
K (un

K) and µn+1
K (un

K
e0

). Indeed, on one hand

we have
∑

e0∈∂0K αK,e0 ≥0, due to the monotonicity condition (3.11) and Lemma 3.1.
On the other hand, the CFL condition (3.14) gives us

∑

e0∈∂0K

αK,e0 <
∣∣∣

un
K −un

K
e0

µn+1
K (un

K)−µn+1
K (un

K
e0

)

∣∣∣(Lip(µn+1
K )−1)−1

≤Lip(µn+1
K )−1/Lip(µn+1

K )−1 =1.

Thus, we find

µn+1
K (un+1

K )≥min
(
µn+1

K (un
K), min

e0∈∂0K
µn+1

K (un
K

e0
)
)
−

1

|e+
K |

∫

K

divg f(u,p)dVK ,

µn+1
K (un+1

K )≤max
(
µn+1

K (un
K), max

e0∈∂0K
µn+1

K (un
K

e0
)
)
−

1

|e+
K |

∫

K

divg f(u,p)dVK .

Composing with the monotone increasing function (µn+1
K )−1, we find

un+1
K ≥min

(
un

K , min
e0∈∂0K

un
K

e0

)
+

Lip(µn+1
K )−1

|e+
K |

∫

K

|divg f(un
K ,p)|dVK ,

un+1
K ≤max

(
un

K , max
e0∈∂0K

un
K

e0

)
+

Lip(µn+1
K )−1

|e+
K |

∫

K

|divg f(un
K ,p)|dVK ,

which in turn gives

|un+1
K |≤ max

K∈Kn
|un

K |+ max
K∈Kn

Lip(µn+1
K )−1

|e+
K |

∫

K

|divg f(un
K ,p)|dVK .

By induction we obtain

|un+1
K |≤ max

K0∈K0
|u0

K |+

n∑

j=0

max
Kj∈Kj

Lip(µj+1
K )−1

|e+
Kj |

∫

Kj

|divg f(uj
K ,p)|dVK .
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Now, we use the growth condition (2.5) on the last term,

n∑

j=0

max
Kj∈Kj

Lip(µj+1
K )−1

|e+
Kj |

∫

Kj

|divg f(uj
K ,p)|dVK

≤
n∑

j=0

max
Kj∈Kj

Lip(µj+1
K )−1

|e+
Kj |

|Kj |
(
C1 +C2|u

j
K |

)

≤
(
C1tn +C2

n∑

j=0

τ j max
j

|uj
K |

)
.

Here, the constants C1,2 may change at each occurrence, and we also used the fact
that

max
Kj∈Kj

Lip(µj+1
K )−1≤C,

which is an easy consequence of our assumptions on the flux f . The result now
follows from a discrete version of the Gronwall inequality (see [1, Lemma 6.1]). This
completes the proof of Lemma 5.2.

Recall that if V is a convex function, then its modulus of convexity on a set S is
defined by β := inf

{
V ′′(w) :w∈S

}
.

Proposition 5.3. Let V n
K be defined by (5.4), (5.14), and let βn

K be the modulus of
convexity of V n

K . Then, one has

∑

K∈Kn

|e+
K |V n+1

K (µn+1
K (un+1

K ))

+
∑

K∈Kn

e0∈∂0K

βn+1
K

2

|e0||e+
K |

|∂0K|

∣∣µn+1
K,e0 −µn+1

K (un+1
K )

∣∣2

≤
∑

K∈Kn

|e−K |V n
K(µn

K(un
K))

+
∑

K∈Kn

∫

K

divg F (un
K ,p)dVK +

∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
Rn+1

K,e0 .

(5.19)

Proof. Consider the discrete entropy inequality (5.6). Multiplying by
|e0||e+

K
|

|∂0K| and

summing in K ∈Kn, e0∈∂0K gives

∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
V n+1

K (µn+1
K,e0)−

∑

K∈Kn

|e+
K |V n+1

K

(
µn+1

K (un
K)

)

+
∑

K∈Kn

e0∈∂0K

|e0|
(
QK,e0(un

K ,un
K

e0
)−QK,e0(un

K ,un
K)

)

≤
∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
Rn+1

K,e0 .

(5.20)
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Next, observe that the conservation property (3.10) gives

∑

K∈Kn

e0∈∂0K

|e0|QK,e0(un
K ,un

K
e0

)=0. (5.21)

Now, if V is a convex function, and if v =
∑

j αjvj is a convex combination of vj , then
an elementary result on convex functions gives

V (v)+
β

2

∑

j

αj |vj −v|2≤
∑

j

αjV (vj).

Now, apply this result with the convex combination (5.3) and with the convex func-
tion V n+1

K , multiply by |e+
K |, and sum up in K ∈Kn. Then, combining the resulting

inequality with (5.20), (5.21), we obtain

∑

K∈Kn

|e+
K |V n+1

K (µn+1
K (un+1

K ))−
∑

K∈Kn

|e+
K |V n+1

K

(
µn+1

K (un
K)

)

+
∑

K∈Kn

e0∈∂0K

βn+1
K

2

|e0||e+
K |

|∂0K|

∣∣µn+1
K,e0 −µn+1

K (un+1
K )

∣∣2

−
∑

K∈Kn

e0∈∂0K

|e0|QK,e0(un
K ,un

K)≤
∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
Rn+1

K,e0 .

(5.22)

Finally, using the identity

∫

K

divg F (u,p)dVK =

∫

∂K

gp

(
F (u,p),ñ(p)

)
dV∂K

= |e+
K |V n+1

K (µn+1
K (u))−|e−K |V n

K(µn
K(u))+

∑

e0∈∂0K

|e0|QK,e0(u,u)
(5.23)

(with u=un
K) yields the desired result. This completes the proof of Proposition 5.3.

Corollary 5.4. Suppose that for each K ∈T h, e=e±K , the function VK,e is strictly
convex, and that, moreover, one has

βn
K ≥β >0, (5.24)

uniformly in K and n. Then one has the following global estimate for the entropy
dissipation,

N∑

n=0

∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|

∣∣µn+1
K,e0 −µn+1

K (un+1
K )

∣∣2 =O(tN ), (5.25)

where tN is defined in (5.16).

Proof. Summing the inequality (5.19) for n=0,... ,N , we observe that the first
terms on each side of the inequality cancel, leaving only the terms with n=0 and
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n=N . Moreover, using the growth condition (2.5) on the divergence term gives

N∑

n=0

∑

K∈Kn

e0∈∂0K

βn+1
K

2

|e0||e+
K |

|∂0K|

∣∣µn+1
K,e0 −µn+1

K (un+1
K )

∣∣2

≤
∑

K0∈K0

|e−
K0 ||V

0
K(µ0

K(u0
K))|+

∑

KN+1∈KN+1

|e+
KN ||V N+1

K (µN+1
K (uN+1

K ))|

+

N∑

n=0

∑

K∈Kn

|K|
(
C1 +C2|u

j
K |

)
+

N∑

n=0

∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
Rn+1

K,e0 .

(5.26)

The last term is estimated using (5.2), (5.7), and the growth condition (2.5), yielding

N∑

n=0

∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
Rn+1

K,e0 ≤

N∑

n=0

∑

K∈Kn

LipV n+1
K

∫

K

|divg f(un
K ,p)|dVK

≤

N∑

n=0

∑

K∈Kn

|K|
(
C1 +C2|u

j
K |

)
.

Here, we have used that LipV n+1
K is uniformly bounded, which is an easy consequence

of the corresponding bounds for the flux f . The result now follows from (5.24) and
the L∞ estimate in Lemma 5.2, which allows us to uniformly bound all of the terms
on the right-hand side of (5.26). Note however that this bound depends, of course,
on the entropy U . This completes the proof of Corollary 5.4.

5.3. Global entropy inequality in space and time. In this paragraph,
we deduce a global entropy inequality from the local entropy inequality (5.6). This is
nothing but a discrete version of the entropy inequality used to define a weak entropy
solution. Given a test-function φ defined on M we introduce its averages

φn
e0 :=Á

∫

e0

φ(p)dVe0 ,

φn
∂0K :=

∑

e0∈∂0K

|e0|

|∂0K|
φn

e0 =Á

∫

∂0K

φ(p)dVe0 .

We are now ready to prove the global discrete entropy inequality, which is a discrete
version of the entropy inequality in Definition 2.1.

Proposition 5.5. Let (U,F ) be a convex entropy pair, and let φ be a non-negative
test-function. Then, the function uh given by (3.7) satisfies the global entropy inequal-
ity

−

∞∑

n=0

∑

K∈Kn

∫

K

divg

(
F (un

K ,p)φ(p)
)
dVK −

∑

K∈K0

∫

e−

K

φ0
∂0Kgp(F (u0

K ,p),nK,e−

K
)dVe−

K

+

∞∑

n=0

∑

K∈Kn

e0∈∂0K

|e0|

|∂0K|
|e+

K |φn
e0

(
V n+1

K (µ̃n+1
K,e0)−V n+1

K (µn+1
K,e0)

)
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≤

∞∑

n=0

∑

K∈Kn

e0∈∂0K

|e0|

|∂0K|
|e+

K |(φn
∂0K −φn

e0)V n+1(µn+1
K,e0)

+

∞∑

n=0

∑

K∈Kn

e0∈∂0K

∫

e0

(φn
e0 −φ(p))Fe0(un

K ,p)dVe0

−

∞∑

n=0

∑

K∈Kn

∫

e+

K

(φn
∂0K −φ(p))g

(
F (un+1

K ,p)−F (un
K ,p),ñK,e+

K
(p)

)
dVe+

K
.

(5.27)

Proof. From the local entropy inequalities (5.6), we obtain

∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
φn

e0

(
V n+1

K (µn+1
K,e0)−V n+1

K

(
µn+1

K (un
K)

))

+
∑

K∈Kn

e0∈∂0K

|e0|φn
e0

(
QK,e0(un

K ,un
K

e0
)−QK,e0(un

K ,un
K)

)

≤
∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
φn

e0Rn+1
K,e0 .

(5.28)

Now, from the conservation property (3.10) we have that
∑

K∈Kn

e0∈∂0K

|e0|φn
e0QK,e0(un

K ,un
K

e0
)=0.

Also, from the consistency property (3.9), we find that

∑

K∈Kn

e0∈∂0K

φn
e0 |e0|QK,e0(un

K ,un
K)=

∑

K∈Kn

e0∈∂0K

φn
e0

∫

e0

Fe0(un
K ,p)dVe0

=
∑

K∈Kn

e0∈∂0K

∫

e0

φ(p)Fe0(un
K ,p)dVe0 +

∑

K∈Kn

e0∈∂0K

∫

e0

(φn
e0 −φ(p))Fe0(un

K ,p)dVe0 .

Next, we have that

∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
φn

e0V n+1
K (µn+1

K,e0)

=
∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
φn

∂0KV n+1
K (µn+1

K,e0)+
∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
(φn

e0 −φn
∂0K)V n+1

K (µn+1
K,e0)

≥
∑

K∈Kn

|e+
K |φn

∂0KV n+1
K (µn+1

K (un+1
K ))+

∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
(φn

e0 −φn
∂0K)V n+1

K (µn+1
K,e0).

Here, we have used that V (v)≤
∑

j αjV (vj), for all convex functions V and convex

combinations v =
∑

j αjvj , specifically used for the convex function V n+1
K and the
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convex combination (5.3). Also,

∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
φn

e0V n+1
K

(
µn+1

K (un
K)

)
=

∑

K∈Kn

|e+
K |φn

∂0KV n+1
K

(
µn+1

K (un
K)

)
.

Therefore, the inequality (5.28) becomes

∑

K∈Kn

φn
∂0K |e+

K |
(
V n+1

K

(
µn+1

K (un+1
K ))−V n+1

K

(
µn+1

K (un
K))

)

−
∑

K∈Kn

e0∈∂0K

∫

e0

φ(p)Fe0(un
K ,p)dVe0

≤
∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
φn

e0Rn+1
K,e0 −

∑

K∈Kn

e0∈∂0K

|e0||e+
K |

|∂0K|
(φn

e0 −φn
∂0K)V n+1

K (µn+1
K,e0)

+
∑

K∈Kn

e0∈∂0K

∫

e0

(φn
e0 −φ(p))Fe0(un

K ,p)dVe0 =:Ah +Bh +Ch.

(5.29)

The first term in (5.29) can be written as

∑

K∈Kn

φn
∂0K |e+

K |
(
V n+1

K

(
µn+1

K (un+1
K ))−V n+1

K

(
µn+1

K (un
K))

)

=
∑

K∈Kn

∫

e+

K

φ(p)g
(
F (un+1

K ,p)−F (un
K ,p),ñK,e+

K
(p)

)
dVe+

K

+
∑

K∈Kn

∫

e
+

K

(φn
∂0K −φ(p))g

(
F (un+1

K ,p)−F (un
K ,p),ñK,e+

K
(p)

)
dVe+

K
.

Combining this result with the identity
∫

K

divg

(
F (u,p)φ(p)

)
dVK =

∫

∂K

φ(p)g(F (u,p),ñ∂K)dV∂K

=

∫

e+

K

φ(p)g(F (u,p),ñK,e+

K
)dVe+

K
+

∫

e−

K

φ(p)g(F (u,p),ñK,e−

K
)dVe−

K

+
∑

e0∈∂0K

∫

e0

φ(p)Fe0(u,p)dVe0

(with u=un
K) and in view of (5.29) we see that

−
∑

K∈Kn

∫

K

divg

(
F (un

K ,p)φ(p)
)
dVK

≤Ah +Bh +Ch

−
∑

K∈Kn

(∫

e+

K

φ(p)g
(
F (un+1

K ,p),ñK,e+

K
(p)

)
dVe+

K
+

∫

e−

K

φ(p)g(F (un
K ,p),ñK,e−

K
)dVe−

K

)

−
∑

K∈Kn

∫

e+

K

(φn
∂0K −φ(p))g

(
F (un+1

K ,p)−F (un
K ,p),ñK,e+

K
(p)

)
dVe+

K
.
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The inequality (5.27) is now obtained by summation in n. First, the (summed) terms
A,B,C give the three terms on the right-hand side of (5.27) while, in the first sum
above, terms cancel out two at a time and on the second term remains in the left-hand
side of (5.27). This completes the proof of Proposition 5.5.

6. Proof of convergence

This section contains a proof of the convergence of the finite volume method,
and is based on the framework of measure-valued solutions to conservation laws,
introduced by DiPerna [11] and extended to manifolds by Ben-Artzi and LeFloch [2].
The basic strategy will be to rely on the discrete entropy inequality (5.27) as well as
on the entropy dissipation estimate (5.25), in order to check that any Young measure
associated with the approximate solution is a measure-valued solution to the Cauchy
problem under consideration. In turn, by the uniqueness result for measure-valued
solutions it follows that, in fact, this solution is the unique weak entropy solution of
the problem under consideration.

In the following, for the sake of simplicity, we denote by M our domain of dis-
cretization, which is not necessarily the whole manifold. Since the sequence uh is
uniformly bounded in L∞(M), we can associate a subsequence and a Young mea-
sure ν :M→Prob(R), which is a family of probability measures in R parametrized
by p∈M. The Young measure allows us to determine all weak-∗ limits of composite
functions a(uh), for arbitrary real continuous functions a, according to the following
property :

a(uh)
∗
⇀ 〈ν,a〉 as h→0 (6.1)

where we use the notation 〈ν,a〉 :=
∫

R
a(λ)dν(λ).

In view of the above property, the passage to the limit in the left-hand side of
(5.27) is (almost) immediate. The uniqueness theorem [11, 2] tells us that once we
know that ν is a measure-valued solution to the conservation law, we can prove that
the support of each probability measure νp actually reduces to a single value u(p), if
the same is true on H0, that is, νp is the Dirac measure δu(p). It is then standard

to deduce that the convergence in (6.1) is actually strong, and that, in particular, uh

converges strongly to u which in turn is the unique entropy solution of the Cauchy
problem under consideration.

Lemma 6.1. Let νp be the Young measure associated with the sequence uh. Then, for
every convex entropy pair (U,F ) and every non-negative test-function φ defined on M
with compact support, we have

−

∫

M

〈νp,divg F (·,p)〉φ(p)+g
(
〈νp,F (·,p)〉,∇φ

)
dVM

−

∫

H0

φ(p)g
(
〈νp,F (·,p)〉,nH0

)
dVH0

+

∫

M

φ(p)〈νp,U
′(·)divg f(·,p)〉dVM ≤0. (6.2)

The following lemma is easily deduced from the corresponding result in the Eu-
clidean space, by relying on a system of local coordinates. This result will be useful
when analyzing the approximation.

Lemma 6.2. Let G :M →R be a smooth function, and let e be a submanifold of M .
Then, there exists a point pe (not necessarily in e), the center of mass of e, such that

∣∣∣Á
∫

e

G(p)dVe−G(pe)
∣∣∣≤diam(e)2‖G‖C2(e).
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We are now in position to complete the proof of the main theorem of this paper.

Proof. [Proof of Theorem 3.3.] Due to (6.2), we have for all convex entropy pairs
(U,F ),

divg〈ν,F (·)〉−〈ν,(divg F )(·)〉+〈ν,U ′(·)(divg f)(·)〉≤0

in the sense of distributions in M . Since on the initial hypersurface H0 the (trace of
the) Young measure ν coincides with the Dirac mass δu0

(because u0 is a bounded
function), from the theory in [2] there exists a unique function u∈L∞(M) such that
the measure ν remains the Dirac mass δu for all Cauchy hypersurfaces Ht, 0≤ t≤T .
Moreover, this implies that the approximations uh converge strongly to u at least on
compact sets. This concludes the proof.

Proof. [Proof of Lemma 6.1.] The proof consists of passing inequality (5.27)
to the limit and using property (6.1) of the Young measure. First, note that the
first term on the left-hand side of inequality (5.27) converges immediately to the first
integral term of (6.2). Next, take the second term of (5.27). Using the fact that
φn

∂0K −φ(p)=O(τ +h), we see that this term converges to the second integral term
in (6.2).

Next, we will prove that the third term on the left-hand side of (5.27) converges
to the last term in (6.2). Observe first that

µ̃n+1
K,e0 −µn+1

K,e0 =
1

|e+
K |

∫

K

divg f(un
K ,p)dVK .

Therefore, we obtain

−
∞∑

n=0

∑

K∈Kn

e0∈∂0K

|e0|

|∂0K|
|e+

K |φn
e0

(
V n+1

K (µ̃n+1
K,e0)−V n+1

K (µn+1
K,e0)

)

=

∞∑

n=0

∑

K∈Kn

e0∈∂0K

|e0|

|∂0K|
φn

e0

(
∂µV n+1

K (µ̃n+1
K,e0)

∫

K

divg f(un
K ,p)dVK + |e+

K |O(τ2)
)

=

∞∑

n=0

∑

K∈Kn

e0∈∂0K

|e0|

|∂0K|
φn

e0

((
∂µV n+1

K (µ̃n+1
K,e0)−U ′(un+1

K )
)∫

K

divg f(un
K ,p)dVK

+ |e+
K |O(τ2)+U ′(un+1

K )

∫

K

divg f(un
K ,p)dVK

)
.

Now, note that from the expression of V (see (5.8)),

∂µV n+1
K (µ̃n+1

K,e0)−U ′(un+1
K )=U ′((µn+1

K )−1(µ̃n+1
K,e0))−U ′(un+1

K )

≤ supU ′′max
n,K

Lip(µn
K)−1|µ̃n+1

K,e0 −µn+1
K |,
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and so, using the L∞ bound (5.15) and the growth condition (2.5), we find

∞∑

n=0

∑

K∈Kn

e0∈∂0K

|e0|

|∂0K|
φn

e0

(
∂µV n+1

K (µ̃n+1
K,e0)−U ′(un+1

K )
)∫

K

divg f(un
K ,p)dVK

.

∞∑

n=0

∑

K∈Kn

e0∈∂0K

|e0|

|∂0K|
φn

e0 |K||µ̃n+1
K,e0 −µn+1

K |.

Applying the Cauchy-Schwarz inequality and the entropy dissipation estimate (5.25),
we find that this term tends to zero with h. Note that property (5.24) is easily seen
to be verified due to the smoothness of the functions V n

K . We are left with the term

∞∑

n=0

∑

K∈Kn

φn
∂0KU ′(un+1

K )

∫

K

divg f(un
K ,p)dVK ,

which is easily seen to be of the form

∞∑

n=0

∑

K∈Kn

U ′(un
K)

∫

K

φ(p)divg f(un
K ,p)dVK +O(h)→

∫

M

〈νp,U
′(·)divg f(·,p)〉dVM .

It remains to check that the terms on the right-hand side of (5.27) tend to zero
with h. Namely, the first term on the right-hand side can be written as

∞∑

n=0

∑

K∈Kn

e0∈∂0K

|e0|

|∂0K|
|e+

K |(φn
∂0K −φn

e0)V n+1(µn+1
K,e0)

=
∞∑

n=0

∑

K∈Kn

e0∈∂0K

|e0|

|∂0K|
|e+

K |(φn
∂0K −φn

e0)
(
V n+1(µn+1

K,e0)−V n+1(µn+1
K (un+1

K ))
)

=o(1),

by the Cauchy-Schwarz inequality and the entropy dissipation estimate (5.25). Next,
the second term on the right-hand side of (5.27) satisfies

∞∑

n=0

∑

K∈Kn

e0∈∂0K

∫

e0

(φn
e0 −φ(p))Fe0(un

K ,p)dVe0

=

∞∑

n=0

∑

K∈Kn

e0∈∂0K

∫

e0

(φn
e0 −φ(p))

(
Fe0(un

K ,p)−Á

∫

e0

Fe0(un
K ,q)dq

)
dVe0

which, in view of the regularity of φ and F , is bounded by
∑∞

n=0

∑
K∈Kn |∂0K|O(τK +

h)2. Using the CFL condition (3.14) and property (3.13), we can further bound this
term by

∞∑

n=0

∑

K∈Kn

|e+
K |O(τK)

(
O(τK +h)+O(h2/τK)

)
=o(1),
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and so only the term

Ah(φ) :=−

N∑

n=0

∑

K∈Kn

∫

e+

K

(φn
∂0K −φ(p))g

(
F (un+1

K ,p)−F (un
K ,p),ñK,e

+

K
(p)

)
dVe

+

K

remains to be controlled. Here, we will use that our triangulation is admissible, in
the sense of Definition 3.2. First of all, by integrating by parts we rewrite it as

Ah(φ)=
∞∑

n=1

∑

K∈Kn

∫

e−

K

(φn−1
∂0K

−φ(p))g(F (un
K ,p),nK,e−

K
(p))dVe+

K

+

∫

e+

K

(φn
∂0K −φ(p))g(F (un

K ,p),nK,e+

K
(p))dVe+

K

plus a boundary term for n=0 which easily tends to zero with h. Next, using
Lemma 6.2 and equation (3.1), one may replace φn

∂0K by φ(p0
K) and φ−

∂0K
by

φ(p0
Kn−1), where p0

Kj denotes the center of ∂0Kj , with an error term of the form
Ch‖φ‖C2‖F‖L∞ . Next, we replace (and similarly for e−K) φ(p)g(F (un

K ,p),nK,e+

K
(p))

with φ(p+
K)g(F (un

K ,p+
K),nK,e+

K
(p+

K)). Using property (3.1), the corresponding error

term is seen to be of the form Ch‖φ‖C2‖F‖C2 . The generic constants C do not
depend on h nor φ.

We have

∣∣Ah(φ)
∣∣≤

∣∣∣∣∣

∞∑

n=1

∑

K∈Kn

|e+
K |(φ(p0

K)−φ(p+
K))g

(
F (un

K ,p+
K),nK,e

+

K
(p+

K)
)

+ |e−K |(φ(p0
K−)−φ(p+

K−
))g

(
F (un

K ,p+
K−

),nK,e−

K
(p+

K−
)
)
∣∣∣∣∣

+h‖φ‖C2

(
‖F‖L∞ +‖F‖C2

)
.

Now, performing a Taylor expansion of φ and using the definition of wK (recall that
wK is the future-oriented vector at p+

K tangent to the geodesic connecting p+
K and

p0
K) we find, for instance,

φ(p0
K)−φ(p+

K)=g(wK ,∇φ(p+
K))+O(h2).

Therefore, by the definition of E(K) and using (3.15), we may express this conclusion
by using the local deviation of the triangulation,

∣∣Ah(φ)
∣∣≤

∣∣∣∣∣

∞∑

n=1

∑

K∈Kn

|e+
K |g(wK ,∇φ(p+

K))g(F (un
K ,p+

K),nK,e+

K
(p+

K))

+ |e−K |g(wK− ,∇φ(p+
K−

))g(F (un
K ,p+

K−
),nK,e−

K
(p+

K−
))

∣∣∣∣∣
+Ch‖φ‖C2(‖F‖L∞ +‖F‖C2)

≤
∑

K∈T h

(
|K|E(K)−|K−|E(K−)

)
(∇φ,F (uh))+Ch‖φ‖C2(‖F‖L∞ +‖F‖C2)

≤η(h)‖φ‖C1‖F‖L∞ +Ch‖φ‖C2(‖F‖L∞ +‖F‖C2),

which tends to zero since η(h)→0. This completes the proof of Lemma 6.1.
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