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WEAK SHOCK WAVES FOR THE GENERAL DISCRETE

VELOCITY MODEL OF THE BOLTZMANN EQUATION∗

NICLAS BERNHOFF† AND ALEXANDER BOBYLEV‡

Abstract. We study the shock wave problem for the general discrete velocity model (DVM),
with an arbitrary finite number of velocities. In this case the discrete Boltzmann equation becomes
a system of ordinary differential equations (dynamical system). Then the shock waves can be seen as
heteroclinic orbits connecting two singular points (Maxwellians). In this paper we give a constructive
proof for the existence of solutions in the case of weak shocks.

We assume that a given Maxwellian is approached at infinity, and consider shock speeds close
to a typical speed, corresponding to the sound speed in the continuous case. The existence of a
non-negative locally unique (up to a shift in the independent variable) bounded solution is proved by
using contraction mapping arguments (after a suitable decomposition of the system). This solution
is shown to tend to a Maxwellian at minus infinity.

Existence of weak shock wave solutions for DVMs was proved by Bose, Illner and Ukai in 1998.
In this paper, we give a constructive, more straightforward, proof that suits the discrete case. Our
approach is based on earlier results by the authors on the main characteristics (dimensions of corre-
sponding stable, unstable and center manifolds) for singular points of general dynamical systems of
the same type as in the shock wave problem for DVMs.

The same approach can also be applied for DVMs for mixtures.
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1. Introduction

We are concerned with the existence of shock wave solutions f =f(x1,ξ,t)=
F (x1−ct,ξ), of the Boltzmann equation

∂f

∂t
+ξ ·∇xf =Q(f,f).

Here x=(x1,...,xd)∈R
d, ξ=(ξ1,...,ξd)∈R

d and t∈R+ denote position, velocity and
time respectively. Furthermore, c>c0 denotes the speed of the wave, where c0 is the
speed of sound. The solutions are assumed to approach two given Maxwellians M± =

ρ±

(2πT±)d/2
e−|ξ−u±|2/(2T±) (ρ, u and T denote density, bulk velocity and temperature

respectively) as x→±∞, which are related through the Rankine-Hugoniot conditions.
The (shock wave) problem is to find a solution F =F (y,ξ) (y=x1−ct) of the

equation

(ξ1−c)∂F
∂y

=Q(F,F ), (1.1)

such that

f→M± as y→±∞. (1.2)
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816 SHOCK WAVES FOR THE GENERAL DISCRETE VELOCITY MODEL

In this paper, we consider the shock wave problem (1.1) , (1.2) for the general
discrete velocity model (DVM) (the discrete Boltzmann equation) [5, 10]. We allow
the velocity variable to take values only from a finite subset V of R

d, i.e., ξ∈V=
{ξ1,...,ξn}⊂R

d, where n is an arbitrary natural number.
We obtain, from Equation (1.1), a system of ODEs (dynamical system)

(ξ1i −c)
dFi

dy
=Qi (F,F ), i=1,...,n, c∈R, (1.3)

where F =(F1,...,Fn), with Fi =Fi (y)=F (y,ξi), i=1,...,n. The collision operator
Q=(Q1,...,Qn) is given by

Qi (F,G)=
1

2

n∑

j,k,l=1

Γkl
ij (FkGl +GkFl−FiGj −GiFj), i=1,...,n,

where it is assumed that the collision coefficients Γkl
ij satisfy the relations Γkl

ij =Γkl
ji =

Γij
kl ≥0, with equality unless

ξi +ξj = ξk +ξl and |ξi|2 + |ξj |2 = |ξk|2 + |ξl|2 .

Q(F,G) is a bounded bilinear operator symmetric in arguments. Hence, there exists
a constant C, such that

|Q(F,G)|≤C |F ||G|, for all F,G∈R
n, (1.4)

where |F | is the usual Euclidean norm of F ∈R
n.

For normal (only with physical collision invariants) DVMs the collision invariants
(i.e., all φ =(φ1,...,φn) such that φi +φj =φk +φl if Γkl

ij 6=0) are of the form

φ=(φ1,...,φn), φi =α+β ·ξi +γ |ξi|2 , α,γ∈R, β∈R
d,

and the Maxwellians (positive vectors M =(M1,...,Mn), M1,...,Mn>0, such that
Q(M,M)=0) are of the form

M =(M1,...,Mn),Mi =Aeβ·ξ
i
+γ|ξi|

2

, with A=eα>0, α,γ∈R, β∈R
d.

We denote by {φ1,...,φp} (p=d+2 for normal DVMs) a basis for the vector space of
collision invariants (note that here and below φi denotes a collision invariant, while
above φi denotes the ith component of the collision invariant φ). Then

〈φi,Q(f,f)〉=0 for i=1,...,p.

Here and below 〈·,·〉 denotes the Euclidean scalar product and we denote 〈·,·〉E = 〈·,E·〉
for symmetric matrices E.

The shock wave problem for the discrete Boltzmann equation reads

(B−cI)dF
dy

=Q(F,F ), where F→M± as y→±∞, (1.5)

where B is the diagonal matrix

B=diag(ξ11 ,...,ξ
1
n).
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Note that shock waves for the discrete Boltzmann equation can be seen as hetero-
clinic orbits connecting two singular points (which are Maxwellians for DVMs). If we
multiply Equation (1.5) scalarly by φi, 1≤ i≤p, and integrate over R, then we obtain
that the Maxwellians M− and M+ must fulfill the Rankine-Hugoniot conditions

〈M+,φi〉B−cI = 〈M−,φi〉B−cI , i=1,...,p.

The rest of this paper is organized as follows. In Section 2, we state under which
assumptions our results are obtained and present the main results. In Section 3 we
fix the Maxwellian M+ approached at infinity, and consider shock speeds close to a
typical speed c0 (corresponding to the speed of sound in the continuous case). We
expand around the Maxwellian M+, make a transformation and obtain a new system
of ODEs. In Sections 4 and 5 the existence of a non-negative locally unique (up to
a shift in the independent variable) bounded solution is proved by using contraction
mapping arguments. In Section 6 we show that this solution tends to a Maxwellian
at minus infinity, using arguments used in [7]. Finally, in Section 7 we prove a lemma
used in Section 4.

Some of our results can probably be deduced from the general theory of ODEs
related to bifurcations of saddle points [1]. Such an approach in a more abstract
setting was used for general hyperbolic systems in [9]. It is not easy to determine
whether the conditions of [9] hold for our Equation (1.3). The difficulty is that we do
not have the explicit relations between conservative quantities (density, energy, and
momentum) and parameters of equilibrium (Maxwellian) distributions for general
DVMs. Paradoxically, such (very simple) explicit relations exist in the continuum
limit. Therefore equations of hydrodynamics for the Boltzmann equation are, in a
sense, simpler than similar equations for the general DVM. On the other hand, very
general results of [9] can be applied to various versions of moment equations, whereas
our approach is based on specific properties of DVMs. We prefer, however, to use a
straightforward approach, which clarifies many details of this specific problem.

2. Assumptions and main results

We make the following assumptions in our DVMs.

1. There is a number c0 (“speed of sound” ), with the following properties:

[i] rank(K)=p−1, where K is the p×p matrix with the elements (here and
below multiplication of two vectors in R

n means to multiply corresponding
components to obtain a new vector in R

n)

kij = 〈M+φi,φj〉B−c0I .

The rank of K is independent of the choice of the basis {φ1,...,φp}. In other
words, there is a unique (up to its sign) vector φ⊥ in span(φ1,...,φp), such
that 〈M+φ⊥,φ⊥〉=1 and

〈M+φ⊥,φ〉B−c0I =0 for all φ∈ span(φ1,...,φp). (2.1)

[ii] c0 6= ξ1i for i=1,...,n, or, equivalently, det(B−c0I) 6=0.

2. The vector(s) φ⊥ fulfilling Equation (2.1), also satisfy
〈
M+φ⊥,φ

2
⊥

〉
B−c0I

6=0.

We choose the sign of the vector φ⊥ such that
〈
M+φ⊥,φ

2
⊥

〉
B−c0I

>0.

Remark 2.1. Let M+ be a Maxwellian with zero bulk velocity (u=0). Then, for the

“continuous” Boltzmann equation, M+ =
ρ

(2πT )d/2
e−|ξ|2/(2T ). In this case (see [8]),
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with d=3, c0 =±
√

5T

3
(note that Assumption 1 [ii] never is fulfilled in the continuous

case), φ⊥ =
1√
2ρT

(ξ1± |ξ|2√
15T

) and
〈
M+φ⊥,φ

2
⊥

〉
B−c0I

=
2

3

√
2T

ρ
>0.

Remark 2.2. Assume that we have an axially symmetric normal model (i.e., if

(ξ1,...,ξd) ∈V , then (±ξ1,...,±ξd)∈V ). Let M =Aeγ|ξ|2 and assume that the colli-
sion invariants






φ1 =(1,...,1)
φi+1 =(ξi

1,...,ξ
i
n), i=1,...,d,

φd+2 =(|ξ1|2 ,...,|ξn|2)

are linearly independent. Then [2]

c0 = c± =±
√
χ1χ

2
4 +χ2

2χ5−2χ2χ3χ4

χ2(χ1χ5−χ2
3)

, where

χ1 = 〈φ1,Mφ1〉 ,χ2 = 〈φ2,Mφ2〉,χ3 = 〈φ1,Mφd+2〉 ,χ4 = 〈φ2,Mφd+2〉B
and χ5 = 〈φd+2,Mφd+2〉 .

We assume that Assumptions 1 and 2 are fulfilled and denote

‖h‖=‖h(y)‖= sup
y∈R

|h(y)|

for any bounded (vector or scalar) function h(y) :R→R
k, where k is a positive integer.

A proof for existence of weak shock wave solutions for DVMs was already pre-
sented in 1998 by Bose, Illner and Ukai [4]. In their technical proof Bose et al. are
following the lines of the pioneering work for the continuous Boltzmann equation by
Caflisch and Nicolaenko [6] (for more resent research in the continuous case see [13]).

In this work, we follow a more straightforward way, suiting the discrete case. We
use results by the authors [3] on the main characteristics (dimensions of corresponding
stable, unstable and center manifolds) for singular points of general dynamical sys-
tems of the same type as in the shock wave problem for DVMs. Our assumptions differ
a little from the ones made in the paper by Bose, Illner and Ukai [4]. Assumption 1
i) in this paper corresponds to assumption [H1] (i) in [4], and also Assumption 1 ii) is
assumed in [4]. However, instead of transcritical bifurcation at c= c0 (see assumption
[H1] (ii) in [4]), we additionally assume Assumption 2. While the assumption of tran-
scritical bifurcation at c= c0 produces the “other” Maxwellian (M− in our case, see
Theorem 2.1 below, and M+ in [4]) in a natural way, we obtain the second Maxwellian
as a limiting case of our solution at minus infinity or more directly by an iteration
process (see Section 6). We want to stress that our proof is constructive, and that it
can also (at least implicitly) be shown how close to the typical speed c0, the shock
speed must be for our results to be valid.

Theorem 2.1. For any given positive Maxwellian M+, there exists a family of
Maxwellians M− =M− (ε) and shock speeds c= c(ε)= c0 +ε, such that the shock wave
problem (1.5) has a non-negative locally unique (with respect to the norm ‖·‖ and up to
a shift in the independent variable) non-trivial bounded solution for each sufficiently
small ε>0. Furthermore, M− is determined by M+ and c.
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Remark 2.3. The arguments in this paper can be changed, so that we can interchange
M− and M+ in Theorem 2.1 (with ε<0).

Remark 2.4. The approach of this paper can also be applied to obtain similar results
for the discrete Boltzmann equation for mixtures.

3. Transformation of the problem

We consider

(B−cI)dF
dy

=Q(F,F ), where F→M+ as y→∞. (3.1)

We first prove the following theorem.

Theorem 3.1. For any given positive Maxwellian M+, there exists a family of shock
numbers c= c(ε), such that the problem (3.1) has a non-negative locally unique (with
respect to the norm ‖·‖ and up to a shift in the independent variable) non-trivial
bounded solution, for each sufficiently small ε>0.

Then arguments in [7] can be used to show that the solution tends to a Maxwellian
at minus infinity (see Section 6 below).

We denote

F =M+M1/2h, with M =M+,

and obtain

(B−cI)dh
dy

+Lh=S(h,h), where h→0 as y→∞, (3.2)

with

Lh=−2M−1/2Q(M,M1/2h) and S(g,h)=M−1/2Q(M1/2g,M1/2h).

The linear operator (n×n matrix) L is symmetric and semi-positive (i.e., 〈h,h〉L ≥0
for all h∈R

n) and has the null-space

N(L)=span(M1/2φ1,...,M
1/2φp)=span(e1,...,ep),

where {e1,...,ep} can be chosen such that

〈ei,ej〉= δij and 〈ei,ej〉B−cI =(γi−c)δij , with γi = 〈ei,ei〉B . (3.3)

The quadratic part S(h,h) is orthogonal to N(L) (i.e., 〈φ,S(h,h)〉=0 if φ∈N(L)).
By Assumption 1 [i], there is a number c= c0, such that (after possible renum-

bering)

γp = c0 and γi 6= c0 for i=1,... ,p−1. (3.4)

We study Equation (3.2) for

c= c0 +ε, 0<ε≤s,

where s is chosen such that

det(B−cI) 6=0 and γi 6= c, i=1,... ,p, if 0<ε≤s. (3.5)
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Clearly, (for a finite number n) such a number s exists by Assumption 1.
Then Equation (3.2) are equivalent with the system

dh

dy
+(B−cI)−1Lh=(B−cI)−1S(h,h).

We now formulate a result on the characterization of corresponding linearized
system [3]. Let n±, with n+ +n− =n, and m±, denote the numbers of the positive and
negative eigenvalues of the matrices B−cI and (B−cI)−1L respectively. Moreover,
let k+, k−, and l be the numbers of positive, negative, and zero eigenvalues of the p×p
matrix K, with entries kij = 〈yi,yj〉B−cI , such that N(L)= span(y1,... ,yp). Then

m± =n±−k±− l, and the matrix (B−cI)−1L is diagonalizable if and only if l=0.
This result is independent on the choice of the basis {y1,... ,yp} of N(L). In particular,
it is true for {y1,... ,yp}={e1,... ,ep}.
Remark 3.1. Equation (3.3)-(3.5), imply that l=1 if ε=0, and l=0 if 0<ε≤s,
while n+ and k+ do not change for 0≤ε≤s. Therefore, (B−cI)−1L has exactly one
more positive eigenvalue, for 0<ε≤s, than for ε=0.

The matrix (B−cI)−1L has (for 0<ε≤s) exactly n−p non-zero (real) eigenval-
ues. Moreover, there is a basis {u0,... ,um}, with m=n−p−1, of Im((B−cI)−1L),
such that [3]

(B−cI)−1Lui =λiui, λi 6=0, 〈ui,uj〉B−cI =λiδij ,

ui =(B−cI)−1L1/2wi, 〈wi,wj〉= δij , i,j=0,... ,m. (3.6)

We choose u0, such that λ0 is the minimal positive eigenvalue and
〈
u0,M

1/2φ⊥
〉
≥

0.

Remark 3.2. The relation

det((B−cI)−1L−λI)=0⇔det(L−λ(B−c0I−εI))=0

implies that the real eigenvalues of (B−cI)−1L are continuous in ε. In fact,

det(L−λ(B−c0I−εI))=sn(ε)λn + ...+sp(ε)λ
p

=sn(ε)λp
m∏

i=0

(λ−λi(ε)),

where sp(ε),... ,sn(ε) are polynomials in ε, such that sn(ε)=det(B−cI) 6=0, sp(0)=0
(sp(ε) 6=0 if 0<ε≤s) and sp+1(0) 6=0.

Hence,

0<λ0<λi, i=1,... ,m, (3.7)

if ε is small enough. Moreover, by Equation (3.7) and Assumption 1 we can conclude
that

λ0 =O(ε) and λi =O(1), i=1,... ,m, as ε→0+. (3.8)

Furthermore, by the implicit function theorem, the eigenvalue λ0 =λ0 (ε) is a C1-
function (in an open neighborhood of ε=0), with the first derivative

dλ0

dε
(ε)=

dsn

dε
(ε)λn

0 + ···+ dsp

dε
(ε)λp

0

nsn(ε)λn−1
0 + ···+psp(ε)λ

p−1
0

.
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In particular,

dλ0

dε
(0)=

dsp

dε
(0)

(p+1)sp+1(0)
.

The smallness of λ0, compared to the other eigenvalues, is essential in the proof.
These results can also be deduced by perturbation theory [12].

We denote

h=
m∑

i=0

xiui, where xi =xi(y)=
1

λi
〈h,ui〉B−cI .

Then,

dxi

dy
+λixi =gi(X,X),

where X=(x0,... ,xm), gi =gi(X,Y )=

m∑

j,k=0

xjykg
i
jk, i=0,... ,m,

with gi
jk =

1

λi
〈ui,S(uj ,uk)〉=

〈
L−1/2wi,S((B−cI)−1L1/2wj ,(B−cI)−1L1/2wk)

〉
.

We denote by ĝi the symmetric (m+1)×(m+1) matrix with entries

(ĝi)j+1,k+1 =gi
jk, 0≤ j,k≤m,

and by Gi>0 the maximum of the absolute values of the eigenvalues of the matrix ĝi,
or, equivalently, Gi = sup

|X|=1

|ĝiX|. Then

gi(X,Y )= 〈X,ĝiY 〉 and |gi(X,Y )|≤Gi |X| |Y |, for i=0,... ,m.

Let σ1,... ,σm+1 denote the non-zero (i.e., positive) eigenvalues of the n×n matrix L.
Then

∣∣gi
jk

∣∣≤ CMmaxσmax

b2min

√
Mminσmin

, 0≤ i,j,k≤m,

with C from Equation (1.4) and

σmax = max
1≤α≤m+1

(σα), σmin = min
1≤α≤m+1

(σα), bmin = min
1≤α≤n

|ξ1α−c|,

Mmin = min
1≤i≤n

(Mi) and Mmax = max
1≤i≤n

(Mi). (3.9)

Hence,

Gi ≤
CMmaxσmax(m+1)

b2min

√
Mminσmin

, i=1,... ,m. (3.10)

It is clear that x0 =x0(y) plays a special role for small values of the minimal
positive eigenvalue λ0 (and therefore also for small ε). We assume that x0 6=0 and
substitute

{
x0(y)=λ0x(t)

xi(y)=λ0x(t)zi(t),
with t=λ0y, for i=1,... ,m.
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Denoting

Z=(1,z1,... ,zm), z=(z1,... ,zm), θ=θ(z)=g0(Z,Z)

and µi =
λ0

λi−λ0
, i=1,... ,m,

we obtain






dx

dt
+x=x2g0(Z,Z)

x
dzi

dt
+
dx

dt
zi +

λi

λ0
xzi =x2gi(Z,Z),

i=1,... ,m, (3.11)

or, equivalently,






dx

dt
+x=x2θ(z)

dzi

dt
+

1

µi
zi =x(gi(Z,Z)−ziθ(z)),

i=1,... ,m. (3.12)

4. Existence of a non-trivial bounded solution

From the first equation in Equation (3.12) we obtain

d

dt
(e−t 1

x
)=−e−tθ(z). (4.1)

We note that x(t)→0 as t→∞. Moreover, if Equation (3.12) has a bounded solution

(with z bounded) then x(t)=O(e−t) as t→∞, and therefore a= lim
t→∞

1

x(t)
e−t ∈R

exists. It is also easy to see that zi(t)→0 as t→∞ for i=1,... ,m. We will show
below that such a bounded solution exists.

Solving Equation (4.1) we obtain

x=
1

aet +T (−1)θ(z)
, where T (b)f(t)=

∞∫

0

e−uf(t−bu) du.

The parameter a reflects the invariance of our equation under shifts in the invariant
variable t. The sign of a is, however, defined uniquely. It must be the same as the
sign of

θ0 = lim
t→∞

θ(z)=g0(ω,ω)=
1

λ0
〈u0,S(u0,u0)〉 , where ω=(1,0,... ,0)∈R

m;

otherwise x(t), with a small a, has a singularity for large t>0.

Lemma 4.1. If
〈
M+φ⊥,φ

2
⊥

〉
B−c0I

>0, where the vector φ⊥ satisfies Equation (2.1) ,

then θ0(0)= lim
ε→0

θ0(ε)>0.

The proof of Lemma 4.1 is presented in Section 7.

Remark 4.1. By Assumption 2 and Lemma 4.1, θ0(0)= lim
ε→0

θ0(ε) is positive. Hence,

by continuity of θ0 in ε (see Section 7), we can allow s (possibly by choosing it smaller
than above) to be such that θ0 =θ0(ε) is positive for 0≤ε≤s.
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We study only the case 0<ε≤s below, and therefore we choose a=1. Then x(t)
must satisfy

x(t)=
1

et +T (−1)θ(z)
.

Furthermore, if the functions zi =zi(t), i=1,... ,m, are bounded, then they satisfy the
integral equations

zi =µiT (µi)[x(gi(Z,Z)−ziθ(z))], i=1,... ,m, where T (b)f(t)=

∞∫

0

e−uf(t−bu) du.

We denote

g=g(z)=(g1,... ,gm).

We want to prove existence and uniqueness of a solution to the equation

z(t)=ΓΨ(z),

where

Ψ(z)=
1

et +T (−1)θ(z)
[g(z)−zθ(z)] and Γ=diag(µ1T (µ1),... ,µmT (µm)).

We denote

‖S‖=

√√√√
m∑

i=1

G2
i and ‖θ‖=G0, with Gi = sup

|X|=1

|ĝiX|, i=0,... ,m.

Then, by Equation (3.10), in the notations of (3.9),

‖S‖≤
√
m
CMmaxσmax(m+1)

b2min

√
Mminσmin

and ‖θ‖≤ CMmaxσmax(m+1)

b2min

√
Mminσmin

. (4.2)

We introduce the Banach space

X ={z=z(t)∈C(R,Rm) | ‖z‖<∞},

where C(R,Rm) denote the space of all continuous bounded functions on R into R
m,

and its closed convex subset

BR ={z∈X |‖z‖≤R} , with R<R∗ =

√

1+
θ0

‖θ‖ −1≤
√

2−1. (4.3)

Furthermore, we introduce the mapping ZR :BR →X , defined by

ZR(z)=(Z1(z),... ,Zm(z)), Zi(z)=µiT (µi)
gi(Z,Z)−ziθ(z)

et +T (−1)θ(z)
, i=1,... ,m.

Clearly,

|g(z)|≤‖S‖(1+ |z|2) and |θ(z)|≤‖θ‖(1+ |z|2).
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We note (by bilinearity and symmetry in arguments of g0) that

θ(z)=g0(ω+z∗,ω+z∗)=θ0 +2g0(ω,z∗)+g0(z∗,z∗),

where

ω=(1,0,... ,0)∈R
m+1 and z∗ =(0,z1,... ,zm).

Also,

|g0(ω,z∗)|≤‖θ‖|z|,

and therefore

θ(z)≥θ0−‖θ‖(2‖z‖+‖z‖2
).

Hence,

θ(z)≥‖θ‖[(1+R∗)
2−(1+‖z‖)2],

if

‖z‖<R∗ =

√

1+
θ0

‖θ‖ −1.

A similar estimate holds for T (−1)θ(z) (since T (b)1=1), and therefore

‖x‖≤ 1

‖θ‖[(1+R∗)2−(1+‖z‖)2] , if ‖z‖<R∗. (4.4)

We can now prove the following lemma.

Lemma 4.2. If z,z′∈BR, then

‖ZR(z)‖≤Φ(R) and ‖ZR(z)−ZR(z′)‖≤Φ′(R)‖z−z′‖,

where

Φ(R)=
δ

∆(R)

(‖S‖
‖θ‖ +R

)
(1+R)2,

with δ=max(|µ1|,... ,|µm|) and ∆(R)=(1+R∗)
2−(1+R)2,

and

Φ′(R)=
dΦ(R)

dR
=

1

∆(R)

[
2Φ(R)(1+R)+2δ

(‖S‖
‖θ‖ +R

)
(1+R)+δ(1+R)2

]

is the Fréchet derivative of Φ(R).

Proof. Let z,z′∈BR. Then,

‖ZR(z)‖≤ δ

‖θ‖∆(R)
(‖g(z)‖+‖zθ(z)‖)≤ δ

∆(R)

(‖S‖
‖θ‖ +R

)
(1+R)2.
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Clearly,

Ψ(z)−Ψ(z′)

=
1

∆(z)
[g(z)−zθ(z)]− 1

∆(z′)
[g(z′)−z′θ(z′)]

=
1

∆(z)
([g(z)−g(z′)]+(z′−z)θ(z)+z′[θ(z′)−θ(z)]+[∆(z′)−∆(z)]Ψ(z′)),

where

Ψ(z)=
1

et +T (−1)θ(z)
[g(z)−zθ(z)] and ∆(z)=et +T (−1)θ(z).

We note (by bilinearity and symmetry in arguments of gi for i=0,... ,m) that

gi(Z,Z)−gi(Z
′,Z ′)=gi(Z−Z ′,Z+Z ′) for i=0,... ,m,

where Z=ω+z∗ =(1,z1,... ,zm).

Therefore

‖θ(z′)−θ(z)‖≤2‖θ‖(1+R)‖z−z′‖,

and

‖g(z)−g(z′)‖≤2‖S‖(1+R)‖z−z′‖ .

Hence,

‖ZR(z)−ZR(z′)‖≤ δ‖Ψ(z)−Ψ(z′)‖

≤ 1

∆(R)

[
2Φ(R)(1+R)+2δ

(‖S‖
‖θ‖ +R

)
(1+R)+δ(1+R)2

]
‖z−z′‖ .

Let us now consider the equation

r=Φ(r), r∈ I=[0,R∗), Φ(r)=
δ

∆(r)

(‖S‖
‖θ‖ +r

)
(1+r)2. (4.5)

Clearly,

Φ(r)>0, Φ′(r)>0, Φ′′(r)>0, for all r∈ I.

Then there are three different possibilities:

1. Equation (4.5) has exactly two different solutions r= r1 and r= r2, r1<r2,
and there exists a unique point r= r0, r1<r0<r2, such that Φ′(r0)=1;

2. Equation (4.5) has a unique solution r= r1, and Φ′(r1)=1 (r1 = r2 = r0);

3. Equation (4.5) has no solutions.

We consider the first case. Obviously, ZR :BR →BR for all R∈ [r1,r2]. Moreover,
if R∈ [r1,r0) then ZR is a contraction, since Φ′(R)<1. We can state the following
theorem.

Theorem 4.3. Assume that the equation

r=Φ(r), r∈ I=[0,R∗),
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has two different solutions r1 and r2, r1<r2, in I, and let r0 be the unique point such
that r1<r0<r2 and Φ′(r0)=1.

Then the mapping ZR(z) :BR →X , R∈ [r1,R∗), has a fixed point z=z∗.

The fixed point z=z∗ is unique in the ball

0≤‖z‖<r2, z∈BR,

and satisfies the inequality

‖z∗‖≤ r1.

Furthermore, the iteration process

zn+1 =ZR(zn), n=0,1,...,

converges to z∗ for any z0∈BR such that ‖z0‖<r0.

Proof. The mapping Zr(z) :Br →Br is a contraction for all r1≤ r<r0, and there-
fore ZR(z), R∈ [r1,R∗), has a unique fixed point z=z∗ in Br1

, and the iteration
process converges to z∗ for any z0∈BR such that ‖z0‖<r0.

If z=z∗∗ is a fixed point of the mapping ZR(z) and ‖z∗∗‖∈ (r1,r2), then ‖z∗∗‖=
‖ZR(z∗∗)‖≤Φ(‖z∗∗‖)<‖z∗∗‖. Contradiction.

Therefore, uniqueness in Br1
implies uniqueness in the ball 0≤‖z‖<r2, z∈BR.

Remark 4.2. In fact, according to [11], the iteration process

zn+1 =ZR(zn), n=0,1,... ,

converges to z∗ for any z0∈BR such that ‖z0‖<r2.

Remark 4.3. Let the equation

r=Φ(r), r∈ I=[0,R∗),

have a unique solution r= r1, and Φ′(r1)=1. Then according to [11], ZR(z), R∈
[r1,R∗), has a unique fixed point z=z∗ in Br1

.

Corollary 4.4. There exists a function

δ0 = δ0

(
R∗,

‖S‖
‖θ‖

)
,

such that the condition

δ<δ0

is sufficient for the existence and uniqueness of the fixed point z=z∗ for the mapping
ZR(z).

Proof. Let δ0 = δ0

(
R∗,

‖S‖
‖θ‖

)
be the value of δ, such that r0 = r1 = r2.
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5. Proof of Theorem 3.1

Proof. Let s be a non-zero number such that, with c= c0 +ε,

0<s< min
ξ1

i
>c0

(ξ1i −c0),

or, equivalently,

det(B−cI) 6=0, if ε∈ [0,s] ,

and

det(〈M+φi,φj〉B−cI) 6=0 for all ε∈ (0,s],

θ0 (ε)>0 for all ε∈ [0,s],

where θ0 (ε)=
〈u0,S(u0,u0)〉

λ0
if ε>0 and θ0 (0)= lim

ε→0+
θ0 (ε).

Such a number s exists, by Assumption 1 and Remark 4.1.
We construct the function

Φs(R)= δ

(‖S‖s

‖θ‖s

+R

)
(1+R)2

(1+R∗s)2−(1+R)2
,

where

δ= δ(ε)=max(|µ1|,... ,|µm|) and R∗s =

√

1+
θ0,s

‖θ‖s

−1≤
√

2−1.

Here

‖S‖s = max
0≤ε≤s

(‖S‖), ‖θ‖s = max
0≤ε≤s

(‖θ‖) and θ0,s = min
0≤ε≤s

(θ0)>0,

such that

|g0(Z,Z)|≤‖θ‖|Z|2 and |g(Z,Z)|≤‖S‖|Z|2 , with g=(g1,... ,gm).

Then, by Equation (4.2), in the notations (3.9) and with bs = min
0≤ε≤s,0≤α≤n

∣∣ξ1α−c
∣∣,

‖S‖s ≤
√
m
CMmaxσmax(m+1)

b2s
√
Mminσmin

and ‖θ‖s ≤
CMmaxσmax(m+1)

b2s
√
Mminσmin

.

One can show that

0≤ δ

(‖S‖
‖θ‖ +R

)
(1+R)2

(1+R∗)2−(1+R)2
≤Φs(R), for ε∈ [0,s].

Let δ0 = δ0

(
R∗s,

‖S‖s

‖θ‖s

)
be the value of δ, such that the equation

r=Φs(r), r∈ [0,R∗s),
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has a unique solution Rs. By the relations (3.8), δ→0 if ε→0. Hence, there exists a
non-zero number 0<s0≤s, such that δ<δ0 if 0≤ε≤s0.

Let z∗ =(z∗1 ,... ,z
∗
m) be a solution of Equation (3.12); then

F (y)=M
1/2
+ [M

1/2
+ +λ0x(t)UZ

∗(t)],

where U is the matrix with columns u0,... ,um, and Z∗ =(1,z∗1 ,... ,z
∗
m). Furthermore,

Mmin = min
1≤i≤n

(M+i)>0, where M+ =(M+1,... ,M+n),

and

‖λ0x(t)UZ
∗(t)‖≤λ0

√
1+‖Rs‖2√

σmax

‖θ‖s bs[(1+R∗s)2−(1+‖Rs‖)2]
≤M1/2

min

if ε is sufficiently small, since

√
1+‖Rs‖2√

σmax

‖θ‖s bs[(1+R∗s)2−(1+‖Rs‖)2]
is independent of ε and

λ0→0 as ε→0.
Hence, F (y)≥0 if ε is sufficiently small, and the theorem is proved.

6. Convergence to a Maxwellian as y→−∞
In the continuous case there is at most one more Maxwellian M , besides M+,

that fulfills the relations

〈M,φi〉B−cI = 〈M+,φi〉B−cI , i=1,... ,p. (6.1)

For DVMs, we will see that for sufficiently small ε>0 and (at least) in a neighborhood
of M+, there is exactly one more Maxwellian M , besides M+, that fulfills the relations
(6.1).

Lemma 6.1. Let δ<δ0, where δ=max(|µ1|,... ,|µm|) and δ0 = δ0

(
R∗,

‖S‖
‖θ‖

)
is the

function defined by Corollary 4.4. Then Equation (3.11) have a unique non-trivial
stationary solution, such that z∈BR (4.3).

Furthermore, the solution can be obtained by the iteration process

zn+1 =Z0R(zn), n=0,1,...,

if ‖z0‖ is sufficiently small (cf. Theorem 4.3).

Proof. Consider Equation (3.11) for the stationary case, i.e.,





x=x2θ(z)
λi

λ0
xzi =x2gi(Z,Z),

i=1,... ,m. (6.2)

x=0 in Equation (6.2) corresponds to the trivial stationary solution h=0, or F =
M+ in the original notation. Hence, we assume that x 6=0 and obtain the algebraic
equations






x=
1

θ(z)

zi =µi(
gi(Z,Z)

θ(z)
−zi),

µi =
λ0

λi−λ0
, i=1,... ,m. (6.3)
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We define a mapping Z0R :BR →X by

Z0R(z)=(Z01(z),... ,Z0m(z)), Z0i(z)=µi

(
gi(Z,Z)

θ(z)
−zi

)
, i=1,... ,m.

Let z,z′∈BR. Then

‖Z0R(z)‖≤ δ
( ‖g(z)‖
‖θ‖∆(R)

+‖z‖
)
≤ δ

(‖S‖
‖θ‖

(1+R)2

∆(R)
+R

)
≤Φ(R),

and

‖Z0R(z)−Z0R(z′)‖≤ δ
∥∥∥∥
g(z)−g(z′)

θ(z)
−g(z′)θ(z)−θ(z

′)

θ(z′)θ(z)
+z−z′

∥∥∥∥≤

≤ δ
[
2
‖S‖
‖θ‖

1+R

∆(R)

(
1+

(1+R)2

∆(R)

)
+1

]
‖z−z′‖≤Φ′(R)‖z−z′‖

in the notations of Section 4.
Now we can apply corresponding results to Theorem 4.3 and Corollary 4.4 for

Z0R(z) (instead of ZR(z)) and the lemma is proved.

Corollary 6.2. Let {u0,... ,um} be the basis (3.6) of Im((B−cI)−1L) and let Rs

be chosen as in the proof of Theorem 3.1 in Section 5. Then there exists a unique
Maxwellian of the form

M− =M+ +M
1/2
+ λ0x(u0 +

m∑

i=1

ziui), x 6=0, z=(z1,... ,zm)∈BRs
, (6.4)

provided that ε>0 is sufficiently small. Furthermore, M− fulfills Equation (6.1).

Proof. Every positive vector of the form (6.4), where (x,z1,... ,zm) is a non-trivial
stationary solution of Equation (3.11), is a Maxwellian. We choose (x,z1,... ,zm) as
the solution in Lemma 6.1 for R=Rs, and note that M− is positive (cf. the proof
of Theorem 3.1 in Section 5) and therefore also a Maxwellian, provided that ε>0 is
sufficiently small. The uniqueness follows from the uniqueness in Lemma 6.1, since
every MaxwellianM− of the form (6.4) corresponds to a non-trivial stationary solution
of Equation (3.11).

The last statement follows by the relations
〈
ui,M

1/2
+ φi

〉

B−cI
=0, for i=0,... ,m.

Now we prove Theorem 2.1.

Proof. (of Theorem 2.1) We apply a method used in [7]. Let F be the locally
unique non-negative solution in Theorem 3.1. We define

H[F ]=H[F ](y)=

n∑

i=1

ξ1i µ(Fi(y)),

where

µ(x)=

{
xlogx if x>0

0 if x=0.
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It is a well-known fact (multiply Equation (3.1) by 1+logF ) that

d

dy
H[F ]=

1

4

n∑

i,j,k,l=1

[
Γkl

ij (FkFl−FiFj)log
FiFj

FkFl

]
≤0, (6.5)

with equality if, and only if, FkFl =FiFj for all indices 1≤ i,j,k,l≤n such that Γkl
ij 6=0.

That is, the inequality (6.5) is an equality, if, and only if, F is a Maxwellian.

The function F is bounded, and so the derivative
dF

dy
and H[F ] are also bounded.

Hence, H[F ](−∞) := lim
y→−∞

H[F ] exists and is finite. Consequently,

0∫

−∞

d

dy
H[F ] dy=H[F ](0)−H[F ](−∞)

is a finite non-positive number.

We denote by M the set of all Maxwellians fulfilling the relations (6.1). We want
to prove that

dist(F (yν) ,M)→0 as ν→∞

for any decreasing sequence {yν}∞ν=1 of negative real numbers, such that yν →−∞ as
ν→∞. We suppose the opposite. Then there are positive numbers ǫ1>0 and δ1>0,
and a decreasing sequence {tν}∞ν=1 of negative real numbers, such that |tν − tν+1|≥ ǫ1
and dist(F (tν) ,M)≥ δ1. The derivative of F is bounded on R, and therefore there

is a positive number ǫ2>0, such that ǫ2<
ǫ1

2
and dist(F (t) ,M)≥ δ1

2
, if t∈Jν =[tν −

ǫ2,tν +ǫ2] and ν ∈{1,2,...}.
We denote

Ψ(Jν)=−
tν+ǫ2∫

tν−ǫ2

d

dy
H[F ](y) dy, ν=1,2,... ,

and recall that for each ν there exists a number sν ∈Jν , such that

tν+ǫ2∫

tν−ǫ2

d

dy
H[F ](y) dy=2ǫ2

d

dy
H[F ](sν).

Hence, the terms Ψ(Jν)→0 as ν→∞, if, and only if,
d

dy
H[F ](sν)→0 as ν→∞.

The sequence {F (sν)}∞ν=1 is bounded, and hence, by the Bolzano-Weierstrass
theorem, we can extract a subsequence {F (sα)}∞α=1 such that lim

α→∞
F (sα)=N exists.

Clearly, Ψ(Jα) is non-negative for all α, and the series

∞∑

α=1

Ψ(Jα)≤−
0∫

−∞

d

dy
H[F ] dy
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converges. Hence,
d

dy
H[F ](sα)→0 as α→∞. We obtain (since F is continuous)

1

4

n∑

i,j,k,l=1

[
Γkl

ij (NkNl−NiNj)log
NiNj

NkNl

]
= lim

α→∞

d

dy
H[F ](sα)=0,

and so N must be a Maxwellian. This is a contradiction, since dist(F (sα) ,M)≥ δ1

2
for all α. Hence,

dist(F (y),M)→0 as y→−∞.

By the construction of the solution F in Theorem 3.1, it is clear, by Corollary 6.2,
that F (y) must converge to the Maxwellian M− of Corollary 6.2 as y→−∞.

7. Proof of Lemma 4.1

Proof. There is a unique vector function ψ=ψ(ε), such that

Lψ=λ0(B−cI)ψ, ψ(0)=ψ0 =M1/2φ⊥ and 〈ψ,ψ0〉=1 (0≤ε≤s), (7.1)

where λ0 =λ0(ε)≥0 with equality if, and only if, ε=0. By Remark 3.2, the
eigenvalue λ0 =λ0 (ε) is a C1-function (in an open neighborhood of ε=0). Let
{e1,... ,ep−1,ep =ψ0} be a basis of N(L), such that Equation (3.3), (3.4) are fulfilled.
Then

ψ (ε)=ψ0 +ψ⊥ (ε)+

p−1∑

α=1

ρα (ε)eα,

for some functions ρ1,... ,ρp−1 : [0,s]→R and ψ⊥ : [0,s]→ Im(L)=N(L)⊥ =
{x∈R

n| 〈x,y〉=0 for all y∈N(L)}. By Equation (7.1),

λ0

[〈
ψ⊥,eα

〉
B

+ρα 〈eα,eα〉B−cI

]
= 〈Lψ,eα〉=0, α=1,... ,p−1,

or, if ε 6=0, equivalently,

ρα =

〈
ψ⊥,eα

〉
B

〈eα,eα〉B−cI

, α=1,... ,p−1.

But, ψ⊥→0 as ε→0, since Lψ⊥ =Lψ=λ0(B−cI)ψ→0 as ε→0. Hence, ρα →0 as
ε→0. Then ψ⊥ is differentiable at ε=0, since

dψ⊥

dε
(0)= lim

ε→0

ψ⊥ (ε)

ε
= lim

ε→0

(
λ0

ε
L−1(B−cI)ψ (ε)

)
=λ′0L

−1(B−c0I)ψ0

(where L−1 : Im(L)→ Im(L) is defined in a natural way) exists. Here and below, we

denote λ′0 =
dλ0

dε
(0) and ϕ′

0 =
dψ⊥

dε
(0). Then,

Lϕ′
0 =λ′0(B−c0I)ψ0.

Clearly,

θ0(ε)=
1

λ0
〈u0,S(u0,u0)〉= q3

〈ψ,S(ψ,ψ)〉
λ0

, where q= 〈u0,ψ0〉B−c0I .
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Moreover, Q(Meθφ⊥ ,Meθφ⊥)=0 for all θ∈R. Considering the terms of order
O(θ2) as θ→0, we obtain that Q(Mφ2

⊥,M)=−Q(Mφ⊥,Mφ⊥). Hence,

S(ψ0,ψ0)=M−1/2Q(Mφ⊥,Mφ⊥)=−M−1/2Q(Mφ2
⊥,M)=

1

2
L(M1/2φ2

⊥).

Finally, we conclude that

θ0(0)= lim
ε→0+

θ0(ε)=
q3

λ′0
〈ϕ′

0,S(ψ0,ψ0)〉=
q3

2λ′0

〈
Lϕ′

0,M
1/2φ2

⊥

〉

=
q3

2

〈
Mφ⊥,φ

2
⊥

〉
B−c0I

>0,

if
〈
Mφ⊥,φ

2
⊥

〉
B−c0I

>0 and q= 〈u0,ψ0〉=
〈
u0,M

1/2φ⊥
〉
>0. The lemma is proved.
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