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Abstract. We generalize the Perron–Frobenius Theorem for nonnegative matrices to the class
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1. Introduction

The Perron–Frobenius Theorem is a fundamental result for nonnegative matrices.
It has numerous applications, not only in many branches of mathematics, such as
Markov chains, graph theory, game theory, and numerical analysis, but in various
fields of science and technology, e.g., economics, operational research, and recently,
page rank in the internet, as well. Its infinite dimensional extension is known as the
Krein Rutman Theorem for positive linear compact operators, which has also been
widely applied to Partial Differential Equations, Fixed Point Theory, and Functional
Analysis.

In late studies of numerical multilinear algebra [7, 4, 1], eigenvalue problems for
tensors have been brought to special attention. In particular, the Perron–Frobenius
Theorem for nonnegative tensors is related to measuring higher order connectivity in
linked objects [5] and hypergraphs [6]. The purpose of this paper is to extend Perron–
Frobenius Theorem to nonnegative tensors. It is well known that Perron–Frobenius
Theorem has the following two forms:

Theorem 1.1. (Weak Form) If A is a nonnegative square matrix, then

1. r(A), the spectral radius of A, is an eigenvalue.

2. There exists a nonnegative vector x0 6=0 such that

Ax0 = r(A)x0. (1.1.1)

We recall the following definition of irreducibility of A: a square matrix A is said
to be reducible if it can be placed into block upper-triangular form by simultane-
ous row/column permutations. A square matrix that is not reducible is said to be
irreducible.

Theorem 1.2. (Strong Form) If A is an irreducible nonnegative square matrix, then

1. r(A)>0 is an eigenvalue,

2. there exists a nonnegative vector x0 >0, i.e., where all components of x0 are
positive, such that Ax0 = r(A)x0,
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508 GENERALIZED PERRON FROBENIUS THEOREM

3. (uniqueness) if λ is an eigenvalue with a nonnegative eigenvector, then λ=
r(A),

4. r(A) is a simple eigenvalue of A, and

5. if λ is an eigenvalue of A, then |λ|≤ r(A).

We shall extend these results to nonnegative tensors. But first, let us recall some
definitions on tensors. An order-m n-dimensional tensor C is a set of nm real entries

C=(ci1···im
), ci1···im

∈R, 1≤ i1,... ,im ≤n. (1.2.1)

C is called nonnegative (or, respectively, positive) if ci1···im
≥0 (or, respectively,

ci1···im
>0). To an n-vector x=(x1,... ,xn), real or complex, we define an n-vector:

Cxm−1 :=

( n
∑

i2,...,im=1

cii2···im
xi2 ···xim

)

1≤i≤n

. (1.2.2)

Suppose Cxm−1 6=0; a pair (λ,x)∈C×(Cn \{0}) is called an eigenvalue and an eigen-
vector if they satisfy

Cxm−1 =λx[m−1], (1.2.3)

where x[m−1] =(xm−1
1 ,... ,xm−1

n ). When m is even and C is symmetric, this was in-
troduced by Qi [7]; when m is odd, Lim [4] used (xm−1

1 sgnx1,... ,x
m−1
n sgnxn) on the

right-hand side instead, and the notion has been generalized by Chang, Pearson, and
Zhang [1].

Unlike matrices, the eigenvalue problem for tensors is nonlinear, involving finding
nontrivial solutions of polynomial systems in several variables. This feature requires
us to employ different methods in generalizations.

The main results of this paper are stated as follows:

Theorem 1.3. If A is a nonnegative tensor of order m and dimension n, then there
exist λ0≥0 and a nonnegative vector x0 6=0 such that

Axm−1 =λ0x
[m−1]
0 . (1.3.1)

Theorem 1.4. If A is an irreducible nonnegative tensor of order m and dimension
n, then the pair (λ0,x0) in Equation 1.3.1 satisfies

1. λ0 >0 is an eigenvalue.

2. x0 >0, i.e., all components of x0 are positive.

3. If λ is an eigenvalue with nonnegative eigenvector, then λ=λ0. Moreover,
the nonnegative eigenvector is unique up to a multiplicative constant.

4. If λ is an eigenvalue of A, then |λ|≤λ0.

However, unlike matrices, such λ0 is not necessarily a simple eigenvalue for tensors
in general. We shall present an example to demostrate this distinction. Furthermore,
some additional conditions will be imposed to ensure the simplicity of the eigenvalue
λ0.

In the paper of Lim [4], some of the above conclusions in Theorem 1.4 were
obtained. Here, however, we shall study this problem more systematically in a more
self-contained manner via a different approach.
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We organize our paper as follows: Section 2 is devoted to proving the main
theorems except (4) of Theorem 1.4. In Section 3, we discuss the simplicity of λ0. In
Section 4, we study an extended version of Collatz’s minimax theorem, from which
assertion (4) of Theorem 1.4 will follow as a direct consequence. In the last section,
Section 5, various extensions of the main results will be given.

2. Proofs of the main theorems

Let X =R
n. Then X has a positive cone P ={(x1,... ,xn)∈X | xi ≥0,1≤ i≤n}.

The interior of P is denoted intP ={(x1,... ,xn)∈P | xi >0,1≤ i≤n}. An order is
induced by P : ∀x,y∈X, we define x≤y if y−x∈P , and x<y if x≤y and x 6=y.

An order-m tensor C is hence associated with a nonlinear (m−1) homogeneous
operator C :X →X by Cx=Cxm−1, ∀x∈X, i.e.,

C(tx)= tm−1Cx, ∀x∈X, ∀t∈R
1. (2.1.1)

It is obvious that if C is nonnegative (or, respectively, positive), i.e, all entries are
nonnegative (or, respectively, positive), then the associated nonlinear operator is C :
P →P (or C :P \{0}→ intP ). Moreover, if C is nonnegative, then

Cx≤Cy, ∀x≤y, ∀x,y∈P. (2.1.2)

We are now ready for the proof of Theorem 1.3.

Proof. We reduce the problem to a fixed-point problem as follows. Let D=
{(x1,... ,xn)∈X | xi ≥0,1≤ i≤n,

∑n
i=1xi =1} be a closed convex set. One may as-

sume Axm−1 6=0 ∀x∈D. For otherwise, there exists at least one x0∈D so that
Axm−1

0 =0. Let λ0 =0; then (λ0,x0) is a solution to 1.2.3, and we are done. Then
the following map F :D→D is well defined:

F (x)i =
(Axm−1)

1
m−1

i
∑n

j=1(Axm−1)
1

m−1

j

, 1≤ i≤n, (2.1.3)

where (Axm−1)i is the i-th component of Axm−1. F :D→D is clearly continuous.
According to the Brouwer’s Fixed Point Theorem, ∃ x0∈D such that F (x0)=x0, i.e.,

Axm−1
0 =λ0x

[m−1]
0 ,

where

λ0 =

( n
∑

j=1

(Axm−1
0 )

1
m−1

j

)m−1

. (2.1.4)

We now turn to Theorem 1.4. If A is positive then we can use similar arguments
used in positive matrices to establish conclusions (1) – (3) in Theorem 1.4 based on
Theorem 1.3.

Our purpose in the remaining of this section is to introduce a condition on tensors
which lies in between positivity and nonnegativity to ensure that similar results hold
as in the Perron–Frobenius Theorem for matrices.

Definition 2.1. (Reducibility) A tensor C=(ci1···im
) of order m and dimension n is

called reducible if there exists a nonempty proper index subset I ⊂{1,... ,n} such that

ci1···im
=0, ∀i1∈ I, ∀i2,... ,im /∈ I.
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If C is not reducible, then we call C irreducible.

Lemma 2.2. If a nonnegative tensor C of order m and dimension n is irreducible,
then

n
∑

i2,...,im=1

cii2···im
>0, ∀1≤ i≤n.

Proof. Suppose not, then there exists i0 so that
∑n

i2,...,im=1 ci0i2···im
=0. Since C

is nonnegative, ci0i2···im
=0 ∀i2,... ,im. In particular, if we let I ={i0}, then ci1i2···im

=
0, ∀i1∈ I and ∀i2,... ,im /∈ I; this contradicts irreducibility.

We are now ready for the proof of Theorem 1.4.

Proof. 1◦ First, we prove x0∈ intP . Note P \ intP =∂P =∪I∈ΛFI , where Λ is the
set of all index subsets I of {1,... ,n} and

FI ={(x1,... ,xn)∈P | xi =0 ∀i∈ I, andxj 6=0 ∀j /∈ I}.

Suppose x0 /∈ intP ; since x0 6=0, there must be a maximal proper index subset I ∈
Λ such that x0∈FI , i.e., such that (x0)i =0 ∀i∈ I and (x0)j >0 ∀j /∈ I. Let δ =
Min{(x0)j | j /∈ I}; we then have that δ >0. Since x0 is an eigenvector, Ax0∈FI , i.e.,

n
∑

i2,...,im=1

aii2···im
(x0)i2 ···(x0)im

=0, ∀i∈ I.

It follows that

δm−1
∑

i2,...,im /∈I

aii2···im
≤

∑

i2,...,im /∈I

aii2···im
(x0)i2 ···(x0)im

=0, ∀i∈ I,

hence we have aii2···im
=0 ∀i∈ I, ∀i2,... ,im /∈ I, i.e., A is reducible, a contradiction.

2◦ Combining 1◦ and Lemma 2.2, we have λ0 >0.
3◦ We now prove that the eigenvalue corresponding to the positive eigenvector is

unique, i.e., if (λ,x) and (µ,y)∈R×P are solutions of 1.3.1, then λ=µ. According
to 1◦ and 2◦, for such solutions x,y∈ intP and λ,µ>0. ∀z∈ intP and ∀w /∈P , we
define δz(w)=Max{s∈R+ | z+sw∈P}; then δz(w)>0, z+ tw∈P for 0≤ t≤ δz(w),
and z+ tw /∈P for t>δz(w). Applying these to (z,w)=(x,−y), we have x− ty∈P for
0≤ t≤ δz(−y). By definition and by 2.1.1 and 2.1.2,

λx[m−1] =Axm−1≥ δx(−y)m−1Aym−1 =µδx(−y)m−1y[m−1]; (2.2.1)

it follows that x≥ (µ
λ )

1
m−1 δx(−y)y, so µ≤λ.

Likewise, if we interchange x and y, it follows that y≥ (λ
µ )

1
m−1 δy(−x)x, and thus

λ≤µ. We have hence proved λ=µ. Therefore, the only eigenvalue corresponding to
the positive eigenvector is λ0.

4◦ We prove that the positive eigenvector is unique up to a multiplicative constant,

i.e., if x0,x∈P \{0} satisfies Axm−1
0 =λ0x

[m−1]
0 and Axm−1 =λ0x

[m−1], then x=kx0

for some constant k. It is known that x0∈ intP ; by the definition of δx0
(−x), we

have x0− tx∈P for 0≤ t≤ δx0
(−x) and x0− tx /∈P for t>δx0

(−x). This implies x0−
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t0x∈∂P , where t0 = δx0
(−x). So there exists a nonempty maximal index subset I ⊂

{1,... ,n} such that x0− t0x∈FI . If I ={1,... ,n}, then x0 = t0x, and we are done.
Otherwise, I is a nonempty proper subset. There exist ǫ>0 and δ >0 such that

(x0)i ≥ δ ∀i∈{1,2,....,n},

0<t0xi =(x0)i ∀i∈ I,

0<
t0xi

(x0)i
<1−ǫ ∀i /∈ I,

and then ∀i∈ I

n
∑

i2,...,im=1

aii2···im
[(x0)i2 ···(x0)im

− tm−1
0 xi2 ···xim

]=λ0[(x0)
m−1
i −(t0xi)

m−1]=0.

We have

tm−1
0 xi2 ···xim

≤ (x0)i2 ···(x0)im
∀i2,... ,im,

and

tm−1
0 xi2 ···xim

≤ (1−ǫ)m−1(x0)i2 ···(x0)im
∀i2,... ,im /∈ I.

It follows that

δm−1(1−(1−ǫ)m−1)
∑

i2,...,im /∈I

aii2···im

≤
∑

i2,...,im /∈I

aii2···im
[(x0)i2 ···(x0)im

− tm−1
0 xi2 ···xim

]

≤

n
∑

i2,...,im=1

aii2···im
[(x0)i2 ···(x0)im

− tm−1
0 xi2 ···xim

]=0 ∀i∈ I,

thus aii2···im
=0 ∀i∈ I, and ∀i2,... ,im /∈ I, i.e., A is reducible, a contradiction.

Remark 2.3. By the same argument used in 1◦ of the proof of Theorem 1.4, the
following improvement also holds: Assume A is an irreducible nonnegative tensor; if
x0∈P \{0} is a solution of the inequality Axm−1≤λx[m−1], then x0∈ intP .

3. The simplicity of the eigenvalue λ0

For a matrix (i.e., m=2) A, an eigenvalue λ is called algebraically simple if λ is
a simple root of the characteristic polynomial det(A−λI), and is called geometrically
simple if dimKer(A−λI)=1. We will generalize these notions to the tensor setting.
Since the operator A associated with a tensor A is nonlinear but homogeneous, we
can define the geometric multiplicity of an eigenvalue of A as follows:

Definition 3.1. Let λ be an eigenvalue of

Axm−1 =λx[m−1]. (3.1.1)

We say λ has geometric multiplicity q if the maximum number of linearly independent
eigenvectors corresponding to λ equals q. If q =1, then λ is called geometrically simple.
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It is worth noting the geometric multiplicity for a real eigenvalue λ of a real matrix
A is independent of the base field being real or complex, i.e.,

dimR{x∈R
n|(A−λI)x=0}=dimC{z∈C

n|(A−λI)z =0}.

This is due to the fact that if z =x+ iy∈R
n + iRn satisfies (A−λI)z =0, then x,y∈

Ker(A−λI)
⋂

R
n.

As for higher order tensors, since Axm−1 is m−1 homogeneous, we still have real
geometric multiplicity ≤ complex geometric multiplicity, but equality does not hold
in general. This can be seen from the following example:

Example 3.2. Let m=3 and n=2. Consider A=(aijk) where a111 =a222 =1,
a122 =a211 = ǫ for 0<ǫ<1, and aijk =0 for other (ijk). Then the eigenvalue problem
becomes:

{

x2
1 +ǫx2

2 =λx2
1,

ǫx2
1 +x2

2 =λx2
2.

(3.2.1)

We have λ=1+ε, with eigenvectors u1 =(1,1) and u2 =(1,−1), and λ=1−ε with
eigenvectors u3 =(1,i), and u4 =(1,−i). In this example we see that

• real geometric multiplicity of λ=1+ε equals complex geometric multiplicity 2.

• real geometric multiplicity of λ=1−ε is 0, and complex geometric multiplicity
is 2.

The same example also shows the nonnegative irreducible tensor A has a positive
eigenvalue 1+ε with unique positive eigenvector (up to a multiplicative constant),
which is not geometrically simple, neither in R nor in C.

Example 3.3. Let m=4, n=2, and A=(aijkl), with a1222 =a2111 =1 and aijkl =0
elsewhere. Then after computation, we see there are two eigenvalues: λ=±1, with
eigenvectors (x,±x),(x,±exp 2πi

3 x),(x,±exp 4πi
3 x). Therefore both λ=±1 are all real

geometrically simple, but with complex geometrical multiplicity 3.

In the following, we shall seek a sufficient condition to ensure the real geometric
simplicity of λ0. If m is odd, there are two different types of eigenvalue problems,
which impose the same constraints on P :

1. Axm−1 =λ(xm−1
1 ,... ,xm−1

n ),

2. Axm−1 =λ(sgnx1x
m−1
1 ,... ,sgnxnxm−1

n ).

Theorem 3.4. Let m be odd, and let A be an irreducible nonnegative tensor of order
m and dimension n. If Axm−1 is invariant under any one of the transformations
(x1,...,xn)→ (±x1,...,±xn) except the identity and its reflection, then λ0 is not geo-
metrically simple for problem 1. If all terms in Axm−1 are monomials of x2

1,... ,x
2
n,

i.e., ai1i2···im
6=0 only if the numbers of indices appearing in {i2,... ,im} are all even,

∀i1, then λ0 is real geometrically simple for problem 2.

Proof. (1) Let T be the transformation under which Axm−1 is invariant. By
assumption, if x0 =(x0

1,... ,x
0
n)∈ intP is a solution of (1), then Tx0 is also a solution

of (1) corresponding to the same eigenvalue λ0, so λ0 is not geometrically simple.
(2) By assumption, Axm−1≥0, ∀x∈R

n, which implies that all solutions of (2)
must be in P . Using assertion (3) of Theorem 1.4, we see that x=kx0, i.e., λ0 is real
geometrically simple.
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We next examine the case when m is even. We introduce a condition on C to
ensure that the associated nonlinear operator C is increasing, i.e.,

x≤y⇒Cx≤Cy. (3.4.1)

Comparing with 2.1.2, there is no restriction: x,y∈P in 3.4.1.

Definition 3.5. (Condition (M)) A tensor C= ci1i2···im
of order m>2 dimension

and n is said to satisfy Condition (M) if there exists a nonnegative matrix D=(dij)
such that ci1i2···im

=di1i2δi2···im
, where δi2···im

is the Kronecker delta.

Remark 3.6. For m=2, Condition (M) is trivial, hence superfluous.

In fact, if m is even, Condition (M) on C implies that

∂

∂xj
(Cxm−1)i =(m−1)

n
∑

j=1

dijx
m−2
j ≥0 ∀i,j,

and then Cx≤Cy, ∀x≤y, ∀x,y∈R
n. We now state and prove the following:

Theorem 3.7. Let m be even, and let A be an irreducible nonnegative tensor. If A
satisfies Condition (M), then the eigenvalue λ0 for the nonnegative eigenvector is real
geometrically simple.

Remark 3.8. The special problem can, by setting y =x[m−1], be reduced to the
problem for matrices, hence becomes a direct consequence of the Perron–Frobenius
Theorem. However, we present the following proof since it will be useful for more
general problems, see Section 5

Proof. We follow 4◦ in the proof of Theorem 1.4. We note that the only difference
is that now, x∈R

n \{0} but not P \{0}. We still have that t0 = δx0
(−x) such that

x0− tx∈P for 0≤ t≤ t0 and x0− tx /∈P for t>t0. We want to show that x0 = t0x.
Suppose not; then (x0)i ≥ δ >0, ∀i and there exists a nonempty proper index subset I
such that t0xi =(x0)i ∀i∈ I and such that t0xi < (1−ǫ)(x0)i ∀i /∈ I. It follows that
∀i∈ I

δm−1(1−(1−ǫ)m−1)
∑

j /∈I

aij···j

≤
∑

j /∈I

aij···j [(x0)
m−1
j −(t0xi)

m−1]

≤

n
∑

i2,...,im=1

aii2···im
[(x0)i2 ···(x0)im

− tm−1
0 xi2 ···xim

]=0,

so aij···j =0 ∀j /∈ I. Combining this with Condition (M), we obtain ai1i2···im
=

0 ∀i1∈ I, ∀i2,... ,im /∈ I, which contradicts the irreducibility of A. Therefore,
x0 = t0x, i.e., λ0 is geometrically simple as desired.

We next define the algebraic simplicity of the eigenvalue of 3.1.1. We follow
the approach described in Cox et al. [2] (pp. 97–105) to define the characteristic
polynomial ψA(λ) of A by

ψA(λ) :=Res((Axm−1)1−λxm−1
1 ,... ,(Axm−1)n−λxm−1

n )),
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where Res(P1,... ,Pn) is the resultant of n homogeneous polynomials P1,... ,Pn. For
each A, such ψA(λ) is unique up to a nonzero extraneous factor.

Definition 3.9. Let λ be an eigenvalue of 3.1.1. We say λ has algebraic multiplicity
p if λ is a root of ψA(λ) of multiplicity p. And we call λ an algebraically simple
eigenvalue if p=1.

In Example 3.2, we know that λ=1+ǫ has geometric multiplicity 2 in both the
real and complex fields. After computation we have

ψA(λ)=det









1−λ 0 ǫ 0
0 1−λ 0 ǫ
ǫ 0 1−λ 0
0 ǫ 0 1−λ









=(λ−1+ǫ)2(λ−1−ǫ)2,

which shows that the eigenvalue λ0 =1+ǫ also has algebraic multiplicity 2.
By definition, we see that complex geometric multiplicity ≤ algebraic multiplicity,

and equality does not always hold; this can be seen in the next example.

Example 3.10. Let m=4 and n=2. Consider A=(aijkl) where a1111 =a1112 =
a2122 =a2222 =1, and aijkl =0 for other (ijkl). Then the eigenvalue problem becomes:

{

x3
1 +x2

1x2 =λx3
1,

x1x
2
2 +x3

2 =λx3
2.

We compute to see that

ψA(λ)=det

















1−λ 1 0 0 0 0
0 1−λ 1 0 0 0
0 0 1−λ 1 0 0
0 0 1 1−λ 0 0
0 0 0 1 1−λ 0
0 0 0 0 1 1−λ

















=λ(λ−2)(λ−1)4,

which shows the eigenvalues λ=0,2 are both algebraically and geometrically simple,
with eigenvectors u1 =(1,−1), and u2 =(1,1), respectively, while λ=1 has algebraic
multiplicity 4, but has only two linearly independent eigenvectors u3 =(1,0) and u4 =
(0,1), so its geometric multiplicity is 2.

4. A minimax theorem

The following well-known [3] minimax theorem for irreducible nonnegative matri-
ces will be extended to irreducible nonnegative tensors.

Theorem 4.1. (Collatz) Assume that A is an irreducible nonnegative n×n matrix;
then

Minx∈intP Maxxi>0
(Ax)i

xi
=λ0 =Maxx∈intP Minxi>0

(Ax)i

xi
, (4.1.1)

where λ0 is the unique positive eigenvalue corresponding to the positive eigenvector.

In the remainder of this section, we will prove the following:
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Theorem 4.2. Assume that A is an irreducible nonnegative tensor of order m and
dimension n; then

Minx∈intP Maxxi>0
(Axm−1)i

xm−1
i

=λ0 =Maxx∈intP Minxi>0
(Axm−1)i

xm−1
i

, (4.2.1)

where λ0 is the unique positive eigenvalue corresponding to the positive eigenvector.

Before we proceed with the proof of Theorem 4.2, we first define the following
two functions on P \{0}:

µ∗(x)=Minxi>0
(Axm−1)i

xm−1
i

and µ∗(x)=Maxxi>0
(Axm−1)i

xm−1
i

.

Clearly, µ∗(x)≤µ∗(x). Note µ∗(x) may be +∞ on the boundary ∂P \{0}.
Since both µ∗(x) and µ∗(x) are positive 0-homogeneous functions, we can restrict

them on the compact set

∆={x=(x1,... ,xn)∈P |
n

∑

i=1

xi =1}.

Now, µ∗ is continuous and bounded from above, and µ∗ is continuous on ∆
⋂

intP
and is bounded from below, so there exist x∗,x

∗∈∆ such that

r∗ :=µ∗(x∗)=Maxx∈∆µ∗(x)=Maxx∈P\{0}µ∗(x),

r∗ :=µ∗(x∗)=Minx∈∆µ∗(x)=Minx∈P\{0}µ∗(x).

Let (λ0,x0)∈R+× intP be the positive eigenpair obtained in Theorem 1.4; we then
have:

µ∗(x∗)≤µ∗(x0)=λ0 =µ∗(x0)≤µ∗(x∗).

Therefore,

r∗≤λ0≤ r∗. (4.2.3)

We shall prove they are indeed all equal. To do so, we modify 3◦ in the proof of
Theorem 1.4 as follows:

Lemma 4.3. Let A be an irreducible nonnegative tensor of order m and dimension
n. If (λ,x) and (µ,y)∈R+×(P \{0}) satisfy Axm−1 =λx[m−1] and Aym−1≥µy[m−1]

(or, respectively, Aym−1≤µy[m−1]), then µ≤λ (or, respectively, λ≤µ).

Proof. We first assume that Aym−1≥µy[m−1]. Since x∈ intP , we have t0 =
δx(−y)>0 such that x− ty∈P for 0≤ t≤ t0 and x− ty /∈P for t>t0. This implies
that

λx[m−1] =Axm−1≥ tm−1
0 Aym−1≥ tm−1

0 µy[m−1],

hence x≥ (µ
λ )

1
m−1 t0y; consequently, µ≤λ.

Next we assume that Aym−1≤µy[m−1]. From the remark of Section 2, we have
that y∈ intP , and if we interchange the roles of x and y in the previous paragraph,
then we have that λ≤µ. Our assertion now follows.
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We now return to the proof of Theorem 4.2:
Proof. After 4.2.3, it remains to show that r∗≤λ0≤ r∗. By the definition of

µ∗(x), we have

r∗ =µ∗(x∗)=Minxi>0
(Axm−1

∗ )i

(x∗)
m−1
i

.

This means

Axm−1
∗ ≥ r∗x

[m−1]
∗ .

Likewise,

Ax∗m−1≤ r∗x∗[m−1].

Our desired inequality follows from Lemma 4.3.

Since µ∗ is continuous on ∆ and is 0-homogeneous, we have

Corollary 4.4.

λ0 =Maxx∈P\{0}Minxi>0
(Axm−1)i

xm−1
i

.

We close this section by proving assertion (4) of Theorem 1.4:

Proof. Let z∈C
n \{0} be a solution of Azm−1 =λz[m−1] for some λ∈C. We wish

to show that |λ|≤λ0. Let yi = |zi| ∀i and set y =(y1,... ,yn). Clearly, y∈P \{0}.
One has

|(Azm−1)i|= |
n

∑

i2,...,im=1

aii2···im
zi2 ···zim

|≤
n

∑

i2,...,im=1

aii2···im
yi2 ···yim

=(Aym−1)i.

This shows that

|λ|ym−1
i = |λ||zi|

m−1 = |(Azm−1)i|≤ (Aym−1)i ∀i.

Applying Corollary 4.4, we have

|λ|≤Minyi>0
(Aym−1)i

ym−1
i

≤Maxx∈P\θ Minxi>0
(Axm−1)i

xm−1
i

=λ0.

5. Some extensions

There are various ways of defining eigenvalues for tensors, e.g., there are H-
eigenvalues, Z-eigenvalues, D-eigenvalues, etc. see [7, 8, 9, 4]. They are unified in
[1]. In this section, we extend the above results to more general eigenvalue problems
for tensors. Let A and B be two mth-order n-dimensional real tensors. Assume that
both Axm−1 and Bxm−1 are not identically zero. We say that (λ,x)∈C×(Cn \{0})
is an eigenpair (or eigenvalue and eigenvector) of A relative to B, if the n-system of
equations

(A−λB)xm−1 =0 (5.1.1)
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possesses a solution.
The problem 1.3.1, called the H-eigenvalue problem, corresponds to the case

where B=(δi1i2....im
) is the unit tensor. We next introduce a few more conditions on

nonnegative tensors.

Definition 5.1. (Quasi-diagonal) A tensor C of order m and dimension n is said to
be quasi-diagonal if for all nonempty proper index subsets I ⊂{1,... ,n}, ci1,i2,...im

=0
for i1 /∈ I and i2,... ,im ∈ I.

Example 5.2. For m=2, C is quasi-diagonal if and only if it is a diagonal matrix.

Example 5.3. If C=(δi1...im
), where δi1···im

is the Kronecker delta, then C is quasi-
diagonal.

Lemma 5.4. If a nonnegative tensor C of order m and dimension n is quasi-diagonal,
then there exists M >0 such that for all nonempty proper index subsets I ⊂{1,... ,n},
one has CeI ≤MeI , where eI =(eI

1,... ,e
I
n) with

eI
i =

{

1, i∈ I

0, i /∈ I.

Proof. Let M =
∑n

i1,...,im=1 ci1···im
. We verify that (CeI)i =0 ∀i /∈ I by comput-

ing

(C(eI)m−1)i =

n
∑

i2,...,im=1

cii2···im
eI
i2 ···e

I
im

=
∑

i2,...,im∈I

cii2···im
=0, ∀i /∈ I,

provided by that C is quasi-diagonal.

Definition 5.5. (Condition (E)) A nonnegative tensor C of order m and dimension
n is said to satisfy Condition (E), if there exists a homeomorphism C̃ :Rn →R

n such
that (1) C̃|P =C|P , and (2) ∀x,y∈P, x≤y implies C̃−1x≤ C̃−1y.

For C=(δi1....im
), C̃ is the identity operator, so Condition (E) is satisfied.

Example 5.6. Let m be even, and let D be a positive definite matrix. If C is an
mth-order n-dimensional tensor satisfying

Cxm−1 =Dx(Dx,x)
m
2 −1,

then C satisfies (1) in Condition (E). Indeed,

C̃−1y =D−1y(y,D−1y)−
m−2

2(m−1) .

Example 5.7. Let us consider the following example: let Ck :P →P be the nonlinear
operator

Ckx=

{

x[2k−1]|x|2(r−k), m=2r,

x[2k]|x|2(r−k) m=2r+1,

where 1≤k≤ r. And let Ck =(ci1,....,im
) be an mth-order n-dimensional nonnegative

tensor corresponding to Ck, for example,

∑

cii2...im
xi2 ...xim

=

{

x2k−1
i (x2

1 + ....+x2
n)r−k m=2r,

x2k
i (x2

1 + ....+x2
n)r−k m=2r+1
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=
∑

|α|=r−k

(r−k)!

α1!....αn!
x2α1

1 ....x2αn
n

{

x2k−1
i , m=2r,

x2k
i m=2r+1.

(5.7.1)

The left hand side equals

∑

|β|=m−1

∑

(i2,...,im)∼(1β1 ,....,nβn )

cii2....im
xβ1

1 ....xβn
n ,

where (1β1 ,....,nβn) means j is repeated for βj times, ∀1≤ j≤n, and (i2,....,im)∼
(i′2,....,i

′
m) means there exists a π∈Sm−1, the m−1 permutation group, such that

π(i2,....,im)=(i′2,....,i
′
m). 5.7.1 implies that

βj =2αj +δij

{

2k−1 m=2r,

2k m=2r+1.

Therefore there exists a representation Ck of Ck such that ci,i2,....,im
6=0 only if ∃l≥2

such that il = i. Consequently, Ck is quasi-diagonal.
Also, Ck satisfies Condition (E). In fact, define

C̃k =

{

x[2k−1]|x|2(r−k) m=2r,

x[2k]|x|2(r−k)Sgn(x) m=2r+1,

where we use the notation: x[α]Sgn(x)=(xα
1 sgn(x1),....,x

α
n sgn(xn)). Then

C̃−1
k =

{

y[ 1
2k−1 ](Σn

i=1|yi|
2

2k−1 )−
r−k
m−1 m=2r

|y|[
1
2k

]Sgn(y)(Σn
i=1|yi|

1
k )−

r−k
m m=2r+1.

(5.7.2)

Obviously, C̃k satisfies (1) and (2) in the definition of Condition (E).

Remark 5.8. For B=C1 the problem 5.1.1 corresponds to Z eigenvalue, and when
m is even for B=Cm

2
it corresponds to H eigenvalue.

We have the following general result:

Theorem 5.9. Suppose that A and B are nonnegative tensors, and that B satisfies
(1) in Condition (E); then there exist λ0≥0 and a nonnegative vector x0 6=0, such
that

Axm−1
0 =λ0Bxm−1

0 . (5.8.1)

If we further assume that A is irreducible and that B satisfies Condition (E) and is
quasi-diagonal, then x0∈ intP, λ0 >0 and λ0 is the unique eigenvalue with nonnegative
eigenvectors. In particular, for B=Ck, the nonnegative eigenvector is unique up to a
multiplicative constant.

Proof. We shall only sketch the proof, since it is parallel to the argument given
in Section 2. Let A,B be the nonlinear operators corresponding to A,B, respectively.
For the existence part, we define

F (x)i =
(B̃−1Ax))i

Σn
j=1(B̃

−1Ax)j
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and

λ0 =(Σn
j=1(B̃

−1Ax)j)
m−1

in place of 2.1.3 and 2.1.4. The subsequent argument is the same as for the counterpart
in Section 2.

Next we follow step 1◦ in the proof of Theorem 1.4 to prove that x0∈ intP by
contradiction. Suppose not; then there exists a maximal proper index subset I such
that x0∈FI . From the equation

Axm−1
0 =λ0Bxm−1

0

and that B is quasi diagonal, it follows that Bx0∈FI and hence Ax0∈FI . The
following arguments are the same.

In step 3◦, 2.2.1 is replaced by

λBx=Ax≥µδx(−y)m−1By.

Since B̃−1 is order-preserving in P and is positively 1
m−1 homogeneous, we have

λ
1

m−1 x≥µ
1

m−1 δx(−y)y.

Therefore µ≤λ. Again the rest is the same.
As to the uniqueness of the positive eigenvector (up to a multiplicative constant),

we reduce the problem by changing variables. For x 6=0, let

ξ =

{

x|x|−
2(r−k)
m−α−1 m=2r

x|x|−
2(r−k)
m−α−2 , m=2r+1,

where α=2k when m is even, and α=2k+1 when m is odd. The problem is then
reduced to:

Aξ =λ0ξ
[α].

We shall prove that the nonnegative eigenvector x0 is unique by contradiction. Sup-
pose not; there exist x,y∈P\{0} satisfying Ax=λ0x and Ay =λ0y. Let ξ,η be the
images of x,y under the above change of variables. Then by the argument in step 4◦

of the proof in Theorem 1.4, there exists t>0 such that ξ = tη. This implies

x= t

(

|x|

|y|

)

2(r−k)
m−α−1

y,

where α=2k or α=2k+1 if m=2r or m=2r+1, resp.
Lastly, the minimax theorem in Section 4 is also extended:

Minx∈intP Maxxi>0
(Axm−1)i

(Ckxm−1)i
=λ0 =Maxx∈intP Minxi>0

(Axm−1)i

(Ckxm−1)i
.

The subsequent steps follow the last paragraph of Section 4.

Corollary 5.10. Theorem 1.3 holds for the D-eigenvalue problem. Theorem 1.4
holds for H-eigenvalue problem and the Z-eigenvalue problem.

More generally, for Bx=x[k]ϕ(x), where 1≤k≤ [m
2 ] and ϕ(x) is a positive m−

k−1 homogeneous polynomial, the Perron–Frobenius theorem still holds.
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