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EXISTENCE AND CONTINUITY OF EXPONENTIAL
ATTRACTORS OF THE THREE DIMENSIONAL NAVIER-STOKES-α

EQUATIONS FOR UNIFORMLY ROTATING GEOPHYSICAL
FLUIDS∗

BONG-SIK KIM† AND BASIL NICOLAENKO‡

Abstract. Three dimensional (3D) Navier-Stokes-α equations are considered for uniformly
rotating geophysical fluid flows (large Coriolis parameter f =2Ω). The Navier-Stokes-α equations
are a nonlinear dispersive regularization of usual Navier-Stokes equations obtained by Lagrangian
averaging. The focus is on the existence and global regularity of solutions of the 3D rotating Navier-
Stokes-α equations and the uniform convergence of these solutions to those of the original 3D rotating
Navier-Stokes equations for large Coriolis parameters f as α→0. Methods are based on fast singular
oscillating limits and results are obtained for periodic boundary conditions for all domain aspect
ratios, including the case of three wave resonances which yields nonlinear resonant limit α-equations
for f→∞. The existence and global regularity of solutions of resonant limit α-equations is estab-
lished, uniformly in α. Bootstrapping from global regularity of the resonant limit α-equations, the
existence of a regular solution of the full 3D rotating Navier-Stokes-α equations for large f for an
infinite time is established. Then we prove the existence of exponential attractors of the 3D rotating
Navier-Stokes-α equations (α 6=0) and the convergence of the exponential attractors to those of the
original 3D rotating Navier-Stokes equations (α=0) for f large but fixed as α→0. All the estimates
are uniform in α, in contrast with previous estimates in the literature which blow up as α→0.

Key words. Navier-Stokes-α equations, fast singular oscillating limits, operator splitting, uni-
form regularity estimates in α, continuity of exponential attractors
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1. Introduction
Geophysical fluid dynamics study flows for which the dynamics of the earth’s ro-

tation (Coriolis force) and stratification (buoyancy force) play important roles. These
properties distinguish them from general fluids and make them special in the field of
fluid dynamics. The dynamics of geophysical fluids admit motions which can vary on
different time and length scales from a few kilometers to thousands of meters and from
a few days to hundreds of years, and the ratio of vertical and horizontal length scales
changes from one phenomena to another. Computation of this class of motions using
a model based on the fundamental three-dimensional (3D) Navier-Stokes equations is
prohibitive due to severe accuracy and time step restrictions. To resolve these restric-
tons, a number of modifications have been proposed. The Navier-Stokes-α model is
one of the promising approximate models.

Marsden, Holm, and Ratiu introduced the α-model for the mean motion of the
incompressible ideal fluid flows (without viscosity) in three dimensions, including ro-
tation and stratification ([25] and [26]). Later, S. Chen et al added viscosity to them
([15] and [16]). This is a dispersive regularization of Euler/Navier-Stokes equations,
based on the Euler-Poincaré equations (see [27] for details) and Lagrangian averaging.
In this model, the amplitude of the rapid fluctuations introduces a length scale, α>0,
below which wave activity is filtered by both linear and nonlinear dispersion.
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Inspired by successful computational comparison with empirical data ( [14], [15],
[16], [17] ) of the α-model for turbulent channel and pipe flows, further studies of the
model in the context of turbulence modeling have been done and pointed to the α
model to be a good subgrid large eddy simulation model of turbulence ([20], [21], [24],
[31]). In spite of these encouraging results there remain important issues on the range
of validity of the α model:

• Under what conditions does the α-model approximate the 3D Navier-Stokes
equations of geophysics in turbulent regimes?

• How do the dynamical attractors of solutions to the α-model converge to
those of the original 3D Navier-Stokes equations as α→0?

• What are the scaling laws between α and important dimensionless numbers
characterizing turbulent geophysical flows (e.g., Rossby, Froude, Reynolds
number, etc.) which optimize the convergence?

This paper explores some of these issues in the context of the 3D Rotating Navier-
Stokes (RNS) equations of geophysics. The corresponding 3D Rotating Navier-Stokes-
α (RNS-α) equations without buoyancy effects are

∂V

∂t
+(U ·∇)V +Vj∇U j +fe3×U =−∇π+ν∆V +F (1.1)

∇·V =0 (1.2)
V (t,x)|t=0 =V (0,x)=V (0), (1.3)

where

V (t,x)=(V1,V2,V3) the actual velocity, (1.4)
U(t,x)=(1−α2∆)−1V (t,x) the filtered or regularized velocity, (1.5)

π =
p

ρ
− 1

2
|U |2− α2

2
|∇U |2 a modified pressure. (1.6)

Here x=(x1,x2,x3), f =2Ω is the Coriolis parameter, F =(F1,F2,F3) is a divergence
free force, ν >0 is the kinetic viscosity, ρ is the fluid density, and p is the pressure. For
simplicity we will assume the forcing term to be time independent; that is, F ≡F (x).

The system is considered subject to periodic boundary conditions in a lattice
Q=[0,2πa1]× [0,2πa2]× [0,2πa3], as well as stress-free boundary conditions in the
vertical. The corresponding function spaces are Fourier-Sobolev spaces of periodic
functions, Hs, s≥0, with the norm

‖u‖2s =
∑

n∈Z3

|ň|2s|un|2,

where n=(n1,n2,n3)∈Z3 is a wave number and ň=(ň1,ň2,ň3) with ňj =nj/aj for
j =1,2,3. We set a1 =1 without loss of generality. Problems addressed are

(i) whether the 3D RNS-α equations possess existence and global regularity of
solutions with uniform regularity estimates in α, and

(ii) what are the constraints on α for α-trajectories to effectively shadow real
trajectories of the 3D RNS equations, especially, with respect to important
geophysical functionals such as enstrophy.

There have been several efforts in this direction. E. Titi, C. Foias, D. Holm, ([22])
proved the existence and global regularity of solutions of the 3D Navier-Stokes-α
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equations (without rotation). Their regularity estimates, however, are for filtered (or
regularized) velocity, U , but not for the actual velocity, V . In particular, such esti-
mates strongly depend on α and blow up as α→0. This is an obstacle to establish the
uniform and strong convergence of the solution of 3D NS-α equations when α vanishes.
Instead, they proved the weak convergence of such solutions to some weak Leray so-
lutions of Navier-Stokes equations as α→0. The uniform controllability of α is at the
heart of the difficulty. This stems from the fact that the Navier-Stokes-α equations
(when f =0) lack a uniform spatial L2-norm estimate (a Lyapunov functional for the
set of Leray solutions, [30]) of the unfiltered velocity V . The corresponding Lyapunov
functional for the three dimensional Navier-Stokes-α equations is

|<V,U >|2 =
∫

V ·U dx=
∫
|U |2dx+α2

∫
|∇U |2dx<K

for any U ∈H1 relative to V by the relation U =(1−α24)−1V , where K is a constant
uniform in α. For our purpose, we intend to establish the existence independent of α
for f large enough, which is necessary in constructing the uniform convergence of the
solution of RNS-α equations. We follow the methods that A. Babin, A. Mahalov, B.
Nicolaenko developed in their papers, [1]-[13].

For α=0, this system bears on the classical geophysical equations, the 3D RNS
equations. The existence and global regularity of the 3D RNS equations for large
f have been established by Babin, Mahalov and Nicolaenko (BMN; [1], [2], [5], [6],
[7]). They applied to Navier-Stokes and Euler equations with fast oscillations the
nonlinear averaging methods of geometric optics and hyperbolic systems ([1]-[13]).
With such an approach, there are three foremost issues with the analysis of the 3D
RNS-α equations of geophysics for a large parameter f .

(i) First, the nature of the resonant limit α-equations as f→∞ and the regularity
of their solutions. This is a non-trivial process in which the 3-wave resonant
structure must be rigorously analyzed.

(ii) Second, the convergence of solutions of the 3D RNS-α equations to those of
the resonant limit α-equations.

(iii) Finally, bootstrapping from analysis of the first two questions the infinite
time regularity of solutions of the equations for large f but finite, α bounded.

Following this program, we, however, encounter substantial technical difficulties due
to the fact that the Lagrangian averaged α-model lacks a uniform spatial L2-norm of
the unfiltered velocity V . The best uniform in α estimates in this work turn out to be
restricted to Hβ ,β >5/2. Based on the existence and regularity results we establish
the existence of exponential attractors of the 3D RNS-α equations. Then we prove
the convergence of the exponential attractors of the 3D RNS-α equations to those
of the original 3D rotating NSE, which also delineates the constraints of nonlinear
scaling laws of parameter α in terms of enstrophy and others.

This paper is organized as follows:
• In section 2, we set up functional spaces and investigate basic properties of

the 3D RNS-α equations.
• In section 3, we use techniques developed by Babin, Mahalov, and Nicolaenko

([1]-[14]) for fast singular oscillating limits of (1.1)-(1.3) as f→∞. We an-
alyze resonant structure of the equations, which leads to operator splitting.
Through the splitting we obtain baroclinic and barotropic limit α-equations.

• In section 4, we establish the existence and global regularity of solutions of
limit resonant α-equations with uniform regularity estimates in α.
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• In section 5, the local existence and regularity of solutions of the full 3D
RNS-α equations are established in Hβ ,β >5/2. All estimates are uniform in
α and independent from f .

• In section 6, we establish the existence and global regularity of the 3D RNS-α
equations with large f in Hβ ,β >5/2. Regularity estimates are uniform in α.
The existence of absorbing sets in Hβ follows.

• In section 7, we construct uniform exponential attractors of the 3D RNS-α
equations in Hβ .

• In section 8, alternate form of the governing equations is derived, with the
help of the operator (Rα−I), where Rα =(1−α2∆)−1 and I is the identity.
This operator plays a crucial role in proving the convergence of solutions. In
appropriate spaces, the norm of the operator can be taken as small as needed,
and it induces the uniform convergence as α→0 in Fourier-Sobolev spaces.
Then, we prove the uniform convergence theorem of exponential attractors in
L2 as α→0.

• Finally, in section 9, we conclude with remarks on the delination of constraints
of α scaling, for uniform convergence, which are nonlinear with respect to 1/f
and the enstrophy ‖V ‖1.

2. Preliminaries
We consider domain parameters, a1,a2 and a3 bounded away from both zero and

infinity. V and U are vector fields defined on D=Q× [0,T ] for any T >0. Periodicity
of the boundary conditions leads naturally to a Fourier representation of the fields,
that is

V =
∑

n

Vnei(n1x1/a1+n2x2/a2+n3/a3) =
∑

n

Vneiň·x,

where Vn’s are Fourier Coefficients. We introduce Fourier-Sobolev spaces of divergence
free periodic vector fields

Hs =

{
u∈ [L2(Q)]3 | u=

∑

n∈Z3

uneiň·x, u∗n =u−n, u0 =0, ň ·un =0, ||u||2s <∞
}

,

with the norm ||u||2s =
∑

n∈Z3 |ň|2s|un|2. The corresponding inner product is denoted
by < ·,·>s. When s=0, H0 =H and we denote < ·,·>0=< ·,·> and || · ||0 = | · | as the
inner product and the corresponding norm in H, respectively. For s=1, we denote
|| · ||1 = || · || as the H1 norm. We assume that

∫

Q

U(x,0)dx=0 and
∫

Q

F (x)dx=0.

This yields
∫

Q
V (x,t)dx=0 for all t≥0, and allows for the use of Poincaré inequality.

We denote PL as the usual Leray projector and introduce an operator Rα =(1−
α2∆)−1, which is defined by Rαv =(1−α2∆)−1v. We also define a bilinear operator
Bα on divergence free vector fields by

Bα(u,v)=PL[(Rαu ·∇)v+vj∇(Rαu)j ]. (2.1)

Then Eq(1.1) can be rewritten in the form

∂V

∂t
+fPLJPLRαV +νAV +Bα(V,V )=F (2.2)
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where A=−PL∆ is the Stokes operator and J is a rotation matrix given by

J =




0 −1 0
1 0 0
0 0 0


.

Lemma 2.1. Bα(V,V )=PL[(RαV ·∇)V +Vj∇(RαV )j ]=−PL[RαV ×curlV ].

Proof. Let U =RαV . Using the identity (a ·∇)b=∇(a ·b)−(b ·∇)a−a×curlb−
b×curla we have

(U ·∇)V +Vj∇Uj =∇(U ·V )−(V ·∇)U−U×curlV −V ×curlU +Vj∇Uj . (2.3)

Notice that

(V ·∇)U−Vj∇U j =




Vj

[
∂U1

∂xj
− ∂Uj

∂x1

]

Vj

[
∂U2

∂xj
− ∂Uj

∂x2

]

Vj

[
∂U3

∂xj
− ∂Uj

∂x3

]




=




V2

[
∂U1

∂x2
− ∂U2

∂x1

]
+V3

[
∂U1

∂x3
− ∂U3

∂x1

]

V1

[
∂U2

∂x1
− ∂U1

∂x2

]
+V3

[
∂U2

∂x3
− ∂U3

∂x2

]

V1

[
∂U3

∂x1
− ∂U1

∂x3

]
+V2

[
∂U3

∂x2
− ∂U2

∂x3

]




=




−
{

V2

[
∂U2

∂x1
− ∂U1

∂x2

]
−V3

[
∂U1

∂x3
− ∂U3

∂x1

]}

−
{

V3

[
∂U3

∂x2
− ∂U2

∂x3

]
−V1

[
∂U2

∂x1
− ∂U1

∂x2

]}

−
{

V1

[
∂U1

∂x3
− ∂U3

∂x1

]
−V2

[
∂U3

∂x2
− ∂U2

∂x3

]}




=−(V ×curlU).

Thus

V ×curlU +(V ·∇)U−Vj∇U j =[V ×curlU ]− [V ×curlU ]=0. (2.4)

Since PL[∇(U ·V )]=0, the result follows with the substitution of (2.4) into (2.3).

For the strong convergence of solutions of the system (2.2) as α→0+ it is crucial
to get the uniform in α bounds of various Hs norms of the real velocity V . Those,
however, are not readily feasible. For the uniform in α estimate in H for V we may
use the Galerkin procedure as in [22] by estimating the bounds of H, H1, and H2

norms of U , since

|V |2 = |U |2 +2α2‖U‖2 +α4|AU |2.

We can achieve the uniformness in α only in H and H1 for the regularized velocity U
but not in H2 as we will see below. 1 Only the H−1 norm of V is uniformly bounded
in α, which is at the root of the difficult problem of finding better uniform estimates.

1The uniformness of U in H and H1 is used to prove the existence of solutions of barotropic limit
α-equations in Appendix A.
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Assume that F ∈H with |F |≤M0,F , and U(0)∈H1. Let {wj}∞j=1 be an or-
thonormal basis of H consisting of eigenfunctions of the Stokes operator A. Denote
Hm =Span{w1,...,wm} and let Pm be the L2-orthogonal projection from H onto
Hm. 2 The Galerkin procedure for Eq. (2.2) (Ch8, [18]) is

∂Vm

∂t
+PmBα(Vm,Vm)+νAVm +fPLJPLUm =PmF, (2.5)

where Um =PmU and Vm =Um +α2AUm. Taking the inner product of (2.5) with Um

we obtain

d

dt

{|Um|2 +α2||Um||2
}

+ν
{||Um||2 +α2|AUm|2

}≤ 1
ν

M2
0F . (2.6)

Using Poincaré and Gronwall’s inequalities gives

|Um(t)|2 +α2||Um(t)||2≤|U(0)|2 +α2||U(0)||2 +
M2

0F

ν2λ1
≡K1, ∀t≥0, (2.7)

where λ1 is the smallest eigenvalue of Stokes operator A (section 2.1, [37]). Note that
K1 is an absolute constant, and this estimation is uniform in α. By (2.7) Um remains
bounded in L∞(0,T ;H1), and, for each m and α>0, there exists a unique solution
Um to the Galerkin system (2.5) on [0, T ]. In addition, (2.7) implies that

|<Vm,Um > |2≤K1 so that Vm∈L∞(0,T ;H−1), ∀m, (2.8)

where Vm =(1+α2A)Um. Integrate (2.6) and use (2.7) to get

∫ T

0

‖Um(s)‖2ds≤ K1

ν
+

T

ν2
M2

0F ≡k1(T ). (2.9)

Then k1(t)<∞, ∀t≥0, and

Um∈L2(0,T ;H1). (2.10)

Notice that the estimate is uniform in α; i.e. k1(t) does not depend on α. A similar
estimate for Vm cannot be obtained. Also, from (2.6) and (2.7), we can get

∫ t

0

|AUm(s)|ds≤ 1
α2

[
tM2

0F

ν2
+

K1

ν

]
≡ k̃1(t,α). (2.11)

This implies that Um∈L2(0,T ;H2) such that

‖Um‖2L2(0.T ;H2)≤ k̃1(T,α) (2.12)

where k̃1(t,α) satisfies
(i) k̃1(t,α)<∞ for all t≥0 and α>0,
(ii) limt→∞ k̃1(t,α)=∞,
(iii) limα→0+ k̃1(t,α)=∞.

2Here Pm is not the Leray projector PL. This notation is used only in this section. In later
sections, Pn will denote the n-th mode of PL in Fourier space.
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We can proceed further to get the H2 estimate for U by taking the inner product of
Eq. (2.2) with AUm:

||Um(t)||2 +α2|AUm(t)|2≤k2(t,α) for all t>0

where k2(t,α) has properties
(a) k2(t,α)<∞ for all t>0,
(b) k2(t,α) is independent of m,
(c) k2(t,α) depends on ν,F, and α; moreover, limt→0+ k2(t,α)=∞,
(d) limsupt→∞k2(t,α)<∞,
(e) limα→0+ k2(t,α)=∞ for every t>0.

Part (e) implies that the H2-estimate blows up as α→0+. A uniform estimate in α
is far from trivial. Noticing that |Vm|2 = |Um|2 +2α2‖Um‖2 +α4|AUm|2 where Vm =
(1+α2A)Um, we obtain

∫ t

0

|Vm(s)|2ds≤k3(t,α). (2.13)

Again, k3(t,α) has similar properties as k2(t,α) does; in particular, it depends on α
and blows up as α→0+. So we have, Vm∈L2(0,T ;H) for finite α>0, nonuniformly
in α. This is at the root of the difficulty in obtaining uniform in α estimates for the
unfiltered velocity V for the case of large Coriolis parameter f >>1.

The followings are some useful properties on the operator Rα:

Lemma 2.2. In the Fourier space of periodic functions, for each wave number n,

(Rα)n =
1

1+α2|ň|2 .

In addition, Rα is commutative with curl.

Lemma 2.3. ( Skew-symmetry) <PLJPLRαV, AβV >=0, ∀β≥0.

Proof. By Fourier-Perceval’s identity, for every divergence free field V ,

<PL (e3×RαV ), AβV >=
∑

k∈Z3

(
e3× Vk

1+α2|ǩ|2
)
· |ǩ|2βV k

=
∑

k>0

|ǩ|2β

1+α2|ǩ|2 [(e3×Vk) ·V−k +(e3×V−k) ·Vk]

=0.

3. Resonant limit α-equations and operator splitting
Recall the 3D RNS-α equations (2.2):

∂V

∂t
+fPLJPLRαV +νAV +Bα(V,V )=F (3.1)

∇·V =0 (3.2)

where Bα(V,V )=PL[(RαV ·∇)V +Vj∇(RαV )j ]=−PL[RαV ×curlV ]. In Fourier
space, the action PL on n-th Fourier component of a vector field is given by
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PLv =
∑

n(Pnvn)eiň·x and Pnvn =(vn− ň·vn

|ň|2 ň) with

Pn = I− 1
|ň|2




n2
1

n1n2
a2

n1n3
a3

n1n2
a2

n2
2

a2
2

n2n3
a2a3

n1n3
a3

n2n3
a2a3

n2
3

a2
3
.




Then, for each wave number n∈Z3, the 3D RNS-α equations have the form

∂Vn

∂t
+

1
1+α2|ň|2 fPnJPnVn +ν|ň|2Vn +Bα(V,V )n =Fn (3.3)

where

Bα(V,V )n =−iPn

∑

k+m=n

1
1+α2|ǩ|2 (Vk×(m̌×Vm)). (3.4)

3.1. Nonlinear averaging. For α=0, the linear version of (3.1)-(3.2) was
extensively studied by Poincaré ([32]) and Sobolev ([34]). The Poincaré propagator
is the unitary group solution Eα(−ft)Φ(0)=Φ(t) (Eα(0)= Id is the identity ) to the
linear Poincaré problem:

∂tΦ+fJRαΦ=−∇π, ∇·Φ=0,

or, equivalently,

∂tΦ+fPLJPLRαΦ=0, ∇·Φ=0.

Denote Mα =PLJPLRα and Mαn =(Mα)n = 1
1+α2|ň|2 PnJPn. The matrix Mαn has

the eigenvalues, ±iξαn, where

ξαn =
ň3

(1+α2|ň|2)|ň| , |ň|=
√

θ1n2
1 +θ2n2

2 +θ3n2
3, θj =

1
a2

j

. (3.5)

The Poincaré operator Eα(ft)=efMαt can be written in Fourier space as:

Eα(ft)n =cos(fξαnt)I +
1
|ň| sin(fξαnt)Rn, (3.6)

=
1
2

[
eifξαnt(I− i

1
|ň|Rn)+e−ifξαnt(I + i

1
|ň|Rn)

]
,

where the matrix iRn is the Fourier transform of the curl vector; (curlv)n = iRnvn =
iň×vn with

Rn =




0 −ň3 ň2

ň3 0 −n1

−ň2 n1 0


.

We introduce the unitary (Van der Pol type) transformation by setting

V =Eα(−ft)v(t), (3.7)
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where v is the “slow envelope” variable (also known as a Poincaré variable). Notice
that from (3.5) ξαn =0 for n3 =0 and then, from (3.6), Eα(−ft) reduces to the identity
operator on any barotropic (vertically averaged) field implying

V =Eα(−ft)v =v

V |t=0 =v|t=0.

Since ∂V
∂t =−fMαEα(−ft)v+Eα(−ft)∂v

∂t =−fMαV +Eα(−ft)∂v
∂t , the rotational

term in Eq. (3.1) is eliminated and Eq. (3.1), in the transformed Poincaré variables,
takes the form

∂v

∂t
+νAv =Bα(ft,v,v)+Eα(ft)F, (3.8)

where

Bα(ft,v,v)=Eα(ft)PL{[RαEα(−ft)v]× [curl(Eα(−ft)v)]}
=−Eα(ft)Bα(Eα(−ft)v,Eα(−ft)v) (3.9)

The corresponding representation in Fourier space is, for each n∈Z3,

∂tvn =Bα(ft,v,v)n−ν|ň|2vn +Eα(ft)nFn

=
∑

k+m=n

Bα(ft,vk,vm)n−ν|ň|2vn +Eα(ft)nFn, (3.10)

where

Bα(ft,vk,vm)n = i
1

1+α2|ǩ|2 Eα(ft)nPn[Eα(−ft)kvk×(m̌×Eα(−ft)mvm)]. (3.11)

Eq. (3.10) is explicitly time-dependent with rapidly varying coefficients. This suggests
that, for f >>1, the dynamic mechanisms of (3.10) evolve over two different time
scales; the first one being induced by the fast Poincaré waves and the second given by
the evolution of the Poincaré “slow envelope” v(t). The following equations describe
reduced dynamics associated with Eq. (3.10) in averaging over fast time scale in the
limit f→∞ (with ν =0 and F =0):

∂tw= B̃α(w,w), B̃α(w(t), w(t))= lim
f→∞

1
2π

∫ 2π

0

Bα(fs,w(t),w(t))ds. (3.12)

In Fourier space, the integrand on the right hand side of Eq. (3.12) has terms of the
form of ei(±ξαk±ξαm±ξαn)ft, where

ξαk =
ǩ3

|ǩ|(1+α2|ǩ|2) , ξαm =
m̌3

|m̌|(1+α2|m̌|2) , ξαn =
ň3

|ň|(1+α2|ň|2) , (3.13)

with ň= ǩ+m̌. Denote Dl(k,m,n)=±ξαk±ξαm±ξαn, where l=1,2,...,8 is the com-
bination of signs ±. Then, for Dl(k,m,n) 6=0,

∣∣∣∣
∫ 2π

0

ei(±ξαk±ξαm±ξαn)ftdt

∣∣∣∣=
∣∣∣∣

1
iDl(k,m,n)f

eiDl(k,m,n)ft

∣∣∣∣
2π

0

∣∣∣∣≤
2

f |Dl(k,m,n)| .
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This implies that, for each n=k+m, resonances arise as Dl(k,m,n)→0. That is, we
obtain resonant condition for the interactions generated by the quadratic nonlinearity
in the limit f→∞;

±ξαk±ξαm±ξαn =0. (3.14)

Thus Bα(ft,v,v) contains resonant terms (ft-independent terms) and nonresonant
terms (ft-dependent terms), and we decompose it as

Bα(ft,v,v)= B̃α(v,v)+Bosc
α (ft,v,v),

where Bosc
α (ft,v,v) contains all nonresonant terms and B̃α(v,v), “the resonant bilinear

operator”, contains all resonant terms. Clearly,

Bosc
α (ft,v,v)n =

∑

l=1,2,...,8
k+m=n

Dl(k,m,n) 6=0

eiftDl(k,m,n)Qkmnl(vk,vm), (3.15)

where Qkmnl(vk,vm) is a bilinear form in vk,vm∈C3 with the estimate

|Qkmnl(vk,vm)|≤ |m̌||vk||vm|.

Averaging the nonresonant operator (3.15), which includes oscillating exponential
terms with Dl(k,m,n) 6=0, yields no contribution to resonant terms in the limit f→∞.
That is, for each n,

lim
f→∞

1
2π

∫ 2π

0

Bosc
α (fs,v,v)nds=0.

Hence, after averaging (3.8), we arrive at the resonant limit α-equations;

∂v

∂t
+νAv = B̃α(v,v)+ F̃ (3.16)

v(0)=V (0) (3.17)

where

B̃α(v,v)= lim
f→∞

1
2π

∫ 2π

0

Bα(fs,v,v)ds (3.18)

F̃ = lim
f→∞

1
2π

∫ 2π

0

Eα(fs)F ds. (3.19)

We will call B̃α(v,v) a (bilinear) resonant limit operator.

3.2. Structure of resonant sets. The resonant nonlinear interactions of
Poincaré waves for B̃(v,v) in (3.18) are present when the Poincaré frequencies satisfy
the resonant relation Dl(k,m,n)=0, and we define the corresponding resonant set K
by

K =
{
(k,m,n)∈Z3 :±ξαk±ξαm±ξαn =0, n=k+m

}
(3.20)

=
8⋃

l=1

Kl (3.21)
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where Kl ={(k,m,n) :Dl(k,m,n)=0, n=k+m} and l describes the choice of signs
±. Define

D1(k,m,n)= ξαk +ξαm +ξαn, D2(k,m,n)= ξαk−ξαm +ξαn, (3.22)
D3(k,m,n)=−ξαk +ξαm +ξαn, D4(k,m,n)=−ξαk−ξαm +ξαn. (3.23)

Four other D′
ls are obtained by multiplication of (3.22) and (3.23) by −1, and K can

be represented as K =∪4
l=1Kl.

We decompose the resonant set K into three groups for further analysis; pure 2D
interactions (K2D), two wave interactions (K̃), and three wave interactions (K∗). 3

(i) K2D ={(k,m,n)∈K|k3 =m3 =n3 =0} corresponds to pure two dimensional
horizontal interactions (i.e., depends on x1,x2 and does not depend on x3 in
physical space.)

(ii) K̃ ={(k,m,n)∈K|k3m3n3 =0, k2
3 +m2

3 +n2
3 6=0} is the set of two wave res-

onances. Here k3m3n3 =0 represents that one or two of k3,m3 and n3 would
be zero. But, if two of them are zero, we have 1-wave interaction which is
excluded. It requires the second condition k2

3 +m2
3 +n2

3 6=0.
This is the case when one of the three frequencies ξ equals zero and two re-
maining ξ are nonzero;for example, {(k,m,n)∈K|ξαn =0,ξαk +ξαm =0,ξαk 6=
0 6= ξαm}=K14 =(K1∩K4)\K2D. K̃ can be expressed in the way of

K̃ =K14∪K24∪K34,

where Kj4 =(Kj ∩K4)\K2D for j =1,2,3 and

K14 ={(k,m,n)∈K|n3 =0, ǩ3 =−m̌3 6=0,|m̌|= |ǩ|} (3.24)
K24 ={k3 =0,m̌3 = ň3 6=0,|m̌|= |ň|} (3.25)
K34 ={m3 =0, ǩ3 = ň3 6=0,|ǩ|= |ň|}. (3.26)

Formally there exist three more 2-wave cones, but they are empty sets ([6]).
(iii) K∗={(k,m,n)∈K|k3m3n3 6=0} is the set of strict three wave resonances.

3.3. Explicit formula of the resonant limit operator. The bilinear
form B(ft,v,v) in Eq.(3.18) can be written as a sum of even and odd terms in ft:

Bα(ft,v,v)=Beven
α (ft,v,v)+Bodd

α (ft,v,v).

In (3.12), integrating the bilinear operator over [0,2π], the odd terms vanish and make
no contribution to resonant terms. Thus we only need to consider the even terms of
the operator.

The operator exp(fMαt) restricted to divergence free vector fields has the form
(3.6) in Fourier space, and acts on Fourier components of divergence free vector fields
as

[E(−ft)]nvn =cos(fξαnt)vn− 1
|ň| sin(fξαnt)Rnvn (3.27)

where Rnvn = ň×vn. Denote Cs(ft) and Sn(ft) by

[Cs(ft)]n =Csn(ft)=cos(fξαnt)
[Sn(ft)]n =Snn(ft)= isin(fξαnt).

3Note that if two ξ are zero, then using n3 =m3 +k3 we see that the third ξ becomes zero; so
1-wave interactions are impossible.
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Using the fact that the Stokes operator A=−∆ can be written as An = |ň|2 in Fourier
space the equation (3.27) can be expressed as

E(−ft)v =Cs(ft)v+A−
1
2 Sn(ft)curlv.

Here we also used curl(eiň·xvn)=eiň·xi(ň×vn). Then, from (3.9), the even terms of
Bα(ft,v,v) can be written as

Beven
α (ft,v,v)=

4∑

j=1

Bj
e(ft,v,v)

where

B1
e (ft,v,v)=PLCs(ft)

{
(1−α2∆)−1Cs(ft)v×Cs(ft)curlv

}

B2
e (ft,v,v)=PLCs(ft)

{
(1−α2∆)−1A−

1
2 Sn(ft)curlv×A

1
2 Sn(ft)v

}

B3
e (ft,v,v)=−PLA−

1
2 Sn(ft)curl

[
(1−α2∆)−1Cs(ft)v×A

1
2 Sn(ft)v

]

B4
e (ft,v,v)=−PLA−

1
2 Sn(ft)curl

[
(1−α2∆)−1A−

1
2 Sn(ft)curlv×Cs(ft)curlv

]
.

We make an important observation which will produce an operator splitting.

Lemma 3.1. Beven
α (ft,vk,vm)n restricted to K14 has no resonant terms.

Proof. Recall that K14 ={(k,m,n)∈K|ǩ3 +m̌3 =0,|m̌|= |ǩ|}. Since ň3 = ǩ3 +
m̌3 =0, sin(ξαnft)=0 and cos(ξαnft)=1 on K14. Thus the bilinear operators B3

e and
B4

e are identically zero on K14. On the other hand, the bilinear operators B1
e and B2

e
have the following Fourier coefficients on K14:

B1
e (ft,vk,vm)n = i

1

1+α2|ǩ|2 cos2(ξαkft)Pn[vk×(m̌×vm)]

B2
e (ft,vk,vm)n = i

1

1+α2|ǩ|2 sin2(ξαkft)Pn[(ǩ×vk)×vm].

Then, for each fixed n, the operator Beven
α (ft,v,v)n with interactions restricted to

K14 takes the form

Beven
α (ft,vk,vm)n|K14 = i

X

(k,m,n)∈K14

1

1+α2|ǩ|2 cos(2ξαkft)Pn[vk×(m̌×vm)]

=0

since the domain of summation K14 is symmetric in k and m, 1
1+α2|ǩ|2 = 1

1+α2|m̌|2 on

K14, and (ǩ×vk)×vm =−vm×(ǩ×vk). Hence, the lemma is proved.

Also, observe that

B2
e (ft,vk,vm)n =0 on K24 and K34,

B3
e (ft,vk,vm)n =0 on K34,

B4
e (ft,vk,vm)n =0 on K24.
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Collecting all the resonant terms gives the following explicit formula:

B̃α(v,v)n|K2D∪K̃ =

"
4X

j=1

Bj
e(ft,vk,vm)n

#

K2D∪K̃

= i
X
K2D

1

1+α2|ǩ|2 Pn[vk×(m̌×vm)]

+
i

2

X
K24∪K34

1

1+α2|ǩ|2 Pn[vk×(m̌×vm)]

+
i

2

X
K24

1

1+α2|ǩ|2 Pn[ň×(vk×vm)]

− i

2

X
K34

1

1+α2|ǩ|2
1

|ň|2 Pn[ň×{(ǩ×vk)×(m̌×vm)}]

=−i
X
K2D

1

1+α2|ǩ|2 Pn[(m̌ ·vk)vm]

−i
X
K24

1

1+α2|ǩ|2 Pn[(m̌ ·vk)vm]

+
i

2

X
K24

1

1+α2|ǩ|2 Pn

ˆ
(vk ·vm)m̌+(ǩ ·vm)vk

˜

+
i

2

X
K34

1

1+α2|ň|2 Pn [(vk ·vm)m̌−(m̌ ·vk)vm]

− i

2

X
K34

1

1+α2|ň|2
1

|ň|2 Pn

ˆ
ň×{(ǩ×vk)×(m̌×vm)}˜ .

For the last equality we used the identity a×(b×c)=(a ·c)b−(a ·b)c as well as the
fact that |ǩ|2 = |ň|2 on K34. Now the bilinear resonant limit operator takes the form

B̃α(v,v)n = B̃α
I (v,v)n +B̃α

II(v,v)n +B̃α
III(v,v)n, (3.28)

where

B̃α
I (v,v)=2D bilinear operator corresponding to the kernel of PJPSα

for which Eα(−ft)= I ( see Eq. (3.32) for the notation Sα)

=−i
X
K2D

1

1+α2|ǩ|2 Pn[(m̌ ·vk)vm]

B̃α
II(v,v)= Catalytic bilinear operator corresponding to 2-wave resonances

=−i
X
K24

1

1+α2|ǩ|2 Pn[(m̌ ·vk)vm]

+
i

2

X
K24

1

1+α2|ǩ|2 Pn

ˆ
(vk ·vm)m̌+(ǩ ·vm)vk

˜

+
i

2

X
K34

1

1+α2|ň|2 Pn [(vk ·vm)m̌−(m̌ ·vk)vm]

− i

2

X
K34

1

1+α2|ň|2
1

|ň|2 Pn

ˆ
ň×{(ǩ×vk)×(m̌×vm)}˜

B̃α
III(v,v)= Resonant bilinear operator corresponding to 3-wave resonances

=
X

(k,m,n)∈K∗
Qkmn(vk,vm).
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3.4. Barotropic and Baroclinic projections: operator splitting. Let V
be the x3-averaging of V ∈H:

V (t,x1,x2)=
1

2πa3

∫ 2πa3

0

V (t,x1,x2,x3)dx3. (3.29)

Denote M={V (t,x1,x2)|V ∈H}. Then M is a closed subspace of H, and any V ∈
H has a unique representation V =V +V ⊥ with V ⊥=0. We define an orthogonal
projection Pb :H→H by

PbV =V =
1

2πa3

∫ 2πa3

0

V (t,x1,x2,x3)dx3. (3.30)

We call Pb a barotropic projection. The corresponding projection P⊥b :H→H defined
by

P⊥b V =V ⊥ (3.31)

is called a baroclinic projection. With H =PbH and H⊥=P⊥b H we obtain an orthog-
onal decomposition H =H

⊕
H⊥.

The barotropic projection is the projection on the null space of PLJPLSα, where
Sα is the matrix of filtering operator and, in Fourier space, it has the form

Sαn =




1
1+α2|ň|2 0 0

0 1
1+α2|ň|2 0

0 0 1
1+α2|ň|2


. (3.32)

This is the infinite-dimensional space of divergence free fields which depends on only
x1,x2. Hence Eα(−ft)Pb≡ I.

Lemma 3.2. In Fourier space, the averaging in x3 is equivalent to n3 =0. That is,
for each wave number n, V is the restriction of V to n3 =0.
This Lemma together with resonant sets in section 3.3 induces the following repre-
sentation of the resonant limit operator in (3.18):

B̃α(w,w)= B̃α(w,w)+B̃α(w,w⊥)+B̃α(w⊥,w)+B̃α(w⊥,w⊥) (3.33)
= B̃α

I (w,w)+B̃α
II(w,w⊥)+B̃α

III(w
⊥,w⊥) (3.34)

where

B̃α
I (w,w)= i

∑

K2D

1
1+α2|ǩ|2 Pn[wk×(m̌×wm)] (3.35)

=−i
∑

K2D

1
1+α2|ǩ|2 Pn[(m̌ ·wk)wm] (3.36)
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B̃α
II(w,w⊥)=−i

∑

K24

1
1+α2|ǩ|2 Pn[(m̌ ·wk)w⊥m] (3.37)

+
i

2

∑

K24

1
1+α2|ǩ|2 Pn[(wk ·w⊥m)m̌+(ǩ ·w⊥m)wk] (3.38)

+
i

2

∑

K34

1
1+α2|ň|2 Pn[(w⊥k ·wm)m̌−(m̌ ·w⊥k )wm] (3.39)

− i

2

∑

K34

1
1+α2|ň|2

1
|ň|2 Pn[ň×{

(ǩ×w⊥k )×(m̌×wm)
}
] (3.40)

B̃α
III(w

⊥,w⊥)=
∑

(k,m,n)∈K∗
Qkmn(w⊥k ,w⊥m). (3.41)

Now, we obtain the same important result as the one in ([6]):

Lemma 3.3. The barotropic projection commutes with the bilinear limit operator; that
is,

B̃α(w,w)= B̃α(w,w)= B̃α
I (w,w). (3.42)

Proof. The result follows from Lemma 3.1 and Lemma 3.2 on the structure of
resonant sets (3.24), (3.25), (3.26) and K∗ as well as (3.28), (3.28) and (3.28).

Lemma 3.3 immediately implies the following properties for Pb acting on the two
and three wave bilinear limit operators;

Lemma 3.4. The barotropic projector annihilates the catalytic and three wave resonant
limit operators:

(a) PbB̃
α
II(w,w⊥)=0

(b) PbB̃
α
III(w

⊥,w⊥)=0

Recalling (3.16) of the form

∂w

∂t
+νAw= B̃α(w,w)+ F̃ (3.43)

w(0)=v(0)=V (0), ∇·w=0 (3.44)

where F,w(0)∈V , we obtain the following:

Proposition 3.5. (Operator Splitting) Equation (3.43) and (3.44) split into the
triangular systems;

(a)

∂w

∂t
+νAw= B̃α

I (w,w)+ F̃ (3.45)

w(0)=v(0)=V (0), ∇·w=0. (3.46)

This system is called the barotropic (resonant) limit α-equations, which
is identical to the two dimensional and three-component Navier-Stokes-α
equations.
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(b)

∂w⊥

∂t
+νAw⊥= B̃α

II(w,w⊥)+B̃α
III(w

⊥,w⊥)+ F̃⊥ (3.47)

w⊥(0)=v⊥(0)=V ⊥(0), ∇·w⊥=0. (3.48)

This system is called the baroclinic (resonant) limit α-equations.

Proof. Take Pb on (3.43) and (3.44) and use the followings:
(a) 0=Pb(∇·w)=∇·Pbw=∇·w.
(b) 0=∇·w=∇·w+∇·w⊥. Since ∇·w=0, ∇·w⊥=0.

4. Existence and regularity of limit α-equations
In this section, our main theme is the existence and global regularity of solu-

tions of resonant limit α-equations with estimates independent of the parameter α.
Independence from α is at the core in this paper, which will establish the uniform
convergence of RNS-α equations as α→0.

4.1. Barotropic limit α-equations. The barotropic limit α-equations of
RNS-α equations are

∂w

∂t
+νAw= B̃α

I (w,w)+F (4.1)

w(0,x1,x2)=w(0), ∇·w=0 (4.2)

where B̃α
I (w,w)=PL[Rαw×curlw]. We denote the horizontal velocity vector field by

wh =(w1(t,x1,x2),w2(t,x1,x2),0) and we understand w3 =(0,0,w3(t,x1,x2)) as the
vertical velocity vector field component. Then the nonlinear term can be written as

Rαw×curlw=(Rαwh +Rαw3)×{curl(wh +w3)}
=[Rαwh×curlwh]+[Rαwh×curlw3]

+[Rαw3×curlwh]+[Rαw3×curlw3].

The third term vanishes. The second term represents vertical modes, and the first
and fourth consist of horizontal modes. Then the equation (4.1), in the component
form, splits as:

∂wh

∂t
+νAwh =PL[(Rαwh×curlwh)+(Rαw3×curlw3)]+Fh (4.3)

∂w3

∂t
+νAw3 =PL[Rαwh×curlw3]+F 3. (4.4)

Note that the barotropic limit equations of rotating NSE are completely decoupled
into horizontal and vertical components (see [6] and [7]) but rotating NS-α equations
have a coupled 2D3C (two dimensional and three component: dependence on two
variables x1,x2) system (4.3) and (4.4).

Following the standard way like for the classical 2D NSE we can obtain the unique
existence of a solution of the barotropic limit α-equations. There, however, is a
difference between the α-equations and the usual 2D NSE. The bilinear operator B̃α

I

doesn’t have the usual orthogonal property as the 2D NSE does; <B̃α
I (w,w),Aβw> 6=

0 for any w∈V and β≥0. But, it has a certain orthogonal property;

<B̃α
I (w,w),AβRαw>=0 for any w∈V.
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Theorem 4.1. Let T >0 be given. Assume that F is a time-independent force such
that

|F |2≤M2
0F , (4.5)

and let w(0)∈H1. Then the barotropic limit equations (4.1) and (4.2) have a unique
regular solution w on [0,T ] that satisfies w∈L∞(0,T ;H1)∩L2(0,T ;H2). Moreover,
the estimates are uniform in α.

The proof of Theorem 4.1 is provided in Appendix A.

4.2. Catalytic limit α-equations. In this section we consider the baroclinic
limit α-equations (3.47) NOT including the three-wave resonant operator B̃α

III . The
latter is only present for 1/a2,1/a3 of Lebesque measure zero ([6], [7]). The resulting
system is called the catalytic limit α-equations:

∂w⊥

∂t
+νAw⊥= B̃α

II(w,w⊥)+ F̃⊥ (4.6)

w⊥(0)=w⊥0 , ∇·w⊥=0. (4.7)

Recalling Lemma 3.2, the vector field w has the form of Fourier coefficients wk(t)=
w(kh,0)(t), where kh =(k1,k2)∈Z2. We, from [6], adopt the definition

||w||H0∞ = sup
kh∈Z2

|wk|2.

Since |w|2 =
∑

kh
|wkh

|2≥ supkh
|wk|2, ||w||H0∞ ≤|w|. In addition, ||w||H0∞ ≤

(a1a2)−1(2π)−2||w||L1 . We follow the BMN’s procedure (Lemma 5.1 and Theorem
5.3 in [6]) to establish the regularity, commutativity, and skew-symmetry properties
of catalytic bilinear operator (the proof of Theorem 4.2 is given in Appendix B):

Theorem 4.2. Let w∈H and w⊥∈H2s+1,s≥0. Then
1. B̃α

II(w,Asw⊥)=AsB̃α
II(w,w⊥).

2. <B̃α
II(w,w⊥),Asw⊥>=0

3. B̃α
II(w,∂l

3w
⊥)=∂l

3B̃
α
II(w,w⊥).

4. <B̃α
II(w,w⊥), ∂l

3w
⊥>=0.

5. ||B̃α
II(w,w⊥)||s≤8

√
2 ||w||H0∞ ||w⊥||s+1≤8

√
2 |w| ||w⊥||s+1.

The existence and uniqueness of regular solution of catalytic limit α-equations can be
easily obtained using Theorem 4.2:

Theorem 4.3. Let F⊥ be a force with |F⊥|2≤M0f , and let w⊥(0)∈H1. Then, for
any time T >0, the catalytic limit equations (4.6) and (4.7) have a unique regular
solution in L∞(0,T ;H1)∩L2(0,T ;H2). Moreover, the estimates are uniform in α.

Proof. By the property 2 of Theorem 4.2, we have

<B̃α
II(w,w⊥), Asw⊥>=0, ∀s≥0.

• L2-estimate of w⊥: Taking an inner product (4.6) with w⊥ yields

1
2

d

dt
|w⊥|2 +ν‖w⊥‖2≤ ν

2
|w⊥|2 +

1
2ν
|F⊥|2. (4.8)

Let y = |w⊥|2. Then we obtain

dy

dt
≤gy+h,



416 THE 3D ROTATING NAVIER-STOKES-α EQUATIONS

where g =ν and h= 1
ν |F⊥|2. By the classical Gronwall’s inequality, we obtain

y(t)≤
[
y(0)+

M2
0F

ν2

]
eνT , ∀t∈ [0,T ].

Thus

|w⊥(t)|2≤
[
|w⊥(0)|2 +

M2
0F

ν

]
eνT ≡ (ρ⊥H(T ))2, ∀t∈ [0,T ], (4.9)

and

w⊥∈L∞(0,T ;H), ∀T >0.

Furthermore, from (4.8) and (4.9),
∫ T

0

‖w⊥‖2ds≤ 1
2
(ρ⊥H(T ))2 +

M2
0F T

2ν2
≡ (M⊥

H1(T ))2, (4.10)

and hence,

w⊥∈L2(0,T ;H1), ∀T >0.

• H1-estimate of w⊥: Take an inner product (4.6) with Aw⊥ to get

d

dt
‖w⊥‖2 +ν|Aw⊥|2≤ 1

ν
|F⊥|2.

Using Poincaré inequality again, we get

d

dt
‖w⊥‖2 +λ1ν‖w⊥‖2≤ 1

ν
|F⊥|2. (4.11)

Let y =‖w⊥‖2. Then

dy

dt
≤gy+h,

where g =−λ1ν and h= 1
ν |F⊥|2. The Gronwall’s inequality gives

y(t)≤y(0)+
M2

0F

λ1ν2
≡ (ρ⊥H1)2. (4.12)

This implies

w⊥∈L∞(0,T ;H1), ∀T >0. (4.13)

From (4.11 ) and (4.12) we obtain
∫ T

0

|Aw⊥(s)|2ds≤M2
0F T

ν2
+

(ρ⊥H1)2

ν
≡ (M⊥

A (T ))2,

and hence

w⊥∈L2(0,T ;H2), ∀T >0.
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4.3. Baroclinic limit α-equations. In this section, we prove the existence of
a unique regular solution of the baroclinic limit α-equations (3.47) and (3.48) which
include the 3-wave resonant interactions. As usual, we need to establish the regularity
result on the baroclinic bilinear operator B̃α

III . To do that we will follow the procedure
developed in [7].

We start off by stating the following lemma whose proof is exactly the same as
the one in Lemma 2.1, [7].

Lemma 4.4. Let (u,v,w)∈H
3
4 ×H

3
4 ×H1. Then

<B̃α(u,v),w>= lim
f→∞

1
2π

∫ 2π

0

<Bα(fs,u,v),w> ds.

The bilinear operator B in the classical NSE enjoys the identity <B(w,w), Aw>
=−<B(curlw,w), curlw> for any w∈H2. We investigate whether the operator Bα,
Bα(u,v)=−PL{Rαu×curlv}, have the same property. It turns out that it has a
similar identity (but not exactly the same).

Lemma 4.5. Let w∈H2. The operator Bα satisfies the identity

<Bα(w,w), Aw>=< (curlw ·∇)curlw, Rαw>

=−< (curlw ·∇)Rαw, curlw>.

Proof.

<Bα(w,w), Aw>=−<Rαw×curlw, curl2w>

=−< curl [Rαw×curlw], curlw>

=<−(curlw ·∇)Rαw, curlw>

+< (Rαw ·∇)curlw,curlw>.

For the third equality we used the identity curl(a×b)=adivb−bdiva+(b ·∇)a−(a ·
∇)b to get

curl [Rαw×curlw]=Rαwdiv(curlw)−curlwdiv(Rαw)
+(curlw ·∇)Rαw−(Rαw ·∇)curlw.

Notice that the first and second terms vanish.
Since < (Rαw ·∇)curlw,curlw>=0, we get

<Bα(w,w), Aw>=<−(curlw ·∇)Rαw, curlw>. (4.14)

Notice that, for any u,v such that divu=divv =0,

−(v ·∇)u=v×curlu−vj∇uj .

By setting v =curlw and u=Rαw, we obtain

−(curlw ·∇)Rαw=curlw×curl(Rαw)−(curlw)j∇(Rαw)j .

Substitution of this into Eq. (4.14) and the equality < curlw×curl(Rαw), curlw>=0
yield
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<Bα(w,w), Aw>=−< (curlw)j∇(Rαw)j , curlw>

=−
∫

(curlw)j
∂

∂xi
(Rαw)j(curlw)idx

=
∫

(curlw)i
∂

∂xi
(curlw)j(Rαw)j dx

=
∫

(curlw ·∇)curlw ·Rαwdx.

From Lemma 4.4 and Lemma 4.5 we can obtain the following identity by passing
to the limit in averaging:

Corollary 4.6. Let w∈H2. The resonant limit operator B̃α satisfies the identity

<B̃α(w,w), Aw>=−< (curlw ·∇)Rαw, curlw>.

The Corollary 4.6 induces the following inequality for the 3-wave resonant oper-
ator:

|<B̃α
III(w

⊥,w⊥), Aw⊥>|= |< (curlw⊥ ·∇)Rαw⊥, curlw⊥>|
≤ c

∑

k+m+n=0

|ǩ| |w⊥k | |m̌| |(Rαw⊥)m||ň| |w⊥n | X (k,m,n)

≤ c
∑

k+m+n=0

|ǩ| |w⊥k | |m̌| |w⊥m| |ň| |w⊥n | X (k,m,n).

For the last inequality we used (Rαw⊥)m = 1
1+α2|m̌|2 w⊥m so that |(Rαw⊥)m|≤ |w⊥m|.

Here, X (k,m,−n) is the characteristic function of the resonant set K∗ of strict three-
wave resonances:

±ξαk±ξαm±ξαn =0, n+k+m=0, k3m3n3 6=0,

where ξαk = ǩ3
(1+α2|ǩ|2)|ǩ| and similarly for ξαm,ξαn. This set lies in the set of solutions

of the equation

P (k,m,n)= |ǩ|4 |m̌|4 |ň|4 (1+α2|ǩ|2)4(1+α2|m̌|2)4(1+α2|ň|2)4[
(ξ2

αk +ξ2
αm +ξ2

αn)2−4ξ2
αkξ2

αm

]
=0. (4.15)

Recall that |ǩ|2 =θ1k
2
1 +θ2k

2
2 +θ3k

2
3, θj = 1

aj
(j =1,2,3), and similarly for m̌,ň. This

equation can be obtained from considering the product of all Dl(k,m,n) in (3.22) and
(3.23) (this product is zero on the resonant set K);

(ξαk +ξαm +ξαn) (ξαk−ξαm +ξαn) (ξαk−ξαm−ξαn) (ξαk +ξαm−ξαn)
=

[
(ξ2

αk +ξ2
αm +ξ2

αn)2−4ξ2
αkξ2

αm

]
.(4.16)

Without loss of generality we put θ1 =θ2 =θ3 =1.
The equation P is a polynomial in k,m,n, and it has the symmetric property:
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Lemma 4.7. The polynomial P is symmetric with respect to k,m, and n;

P (k,m,n)=P (m,k,n)=P (k,n,m)=P (m,n,k).

Proof. It is sufficient to consider the factorization (4.16). Changing k to m, m to
n, and n to k, (4.16) becomes

(ξαk +ξαm +ξαn) (ξαk−ξαm +ξαn) (ξαk−ξαm−ξαn) (ξαk +ξαm−ξαn)

=(ξαk +ξαm +ξαn) (ξαk +ξαm−ξαn)

{(−1)(ξαk−ξαm +ξαn)} {(−1)(ξαk−ξαm−ξαn)}.

Compared to (4.16) this contains exactly the same components as those in (4.16).

By this lemma X (k,m,n) is equipped with symmetry, and we can take advantage
of Lemma 3.1 of [7]. For the detailed proof, see [7]:

Lemma 4.8. (Restricted Convolution Lemma) Let X (k,m,n) be the characteris-
tic function of some resonant set K∗ in (Z3)3 such that X (k,m,n)=X (m,k,n)=
X (k,n,m) is symmetric. Let γ≥0,β fixed and

sup
n

∑

k:k+m+n=0,k∈Pi

X (k,m,n)|k|−γ≤C02iβ (4.17)

for every i=0,1,2,... where

∑

i

=
{

k =(k1,k2,k3) | 2i≤|k|<2i+1,|k|=
√

k2
1 +k2

2 +k2
3

}
.

Then for any sequence un with u(0,0,0) =0

X

k+m+n=0

|uk| |um| |un| X (k,m,n)≤C

 X
n

|n|β |un|2
!1/2 X

k

|k|γ |uk|2
!1/2 X

m

|um|2
!1/2

(4.18)

where C =6
√

2C0.

Consider the polynomial P (k,−n−k,n),

P (k,−n−k,n)=k4
3|−n−k|4 |n|4 (1+α2|−n−k|2)4(1+α2|n|2)4
+(−n−k)4|k|4 |n|4 (1+α2|k|2)4(1+α2|n|2)4
+n4

3|k|4 |−n−k|4(1+α2|k|2)4(1+α2|−n−k|2)4
−2k2

3(−n3−k3)2|k|2 |−n−k|2 |n|4 (1+α2|k|2)2
(1+α2|−n−k|2)2(1+α2|n|2)4

−2(−n3−k3)2n2
3|k|4 |−n−k|2 |n|2 (1+α2|k|2)4

(1+α2|−n−k|2)2(1+α2|n|2)2
−2k2

3n
2
3|k|2 |−n−k|4 |n|2(1+α2|k|2)2(1+α2|−n−k|2)4

(1+α2|n|2)2.
The highest power of k3 is 24, and P (k,−n−k,n) is a polynomial of degree 24 in k3.
The coefficient at k24

3 is α16n4
3 which can be obtained from the term

n4
3|k|4 |−n−k|4 (1+α2|k|2)4 (1+α2|−n−k|2)4,
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which does not vanish because k3 6=0,m3 6=0 and n3 6=0. Thus, for fixed k1,k2,n, there
are at most 24 k3 satisfying P (k,−n−k,n)=0. So, if we estimate the sum (4.17) with
α=1,

∑

2i≤|k|<2i+1

(k2
1 +k2

2 +k2
3)
− 1

2X (k,−k−n,n)≤24+24
∑

0<|kh|<2i+1

(k2
1 +k2

2)
− 1

2

=24+24
∑

0<|kh|<2i+1

|kh|−1

≤C02i,

where C0 is an absolute constant independent from α. Note that the only difference
with BMN’s [7] is the coefficient 24, which replaces the coefficient 8 in [7]. Thus, the
inequality (4.18) holds with γ =β =1.

Let vk = |k| |w⊥k | and similarly for m,n in the inequality (4.15). Then using
Corollary 4.6 we obtain the following estimation, uniformly in α:

|<B̃α
III(w

⊥,w⊥), Aw⊥>|≤ c
X

k+m+n=0

|vk| |vm| |vn| X (k,m,n)

≤ c̃

 X
n

|n| |vn|2
!1/2  X

k

|k| |vk|2
!1/2  X

m

|vm|2
!1/2

= c̃‖v‖21
2
|v|

≤ c̃‖w⊥‖23
2
‖w⊥‖

≤C‖w⊥‖2 ‖w⊥‖2.

Here, we used ‖v‖ 1
2
=‖w⊥‖ 3

2
and |v|=‖w⊥‖. Also, for the last inequality, we applied

the interpolation inequality, ‖w⊥‖23
2
≤ c‖w⊥‖ ‖w⊥‖2. Therefore, we have proved the

following:

Theorem 4.9. Let w⊥∈H2. Then

|<B̃α
III(w

⊥,w⊥), Aw⊥>| ≤ CIII‖w⊥‖2 ‖w⊥‖2. (4.19)

The estimates are uniform in α.

From the estimate (4.19) we easily obtain the existence of a unique regular solution
of baroclinic equations, uniformly in α. Estimate (4.19) is similar to that of 2D
Navier-Stokes equations with Dirichlet boundary conditions. The procedure of proof
is exactly the same as the one in the proof of Theorem 3.2 of [7].

Theorem 4.10. Let w⊥(0)∈H1 and let F⊥ be a force with |F⊥|2≤M0F . Then,
for any T ≥0, there exists a unique global regular solution w⊥∈L∞(0,T ;H1)∩
L2(0,T ;H2) of baroclinic limit equations (3.47) and (3.48), with the norm estimates
uniform in α.

5. Local existence of solutions of 3D rotating Navier-Stokes-α equa-
tions, independent of α

In this section we prove the existence of a solution of the problem (1.1)-(1.2) on a
small (but f-independent) time interval. We assess the estimates on nonlinear terms
of RNS-α equations to get the same estimates as the one of RNSE in Ch4 of [6]. That
makes it possible to follow the exact same procedure developed in Ch4 of [6]. Now
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we start off by recalling RNS-α equations in a Fourier space: for each wave number
n, Eq. (1.1) takes the form

∂Vn

∂t
+

1

1+α2|ň|2 f(PLJPL)nVn +ν|ň|2Vn + iPn

X

k+m=n

“
(Uk ·m̌)Vm +V

(j)
k m̌U (j)

m

”
=Fn.

(5.1)

Recall that the action of As in a Fourier space is multiplication by |ň|2s. Multiplying
Eq. (5.1) by V ∗

n |ň|2s (V ∗
n =V−n) and using the skew-symmetry of (PLJPL)n (Lemma

2.3), we obtain

1
2

∂

∂t

∑
n

|Vn|2|ň|2s +ν‖V ‖2s+1 =−i
∑

k+m+n=0

(Uk ·m̌)(Vm ·Vn|ň|2s)

−i
∑

k+m+n=0

V
(j)
k U (j)

m (m̌ ·Vn|ň|2s)

+
∑

n

Fn ·V−n|ň|2s. (5.2)

Here we assume the summation is over |ǩ|≤R, |m̌|≤R and |ň|≤R for Galerkin ap-
proximations and then will take R→∞. The following property holds:

Lemma 5.1. (Uk ·m̌)Vm ·Vn is skew-symmetric in n,m:
∑

k+m+n=0

(Uk ·m̌)(Vm ·Vn)|m̌|s|ň|s =0.

Proof. Interchanging n and m in the summation and then using the divergence
free condition ǩ ·Uk =0, we obtain

∑

k+m+n=0

(Uk ·m̌)(Vm ·Vn)|m̌|s|ň|s =
∑

k+m+n=0

(Uk · ň)(Vn ·Vm)|ň|s|m̌|s

=−
∑

k+m+n=0

(Uk ·(ǩ+m̌))(Vn ·Vm)|ň|s|m̌|s

=−
∑

k+m+n=0

(Uk ·m̌)(Vm ·Vn)|m̌|s|ň|s.

Therefore,
∑

k+m+n=0(Uk ·m̌)(Vm ·Vn)|m̌|s|ň|s =0.

The second term in Eq. (5.2) doesn’t have the skew-symmetry in n and m, and
we have to get the uniform estimate in α of it. We introduce the space of periodic
functions Hs

p (when p=2 it coincides with the Sobolev space Hs =Hs
2) with the norm

defined on Fourier coefficients uk as follows:

‖u‖p
Hs

p
=

∑

k∈Z3

|k̂|ps|uk|p.

Note that Hs
p ⊂Hs

q if p≤ q because the wave numbers lattice is discrete. Then,

Lemma 5.2.
∣∣∣∣∣

∑

k+m+n=0

V
(j)
k U (j)

m (m̌ ·Vn)|m̌|s |ň|s
∣∣∣∣∣≤C2(β)‖V ‖β ‖V ‖2s
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where C2(β)=(
∑

k|ǩ|2−2β)1/2≤ (
∑

k|k|2−2β)1/2 <∞ if β > 5
2

Proof. We use ň ·Vn =(ǩ+m̌) ·Vn =0 to get
˛̨
˛̨
˛
X

k+m+n=0

V
(j)

k U (j)
m (m̌ ·Vn)|m̌|s |ň|s

˛̨
˛̨
˛=
˛̨
˛̨
˛
X

k+m+n=0

V
(j)

k U (j)
m ((−ǩ) ·Vn)|m̌|s |ň|s

˛̨
˛̨
˛

≤
X

k+m+n=0

|ǩ| |V (j)
k | |m̌|s |U (j)

m | |ň|s |Vn|

≤
X

k+m+n=0

|ǩ| |V (j)
k | |m̌|s |V (j)

m | |ň|s |Vn|

≤‖V ‖H1
1
‖V ‖2s

≤C2(β)‖V ‖β ‖V ‖2s.

Now, we formulate the estimate on a nonlinear term.

Lemma 5.3.

|<Bα(V,V ), AsV >|≤C(s)‖V ‖β ‖V ‖2s
with s≥β > 5

2 and β is independent of s. This estimate is independent from α.

Proof. The estimation relies on the inequality ||ǩ+m̌|s−|m̌|s|≤C1(s)(|m̌|s−1|ǩ|+
|ǩ|s) and the identity |ǩ+m̌|s = |m̌|s +(|ǩ+m̌|s−|m̌|s).

(i)
X

k+m+n=0

(Uk ·m̌)(Vm ·Vn|ň|2s)=
X

k+m+n=0

(Uk ·m̌)(Vm ·Vn)|ǩ+m̌|s|ň|s

=
X

k+m+n=0

(Uk ·m̌)(Vm ·Vn)[|m̌|s +(|ǩ+m̌|s−|m̌|s)] |ň|s

=
X

k+m+n=0

(Uk ·m̌)(Vm ·Vn)|m̌|s|ň|s

+
X

k+m+n=0

(Uk ·m̌)(Vm ·Vn)(|ǩ+m̌|s−|m̌|s) |ň|s

=
X

k+m+n=0

(Uk ·m̌)(Vm ·Vn)(|ǩ+m̌|s−|m̌|s) |ň|s

We used Lemma 5.1 for the last equality. The right hand side of the above
equation can be estimated as:

˛̨
˛̨
˛
X

k+m+n=0

(Uk ·m̌)(Vm ·Vn)(|ǩ+m̌|s−|m̌|s) |ň|s
˛̨
˛̨
˛

≤C1(s)
X

k+m+n=0

|ǩ| |Uk| |m̌|s |Vm| |ň|s |Vn|

+C1(s)
X

k+m+n=0

|ǩ|s |Uk| |m̌| |Vm| |ň|s |Vn|

≤C1(s)
X

k+m+n=0

|ǩ| |Vk| |m̌|s |Vm| |ň|s |Vn|

+C1(s)
X

k+m+n=0

|ǩ|s |Vk| |m̌| |Vm| |ň|s |Vn|.
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By Young’s inequality for convolutions ‖f ∗g‖Lr ≤‖f‖Lp ‖g‖Lq , where 1
p +

1
q =1+ 1

r , we get

X

k+m+n=0

|ǩ| |Vk| |m̌|s |Vm| |ň|s |Vn|≤
"X

n

( X

k+m=−n

|ǩ| |Vk| |m̌|s |Vm|
)2# 1

2

‖V ‖s

≤‖V ‖H1
1
‖V ‖2s

≤C2(β)‖V ‖β ‖V ‖2s,

where C2(β)=(
∑

k|ǩ|2−2β)1/2≤ (
∑

k|k|2−2β)1/2 <∞ if β > 5
2 (for the first

inequality we used a1,a2,a3≤1). The other sum has the same estimate.
Thus˛̨

˛̨
˛
X

k+m+n=0

(Uk ·m̌)(Vm ·Vn)(|ǩ+m̌|s−|m̌|s) |ň|s
˛̨
˛̨
˛≤2C1(s)C2(β)‖V ‖β ‖V ‖2s.

(ii) Note that
X

k+m+n=0

V
(j)

k U (j)
m (m̌ ·Vn|ň|2s)

=
X

k+m+n=0

V
(j)

k U (j)
m (m̌ ·Vn)[|ǩ+m̌|s−|m̌|s]|ň|s

+
X

k+m+n=0

V
(j)

k U (j)
m (m̌ ·Vn)|m̌|s |ň|s.

Then˛̨
˛̨
˛
X

k+m+n=0

V
(j)

k U (j)
m (m̌ ·Vn)[|ǩ+m̌|s−|m̌|s]|ň|s

˛̨
˛̨
˛

≤C1(s)(|m̌|s−1 |ǩ|+ |ǩ|s) |V (j)
k | |V (j)

m | |m̌| |Vn| |ň|s

=C1(s)|m̌|s |V (j)
m | |ǩ| |V (j)

k | |ň|s |Vn|
+C1(s)|ǩ|s |V (j)

k | |m̌| |V (j)
m | |ň|s |Vn|

≤2C1(s)‖V ‖H1
1
‖V ‖2s

≤2C1(s)C2(β)‖V ‖β ‖V ‖2s. (5.3)

Thus, the inequality (5.3) and Lemma 5.2 give the estimate
∣∣∣∣∣

∑

k+m+n=0

V
(j)
k U (j)

m (m̌ ·Vn|ň|2s)

∣∣∣∣∣≤ C̃(s)‖V ‖β ‖V ‖2s.

Combined (i) and (ii) complete the proof.

Now we establish the local existence of solutions of the equations.

Theorem 5.4. Let 0≤ν≤1,s>5/2,V (0)∈Hs. Assume that F ∈Hs and that

‖V (0)‖s≤M0s; ‖F‖s≤M0sF .

Then there exists Ts >0 such that there exists a unique local solution of Eq. (1.1)-(1.3)
which is bounded in L∞(0,Ts;Hs) and satisfies

‖V (t)‖2s≤M2
s , 0≤ t≤Ts; ν

∫ Ts

0

‖V (t)‖2s+1dt≤M2
s , (5.4)
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where Ms,Ts do not depend on ν,Ω,a2,a3 but depend on M0s,M0sF . Here we assume
that Ms≥M0s≥M0sF ≥1, Ts≤1. These estimates are uniform in α.

Proof. Existence is proved using Galerkin approximations. The approximations
are equivalent to considering Eq. (5.1) with |ǩ|≤R, |m̌|≤R. Later we take R→∞.

By multiplying (5.1) by V ∗
n |ň|2s we could get (5.2). Together with Lemma 5.3 we

obtain

∂

∂t
‖V ‖2s +2ν‖V ‖2s+1≤C(s,β)‖V ‖β ‖V ‖2s +‖F‖2s +‖V ‖2s, (5.5)

where a constant C(s,β)=max{4C1(s)C2(β), 4C2(β)}. By Gronwall’s inequality

‖V (t)‖2s≤
[‖V (0)‖2s +M2

0sF

]
exp

(∫ Ts

0

[C(s,β)‖V (s)‖β +1]ds

)
,

where s≥β >5/2. Note that β does not depend on s so that β can be fixed indepen-
dently of s. We put β =s. Then Eq. (5.5) becomes

∂

∂t
‖V ‖2s +2ν‖V ‖2s+1≤C(s)‖V ‖3s +M2

0sF +‖V ‖2s. (5.6)

Let y =‖V ‖2s +M2
0s and then y≥1. The inequality (5.6) provides

dy

dt
+2ν‖V ‖2s+1≤ [C(s)+1]y3/2. (5.7)

Solving the ODE gives the inequality

y(t)≤
[

1
2M2

0s

−(C(s)+1)t
]−2

on the interval [0, t∗] , where t∗=1/[4M0s(C(s)+1)]. Taking Ts = t∗ yields

‖V ‖2s≤16M2
0s, 0≤ [4M0s(C(s)+1)]−1.

Integrating (5.7) we obtain on the same interval

2ν

∫ Ts

0

‖V ‖2s+1dt≤66(C(s)+1)[M0s]3, Ts≤ [4M0s(C(s)+1)]−1. (5.8)

The inequalities (5.7) and (5.8) imply (5.4) with the appropriate choice of Ms, Ts.
Using these estimates, we can prove the existence of a solution of the problem

in a standard way with R→∞. The solution satisfies the same estimates and the
theorem is proved.

Remark 5.5. Theorem 5.4 is true for the usual rotating Navier-Stokes equations
(that is, when α=0). See Ch4 in [6] for details.

6. Global regularity of 3D rotating Navier-Stokes-α equations for large
f and finite α

In this section, we establish the existence and global regularity of solutions of 3D
rotating Navier-Stokes-α equations (1.1)-(1.3) for f large enough which is uniform
in α. Our regularity estimates are uniform in α, which is at the very heart of our
results and make them distinctive from the previous literature. Typically, only weak
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convergence of the solution of the 3D NS-α equations to some weak Leray solution had
been obtained in the limit α→0 ([22]). We use techniques developed by A. Babin, A.
Mahalov and B. Nicolaenko in [6] - [12] to establish the existence and global regularity
for the real velocity field V , which exist uniformly in α. The uniformity in α make it
possible to establish the existence of absorbing balls, uniformly in α, and the strong
convergence of solutions of 3D rotating Navier-Stokes-α equations with large fixed
rotation f =2Ω as α vanishes.

The proof of global regularity relies on the global regularity of the limit α-
equations and techniques for convergence theorems as f→∞. From now on we as-
sume 0≤α<αM , where αM is some maximum of α since we are interested in the limit
α→0+. Let Vs(0)∈Hσ be smooth initial data and let Fs be a smooth force such that
Fs(t)∈Hσ, σ >β+4, β >5/2, which are close to V (0) and F . We approximate initial
data in Hβ by smoother initial data in Hσ:

‖V (0)−Vs(0)‖β≤ ε.

Further, we assume that F is approximated by Fs. We denote F ′=F −Fs and assume

‖F ′‖2β−1≤ ε2, (6.1)

with β >5/2.
Using the previous results on equations we will find a solution Vs(t) of (1.1)-(1.3)

in Hσ, σ >β+4, β >5/2 with mollified data which satisfies ε-independent estimates
in Hβ for large f and finite α. The solutions Vs,V satisfy equations of the form

∂tV (t)=Bα(V,V )−νAV −fPLJPLRαV +F (6.2)
∂tVs(t)=Bα(Vs,Vs)−νAVs−fPLJPLRαVs +F (6.3)

with the same Stokes operator A and bilinear operator Bα and different (but close)
initial data. The difference Ξ(t)=V (t)−Vs(t) satisfies the equation

∂tΞ(t)=Bα(Ξ,Vs)+Bα(Vs,Ξ)+Bα(Ξ,Ξ)−νAΞ−fPLJPLΞ+F ′, (6.4)
Ξ(0)=V (0)−Vs(0) (6.5)

with a small forcing term F ′=F −Fs and small initial data Ξ(0).
We start out by generalizing Lemma 5.1 in [7]. Once it is constructed, theorems

in Ch5 of [7] can be adapted, and hence the global existence and regularity follow.
Recall that, for each fixed wave number n,

Bosc
α (ft,v,v)n =

∑

l,k+m=n
Dl(k,m,n) 6=0

eiftDl(k,m,n)Qkmnl(vk,vm),

where l=1,...,8, and Qkmnl(vk,vm) is a bilinear form in vk,vm∈C3. Bosc
α (ft,v,v)

contains all nonresonant terms (ft-dependent terms). Here, the bilinear function
Qkmnl(vk,vm) is expressed by

Qkmnl(vk,vm)= iPn

∑

k+m=n

[
((Rαv)k ·m̌)vm +v

(j)
k m̌(Rαv)(j)k

]
.
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Then

|(Rαv)k ·m̌vm|≤ |(Rαv)k| |m̌| |vm|
≤ 1

1+α2|ǩ|2 |vk| |m̌| |vm|

≤ |m̌| |vk| |vm|
|v(j)

k m̌(Rαv)(j)k |≤ |v(j)
k | |m̌| |(Rαv)(j)m |

≤ |v(j)
k | |m̌| 1

1+α2|m̌|2 |v
(j)
m |

≤ |m̌| |vk| |vm|.
Since the summation has finitely many terms for each fixed n, the bilinear function
has the following inequality,

|Qkmnl(vk,vm)|≤CQ |m̌| |vk| |vm|. (6.6)

This estimate satisfies the condition of Lemma 5.1 in [7], and the corresponding lemma
follows uniformly in α:

Lemma 6.1. Let X⊂ (Z9 {0})×{1,...,8}=((Z3
k×Z3

m×Z3
n) {0})×{1,...,8}. Let

Qkmnl be a bilinear function from C3×C3 to C3 which depends on (k,m,n)∈Z9 and
on l=1,...,8 and satisfies for n=k+m:

|Qkmnl(uk,vm)|≤CQ |m̌| |uk| |vm|.
Let

(BQ(u,v))n =
∑

k+m=n
(k,m,n,l)∈X

Qkmnl(uk,vm).

Let β≥0. Then with C8 =C8(β) we have

|<BQ(u,v), Aβw>|≤CQC8‖w‖β+1

[‖u‖1/2‖v‖β+1 +‖u‖β+1/2‖v‖
]

≤ν‖w‖2β+1/8+C
[‖u‖2σ ‖v‖2σ

]
/ν,

for arbitrary ν >0 when σ≥max{β+1,1}. Moreover, if 0≤β <3/2

|<BQ(u,v), Aβw>|≤CQC8‖w‖β+1‖u‖3/4+β/2‖v‖3/4+β/2

≤ν‖w‖2β+1/8+C(1/ν)‖u‖23/4+β/2‖v‖23/4+β/2.

If 0≤β <3/2 and ε<<1, we have

|<BQ(v,w), Aβw>|≤CQC7‖w‖β+1‖w‖β+1−ε‖v‖1/2+ε

≤ν‖w‖2β+1/8+Cν1−2/ε‖v‖2/ε
1/2+ε‖w‖2β .

All these estimates are uniform in α.

Now we recapture theorems from Ch5 of [7]. The proofs can be carried over from
Theorem 5.1 and Theorem 5.2 in [7].

First, the following theorem establishes the existence of regular solutions on large
time intervals of 3D Navier-Stokes-α type systems with very small initial data and
forcing, uniformly in α with the help of Lemma 6.1.
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Theorem 6.2. Let β >5/2,ν >0,T0 >0. Let the following hold:

‖V (0)−Vs(0)‖β≤ ε,

and

‖F ′‖2β−1≤ ε2.

Assume that

‖Vs(t)‖β≤Msβ , 0≤ t≤T0, ν

∫ T0

0

‖Vs(t)‖2β+1≤M2
sβ ;

and ε≤ ε0, where ε0 depends on Msβ ,β,ν,T0. Then a regular solution Ξ of (6.4) exists
in Hβ and

‖Ξ(t)‖β≤C0ε, ν

∫ T0

0

‖Ξ(t)‖2β+1≤C2
0 ε2, 0≤ t≤T0, (6.7)

where C0 depends on Msβ ,β,ν. In particular, the estimates are uniform in α.

The proof of the theorem is exactly as the one of Theorem 5.1 in [7], albeit with the
uniform in α Lemma 6.1.

Now we derive the existence theorem for Eq. (6.3) with smooth initial data in
Hσ, σ >β+4, which includes a 3-wave resonance operator.

Theorem 6.3. Let a1,a2,a3 be arbitrary and fixed; let β >5/2,ν >0,σ >β+4 and let
Vs(t) be a solution of Eq. (1.1)-(1.3) with smooth initial data and forcing term such
that

‖Vs(0)‖β≤Mβ , ‖Fs‖2β−1≤ (MβF )2; (6.8)

‖Vs(0)‖σ≤MσF , ‖Fs‖2σ−1≤ (MσF )2; (6.9)

Then, for every f ≥f0(Mβ ,MβF ,MσF ,ν,a1,a2,a3), there exists a unique solution Vs(t)
for 0≤ t<∞ such that

‖Vs(t)‖β≤M ′
β , 0≤ t<∞,

ν

∫ T0

0

‖Vs(t)‖2β+1dt≤ (M ′
β)2

where M ′
β depends only on Mβ ,MβF ,ν,a1,a2,a3 but not on MσF . Moreover, these

estimates are uniform in α.

For the proof of Theorem 6.3 we need the lemma below, which is uniform in
α thanks to the local existence Theorem 5.4 and the uniform in α Theorems 4.1,
4.3, and 4.10 for the limit resonant α-equations. Consider (Poincaré variable) vs(t)=
exp(fPJPRαt)Vs(t), where Vs(t) is a solution of (6.3) with smooth initial data Vs(0)
and smooth force Fs(t); consider w(t)=w(t)+w⊥(t) solution of the limit equations
(3.45) for w and (3.47) for w⊥, with:

w(0)=V s(0), w⊥(0)=V ⊥
s (0).

Let r(t)=vs(t)−w(t). Then we have:
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Lemma 6.4. Let Tσ(MσF ,ν,a1,a2,a3) be the local (small) time existence for a solution
Vs(t) of (6.3). Under conditions β >5/2,σ−β >4 we have

‖r(t)‖β≤ δ(f), ∀t∈ [0, Tσ],

ν

∫ T

0

‖r(t)‖2β+1dt≤ (δ(f))2, ∀T ∈ [0, Tσ],

where δ(f)→0 as f→∞; Tσ does not depend on f ; δ(f) depends on MσF ,Tσ,ν,β,σ,
a1,a2,a3, but uniformly in α.

We then obtain the proof of Theorem 6.3, exactly as in [7] but extending the existence
of Vs(t) on 0≤ t<∞. For this extension, the “uniformly in α” of Theorem 5.4 (local
existence) and above all Theorems 4.1, 4.3, and 4.10 (regularity of limit equations for
0≤ t<∞) is crucial.

We now proceed with the existence and regularity theorem for less smooth V (0)
and F .

Theorem 6.5. Let the domain parameters a=(a1,a2,a3) be fixed but arbitrary, and
let ν >0, 0≤α<αM , β >5/2. Let ‖F‖2β−1≤M2

βF , ‖V (0)‖β≤M̃β ,and f large: f ≥
f1(M̃β ,MβF ,ν,a1,a2,a3). Then, for each such f , the solutions of Eq. (1.1)-(1.3) are
regular for all t such that 0≤ t≤T and T arbitrary large, and

‖V (t)‖β≤M̃ ′
β ∀t∈ [0,T ],

where M̃ ′
β =M̃ ′

β(M̃β ,MβF ,ν,a1,a2,a3,T ). Moreover, the estimates are uniform in α.

Proof. We sketch the proof following the line of Theorem 5.3 in [7] albeit for
β >5/2 instead of 1/2 and without using the L2 absorbing ball and t∗ entry time
in H1. The theorem is restricted to β >5/2 since we do not have any uniform in α
estimates for V in L2, nor in H1 ( and a fortiori in Hβ , 0<β <5/2.) The root of the
problem lies in the lack of classical energy conservation of V for the inviscid, unforced
3D Euler-α equations. Only, H−1 norm is conserved in H1 (see p5-6 in Section 2).
Otherwise, the theorem is proved with the help of the uniform in α Lemma 6.1,
Theorem 6.2, Lemma 6.4 and Theorem 6.3.

We approximate the force F and initial data V (0) by smooth functions Fs and
Vs(0) in Hσ, σ >β+4 so that:

‖Ξ(0)‖β =‖V (0)−Vs(0)‖β≤η, ‖Vs(0)‖σ≤Mη.

Moreover, the inequality (6.1) holds and, with F ′=F −Fs:

‖F ′(t)‖σ≤Mη,

where Mη depends on M̃β , MβF , η and T only. We then consider the RNS-α equations
with smooth initial data Vs(0) and force Fs in Hσ, which satisfy (6.8) and (6.9) in
Theorem 6.3 with Mβ≤M̃β +Mη, ‖Vs(0)‖σ≤Mη, and MσF ≤MβF +Mη. We then
apply Theorem 6.3 on [0, T ]. The Hσ norms of these smooth functions are bounded
by ( a possibly large) constant Mη depending on this fixed η and M̃β ,MβF . After
that, we choose f >f1(M̃β ,MβF ,η,ν,a1,a2,a3) such that we have (6.10) and (6.10) in
Theorem 6.3 for solutions Vs(t) on [0, T ] of equations with smooth data. We then
apply Theorem 6.2 with ε replaced by η, Msβ by M̃β +η and T0 by T ; we obtain a
regular solution Ξ of (6.4) such that

‖Ξ(t)‖β≤C0η, ν

∫ T

0

‖Ξ(τ)‖2β+1dτ ≤C2
0η2, 0≤ t≤T,
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where C0 depends on M̃β , β and ν. We now choose η so small that we have C0η≤ ε
in Theorem 6.2, and we obtain

‖V (t)‖β≤‖Vs(t)‖β +‖Ξ(t)‖β≤M ′
β +ε,

where M ′
β depends only on M̃β , MβF , ν,a1,a2,a3,T , but not on Mη. Finally, we

obtain Theorem 6.5 with M̃ ′
β =M ′

β +ε.

Corollary 6.6. Let the conditions of Theorem 6.5 be satisfied. Let B̃β be a ball in
Hβ , β >5/2 with radius of B̃β≤M̃β. Then, for T given arbitrary large, we have

‖S(t)B̃β‖β≤M̃ ′
β , ∀t∈ [0, T ],

where M̃ ′
β =M̃ ′

β(M̃β ,MβF ,ν,a1,a2,a3,T ). Moreover, the estimates are uniform in α.

Proof. As β >5/2, we can easily show that the semiflow S(t) is compact on Hβ and
take B̃β compact in Hβ , modulo a small translation in time (smoothing property of
the 3D NSE, cf. [6] , [18]). We then cover B̃β with a finite set {Vi(0)}, i=1,2,...,N(η),
such that, ∀V (0)∈ B̃β ,

‖V (0)−Vi(0)‖β≤η/2.

For each Vi(0), we apply Theorem 6.5 with ‖Vs,i(0)−Vi(0)‖β≤η/2 and Mη =
max1≤i≤N Mη,i, where ‖Vs,i(0)‖≤Mη,i. Clearly, ∀V (0), there is a Vs,i(0) such that
‖V (0)−Vs,i(0)‖β≤η, and we can apply Theorem 6.5 uniformly in B̃β on [0, T ].

Bootstrapping the previous corollary on a sequence of times 0,T,2T,...,NT is
possible, but yields the following exponential estimate for M̃ ′

β :

M̃ ′
β(NT )≤M̃ ′

β(T )exp(N log(C0)),

where C0 is defined in (6.7). This prevents any straightforward construction of an
absorbing ball in Hβ , uniformly in α. However, a weaker absorbing set can be con-
structed as the following:

Theorem 6.7. Let 0≤α≤αM , ν >0; let a1,a2, and a3 be arbitrary and fixed. Let
β >5/2,γ >β+4, and F a time-independent force such that

‖F‖2β−1≤M2
βF and ‖F‖2γ−1≤M2

γF .

Let V (0)∈BγI be initial data in a ball in Hγ . Let diam(BγI)<2ργI in Hγ norm and
diam(BγI)<2ρβI in Hβ norm. Then, for each f ≥f∗(MβF ,MγF ,ργI ,ρβI ,ν,a1,a2,a3),
the 3D rotating Navier-Stokes-α equations possess an absorbing set Bβ in Hβ; that
is, there exists tβ = tβ(ρβI), such that f ≥f∗ and V (0)∈BγI imply

‖V (t)‖β≤ρβ and ν

∫ t+1

t

‖V (τ)‖2β+1dτ ≤M2
β+1,

for all t≥ tβ. This absorbing set is uniform in α and ρβ =ρβ(MβF ,ν,a1,a2,a3),
Mβ+1 =Mβ+1(MβF ,ν,a1,a2,a3) (with no dependence on MγF , nor on ργI).

Proof. We now choose F smooth in Hγ , γ >β+4, β >5/2 and initial data in the
smooth ball βγI of radius ργI in the Hγ norm, and radius ρβI in the Hβ norm. Of



430 THE 3D ROTATING NAVIER-STOKES-α EQUATIONS

course, Hγ⊂Hβ . We apply Theorem 6.3 with γ =σ,MσF replaced by ργI and Mβ

replaced by ρβI . Then, for any V (0)∈BγI , we obtain regular solutions in the weaker
topology of Hβ , for f ≥f∗(MβF ,MγF ,ρβI ,ργI ,ν,a1,a2,a3).

‖V (t)‖β≤M ′
β , 0≤ t<∞

where M ′
β =M ′

β(MβF ,ρβI ,ν,a1,a2,a3) but does not depend on MγF or ργI . We are
using two deep (and subtle) features of Theorem 5.2 in [7]: the dependence of the
threshold f∗ upon bounds in the highest norm Hσ but the independence of M ′

β from
the latter; and that Theorem 5.2 in [7] can be extended to T =∞. Then the proof of
an absorbing ball for BγI in the Hβ topology follows along classical lines, using the
generalized (uniform) Gronwall lemma with norms in Hβ and Hβ+1 (time average),
together with finite regularization time in Hβ+1, and we obtain ρβ , Mβ+1 independent
from ργI and MγF .

Remark 6.8. Absorbing balls in a weaker topology than that of the set of initial
data are a typical feature of infinite dimensional dynamical systems methods applied
to damped hyperbolic PDE’s (Ch6, [19]). This notion enables the construction of a
global attractor as well as exponential attractors in the “Hβ−Hγ” sense ([28], Ch9).
Here, of course, it is the lack of conservation of classical energy for the unfiltered Vα

that creates the difficulty.

7. Existence of global and exponential attractors, uniformly in α
In this section we follow the theory along the line of [19] to construct an expo-

nential attractor for the 3D rotating Navier-Stokes-α equations for large f . We start
out by recalling the procedure with which exponential attractors are constructed in
Hilbert spaces.

Let E be a Hilbert space with norm ‖·‖E induced by the inner product (·,·)E . Let
X be a compact subset of E and S :X→X a Lipschitz continuous map with Lipschitz
constant L. Then S possesses a global attractor A which is a compact, connected set
given by

A=
∞⋂

n=1

Sn(X).

(Theorem 2.4.2, [23]). Exponential attractors for a map S are defined as:

Definition 7.1. (Discrete Exponential Attractor) A compact set M is called
an exponential attractor for (S,X) if A⊂M⊂X and

(i) (positively invariant) S(M)⊂M.
(ii) M has finite fractal dimension, dimF (M)<∞.
(iii) There exist positive constants c0 and c1 such that

dh(SnX,M)≤ c0e
−c1n, ∀n≥1

where dh is the standard Hausdorff semi-distance between two sets defined by
dh(A,B)=supa∈A infb∈B‖a−b‖E.

In establishing the existence of discrete exponential attractors key techniques are
those based on examining the difference of two solutions and verifying the squeez-
ing property on the underlying mapping S. The squeezing property guarantees the
existence of discrete exponential attractors (Ch. 2, [19]):
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Definition 7.2. Let E be a Hilbert space and X a subset of E. A map S has the
squeezing property in X if, for some δ∈ (0, 1

4 ), there exists an orthogonal projection
P =P (δ) of finite rank N0 =N0(δ) such that, ∀u,v∈X, if ||(I−PN0)(Su−Sv)||E≥
||PN0(Su−Sv)||E then ||Su−Sv||E≤ δ||u−v||E.

Theorem 7.3. If S has the squeezing property in X, then there exists an exponential
attractor M for (S,X) and, moreover,

dB(M)≤N0 max{1,log(
2L

δ
+1)/log(

1
θ
)},

where θ∈ (4δ,1) arbitrary and dB is the fractal box dimension for the metric E.

We now turn to the continuous case. Let {S(t)|t≥0} be the semigroup on X.
Assume that S(t) possesses a global attractor A. The exponential attractors for
(S(t),X) are defined as:

Definition 7.4. (Continuous Exponential Attractor) A compact set M is called
an exponential attractor for a semigroup (S(t),X) if

(i) A⊆M⊆X,
(ii) S(t)M⊆M for t≥0,
(iii) the fractal dimension of M is finite, dimF (M)<∞,
(iv) there exists positive constants c0 and c1 such that

dh(S(t)X,M)≤ c0e
−c1t, ∀t≥0,

where dh is the Hausdorff semi-distance for the metric E.

Given the semigroup {S(t)|t≥0} of solution operators, we will choose a positive
t∗ small enough such that S∗=S(t∗) possesses the squeezing property in X. If S∗ is
Lipschitz continuous, then the existence of a discrete exponential attractor M∗ for
(S∗,X) is guaranteed by Theorem 7.3. Next we define

M=
⋃

0≤t≤t∗

S(t)M∗

and G : [0,T ]×M∗→M as G(t,x)=S(t)x. If G is Lipschitz, then it can be shown
that M is a compact set with a finite fractal box dimension, and M will be an
exponential attractor for (S(t),X) (Theorem 3.1, [19]). The exponential attractors for
the continuous dynamical systems generated by a semigroup {S(t)}t≥0 are unions of
exponential attractors restricted by squeezing time t∗. In addition, given an estimate
for M∗, it is not difficult to get an estimate for the fractal box dimension of M
(Theorem 3.1, [19]):

Theorem 7.5. Let S(t∗) have the squeezing property in X for some time t∗>0 and
let M be an exponential attractor for (S(t),X) and G(t∗,x)=S(t∗)x for x∈X, t≥0.
If G(t∗,·) is Lipschitz in X with Lipschitz constant L∗, then

dB(M)≤dB(M∗)+1.

Furthermore,

dh(S(t)X,M)≤ cL∗ exp
(−(ln8)t

t∗

)
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for all t≥0, where c is a positive constant.

Now we follow the above procedure to establish the existence of an exponential
attractor in L2 for the 3D RNS-α equations. We do this for all f that allow the
existence of a global attractor. Assume that F is time-independent and smooth and
that f ≥f∗ as in Th 6.7. Let Sα(t) be the semiflow for solutions of the 3D RNS
α-equations and let Bβ ,β >5/2, be the absorbing ball obtained in Theorem 6.7. Set

Xα,β =∪t≥tβ(Bβ)+ 1
νλ1

Sα(t)Bβ
|·|

,

where the closure is taken in L2-topology and λ1 denotes the first eigenvalue of the
Stokes operator. Then Xα,β is a bounded subset of Bβ , compact in Hs,0≤s<β, and
positively invariant under Sα(t) such that, for all Vα(0)∈Xα,β ,

||Sα(t)Vα(0)||Hβ ≤ρα,β , ∀t≥0,

where ρα,β is the uniform bound obtained in Th 6.7. In particular, there exist absolute
bounds ρα,s =ρα,s(MβF ,ν,a1,a2,a3) such that ‖Sα(t)Vα(0)‖Hs ≤ρα,s≤ρα,β for 0≤
s<β. We will denote ρH for ρα,0 and ρV for ρα,1. Since Xα,β is compact in Hs for
0≤s<β, we can deduce that the underlying semigroup S(t) is uniformly compact so
that it possesses a unique global attractor A in Hs for 0≤s<β, (Theorem 1.1, [37]).
Moreover, it can be proved that A lies in Hβ for β >5/2, (Corollary 9.7, [28]).

We consider the solution operator Sα(t) as a map from Xα,β into Xα,β . We only
need to show that there exists a squeezing time t∗ such that the discrete operator
Sα∗=Sα(t∗) has the squeezing property in L2-topology. To achieve it we first examine
the difference between two solutions, Va and Vb, of 3D RNS-α equations in Xα,β . Let
W =Va−Vb and W ′= Va+Vb

2 . Then W satisfies the equation

∂W

∂t
+νAW +fMRαW =−[Bα(W ′,W )+Bα(W,W ′)] (7.1)

W (0)=Va(0)−Vb(0). (7.2)

Taking the inner product with 2W and using Lemma 2.3 we obtain

d

dt
|W |2 +2ν‖W‖2≤2{|<Bα(W ′,W ),W >|+ |<Bα(W,W ′),W >|} , (7.3)

where Bα(u,v)=(Rαu ·∇)v+vj∇(Rαu)j . Estimating the right hand side of (7.3) and
using Young’s inequality yields

d

dt
|W |2 +ν‖W‖2≤ K1

ν3
|W |2, (7.4)

where K1 = c4
1ρ

4
V with c1 a constant. Letting λ(t)= ‖W (t)‖2

|W (t)|2 , (7.4) becomes

d

dt

[
ln|W (t)|2]≤−νλ(t)+

K1

ν3

so that

|W (t)|2≤ δ(t)|W (0)|2 (7.5)

with

δ(t)=exp
(
−ν

∫ t

0

λ(s)ds+
K1

ν3
t

)
.
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Next, we need to find a time t∗ such that the estimate for δ(t∗) allows squeezing.
Thus it is essential to bound

∫ t∗
0

λ(s)ds, and following the exact line of section 6.1 in
[38] we obtain

t∗=
c2
3

c2

ν3/2

K2K3
, (7.6)

where K2 = c2ρV and K2
3 = 27c4

3
2ν3 ρ6

V + 2
νλ1

ρH with c2 and c3 constants. Furthermore,

∫ t∗

0

λ(t)dt≥ c4λN0+1
ν3/2

K2K3
,

where c4 = 1
2 [1−exp(−c2

3/c2)]>0, so that

δ(t∗)≤ exp
(
−c4

c2
λN0+1

ν5/2

K3ρV
+

c5ρ
3
V

ν3/2K3

)
, (7.7)

where c5 = 27
16c4

1c
2
3c

2
2. By the definition of K3 there exists a constant c̃>0 such that

K3≤ c̃

(
ρ3

V

ν3/2
+ν1/2λ

1/2
1 ρH

)
.

Choosing N0 such that

N0≥ c̃3/2max

{
1

λ
3/4
1

(ρHρV )3/2

ν3
,

ρ6
V

λ
3/2
1 ν6

}
,

gives δ(t∗)< 1
8 . Under the above condition of N0, the following Lemma assures the

existence of an exponential attractor M∗
α for (S∗,Xα,β) for f ≥f∗ (Ch 3, [19]; Propo-

sition 2.2.7, [38]):

Lemma 7.6. Let t∗>0 be given and u,v∈X. Define

λ∗=
‖w∗‖2
|w∗|2 ,

where w∗=S∗u−S∗v. Then S∗ possesses the squeezing property in X, if there ex-
ists δ∈ (0,1/4) and N0 =N0(δ)∈N , such that λ∗> 1

2λN0+1 implies that |S∗u−S∗v|<
δ|u−v|, for all u,v∈X.

Furthermore, the Lipschitz constant for S∗ on Xα,β is estimated as

L∗= δ(t∗)≤ exp
(

c5ρ
3
V

ν3/2K3

)
,

and hence

dh (Sα(t)Xα,β ,M∗
α)≤ cL∗

(
(δ(t∗))1/t∗

)t

≤ cL∗
(
e− ln8

)t/t∗

= cαF e−δαF t,
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where cαF = cL∗ and δαF = ln8
t∗

.
Now we summarize the results:

Theorem 7.7. Let F be a smooth, time-independent force and let a=(a1,a2,a3) be
a domain size parameter. For f ≥f∗ as in Th 6.7, let Xα,β be the positively invariant
set from (7.1). Then {Sα(t)|t≥0} restricted to Xα,β admits an exponential attractor
Mα in L2. Moreover, the rate of convergence to the exponential attractor is given by

dh(Sα(t)Xα,β ,Mα)≤ cαF e−δαF t,

where cαF ,δαF are constants, which only depend on ν,a,ραH ,ραV and are independent
of the angular frequency f ≥f0 and α>0.

Remark 7.8. Mα is bounded in Hβ and attracts all orbits in the L2-norm topology.
It is compact in the space Hγ ,0≤γ <β.

8. Continuity of exponential attractors
In this section we investigate the convergence of the exponential attractor Mα,β

for the semiflow Sα(t) to the one for the semiflow S0(t) of the original RNSE as
α vanishes by establishing the upper and lower semicontinuity of the exponential
attractors with respect to the Hausdorff semi-distance, as α→0+. In the previous
section, we constructed the exponential attractor Mα,β for the 3D RNS-α equations
when α>0. Now we need the corresponding exponential attractor for the original
RNSE (when α=0). Trahe ([38]) constructed an exponential attractor Mf for the
original RNSE. We extend his attractor to the space Hβ .

8.1. Construction of exponential attractors in Hβ for 3D RNSE. Trahe
([38]) constructed an exponential attractor Mf for the 3D RNSE with a smooth,
time-independent force F for all f large enough. His construction of the exponential
attractor is based on the existence and global regularity theorems of solutions to the
3D RNSE ([7]):

Theorem 8.1. Let the domain parameters a=(a1,a2,a3) be fixed but arbitrary.
Let ν >0,s>1/2, and F a smooth time-independent force with ‖F‖s−1≤Ms,F . Let
‖V (0)‖s≤M̃s. Then there exists fs =fs(M̃s,Ms,F ,ν,a) such that for each f ≥fs, the
corresponding solutions to the 3D RNSE (α=0) are regular for all t≥0 and

‖V (t)‖s≤M̃ ′
s, ∀t≥0,

where M̃ ′
s =M̃ ′

s(M̃s,Ms,F ,ν,a).

Theorem 8.2. Let the domain parameters a=(a1,a2,a3) be fixed but arbitrary.
Let ν >0,s>1/2, and F a smooth time-independent force with ‖F‖s−1≤Ms,F . Let
‖V (0)‖0≤M̃0. Then there exist a time T̂ = T̂ (M0,MsF ,ν) and f ′ such that, for each
f ≥f ′, the corresponding weak Leray solution V (t) of the 3D RNSE (α=0) defined
on [0,T̂ ] satisfies the following: V can be extended to (0,∞) and is regular for each
t∈ [T̂ ,∞), i.e., V belongs to Hs and ‖V (t)‖s≤C(a,MsF ,ν) for all t≥ T̂ .

This theorem describes the situation when f is fixed and large enough depending only
on the magnitude of F and independent of nonsmooth initial data V (0)∈L2. Then
weak Leray solutions V (t) are always regular for t> T̂ .

Using these two theorems Trahe established the existence of absorbing balls in
H1 as well as in L2 (Section 6.1, [38]).
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Proposition 8.3. Let F be a time-independent, smooth force. Then for each f ≥0,
there exists an absorbing set BH in L2, independent of f , for every weak Leray solution
of the 3D RNSE. That is, given a bounded set B in L2, there exists tH = tH(B), such
that each V (0)∈B implies

‖V (t)‖0 =‖S0(t)V (0)‖0≤ρH =
√

2
‖F‖0
νλ1

for all t≥ tH .

Proposition 8.4. Let F be a time independent, smooth force with ‖F‖0≤M1,F . Let
M0 =M0(1/(νλ1)) and M̃1 =

√
2M0, where M̃1 is from the hypothesis of Theorem 8.1

with s=1. Then, for each f ≥f0 =max{f ′,f1}, the 3D RNSE possess an absorbing
set BV in H1; that is, given B⊆H1 bounded, there exists tV = tV (B) such that f ≥f0

and V (0)∈B imply

‖V (t)‖1 =‖S0(t)V (0)‖1≤ρV

for all t≥ tV . Here ρV is a constant depending on ρH ,ν,a1,a2,a3.

Remark 8.5. Trahe also constructed the absorbing set BW in H2, which has size of
ρW =ρW (ρh,ν,a1,a2,a3,‖F‖1). The absorbing set and the entry time are uniform for
all f ≥f0.

We extend this result to get an absorbing ball B0,β in space Hβ via the usual 3D
NSE smoothing process:

Proposition 8.6. Under the same hypothesis as in Proposition 8.4, for each f ≥f0 =
max{f ′,f1}, the 3D RNSE possess an absorbing set B0,β in Hβ; i.e., given B⊆Hβ

bounded, there exists tβ = t0,β(B)≥ tV (BV )+ 1
νλ1

such that f ≥f0 and V (0)∈B imply

‖V (t)‖β =‖S0(t)V (0)‖β≤ρ0,β

for all t≥ t0,β.

Define

X0,β =
⋃

t≥t0,β(B0,β)+ 1
νλ1

S0(t)B0,β

|·|
, (8.1)

where the closure is taken in the L2-norm topology. Then X0,β is a bounded subset
of B0,β and is compact in the spaces Hσ,0≤σ <β. In particular, if V (0)∈X0,β ,

|S0(t)V (0)|≤ρH , ‖S0(t)V (0)‖≤ρV , and ‖S0(t)V (0)‖2≤ρW , ∀t≥0.

Let Mf be an exponential attractor in H0 constructed in Ch. 6, [38]. We simply
restrict it to the set X0,β to obtain an exponential attractor M0,β =Mf ∩X0,β .

Proposition 8.7. Let the domain parameters a=(a1,a2,a3) be fixed but arbitrary,
F a smooth time-independent force, and X0,β a positively invariant compact set from
(8.1). Then, for each f ≥f0, {S0(t)} restricted to X0,β admits an exponential attractor
M0,β. Moreover, the rate of convergence to the exponential attractor is given by

dh(S0(t)X0,β ,M0,β)≤ c0F e−δ0F t,

where cf ,δF are constants, which only depend on ν,a,ρH ,ρV and are independent of
the angular frequency f ≥f0.

Remark 8.8. In Proposition 8.7, the Hausdorff semi-distance is defined with L2-
norm.
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8.2. Convergence of exponential attractors. Now we express Eq. (1.1)
in the equivalent form that is very useful in showing the continuity of exponential
attractors. Rewrite Eq. (1.1) as

∂V

∂t
+(RαV ·∇)V +Vj∇(RαV )j +fJRαV +νAV =−∇π+F.

Notice that

Vj∇(RαV )j =Vj∇([Rα− I]V )j +Vj∇Vj

=Vj∇([Rα− I]V )j +
1
2
∇|Vj |2,

where I is the identity matrix. Since PL[ 12∇|Vj |2]=0, Eq.(1.1) becomes, after Leray
projection,

∂V

∂t
+νAV +PL[(RαV ·∇)V ]+PL[Vj∇([Rα− I]V )j ]+fPLJPLRαV =F. (8.2)

The operator Rα−I in Eq.(8.2) is crucial in proving the convergence of solutions of
the 3D RNS-α equations because its norm in Fourier-Sobolev spaces may be taken as
small as needed:

Lemma 8.9. Let 0≤s<∞ and β >0 be given. For any arbitrary small number ε>0,
there exists a constant α̃(ε) such that, ∀0<α≤ α̃(ε),

||(Rα−I)v||2Hs ≤ ε ||v||2Hs+β , for any v∈Hs+β . (8.3)

In particular, α̃(ε)→0 as ε→0.

Proof. Note that, for any wave number k, (Rα−I)k = −α2|ǩ|2
1+α2|ǩ|2 . Then, for any

M >0,

||(Rα−I)v||2Hs =
∑

k

[
α2|ǩ|2

1+α2|ǩ|2
]2

|ǩ|2s|vk|2

≤
∑

k

α4|ǩ|4
1+α4|ǩ|4 |ǩ|

2s|vk|2

≤
∑

|k|<M

α4|ǩ|4
1+α4|ǩ|4 |ǩ|

2s|vk|2 +
∑

|k|≥M

|ǩ|2s|vk|2. (8.4)

Now:
(i)

∑

|k|≥M

|ǩ|2s|vk|2 =
∑

|k|≥M

1
|ǩ|2β

|ǩ|2(s+β)|vk|2

≤ 1
M2β

||v||2Hs+β . (8.5)

(ii) Choose the closest integer M̌ to ( 2
ε )

1
2β satisfying M̌ = d( 2

ε )
1
2β c+1, where d · c

denotes the integer part of “· ”. Then 1
M̌2β ≤ ε

2 , and, from (i), we obtain
∑

|k|≥M̃

|ǩ|2s|vk|2≤ ε

2
‖v‖2Hs+β .
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(iii) Now choose α̃(ε)=
(

ε
2

) 1
2β

(
ε/2

1−ε/2

)1/4

. Then

α4 <α̃4(ε)≈
1

M̌4

ε/2
1−ε/2

. (8.6)

It implies α4M̌4≤ ε/2
1−ε/2 so that α4M̌4

1+α4M̌4 ≤ ε
2 . Thus

∑

|k|<M̌

α4M̌4

1+α4M̌4
|ǩ|2s|vk|2≤ ε

2
‖v‖2Hs ≤ ε

2
‖v‖2Hs+β .

Combining (i)-(iii) with the inequality (8.4), we get, for any 0<α≤ α̃(ε),

||(Rα−I)v||2Hs ≤ ε ||v||2Hs+β , for any v∈Hs+β .

This lemma can be generalized to the following lemma, using the Hölder’s inequality
and choosing the closest integer M̌ to 2

ε in part (i) and (ii) in the proof of Lemma
8.9, respectively:

Lemma 8.10. Let 0≤s<∞ and β >0 be given. For any arbitrary small number ε>0,
there exists a constant α̃(ε) such that, ∀0<α≤ α̃(ε),

||(Rα−I)v||Hs ≤C(β)ε2β/(β+2)||v||β/(β+2)
Hs ||v||2/(β+2)

Hs+β , for any v∈Hs+β . (8.7)

In particular, α̃(ε)→0 as ε→0.

Now we prove the continuity of exponential attractors:

Theorem 8.11. Let ν >0,a=(a1,a2,a3) fixed, and F a smooth time-independent
force. Let f∗ fixed, given in the existence theorem 6.7. Let η >0 given. Then there
exist time t̃= t̃(η,ν,ρ0,β ,ρα,β ,a)>0 and α̃(η,ν,Mβ,F ,f∗) such that, for 0<α≤ α̃,

(i) dh(Sα(t̃)Mα,β ,M0,β)<η,
(ii) dh(S0(t̃)M0,β ,Mα,β)<η.

For a given f∗ this convergence is uniform in α, 0<α<α̃. Moreover, α̃→0 as η→0.

Proof. Proof of (i): Let η >0. We need to show that there exist t̃= t̃(η) and
α̃= α̃(η) such that

∀x∈Sα(t̃)Mα,β ∃y∈Mα,β such that |x−y|<η.

Since Sα(t̃)Mα,β⊆Mα,β∩Sα(t̃)Mα,β , it suffices to show this for x∈Mα,β∩
Sα(t̃)Mα,β .

First we determine such t̃. Let tb = tb(Bα,β) be the entry time for the set Bα,β for
the solutions to 3D RNS-α equations into the absorbing set B0,β for the solutions to
the 3D RNSE under the semiflow {S0(t)}. Recall that Bα,β is itself absorbing under
{Sα(t)}. It is clear that, ∀t≥ tb + t0,β + 1

νλ1
, S0(t)B0,β⊆X0,β . By Proposition 8.7, we

can pick t̃≥ tb + t2 + 1
νλ1

such that

dh(S0(t̃)B0,β ,M0,β)<c0F e−δ0F (t̃−(tb+tβ+ 1
νλ1

)) <
η

2
.
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Notice that t̃ depends on η,tb,t2,δ0F ,c0F ,ν. This implies that, given η >0, ∃y∈M0,β

such that

|S0(t)V (0)−y|< η

2
for every V (0)∈B0,β .

Now suppose x∈Mα,β∩Sα(t̃)Mα,β . Then,

∃V (0)∈Xα,β such that x=Sα(t̃)V (0).

Thus we have

|x−y|≤ |Sα(t̃)V (0)−S0(t̃)V (0)|+ |S0(t̃)V (0)−y|.

From the tracking Lemma 8.12 below with T = t̃(η),B0,1 =X0,β ,Bα,β =Xα,β ,T∗= tb +
tβ + 1

νλ1
, and t1=the initial time, we obtain, for α small enough,

|Sα(t̃)V (0)−S0(t̃)V (0)|< η

2

. This completes the proof. Proof of (ii) follows the same procedure.

Lemma 8.12. Let [0, T ] be a time interval on which the solutions of the 3D RNSE
and the 3D RNS-α equations are in respective absorbing sets in B0,1 in H1, with the
radius of M ′

1, and Bα,β in Hβ , β >5/2, with the radius of M ′
β. Assume f ≥f∗, where

f∗ is defined in Theorem 6.7. Consider two solutions, V0 and Vα, of the 3D rotating
Navier-Stokes equations and the 3D rotating Navier-Stokes-α equations, respectively,
with the same initial data at some time t1≥T∗, where T∗=max{Tα0,T0}, Tα0= the
initial time when Vα(t) enters into an absorbing set, and T0= the initial time when
V0(t) enters into an absorbing set. Then two solutions uniformly converge as α→0 in
L2 for all t∈ [t1, T ] in the following sense: For any η >0, ∃α̃(η, 1

f ,T,M ′
β ,M ′

1) such
that, for any α<α̃(η, 1

f ,T,M ′
β ,M ′

1),

‖Vα(t)−V0(t)‖0≤η, ∀t∈ [t1, T ],t1≥T∗,

and, for fixed f ≥f∗, η→0 as α̃→0. The limit is uniform in f for f∗≤f ≤fmax.
Moreover, α̃(η, 1

f ,T,M ′
β ,M ′

1)→0 as η→0 and 1
f →0.

Proof. Let V0 and Vα be two solutions of the 3D rotating Navier-Stokes equations
and the 3D rotating Navier-Stokes-α equations, respectively. Let B0,1 be an absorbing
set for V0 in H1 and let Bα,β , β >5/2 be an absorbing set for Vα in Hβ . We assume
that V0 is in B0,1 and Vα is in Bα,β with:

‖V0‖≤M ′
1, ‖Vα‖β≤M ′

β ,

where M ′
β =ρβ in Theorem 6.7. Let T be an arbitrary, but fixed time. In addition,

along with the existence results from [7], we will assume that f is large and finite.
The corresponding equations are

∂Vα

∂t
+νAVα +PL[(RαVα ·∇)Vα]+PL[Vαj∇({Rα−I}Vα)j ]+fPLJPLRαVα =F

∂V0

∂t
+νAV0 +PL[(V0 ·∇)V0]+fPLJPLV0 =F.
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Writing Zα =Vα−V0 and taking the difference of the above two equations we obtain

∂Zα

∂t
+νAZα =−PL[(RαVα ·∇)Vα]+PL[(V0 ·∇)V0]

−PL[Vαj∇({Rα−I}Vα)j ]−fPLJPL[RαVα−V0]. (8.8)

Note that

PL[(RαVα ·∇)Vα]−PL[(V0 ·∇)V0]=PL[(RαVα ·∇)Zα]+PL[(RαVα ·∇)V0]
+PL[(Zα ·∇)V0−(Vα ·∇)V0]

=PL[(RαVα ·∇)Zα]+PL[(Zα ·∇)V0]
+PL[({Rα−I}Vα ·∇)V0].

Then (8.8) becomes

∂Zα

∂t
+νAZα =−PL[(RαVα ·∇)Zα]−PL[(Zα ·∇)V0]

−PL[({Rα−I}Vα ·∇)V0]−PL[Vαj∇({Rα−I}Vα)j ]
−fPLJPL[RαVα−V0]. (8.9)

Taking the inner product (8.9) with Zα gives

1
2

∂

∂t
|Zα|2 +ν‖Zα‖2 =−

∫
[(Zα ·∇)V0] ·Zαdx

−
∫

[({Rα−I}Vα ·∇)V0] ·Zαdx

−
∫

[Vαj∇({Rα−I}Vα)j ] ·Zαdx

−
∫

[fPLJPL(RαVα−V0)] ·Zαdx.

Note that <PL[(RαVα ·∇)Zα], Zα >=0. We assess the estimation on the right hand
side:

(i)

∣∣∣∣
∫

[(Zα ·∇)V0] ·Zαdx

∣∣∣∣≤‖Zα‖L6 |∇V0| ‖Zα‖L3

≤ c1 ‖Zα‖ ‖V0‖ |Zα|1/2 ‖Zα‖1/2

= c1 ‖Zα‖3/2 ‖V0‖ |Zα|1/2

≤ ν

8
‖Zα‖2 +

54c2
1

ν3
‖V0‖4 |Zα|2.

In each of (ii), (iii), and (iv) below, it is Lemma 8.9 that is crucial to obtain third
inequalities.
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(ii)
˛̨
˛̨
Z

[({Rα−I}Vα ·∇)V0] ·Zα dx

˛̨
˛̨=
˛̨
˛̨
Z

[({Rα−I}Vα ·∇)Zα] ·V0dx

˛̨
˛̨

≤‖{Rα−I}Vα‖L4 ‖Zα‖ ‖V0‖L4

≤ c2 |{Rα−I}Vα|1/4 ‖{Rα−I}Vα‖3/4

|V0|1/4 ‖V0‖3/4 ‖Zα‖
≤ c2ε ‖Vα‖1/4 ‖Vα‖3/4

2 |V0|1/4 ‖V0‖3/4 ‖Zα‖
≤ c2ελ

−1/4
1 ‖Vα‖2 ‖V0‖ ‖Zα‖

≤ ν

4
‖Zα‖2 +

c2
2ε

2

ν
√

λ
‖Vα‖22 ‖V0‖2.

(iii)
˛̨
˛̨
Z

[Vαj∇({Rα−I}Vα)j ] ·Zα dx

˛̨
˛̨=
˛̨
˛̨
Z

[(Zα ·∇)Vα] ·{Rα−I}Vα dx

˛̨
˛̨

≤‖Zα‖L4 ‖Vα‖ ‖({Rα−I}Vα)‖L4

≤ c3 |{Rα−I}Vα|1/4 ‖{Rα−I}Vα‖3/4

‖Vα‖ |Zα|1/4 ‖Zα‖3/4

≤ c3ε ‖Vα‖1/4 ‖Vα‖3/4
2 ‖Vα‖ |Zα|1/4 ‖Zα‖3/4

≤ c3ελ
−1/4
1 ‖Vα‖2 ‖Vα‖ ‖Zα‖

≤ ν

4
‖Zα‖2 +

c2
3ε

2

ν
√

λ1

‖Vα‖22 ‖Vα‖2.

(iv)
˛̨
˛̨
Z

[fPLJPL(RαVα−V0)] ·Zα dx

˛̨
˛̨≤
˛̨
˛̨
Z

[fPLJPL(Rα−I)Vα] ·Zα dx

˛̨
˛̨

+

˛̨
˛̨
Z

fPLJPLZα ·Zα dx

˛̨
˛̨

≤|fPLJPL(Rα−I)Vα| |Zα|
≤ εf‖Vα‖ |Zα|

≤ ν

8
|Zα|2 +

2ε2f2

ν
‖Vα‖2.

Collecting all the estimates, we get

∂

∂t
|Zα|2 +

3ν

4
‖Zα‖2≤2

(
c2

ν3
‖V0‖4 +

ν

8

)
|Zα|2

+
2c2ε2

ν
√

λ1

‖Vα‖22
(‖V0‖2 +‖Vα‖2

)
+

ε2f2

4
, (8.10)

where c=max{54c1,c2,c3,1} and ε arbitrary small number in Lemma 8.9. Write
y = |Zα|2. Then, from (8.10)

dy

dt
≤gy+h, ∀t∈ [0, T ],
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where

y = |Zα|2 = |Vα−V0|2

g =2
(

c2

ν3
‖V0‖4 +

ν

8

)
≤K1 =2

(
c2

ν3
(M ′

1)
4 +

ν

8

)

h=
2c2ε2

ν
√

λ1

‖Vα‖22
(‖V0‖2 +‖Vα‖2

)
+

2ε2f2

ν
‖Vα‖2≤ ε2K2 +ε2f2K3.

Note that K1, K2 = 2c2

ν
√

λ1
(M ′

2β)2(M ′
1)

2, and K3 = 2
ν (M ′

1β)2, are absolute constants on
[0, T ].

Choose ε and ε̃ such that

ε2≤ η̂

2K2
and ε̃2≤ η̂

2K3

(
1
f2

)1+θ

with θ>0, (8.11)

Here η̂ will be determined later. Let ε∗=min{ε, ε̃} and let α<α̃(ε∗) to get the small
error estimate in Lemma 8.9. Then

h(t)≤ η̂, ∀t∈ [T∗, T ].

Applying the classical Gronwall’s inequality over an interval (t1, t)⊂ [T∗,T ] we obtain

y(t)≤eK1(t−t1)y(t1)+
η̂

K1
[eK1(t−t1)−1]

≤eK1(t−t1)y(t1)+
η̂

K1
eK1(t−t1), ∀t,t1 such that T∗≤ t1≤ t≤T.

Let us assume that the two solutions are identical at some time t1≥T∗. Then
y(t1)=0, and we get

y(t)≤ η̂

K1
eK1(t−t1), ∀t∈ [t1, T ], ∀t1≥T∗.

This implies

sup
τ∈[t1, T ]

y(τ)≤ η̂

K1
eK1(T−T∗).

Choosing η̂ such that [η̂exp(K1(T −T∗))]/K1 <η yields

sup
τ∈[t1, T ]

y(τ)≤η→0 as η→0.

A similar lemma can be established for the H1-norm distance. Proof is provided
in the Appendix, Section C.

Lemma 8.13. Let [0, T ] be a time interval on which the solutions of 3D RNSE
and 3D RNS-α equations are in respective absorbing sets in B0,2 in H2 and Bα,β

in Hβ , β >5/2, and T arbitrary but fixed. Assume f ≥f∗, where f∗ is defined in
Theorem 6.7. Consider two solutions, V0 and Vα, of the 3D rotating Navier-Stokes
equations and the 3D rotating Navier-Stokes-α equations, respectively, with the same
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initial data at some time t1. Then two solutions uniformly converge as α→0 in H1

for all t∈ [t1, T ] in the following sense: For any η >0, ∃α̃(η, 1
f ,T,M ′

β ,M ′
2) such that,

for any α<α̃(η, 1
f ,T,M ′

β ,M ′
2),

‖Vα(t)−V0(t)‖1≤η, ∀t∈ [t1, T ],t1≥T∗, (8.12)

and, for fixed f ≥f∗, η→0 as α̃→0. The limit is uniform in f for f∗≤f ≤fmax.
Moreover, α̃(η, 1

f ,T,M ′
β ,M ′

2)→0 as η→0 and 1
f →0. (Here, Tα0= the initial time

when Vα(t) enters into an absorbing set, T0= the initial time when V0(t) enters into
an absorbing set, and T∗=max{Tα0,T0}).

9. Physical implications: nonlinear scaling laws of parameter α
In conclusion, this paper establishes under what conditions solutions to the geo-

physical fast rotating Navier-Stokes-α equations uniformly converge to those of the
fast rotating classical Navier-Stokes equations as α→0+ and how respective exponen-
tial attractors converge in the Hausdorff semi-distance as α→0+. In particular, the
proofs of Lemma 8.12 and 8.13 clearly show that α must follow a nonlinear scaling
constraint with respect to 1/f , the natural fast scale of rotating problem, and the
enstrophy in order to achieve uniform convergence:

(i) From (8.6) in the proof of Lemma 8.9, we have

α4 <
1

M̌4

ε/2
1−ε/2

≈
( ε

2

)2/β ε/2
1−ε/2

, where β >0. (9.1)

(ii) Let η be the error in Lemma 8.12 (and Lemma 8.13). From Eq. (8.11), we
obtain

ε2 . η2

2K3

(
1
f2

)

where K3 =‖Vα‖21 (enstrophy). Note that we have η2 instead of η̂ on the
right-hand side.

(iii) When β =1 in (9.1), the scaling is nonlinear for the relative distance of RNS
and RNS-α solution trajectories in the enstrophy norm, and with Constant
of dimension L2/T 3:

α4 <Constant

(
η2

‖Vα‖21f2

)3/2

=Constant

(‖Vα(t)−V0(t)‖1
‖Vα‖1

)3 1
f3

to ensure the η-errors in Lemma 8.12 (and Lemma 8.13) on (0,T ). The
constant, of course, depends on T .

Future extension of this work will consider the α-Primitive equations of geophys-
ical fluid dynamics, that is the Boussinesq equations with rotation (cf., [8]-[11], [13]).

Appendix A. Proof of Theorem 4.1.

Proof. L2-estimate of w: Inner product (4.1) with w yields

1
2

∂

∂t
|w|2 +ν||w||2 =<B̃α

I (w,w), w>+<F, w>

≤|<Rαw×curlw, w> |+ ||F ||H∗
1
||w||

≤ ν

4
||w||+ 1

ν
||F ||2H∗

1
+ |<u×curlw, w> |
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where u=Rαw=(1−α2∆)−1w. Then we have

1
2

∂

∂t
|w|2 +

3ν

4
||w||2≤ 1

ν
||F ||2H∗

1
+ |<u×curlw, w> | (A.1)

Using Hölder’s and Young’s inequality, we get the following estimate on the nonlinear
term:

|<u×curlw, w> |≤ c|u| 12 ||u|| 12 |w| 12 ||w|| 32 ≤ ν

4
||w||2 +

c̃

ν3
|u|2 ||u||2 |w|2

where c̃= 27
4 c4. Substituting this into (A.1) yields

∂

∂t
|w|2 +ν||w||2≤ 2

ν
||F ||H∗

1
+

c̃

ν3
|u|2 ||u||2 |w|2.

Using (2.7) we would get

|u|2≤|u|2 +α2||u||2≤|u0|2 +α2‖uo‖2 +
M2

0F

ν2λ1
≡K1.

Note that K1 is an absolute constant. Then, Eq. (A) yields

∂

∂t
|w|2 +ν||w||2≤ 2

ν
||F ||2H∗

1
+

c̃K1

ν3
||u||2 |w|2. (A.2)

Let y = |w|2. Then Eq. (A.2) becomes

dy

dt
≤gy+h, ∀t∈ [0,T ], (A.3)

where g = c̃K1
ν3 ||u||2 and h= 2

ν ||F ||2H∗
1
. The Gronwall’s inequality gives

y(t)≤|w0|2 exp
[
c̃K1M

2
0F

ν5
T

]
+

2ν4

c̃K1

(
1−exp

[
c̃K1M

2
0F

ν5
T

])
≡ρ2

H(T ), ∀t̃∈ [0,T ],

and hence

w∈L∞(0,T ;H), ∀T >0. (A.4)

Furthermore, from (2.6), (4.5), (A.2), and (A.4), we obtain the time averaging of w
in H1:

ν

∫ T

0

||w||2≤
[
2M2

0F

ν
+

c̃K1M
2
0F

ν5
|w|L∞(0,T ;H)

]
T ≡K2(T ). (A.5)

This implies

w∈L2(0,T ;H1), ∀T >0. (A.6)

H1-estimate of w: By taking inner product (4.1) with Aw we get

1
2

d

dt
||w||2 +

3ν

4
|Aw|2≤ |F |

2

ν
+ |<u×w, Aw> |.
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Note that |<u×w, Aw> |= |< curl(u×w), curlw> |. Using the identity curl(A×
B)=(B ·∇)A−(A ·∇)B we can estimate the nonlinear term:

|< curl(u×w), curlw> |≤ |〈(curlw ·∇)u, curlw〉|+ |〈(u ·∇)curlw, curlw〉|
(the second term is 0)→= |< (curlw ·∇)u, curlw> |

≤ ||curlw||2L4 |∇u|
≤ c |curlw| ||curlw|| ||u||
≤ c ||w|| |Aw| ||u||

≤ ν

4
|Aw|2 +

c2

ν
||u||2 ||w||2. (A.7)

This gives

d

dt
||w||2 +ν|Aw|2≤ 2

ν
|F |2 +

2c2

ν
||u||2 ||w||2. (A.8)

Let y = ||w||2. Then, from (A.8), we obtain

dy

dt
≤gy+h, ∀t∈ [0,T ],

where g = 2c2

ν ||u||2 and h= 2
ν |F |2. Following the usual line of arguments with the

Gronwall’s inequality provides

w∈L∞(0,T ;H1)
⋂

L2(0,T ;H2), ∀T >0. (A.9)

Now, thanks to (A.4), (A.6), and (A.9), the existence and uniqueness of regular
solutions of barotropic limit equations follow in a standard way like for the classical
2D NSE (cf. [18], [29], [33], [35], [36]).

Appendix B. Proof of theorem 4.2 .
Recall that B̃α

II(w,w⊥)=B1(w,w⊥)+B2(w,w⊥)+B3(w⊥,w)+B4(w⊥,w). In
Fourier space, the bilinear operator B̃α

II(w,w⊥) is expressed as following; for any
wavenumber n∈Z3,

B1(w,w⊥)n =−i
∑

K24

1
1+α2|ǩ|2 Pn

[
(m̌ ·wk)w⊥m

]
,

B2(w,w⊥)n =
i

2

∑

K24

1
1+α2|ǩ|2 Pn

[
(wk ·w⊥m)m̌+(ǩ ·w⊥m)wk

]
,

B3(w⊥,w)n =
i

2

∑

K34

1
1+α2|ň|2 Pn

[
(w⊥k ·wm)m̌−(m̌ ·w⊥k )wm

]
,

B4(w⊥,w)n =− i

2

∑

K34

1
1+α2|ň|2

1
|ň|2 Pn

[
ň×{

(ǩ×w⊥k )×(m̌×wm)
}]

.

Recall that

K24 =
{
(k,m,n)∈Z9 | k3 =0,m3 =n3 6=0,|m̌|= |ň|,k+m=n

}
,

and
K34 =

{
(k,m,n)∈Z9 | m3 =0,k3 =n3 6=0,|ǩ|= |ň|,k+m=n

}
.
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For the regularity of catalytic limit α-equations we use techniques developed in
[6]. Let r≥0 and s3∈Z. We introduce the operator πr,s3 restriction of functions
on Z3 with fixed n3 to the points of the lattice on the ellipse |ňh|2 =n2

1 +n2
2/a2

2 = r2

defined as a projection, for each n=(nh,n3)∈Z3,

(πr,s3w
⊥)(nh,n3) =

{
w⊥(nh,n3)

if |nh|2 = r2 and n3 =s3

0 otherwise .

Recall that |nh|2 =n2
1 +n2

2/a2
2. This projection with fixed r and s3 is finite-

dimensional. Denote wr
(nh,n3)

=(πr,s3w
⊥)(nh,n3) and let r = rj be the increasing se-

quence of numbers defined by n2
1 +n2

2/a2
2 = r2,(n1,n2)∈Z2. Then we have the orthog-

onal decomposition

w⊥=
∑

j,s3

πrj ,s3w
⊥.

Since the sums in the bilinear operators Bi(w,w⊥) are over |m̌h|2 = |ňh|2,m3 =n3,k3 =
0 on K24 and |ǩh|2 = |ňh|2,k3 =n3,m3 =0 on K34, the functions wr

(nh,n3)
are coupled

with both of wr
(mh,n3)

(on K24) and wr
(kh,n3)

(on K34). In addition, K24∩K34 =
φ. Therefore, the catalytic limit α-equations decouple into a countable family of
subsystems (each of subsystem is decoupled with respect to n3.):

∂tw
r
(nh,n3)

=−ν|ň|2wr
(nh,n3)

−i
∑

m3=n3
|mh|=|nh|=r
kh+mh=nh

1
1+α2|ǩ|2 Pn

[
(m̌ ·wk)wr

(mh,n3)

]

+
i

2

∑
m3=n3

|mh|=|nh|=r
kh+mh=nh

1
1+α2|ǩ|2 Pn

[(
wk ·wr

(mh,n3)

)
m̌+

(
ǩ ·wr

(mh,n3)

)
wk

]

+
i

2

∑

k3=n3
|kh|=|nh|=r
kh+mh=nh

1
1+α2|ň|2 Pn

[(
wr

(kh,n3)
·wm

)
m̌−

(
m̌ ·wr

(kh,n3)

)
wm

]

− i

2

∑

k3=n3
|kh|=|nh|=r
kh+mh=nh

1
1+α2|ň|2

1
|ň|2 Pn

[
ň×

{(
ǩ×wr

(kh,n3)

)
×(m̌×wm)

}]

+F
⊥
(nh,n3). (B.1)

Note that every sum contains all solutions of Diophantine equations: k2
1 +k2

2/a2
2 =n2 =

n2
1 +n2

2/a2
2. Generically, there are 4 solutions corresponding to k1 =±n1,k2 =±n2, ex-

cept for a rare set of special rational a2
2,a

2
3, where there can be a larger, but finite, set of

integer solutions. From the proof of existence and regularity of solutions of 2D3C NS-
α equations, the Fourier coefficients wk(t)=w(kh,0)(t) and vm(t)=w(mh,0)(t) in the
catalytic subsystem are bounded uniformly in t∈ [0,T ]; wk,h(t),vm,h(t)∈L∞(0,T ;H).
We implicitly assume n3 6=0 because n3 =0 corresponds to the barotropic case. We
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denote, for a fixed n3,

Br,n3
1 (w,w⊥)n =−i

X
m3=n3

|mh|=|nh|=r
kh+mh=nh

1

1+α2|ǩ|2 Pn

h
(m̌ ·wk)w⊥m

i

=−i
X

m3=n3
|mh|=|nh|=r
kh+mh=nh

1

1+α2|ǩ|2 Pn

ˆ
(m̌ ·wk)wr

(mh,n3)

˜

Br,n3
2 (w,w⊥)n =

i

2

X
m3=n3

|mh|=|nh|=r
kh+mh=nh

1

1+α2|ǩ|2 Pn

h
(wk ·w⊥m)m̌+(ǩ ·w⊥m)wk

i

=
i

2

X
m3=n3

|mh|=|nh|=r
kh+mh=nh

1

1+α2|ǩ|2 Pn

ˆ`
wk ·wr

(mh,n3)

´
m̌+

`
ǩ ·wr

(mh,n3)

´
wk

˜

Br,n3
3 (w⊥,w)n =

i

2

X

k3=n3
|kh|=|nh|=r
kh+mh=nh

1

1+α2|ň|2 Pn

h
(w⊥m ·wm)m̌−(m̌ ·w⊥k )wm

i

=
i

2

X

k3=n3
|kh|=|nh|=r
kh+mh=nh

1

1+α2|ň|2 Pn

ˆ`
wr

(kh,n3) ·wm

´
m̌−`m̌ ·wr

(kh,n3)

´
wm

˜

Br,n3
4 (w⊥,w)n =− i

2

X

k3=n3
|kh|=|nh|=r
kh+mh=nh

1

1+α2|ň|2
1

|ň|2 Pn

h
ň×

n
(ǩ×w⊥k )×(m̌×wm)

oi

=− i

2

X

k3=n3
|kh|=|nh|=r
kh+mh=nh

1

1+α2|ň|2
1

|ň|2 Pn

ˆ
ň×˘`ǩ×wr

(kh,n3)

´×(m̌×wm)
¯˜

.

Now we introduce the following operators:

Br,s3
1 (w,w⊥)=

∑
n3=s3
|nh|=r

Br,n3
1 (w,w⊥)neiň·x (B.2)

Br,s3
2 (w,w⊥)=

∑
n3=s3
|nh|=r

Br,n3
2 (w,w⊥)neiň·x (B.3)

Br,s3
3 (w⊥,w)=

∑
n3=s3
|nh|=r

Br,n3
3 (w⊥,w)neiň·x (B.4)

Br,s3
4 (w⊥,w)=

∑
n3=s3
|nh|=r

Br,n3
4 (w⊥,w)neiň·x. (B.5)

The operators Br,s3
j ( j =1,2,3,4) are linear in w⊥ for any w∈H and they, by con-

struction, act from Hs+1 into πr,s3H
s.

Lemma B.1. The four operators Br,s3
j for fixed r and s3 satisfy the following proper-

ties.
1. (a) ||Br,s3

1 (w,w⊥)||s≤2 ||w||H0∞ ||πr,s3w
⊥||s+1≤2 ||w||H0∞ ||w⊥||s+1

(b) ||Br,s3
2 (w,w⊥)||s≤ (1+2

√
2)||w||H0∞ ||πr,s3w

⊥||s+1

≤ (1+2
√

2)||w||H0∞ ||w⊥||s+1
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(c) ||Br,s3
3 (w⊥,w)||s≤4

√
2||w||H0∞ ||πr,s3w

⊥||s+1≤4
√

2||w||H0∞ ||w⊥||s+1

(d) ||Br,s3
4 (w⊥,w)||s≤2

√
2||w||H0∞ ||πr,s3w

⊥||s+1≤2
√

2||w||H0∞ ||w⊥||s+1.
2. The operators commute with As and ∂l

3 for all s,l:

As∂l
3B

r,s3
1 (w,w⊥)=Br,s3

1 (w,As∂l
3w

⊥),
As∂l

3B
r,s3
2 (w,w⊥)=Br,s3

2 (w,As∂l
3w

⊥),
As∂l

3B
r,s3
3 (w⊥,w)=Br,s3

3 (As∂l
3w

⊥,w),
As∂l

3B
r,s3
4 (w⊥,w)=Br,s3

4 (As∂l
3w

⊥,w).

3. The operators are skew-symmetric in w⊥:

<Br,s3
1 (w,w⊥), w⊥>=0, <Br,s3

2 (w,w⊥), w⊥>=0,

<Br,s3
3 (w⊥,w), w⊥>=0, <Br,s3

4 (w⊥,w), w⊥>=0.

4. The operator curl(Br,s3
1 +Br,s3

2 +Br,s3
3 +Br,s3

4 ) is skew-symmetric in w⊥:

< curl(Br,s3
1 +Br,s3

2 +Br,s3
3 +Br,s3

4 )(w,w⊥), w⊥>=0.

The catalytic bilinear operator B̃α
II(w,w⊥) can be expressed as

B1(w,w⊥)=
∑

r∈R+

s3∈Z

Br,s3
1 (w,w⊥)

B2(w,w⊥)=
∑

r∈R+

s3∈Z

Br,s3
2 (w,w⊥)

B3(w⊥,w)=
∑

r∈R+

s3∈Z

Br,s3
3 (w⊥,w)

B4(w⊥,w)=
∑

r∈R+

s3∈Z

Br,s3
4 (w⊥,w).

Proof of Theorem 4.2:
Proof. Note that the action of As in Fourier representation is multiplication

by (−1)s|ň|2s which is a constant in all of the catalytic subsystem. Analogously
∂l
3 corresponds to multiplication by a constant (iň3)l. Then the properties can be

obtained from the corresponding assertion of Lemma B.1 using summation in r and
n3. Here we prove property 2 and 4 only.

Proof of 2: By the definition

<B̃α
II(w,w⊥), Asw⊥>=<B1(w,w⊥), Asw⊥>+<B2(w,w⊥), Asw⊥>

+<B3(w⊥,w), Asw⊥>+<B4(w⊥,w), Asw⊥>

consider <B1(w,w⊥), Asw⊥>.

<B1(w,w⊥), Asw⊥>=
∑

r∈R+

s3∈Z

<Br,s3
1 (w,w⊥), Asw⊥>

=
∑

r∈R+

s3∈Z

<AsBr,s3
1 (w,w⊥), w⊥>.
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Notice that

AsBr,s3
1 (w,w⊥)=

∑
n3=s3
|ňh|=r

Br,n3
1 (w,w⊥)nAseiň·x

=
∑

n3=s3
|ňh|=r

(−1)s|ň|2sBr,n3
1 (w,w⊥)neiň·x.

Since n3 and |ňh|= r are fixed and |ň|2 = |ňh|2 + ň2
3, (−1)s|ň|2s can be taken outside

the summation. Then,

AsBr,s3
1 (w,w⊥)=(−1)s|ň|2s

∑
n3=s3
|ňh|=r

Br,n3
1 (w,w⊥)neiň·x

=(−1)s|ň|2sBr,s3
1 (w,w⊥).

Hence, by property 3 of Lemma B.1,

<B1(w,w⊥),Asw⊥>=
∑

r∈R+

s3∈Z

(−1)s|ň|2s <Br,s3
1 (w,w⊥), w⊥>=0.

Likewise, we can prove that

<B2(w,w⊥),Asw⊥>=<B3(w⊥,w),Asw⊥>=<B4(w⊥,w),Asw⊥>=0.

The property 2 follows.

Proof of 4: The method is similar to the above. We consider

<B̃α
II(w,w⊥), ∂l

3w
⊥>=<B1(w,w⊥), ∂l

3w
⊥>+<B2(w,w⊥), ∂l

3w
⊥>

+<B3(w⊥,w), ∂l
3w

⊥>+<B4(w⊥,w), ∂l
3w

⊥>.

Again, it is sufficient to consider only <B1(w,w⊥), ∂l
3w

⊥>. Others follow by a similar
procedure.

<B1(w,w⊥), ∂l
3w

⊥>=
∑

r∈R+

s3∈Z

<Br,s3
1 (w,w⊥), ∂l

3w
⊥>.

Here,

<Br,s3
1 (w,w⊥),∂l

3w
⊥>=

∑
n3=s3
|ňh|=r

Br,n3
1 (w,w⊥)n ·(iň3)lw⊥−n

=(iň3)l
∑

n3=s3
|ňh|=r

Br,n3
1 (w,w⊥)n ·w⊥−n

=(iň3)l <Br,s3
1 (w,w⊥), w⊥>

=0 by property 3 of Lemma B.1.

Therefore, the property 4 follows.
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Appendix C. Proof of lemma 8.13.
Proof. Let B0,2 be an absorbing set for V0 in H2 and let Bα,β , β >5/2 be an

absorbing set for Vα in Hβ . We assume that V0 is in B0,2 and Vα is in Bα,β with:

‖V0‖2≤M ′
2, ‖Vα‖β≤M ′

β ,

where M ′
β =ρβ . Let T be an arbitrary, but fixed time.

Take inner product Eq. (8.9) with AZα. Then we get

1
2

∂

∂t
‖Zα‖2 +ν|AZα|2 =−

∫
[(RαVα ·∇)Zα] ·AZαdx

−
∫

[(Zα ·∇)V0] ·AZαdx

−
∫

[({Rα−I}Vα ·∇)V0] ·AZαdx

−
∫

[Vαj∇({Rα−I}Vα)j ] ·AZαdx

−
∫

[fPLJPL(RαVα−V0)] ·AZαdx.

Again, we estimate the nonlinear terms on the right hand side.
(i)

∣∣∣∣
∫

[(RαVα ·∇)Zα] ·AZαdx

∣∣∣∣≤‖RαVα‖L6 ‖∇Zα‖L3 |AZα|

≤ c1 ‖RαVα‖ ‖Zα‖ 1
2 ‖Zα‖

1
2
2 |AZα|

≤ c1 ‖Vα‖ ‖Zα‖ 1
2 |AZα| 32

≤ ν

8
|AZα|2 +

54c4
1

ν3
‖Vα‖4 ‖Zα‖2

(ii)
∣∣∣∣
∫

[(Zα ·∇)V0] ·AZαdx

∣∣∣∣≤‖Zα‖L6 ‖∇V0‖L3 |AZα|

≤ c2 ‖Zα‖ ‖V0‖ 1
2 ‖V0‖

1
2
2 |AZα|

≤ c2 ‖Zα‖ λ−
1
4 ‖V0‖2 |AZα|

≤ ν

8
|AZα|2 +

c2
2

ν
√

λ1

‖V0‖22 ‖Zα‖2

In each of (iii), (iv), and (v) below, it is Lemma 8.9 that is very crucial to obtain third
inequalities.

(iii)
∣∣∣∣
∫

[({Rα−I}Vα ·∇)V0] ·AZαdx

∣∣∣∣≤‖{Rα−I}Vα‖L3 ‖∇V0‖L6 |AZα|
≤ c3 ‖{Rα−I}Vα‖ 1

2
‖V0‖2 |AZα|

≤ c3 ε ‖Vα‖ ‖V0‖2 |AZα|

≤ ν

8
|AZα|2 +

2ε2c2
3

ν
‖Vα‖2 ‖V0‖22.
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(iv)
∣∣∣∣
∫

[Vαj∇({Rα−I}Vα)j ] ·AZαdx

∣∣∣∣=
∣∣∣∣
∫

[(AZα ·∇)Vα] ·{Rα−I}Vαdx

∣∣∣∣
≤‖{Rα−I}Vα‖L3 ‖∇Vα‖L6 |AZα|
≤ c4 ‖{Rα−I}Vα‖ 1

2
‖Vα‖2 |AZα|

≤ c4ε ‖Vα‖ ‖Vα‖2 |AZα|

≤ ν

8
|AZα|2 +

2ε2c2
4

ν
‖Vα‖2 ‖Vα‖22

(v)
∣∣∣∣
∫

[fPLJPL(RαVα−V0)] ·AZαdx

∣∣∣∣≤
∣∣∣∣
∫

[fPLJPL(Rα−I)Vα] ·AZαdx

∣∣∣∣

+
∣∣∣∣
∫

fPLJPLZα ·AZαdx

∣∣∣∣

=
∣∣∣∣
∫

[fPLJPL(Rα−I)Vα] ·AZαdx

∣∣∣∣
≤f |(Rα−I)Vα| |AZα|
≤ εf ‖Vα‖ |AZα|

≤ ν

8
|AZα|2 +

2ε2f2

ν
‖Vα‖2.

Collecting all the estimates, we obtain

∂

∂t
‖Zα‖2 +

3ν

4
|AZα|2≤ c

ν3

[
‖Vα‖4 +

ν2

√
λ1

‖V0‖22
]
‖Zα‖2

+
ε2c

ν
‖Vα‖2

[‖V0‖22 +‖Vα‖22
]
+

4ε2f2

ν
‖Vα‖2 (C.1)

where c2 =max{108c4
1,4c2

2,4c2
3,4c2

4} and ε arbitrary small number in Lemma 8.9. Write
y =‖Zα‖2. Then, from Eq. (C.1), we obtain,

dy

dt
≤gy+h, ∀t∈ [0, T ],

where

y =‖Zα‖2 =‖Vα−V0‖

g =
c

ν3

[
‖Vα‖4 +

ν2

√
λ1

‖V0‖22
]
≡K4

h=
ε2c

ν
‖Vα‖2

[‖V0‖22 +‖Vα‖22
]
+

4ε2f2

ν
‖Vα‖2≡ ε2(K5 +K3).

Note that K3, K4 and K5 are absolute constants on [0, T ]. Let T0 and Tα0 be entry
times of the solutions of 3D rotating Navier-Stokes equations and 3D rotating NS-
α equations into absorbing balls, respectively. The rest of proof follows the line of
Lemma 8.12.
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