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MULTIPLE SOLUTIONS FOR COMPRESSIBLE TURBULENT FLOW
MODELS∗

CHRISTOPHE BERTHON† AND FRÉDÉRIC COQUEL‡

Abstract. We analyse the uniqueness of the solutions of a PDE system from the framework of
compressible turbulent models. Smoothness properties of the turbulent viscosity closure law are of
central importance. Several closures of practical importance, including the most widely used law,
indeed fail to be Lipschitz continuous in the natural neighborhood of a null turbulent energy. For
such models, we prove the existence of infinitely many distinct traveling wave solutions which exhibit
positive turbulent energy but connect at infinity end states with vanishing turbulence. Examples
and counter-examples are given.
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1. Introduction
The present work examines uniqueness properties of the solutions of a PDE model

directly motivated by the physics of compressible turbulent flows. The system under
consideration naturally writes as an extension of the usual Navier-Stokes equations
involving an additional PDE for governing a supplementary internal energy. This so-
called turbulent energy dictates a turbulent viscosity law which sum with the laminar
one defines the total viscosity function. A relaxation term drives this turbulent energy
to vanish in time, in agreement with the physics. The key issue comes from the
property that most of the turbulent viscosity laws, proposed in the literature, fail to
be Lipschitz continuous in the regime of a vanishing turbulent energy. Such a lack of
smoothness therefore rises the question of uniqueness of natural solutions of the PDE
model which exhibit locally zero turbulent energy. We answer this question when
studying both existence and uniqueness of the traveling wave solutions of the system
connecting end states with null turbulent energy. Due to the interplay between the
relaxation term and the turbulent viscosity law, the reported lack of smoothness is
proved to result in infinitely many distinct traveling wave solutions connecting the
same pair of end states at infinity. We underline that failure of uniqueness applies to
the most widely used turbulent viscosity closure. Up to our knowledge, this negative
but important result seems to be new. By contrast, we report a closure law, proposed
in the literature, for which existence and uniqueness are guaranteed.

The format of the present paper is the following. The first section describes the
mathematical model with a special attention paid on the precise properties met by
both turbulent viscosity law and relaxation source term. We emphasize that the
proposed assumptions are indeed satisfied by the models proposed in the literature.
The main result of the present paper is then stated. The second section is devoted to
the analysis of the traveling solutions of the PDE system. Multiple solutions are built
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from the study of a suitable auxiliary problem. The last paragraph gives examples
taken from the literature.

2. Mathematical model
The present paper aims at studying the existence and uniqueness of the traveling

wave solutions of the following PDE model:




∂tρ+∂xρu=0, x∈R, t>0,
∂tρu+∂x(ρu2 +p1 +p2)=∂x ((µ1(ρ,T1)+µ2(ρ,T2))∂xu),
∂tp1 +∂xp1u+(γ1−1)p1∂xu=(γ1−1)µ1(ρ,T1)(∂xu)2 +(γ1−1)ρε(T2),
∂tp2 +∂xp2u+(γ2−1)p2∂xu=(γ2−1)µ2(ρ,T2)(∂xu)2−(γ2−1)ρε(T2).

(2.1)

This model stands as a natural extension of the classical Navier-Stokes equations for a
compressible gas with density ρ>0 and velocity u∈R obtained when considering two
independent pressure laws p1 and p2 governed by their own PDE. Here the adiabatic
coefficients γ1 and γ2 are two given real constants satisfying

1<γ1 <γ2. (2.2)

Then the temperatures Ti, supposed to stay non-negative, are defined from pi =(γi−
1)ρTi with i=1, 2. Next, the source term in (2.1) is assumed at this stage to satisfy:

ε(T2)>0 for all T2 >0 with lim
T2→0+

ε(T2)=0,

ε∈C1(R+,R+) with lim
T2→0+

d

dT2
ε(T2)=0. (2.3)

This source term intends to relax the pressure p2 to zero as the time goes to infinity
in view of the ODE

dtp2 =
ε(T2)
T2

(0−p2),

inferred from (2.1) when neglecting the space derivatives. These considerations lead
us to introduce the following natural phase space for (2.1):

Ω=
{
v= t(ρ,ρu,p1,p2)∈R4/ρ>0,ρu∈R,p1 >0,p2≥0

}
. (2.4)

At last, the required viscosity laws are such that

µ1(ρ,T1)+µ2(ρ,T2)>0, for all v∈Ω, (2.5)

and their precise forms depend on the physical setting. Models from the physics of
compressible turbulent flows enter in particular the present framework where µ1(ρ,T1)
is the so-called laminar viscosity while µ2(ρ,T2) represents the turbulent viscosity
function (see [1, 2, 3] for the details). Let us just mention that T2 coincides with the
specific kinetic turbulent energy usually denoted by k with the adiabatic coefficient
given by γ2 =5/3. Here the relaxation term ε(k)=Lk3/2, L>0, is the turbulent
dissipation rate proposed in the so-called mixing length model where L denotes the
inverse of the mixing length (see for instance Mohammadi-Pironneau [10] or Hirsh [7]
and the references therein).

Motivated by several models (see section 4 for examples of interest) the viscosity
laws in the present work will be assumed to satisfy two distinct sets of smoothness
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properties. The first setting for viscosity laws in the form µ(ρ,y)≥0 with (ρ,y)∈
R+

? ×R+ is such that

µ∈C1(R+
? ×R+,R+). (2.6)

Throughout this paper, the viscosity law µ1(ρ,T1) is assumed to obey (2.6). By
contrast, the second law µ2(ρ,T2) may or not satisfy this smoothness condition. An
important and general property, grounded from the physics, requires the viscosity law
µ2(ρ,T2) to vanish with T2; namely:

lim
y→0+

µ2(ρ,y)=0, ρ>0. (2.7)

All the turbulent models proposed in the literature [7, 10, 11] are such that
the mapping (ρ,y)∈R+

? ×R+
? →µ2(ρ,y)∈R+ is differentiable but for most of them,

this smoothness property does not extend to (ρ,y)∈R+
? ×R+: namely, ρ>0 being

fixed, their typical asymptotic behavior, for y >0 small enough, is in O(yα) for some
α∈ [1/2,1), so that Lipschitz continuity is lost when y vanishes. It turns out that such
models which fail to obey (2.6) satisfy by contrast the following three properties:

lim
y→0+

µ2(ρ,y)
yα

=h(ρ)>0, ρ>0, (2.8)

with the property that the function:

(ρ,z)∈ (0,+∞)× [0,+∞)→Φ(ρ,z)=µ2(ρ,z
1

1−α )∈R+

is Lipschitz continuous,
(2.9)

together with:

(ρ,z)∈ (0,+∞)× [0,+∞)→Ψ(ρ,z)= µ2(ρ,z
1

1−α )

z
α

1−α
∈R+

is Lipschitz continuous.
(2.10)

Motivated by the physics [11] and the setting of assumptions (2.8)-(2.10) for
the second viscosity law, the relaxation source term y∈R+→ ε(y)∈R+ in (2.1), is
assumed to obey the following strengthened conditions:

ε(y)>0 for all y >0 with lim
y→0+

ε(y)
yα

=0,

y∈R+→ ε(y)
yα

∈R+ is Lipschitz continuous
(2.11)

where α is the exponent used in (2.8)-(2.10).
Let us stress that the reported properties are in particular met by the most widely

used turbulent viscosity law µ2(ρ,y)=Cρy1/2 so that (2.7) to (2.10) hold with α= 1
2 ,

while the turbulent dissipation rate ε(y)=Ly3/2, L>0, satisfies (2.11) again with
α=1/2. We refer the reader to [11]. Other closure laws for the turbulent viscosity
are examined at the end of the paper.

We claim uniqueness in the traveling wave solutions of the system (2.1), we rewrite
for short

∂tv+A(v)∂xv=R(v,∂xxv)+S(v), x∈R, t>0, (2.12)
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is actually dictated by the smoothness properties met by the viscosity law µ2(ρ,T2),
namely either (2.6) or (2.7)-(2.10). In order to state the main result of the present
paper, we first briefly recall that a traveling wave solution of (2.1) is a smooth solution
in C1(R×R+,Ω) of the form v(x,t)= v̂(x−σt) with σ∈R and





lim
ξ→−∞

v̂(ξ)=vL, lim
ξ→+∞

v̂(ξ)=vR, ξ =x−σt,

lim
ξ→±∞

v̂′(ξ)= lim
ξ→±∞

v̂′′(ξ)=0,
(2.13)

where (vL,vR)∈Ω2. This particular smooth solution must therefore satisfy the fol-
lowing nonlinear ODE’s system:

−σdξv̂+A(v̂)dξv̂=R(v̂,d2
ξξv̂)+S(v̂), ξ∈R. (2.14)

Let us first stress that the asymptotic conditions (2.13) can be achieved only if the
two end states meet the following special form:

vL =(ρL,(ρu)L,(p1)L,0), vR =(ρR,(ρu)R,(p1)R,0), (2.15)

so as to force the source term ρε(T2) in (3.6) to identically vanish at infinity (see
indeed the general assumption (2.3)).

As it is well-known, traveling wave solutions can only be associated with genuinely
nonlinear fields in the underlying first order system (see [13] for instance). This one
is seen to be hyperbolic over the phase space Ω with the following distinct eigenvalues

u−c(v), u, u+c(v), c(v)=
√

γ1p1 +γ2p2

ρ
, v∈Ω,

where u has two order of multiplicity. The extreme fields are genuinely nonlinear
while the intermediate ones are linearly degenerate. For frame invariance properties
satisfied by the PDE model (2.1), it suffices to study the traveling wave solutions
associated with the first extreme field [13]. We are now in a position to state our
main result:

Theorem 2.1. Let be given a state vL∈Ω with (p2)L =0. Let a velocity σ be pre-
scribed under the Lax condition:

uL−c(vL)>σ, c2(vL)=
γ1(p1)L

ρL
. (2.16)

• Assume that both viscosity laws µ1(ρ,T1) and µ2(ρ,T2) achieve the smoothness
property (2.6) while the relaxation term ε(T2) obeys (2.3). Then there exists a
unique (up to some translation) traveling wave solution issuing from vL and
arriving at a state vR in Ω with (p2)R =0.

• Assume that µ1(ρ,T1) obeys (2.6) while by contrast µ2(ρ,T2) satisfies (2.7)-
(2.10) and ε(T2) meets (2.11). Then there exists infinitely many distinct
traveling wave solutions connecting vL to an end point vR with (p2)R =0.

In case of uniqueness, the pressure p2 stays identically zero along the profile while
by contrast it exhibits strictly positive values in the reported multiple solutions. Let
us underline that in both cases, the end point vR =vR(σ,vL) is the same. Its precise
form is detailed in the next section.
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3. Traveling wave analysis
The analysis makes use of the following result:

Lemma 3.1. Smooth solutions of (2.1) satisfy the following conservation law:

∂tρE(v)+∂x(ρE(v)+p1 +p2)u=∂x((µ1(ρ,T1)+µ2(ρ,T2))u∂xu), (3.1)

where the total energy ρE(v) is defined by:

ρE(v)=
(ρu)2

2ρ
+

p1

γ1−1
+

p2

γ2−1
. (3.2)

Smooth solutions satisfy in addition the following balance equations:

∂tρs1(v)+∂xρs1(v)u=
γ1−1
ργ1−1

(
µ1(ρ,T1)(∂xu)2 +ρε(T2)

)
, (3.3)

∂tρs2(v)+∂xρs2(v)u=
γ2−1
ργ2−1

(
µ2(ρ,T2)(∂xu)2−ρε(T2)

)
, (3.4)

where the specific entropies are respectively given by

s1(v) :=
p1

ργ1
, s2(v) :=

p2

ργ2
. (3.5)

The proof of the above result is easy and is left to the reader (see [1] and also [5] for
the usual gas dynamics setting). The interest in Lemma 3.1 comes from the property
that the mappings (ρ,ρu,p1,p2)→ (ρ,ρu,ρE,p2) and (ρ,ρu,p1,p2)→ (ρ,ρu,ρs1,ρs2),
clearly define admissible changes of variables which turn out to be useful in the sequel.

3.1. The dynamical system. This paragraph aims at introducing the dy-
namical system which governs the traveling wave solutions we analyse for existence.
Basic properties of the flow are stated.

Due to Galilean invariance (see [4, 14]), it suffices to consider the case of a null ve-
locity σ in (2.14) when invoking the change of variables (ρ,ρu,p1,p2)→ (ρ,ρu,ρE,p2):





dξ(ρu)=0,
dξ(ρu2 +p1 +p2)=dξ ((µ1(ρ,T1)+µ2(ρ,T2))dξu),
dξ(ρE +p1 +p2)u=dξ((µ1(ρ,T1)+µ2(ρ,T2))udξu),
dξp2u+(γ2−1)p2dξu=(γ2−1)µ2(ρ,T2)(dξu)2−(γ2−1)ρε(T2).

(3.6)

The first equation in (3.6) implies that the relative mass flux ρu has a constant value
denoted by m=(ρu)L. Arguing again about the Galilean invariance allows us to
assume without loss of generality that:

m>0. (3.7)

In other words, we only address from now on viscous profiles for shock solutions asso-
ciated with the first GNL field according to the Lax condition stated in Theorem 2.1,
namely we restrict attention to a left state vL∈Ω such that (see also [4, 14])

m> (ρc)L, cL =

√
γ1(p1)L

ρL
. (3.8)
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Using the identity u=mτ with τ =1/ρ and invoking Lemma 3.1, smooth solutions
of (3.6) must equivalently solve the following autonomous system. We denote Σ3 to
shorten the notations:





mdξτ =
m2(τ−τL)+s1τ

−γ1 +s2τ
−γ2−(s1τ

−γ1 +s2τ
−γ2)L

µ1(τ,s1)+µ2(τ,s2)
≡g(τ,s1,s2),

mdξs1 =(γ1−1)τγ1−1

(
µ1(τ,s1)g2(τ,s1,s2)+

ε(τ,s2)
τ

)
,

mdξs2 =(γ2−1)τγ2−1

(
µ2(τ,s2)g2(τ,s1,s2)− ε(τ,s2)

τ

)
,

(3.9)

equipped with the natural phase space:

E(Σ3)=
{
ω =(τ,s1,s2)∈R3/τ >0,s1 >0,s2≥0

}
. (3.10)

In (3.9) and in the sequel, we set with little abuse in the notations, µi(τ,si)=
µi(ρ,Ti(ρ,si)) for i=1,2 and ε(τ,s2)= ε(T2(ρ,s2)). In view of condition (2.5), note
that µ1(τ,s1)+µ2(τ,s2)>0 over E(Σ3). Then the smoothness assumptions made on
the viscosity laws clearly show the vector field X :E(Σ3)→R3 to be generically con-
tinuous but only Lipschitz continuous (actually differentiable) for turbulent viscosity
satisfying (2.6). Well-known results then assert that prescribing at ξ =0 an initial data
ω0 in (3.9) gives rise to a non-extensible solution of Σ3 under the generic assumption
of a continuous vector field X (see Reinhard [12] or Walter [15] for instance), unique-
ness being achieved under the strengthened condition of a Lipschitz continuous field
(see again [12, 15] for the Picard-Lindelöf Theorem and for counterexamples).

3.2. A reduced dynamical system. The reduced form of the dynamical
system Σ3 will follow from the next statement:

Lemma 3.2. The non extensible solutions of Σ3, with limξ→−∞ω(ξ)=ωL, equivalently
solve the next algebraic-differential system:





mdξτ =
F(τ)+ γ2−γ1

γ2−1 s2τ
1−γ2

τ(µ1(τ,s1)+µ2(τ,s2))
≡G(τ,s1,s2),

mdξs2 =(γ2−1)τγ2−1

(
µ2(τ,s2)G2(τ,s1,s2)− 1

τ
ε(τ,s2)

)
,

s1(ξ)τ(ξ)−γ1

γ1−1
+

s2(ξ)τ(ξ)−γ2

γ2−1
=

τL

τ(ξ)
(p1)L

γ1−1
+

(
1− τL

τ(ξ)

)(
m2

2
(τ(ξ)−τL)−(p1)L

)
,

(3.11)

where we have set

F(τ)=m2

(
γ1 +1

2

)
(τ−τL)(τ−τ?(vL)), (3.12)

τ?(vL)=
γ1−1
γ1 +1

τL +
2γ1

γ1 +1
(p1)L

m2
. (3.13)

The proof is postponed to the end of this section. Let us put forward an important
consequence of the reported equivalence. Observe that solutions of Σ3 with initial
data ω0 in E(Σ3) satisfying τ(ξ)>0 and s2(ξ)≥0 for ξ∈ [0,ξ0), for some given ξ0,
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automatically obey s1(ξ)>0 for all the ξ under consideration. This positivity property
simply follows from the estimate dξs1 >0, ξ∈ [0,ξ0), inferred from ε(τ,s2)≥0 in (3.9).
Hence with ω0∈E(Σ3), nonextensible solutions of Σ3 are such that τ(ξ)>0, s2(ξ)≥0
for all ξ∈ (0,ξ+(ω0)) where ξ+(ω0) denotes the maximal positive time of existence.

Next, the algebraic relation in (3.11) obviously yields s1 as a function of τ(ξ) and
s2(ξ) so that the ODEs in (3.11) just depend on τ and s2. Thanks to the equivalence
of (3.9) and (3.11), we have s1(τ(ξ),s2(ξ))>0 so that non extensible solutions of the
Cauchy problem for (3.11) with initial data in E(Σ3) are such that τ(ξ) and s2(ξ)
with ξ∈ [0,ξ+(ω0)) belong to

E(Σ2)=
{
(τ,s2)∈R2/τ >0,s2≥0

}
. (3.14)

It thus makes sense to consider the reduced dynamical system Σ2 over the phase space
(3.14):





mdξτ =G(τ,s2),

mdξs2 =(γ2−1)τγ2−1

(
µ2(τ,s2)G2(τ,s2)− 1

τ
ε(τ,s2)

)
,

(3.15)

where we have set

G(τ,s2)=G(τ,s1(τ,s2),s2). (3.16)

With little abuse in the notations, (3.11) and (3.15)-(3.16) will refer to the same
dynamical system Σ2 throughout the end of the present paper. Again for simplicity,
the pair (τ,s2)∈E(Σ2) will be still denoted by ω.

We conclude this section when establishing Lemma 3.2.

Proof. Since the solutions of (3.9) equivalently solve (3.6), they obey

dξ (E(τ,s1,s2)+τ(p1(τ,s1)+p2(τ,s2)))=mdξ ((µ1 +µ2)τdξτ),

in view of u=mτ . Integrating from −∞ to ξ, we get:

[E(τ,s1,s2)+τ(p1(τ,s1)+p2(τ,s2))]
ξ
−∞= τ

[
m2τ +s1τ

−γ1 +s2τ
−γ2

]ξ

−∞ , (3.17)

from the governing ODE for τ in (3.9). The required algebraic relation in (3.11)
follows after rearrangements in (3.17) when writing:

E(τ,s1,s2)+τ(p1(τ,s1)+p2(τ,s2))=
m2τ2

2
+

γ1s1τ
1−γ1

γ1−1
+

γ2s2τ
1−γ2

γ2−1
.

3.3. Heteroclinic solutions of Σ2. We analyse for existence heteroclinic
solutions of Σ2 issuing from (τL,0) in the past and arriving at some state (τR,0)∈
E(Σ2) in the future. With this respect, we first exhibit below a systematic heteroclinic
solution.

In that aim, let us consider the auxiliary ODE problem:




mdξτ =
1

τµ1(τ)
F(τ),

τ(0)= τ0,
(3.18)
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with F(τ) given in (3.12) and where we have set:




µ1(τ)=µ1(τ,s1(τ)),
s1(τ)τ−γ1

γ1−1
=

τL

τ

(p1)L

γ1−1
+

(
1− τL

τ

)(
m2

2
(τ−τL)−(p1)L

)
≡ 1

τ
ϑ(τ).

(3.19)

It is worth noticing that (3.19) may be recovered from the algebraic equation in (3.11)
when formally setting s2 to zero. In the same way, observe from the assumption (2.3)
and (2.7) that µ2(τ,s2) and ε(τ,s2) vanish with s2. Hence the function s2(ξ)=0, ξ∈R,
is a natural solution of the second ODE in (3.11) so that (3.19) is deduced from (3.11)
with again s2(ξ)=0 for all ξ∈R. The quadratic function ϑ(τ) in (3.19) is easily seen
to achieve its minimum at τmin = τL +(p1)L/m2 with

ϑ(τmin)=
(p1)L

m2

(
m2τL

γ1−1
− (p1)L

2

)
>

γ1 +1
2(γ1−1)

(
(p1)L

m

)2

>0,

since m2τL >γ1(p1)L in view of the Lax condition (3.8) and γ1 >1. Consequently, the
function τ ∈R+

? →s1(τ) keeps strictly positive values and is clearly Lipschitz contin-
uous. Thus µ1(τ,s1(τ)) and next the right hand side of (3.18) are well-defined and
Lipschitz continuous in the reported domain (see indeed the smoothness assumption
(2.6)).

Next, from (3.13), observe that the Lax condition (3.8) readily implies

τL−τ?(vL)=
2τL

γ1 +1

(
1− c2

L

u2
L

)
>0, (3.20)

so that τL >τ?(vL) and F(τ)<0 for all τ ∈ (τ?(vL),τL). Hence, for any given τ0

in (τ?(vL),τL), the problem (3.18) admits a unique time decreasing solution τNS

connecting τL in the past and τ?(vL) in the future. Let us notice that ωNS is nothing
but a traveling wave solution of the usual 3×3 Navier-Stokes equations for the pressure
law p1 (hence the notation). As a consequence, we state:

Lemma 3.3. Assuming (2.7), i.e. µ2(τ,0)=0 for all τ >0 and (2.3), namely ε(0)=0,
then ωNS : ξ∈R→ωNS(ξ)∈E(Σ2) defined by

ωNS(ξ)=(τNS(ξ),0), ξ∈R, (3.21)

is an heteroclinic solution of (3.15) issuing from ωL =(τL,0) and arriving at

ωR(ωL)=(τ?(vL),0). (3.22)

The above consideration therefore guaranties the systematic existence of at least
one traveling wave solution of (2.1) with the end point (2.15). The natural question
we now tackle concerns the uniqueness of such a solution. Assuming smoothness in
the turbulent viscosity law, we first state the following expected uniqueness result:

Theorem 3.4. Assume that both viscosity laws µ1 and µ2 meet the condition (2.6)
while the turbulent dissipation rate ε satisfies (2.3). Then under the Lax condition
(3.8), the natural solution (3.21) is the unique heteroclinic solution of (3.11) issuing
from ωL and arriving at ωR(ωL) given in (3.22). Traveling wave solutions are thus
unique (up to some translation).
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In sharp contrast, the above uniqueness result is lost when the turbulent viscosity
law in (2.1) falls within the framework of (2.8)-(2.10):

Theorem 3.5. Suppose that µ1 obeys (2.6) while µ2 meets the assumptions (2.7)-
(2.10). Assume that ε obeys (2.11). Then under the Lax condition (3.8), there exist
infinitely many heteroclinic orbits connecting the same pair of end points ωL and
ωR(ωL) in (3.22). The system (2.1) thus admits multiple traveling solutions.

Fig. 3.1. multiple solutions

s2

ττLτ0τ?(vL)

Figure 3.1 gives a physical picture of the above two results. The natural and
expected solution (3.21) is depicted in bold line. Given any τ0∈ (τ?(vL),τL), another
solution with a non-zero turbulent entropy displayed in solid line has to be considered
according to Theorem 3.5 as soon as the turbulent viscosity law fails to be Lipschitz
continuous. This additional solution clearly starts from τL in the past then bifurcates
from a zero turbulent entropy at τ0 to reach in the future the expected end state
ωR(ωL).

The validity of the above statements will follow from the next technical results.
Concerning the Theorem 3.4, the uniqueness of the heteroclinic orbit (3.21) is a clear
consequence of the next technical result:

Proposition 3.6. Under the smoothness condition (2.6) and the assumptions of
Theorem 3.4, there exists at most one heteroclinic solution of (3.11) connecting the
state vL in the past.

Hence, the systematic solution exhibited in Lemma 3.3 is the only one in the
setting of a turbulent viscosity law satisfying (2.6).

Proof. We prove in a first step that there exists at most two negative semi-orbits
of (3.15) connecting the state ωL =(τL,0) in the past. This is a direct consequence
of the Center Manifold Theorem [9] which clearly applies in view of the smoothness
assumptions (2.3) and (2.6).
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Tedious but easy calculations ensure that at an equilibrium point ωe of the dy-
namical system (3.15), necessarily of the form ωe =(τe,0), the linearization of the
vector field yields:




F ′(τe)
τeµ1(τe,s1(τe,0))

γ2−γ1

γ2−1
τ1−γ2
e

0 0




due to (2.7) and the property limT2→0+
d

dT2
ε(T2)=0 stated in (2.3). The associ-

ated eigenvalues respectively read λ1(ωe)= m2(γ1+1)
τeµ1

(τe− τL+τ?(vL)
2 ) and λ2(ωe)=0.

Hence, at the equilibrium point ωL =(τL,0), the sign of λ1(ωL) is given by the sign of
τL−τ?(vL). But as already observed in (3.20), the inequality τ?(vL)<τL is equiva-
lent to the Lax condition (3.8) and therefore we have under (3.8): λ1(ωL)>0.

It can be seen that the associated eigenspace Tu(ωL) is spanned by e1 =(1,0).
From the Center Manifold Theorem [9], there exists an unstable manifold, Wu(ωL),
of dimension 1 and tangent to Tu(ωL) at ωL, made of the totality of the orbits which
tend exponentially fast to ωL as ξ→−∞. Since Wu(ωL) is tangent to e1 at ωL, there
exist exactly two horizontal orbits approaching ωL as ξ→−∞ from the two opposite
directions τ ≥ τL and τ ≤ τL.

Next, to conclude the proof, we establish that the positive semi-orbit emanating
from τ ≥ τL cannot give rise to a heteroclinic solution. In that aim, let be given ε>0,
arbitrarily small, so as to define the domain

Iε =
{
ω∈E(Σ2)/τ >τL +ε,s2≥0

}

and its left boundary

Γε =
{
ω∈E(Σ2)/τ = τL +ε,s2≥0

}
,

with unit inward normal nΓε =(1,0). Then the scalar product of the vector field X(ω)
of (3.15), ω∈Γε with nΓε reads:

X(τL +ε,s2).nΓε =G(τL +ε,s2). (3.23)

But under the Lax condition (3.8), we recall that τ?(vL)<τL so that F(τ)>0 for
all τ >τL and hence G(τL +ε,s2)>0 for all ε>0 since by (2.2) we have 1<γ1 <γ2.
As a consequence, (3.23) shows that Γε is an entrance boundary for Iε (see [15] for
instance). But the positive semi-orbit γ+(ωL) emanating from ωL =(τL,0) with τ ≥ τL

being tangent to e1 necessarily enters Iε for any given ε in (0,ε0), ε0 small enough, and
by well-known considerations then stays in Iε for all positive time. But G(τ,s2)>0
for all states in Iε implies that there exists no critical point in Iε for all ε>0. This
completes the proof.

The proof of Theorem 3.5 follows from the next considerations.
Within the frame (2.7)-(2.10) for the viscosity law µ2, the existence of multiple

solutions will be derived into the following three steps. In the first step, we propose
to consider the following auxiliary dynamical system:





mdξT =
F(T )+ γ2−γ1

γ2−1 |S|
1

1−α T 1−γ2

T (µ1 +µ2)(T ,|S| 1
1−α )

≡G̃(T ,S),

mdξS =(γ2−1)T γ2−1(1−α)×(
µ2(T ,|S| 1

1−α )
|S| α

1−α
G̃2(T ,S)− 1

T |S| α
1−α

ε(
T 1−γ2 |S| 1

1−α

γ2−1
)

)
,

(3.24)
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where

µ1(T ,|S| 1
1−α )=µ1(T ,|S1(T ,|S| 1

1−α )|),

with

S1(T ,|S| 1
1−α )T −γ1

γ1−1
+
|S| 1

1−α T −γ2

γ2−1
=

τL

T
(p1)L

γ1−1
+

(
1− τL

T
)(

m2

2
(T −τL)−(p1)L

)
,

(3.25)

with a fixed α∈ [1/2,1). This ODE system is equipped with the following phase space:

A=
{
(T ,S)∈R2/T >0

}
.

Before we analyse and we use this auxiliary system (3.24), let us observe from assump-
tion (2.8) that a non-constant function of the form (T (ξ),0) for ξ in some non-empty
interval cannot provide us with a solution of the auxiliary ODE system since the
property (2.8) and the asymptotic condition limy→0+ ε(y)/yα =0 stated in (2.11) im-
ply that the vector field in (3.24) evaluated at a state (T ,0) reads:

(
G̃(T ,0),(γ2−1)T γ2−1(1−α)h(T )G̃2(T ,0)

)
, (3.26)

where G̃(T ,0)=F(T )/(T µ1(T ,0)) 6=0 except for T = τL or T = τ?(vL).
Arguing that α∈ [1/2,1), we will prove hereafter that the vector field in (3.24)

does obey the Lipschitz continuity condition for uniqueness in the Picard-Lindelöf
Theorem. This smooth dynamical system will be seen to naturally give birth to
positive semi-orbits of the original system Σ2.

Proposition 3.7. Assume (3.8) so that τ?(vL)<τL. Then the Cauchy problem for
the auxiliary system (3.24) with initial data

(T (0),S(0))=(τ0,0), τ0∈ (τ?(vL),τL),

admits a unique positive semi-orbit defined for all time ξ∈ [0,+∞). All the states in
the semi-orbit are such that S(ξ)>0 for all finite ξ >0 with lim

ξ→+∞
S(ξ)=0 while T (ξ)

belongs to (τ?(vL),τL) for all finite ξ >0 with lim
ξ→+∞

T (ξ)= τ?(vL).

As a second step, let us build from the solution (T (ξ),S(ξ)), ξ≥0, defined in
Proposition 3.7 the function

ξ :R+→ω+(ξ)=(τ(ξ)= τ(T (ξ)),s2(ξ)=s2(S(ξ)))∈E(Σ2),

where the continuous functions τ(T ) and s2(S) are defined by

(T ,S)∈A+ =
{
(T ,S)∈R2/T >0,S≥0

}→
(
τ =T ,s2 =S

1
1−α

)
∈E(Σ2).

Observe that since S(ξ)>0 for all finite ξ >0, ω+(ξ) actually belongs to C1((0,+∞))
and solves by construction the ODE system (3.11) for all ξ >0 with

lim
ξ→0+

s2(ξ)=0 and lim
ξ→0+

τ(ξ)= τ0.



508 C. BERTHON AND F. COQUEL

In other words, ω+(ξ) is nothing but a solution in C0([0,+∞)) of the Cauchy problem
(3.11) with initial data (τ(0),s2(0))=(τ0,0) for τ0∈ (τ?(vL),τL).

In addition, this solution obeys the following asymptotic behaviors:

lim
ξ→+∞

τ(ξ)= τ?(vL) and lim
ξ→+∞

s2(ξ)=0.

Equipped with this solution, defined for non-negative times ξ, let us next consider the
function ξ∈R→ω(ξ)∈E(Σ2) defined by

ω(ξ)=
{(

τNS(ξ),0
)

if ξ <0
ω+(ξ) otherwise,

where τNS is the solution of the ODE problem (3.18) with prescribed data τ0∈
(τ?(vL),τL).

Let us check that this function ω belongs to C1(R) and actually solves (3.11) for
all time ξ. To that purpose, it suffices to notice that

lim
ξ→0+

mdξτ(ξ)=
1

τµ1(τ)
F(τ),

together with

lim
ξ→0+

dξs2(ξ)=0,

since lim
ξ→0+

µ2(τ(ξ),s2(ξ))=0 in view of the assumption (2.7) and

lim
ξ→0+

ε(τ(ξ),s2(ξ))=0

from (2.11).
Since this construction holds for any given τ0∈ (τ?(vL),τL), we have thus proved

Theorem 3.5.
The next statement asserts that the auxiliary ODE system (3.24) enters the clas-

sical Picard-Lindelöf Theorem framework:

Lemma 3.8. Let α∈ [1/2,1) be given so that the assumptions (2.9)-(2.11) are satisfied.
Then the vector field of (3.24) is Lipschitz continuous in A.

Proof. The assumptions (2.9)-(2.10) just assert that the mappings

(T ,z)∈R+
? ×R→µ2(T ,|z| 1

1−α )∈R+ and (T ,z)∈R+
? ×R→

µ2(T ,|z| 1
1−α )

|z| α
1−α

∈R+

are Lipschitz continuous in A. Next, the function z→|z| 1
1−α is easily seen to belong

to Lip([0,+∞)) for any given α in (0,1). As a consequence, the mapping

(T ,z) : (0,+∞)× [0,+∞)→S1

(
T ,|z| 1

1−α

)

defined in (3.25) is also Lipschitz continuous. At last, the Lipschitz continuity property
of y∈R+→ ε(y)

yα ∈R+ stated in (2.11) implies the Lipschitz continuity of the mapping

(T ,z)∈R+
? ×R→ ε(T 1−γ2 |z| 1

1−α )/|z| α
1−α .
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The proof of Proposition 3.7 follows from the next technical result:

Lemma 3.9. The domain

D=
{

(T ,S)∈A/τ?(vL)≤T ≤ τL,S≥0,G̃(T ,S)≤0
)

is compact and positively invariant.

Proof. Let us first prove that

Γ0 ={(T ,S)∈D/τ?(vL)<T <τL,S =0}

is an entrance boundary: namely the positive semi-flow of (3.24) points into D. To
this end, it suffices [15] to observe in view of the formula (3.26) due to assumptions
(2.8) and (2.11) that the scalar product of the vector field X(T ,S =0) of (3.24) with
the unit inward normal to Γ0, nΓ0(T ,S =0)=(0,1), reads

X(T ,0).nΓ0(T ,S =0)=(γ2−1)(1−α)T γ2−1h(T )G̃2(T ,0)>0

since again G̃(T ,0) 6=0 for all T ∈ (τ?(vL),τL).
Next, let us consider the well defined curve T ∈ (τ?(vL),τL)→S(T )>0 from

G̃(T ,S(T ))=0:

S(T )=
(

γ2−γ1

γ2−1
(−F(T ))T γ2−1

)1−α

. (3.27)

Indeed, let us recall from the definition (3.12) that F(T )<0 for T ∈ (τ?(vL),τL)
(with τ?(vL)<τL under the Lax condition (3.8)) while by assumption γ2 >γ1 >1.
The representation formula (3.27) clearly ensures that the domain D is bounded. Let
us now prove that the curve

Γ={(T ,S)∈D/τ?(vL)<T <τL,S =S(T )}

is also an entrance boundary. In that aim, we observe that the vector

nΓ(T )=∇(T ,S)Φ(T ,S(T )),

with

Φ(T ,S)=F(T )+
γ2−γ1

γ2−1
S

1
1−α T 1−γ2 ,

defines an outward vector to the boundary Γ: by construction, for any given T ∈
(τ?(vL),τL), we have Φ(T ,S)<0 for S <S(T ) while Φ(T ,S)>0 otherwise.

Next, the component of nΓ(T ) in the S direction writes:

nS
Γ(T )=

1
1−α

γ2−γ1

γ2−1
T 1−γ2S(T )

α
1−α >0

again in view of γ2 >γ1 >1 and α∈ [1/2,1); so that

X(T ,S(T )).nΓ(T )=−nS
Γ(T )(1−α)(γ2−1)

T γ2−2

S(T )
α

1−α
ε(
T 1−γ2S(T )

1
1−α

γ2−1
)<0.

Hence, the required entrance property is shown.
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To conclude, it suffices to notice that (τ?(vL),S(τ?(vL))=0) and (τL,S(τL)=0)
are critical points of the dynamical system (3.24) so that they cannot be reached in
a finite time. Hence, the compact domain D is positively invariant by the flow.

From the above result, the positive semi-orbit of system (3.24) with initial data
(T (0),S(0))=(τ0,0), τ0 arbitrarily given in (τ?(vL),τL), is relatively compact and
well-known considerations [15] ensure that the positive limit set of the trajectory (the
so-called $-limit set) is non-empty, compact and connected. Moreover, the function
ω→T (ω), defined for all ω∈E(Σ2), is trivially a Lyapunov function [15] on D since

dξT <0 on
◦
D. Invoking the LaSalle Theorem (see [15]), the $-limit set is included

in {ω∈D : G̃(ω)=0}, namely either ωc =(τL,0) or ωc =(τ?(vL),0). Necessarily, the
positive semi-orbit under consideration reaches the state (τ?(vL),0) in the future.
This concludes the proof of Proposition 3.7.

4. Conclusion and applications
In the present framework for compressible turbulent flow, the models proposed in

the literature (Mohammadi-Pironneau [10] or Patel-Rodi-Scheuerer [11]) differ in the
precise definition of the turbulent viscosity law. They take the general form:

µ2(ρ,T2)=Lρf2(ρ,T2)T
1/2
2 ,

where f2 is referred as to the damping function. Various expressions of f2 are available
and an exhaustive list can be found in [11]. The most popular closure reads

f2(ρ,T2)=Cµ, (4.1)

for some positive constant Cµ >0 which is commonly given the value 0.09. Besides,
the Hoffmann [8] model promotes

f2(ρ,T2)=Cµexp

(
− 1.75

1+µT
1/2
2

)
. (4.2)

These two models come with

lim
T2→0+

µ2(ρ,T2)

T
1
2
2

=h(ρ)>0,

where h(ρ)=CµLρ in the frame of the standard model and h(ρ)=CµLρe−1.75 in the
Hoffman model. They are easily seen to obey (2.9) and (2.10) when choosing α=1/2.
Theorem 3.5 then asserts that these two models are ill posed.

By contrast, let us quote the Hassid-Poreh [6] model characterized by

f2(ρ,T2)=Cµ

(
1−exp

(
−µT

1/2
2

))
, (4.3)

so that the associated viscosity law reads:

µ2(ρ,T2)=CµLρT
1/2
2

(
1−exp

(
−µT

1/2
2

))

and is clearly Lipschitz continuous over R2
+. Theorem 3.4 guarantees uniqueness of

the traveling wave solution under interest.
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