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KINETIC THEORY FOR NEURONAL NETWORK DYNAMICS∗

DAVID CAI† , LOUIS TAO‡ , AADITYA V. RANGAN§ , AND DAVID W. MCLAUGHLIN¶

Abstract. We present a detailed theoretical framework for statistical descriptions of neuronal
networks and derive (1+1)-dimensional kinetic equations, without introducing any new parameters,
directly from conductance-based integrate-and-fire neuronal networks. We describe the details of
derivation of our kinetic equation, proceeding from the simplest case of one excitatory neuron, to
coupled networks of purely excitatory neurons, to coupled networks consisting of both excitatory and
inhibitory neurons. The dimension reduction in our theory is achieved via novel moment closures.
We also describe the limiting forms of our kinetic theory in various limits, such as the limit of
mean-driven dynamics and the limit of infinitely fast conductances. We establish accuracy of our
kinetic theory by comparing its prediction with the full simulations of the original point-neuron
networks. We emphasize that our kinetic theory is dynamically accurate, i.e., it captures very well
the instantaneous statistical properties of neuronal networks under time-inhomogeneous inputs.
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1. Introduction
Mathematically, the vast hierarchy of the multiple spatial and temporal scales in

the cortical dynamics presents a significant challenge to computational neuroscience.
While we may devise ever more efficient numerical methods for simulations of dynam-
ics of large-scale neuronal networks [1, 2, 3, 4, 5], basic computational constraints will
eventually limit our simulation power. In order to “scale-up” computational models
to sufficiently large regions of the cortex to capture interesting cortical processing
(such as optical illusions related to “contour completion”), and to gain qualitative
understanding of the cortical mechanisms underlying this level of cortical processing,
a major theoretical issue is how to derive effective dynamics under a reduced rep-
resentation of large-scale neuronal networks. Therefore, a theoretical challenge is to
develop efficient and effective representations for simulating and understanding the
dynamics of larger, multi-layered networks. As suggested, for example, by the laminar
structure of cat’s or monkey’s primary visual cortex, in which many cellular proper-
ties such as orientation preference are arranged in regular patterns or maps across the
cortex [6, 7, 8, 9, 10], some neuronal sub-populations may be effectively represented
by coarse-grained substitutes. Thus, we may partition the two-dimensional cortical
layers into coarse-grained patches, each sufficiently large to contain many neurons,
yet sufficiently small that these regular response properties of the individual neurons
within each patch are approximately the same for each neuron in the patch. These reg-
ular response properties are then treated as constants throughout each coarse-grained
patch.
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Furthermore, there is another important issue that needs to be addressed in
coarse-grained formalisms, i.e., how to capture fluctuation-dominated spiking pro-
cesses mathematically, because neuronal networks, whether real cortical networks
[11, 12] or computer models [13, 14, 4], frequently operate in a regime in which spik-
ing is caused by irregular temporal fluctuations of the membrane potential. In this
cortical state, the mean membrane potential (say, obtained by averaging locally in
time, or by trial averages, i.e., averaging over many voltage traces under the same
stimulus condition), does not reach firing threshold, but, in each instance, fluctuations
in the membrane potential do reach spiking threshold. We note in passing that, since
a purely excitatory network can still operate in a fluctuation-driven regime, this no-
tion of fluctuation-dominated dynamics is distinct from the notion of fluctuation near
threshold in the so-called balanced network that uses near cancellation of excitatory
and inhibitory currents [15, 16].

Previously, we briefly reported our results [17] of the development of an effective
representation. Starting with large-scale model networks of point neurons, which are
sufficiently detailed for modeling neuronal computation of large systems, we tiled the
model cortex with coarse-grained patches. We then derived an effective dynamics to
capture the statistical behavior of the many neurons within each coarse-grained patch
in their interaction with other coarse-grained patches. As mentioned in Ref. [17], our
kinetic theory of a purely excitatory network can be extended to realistic networks
with excitatory and inhibitory populations of neurons. We have used this extended
kinetic theory to study rich dynamic phenomena within these networks, including
transitions to bistability and hysteresis, even in the presence of large fluctuations.
We have also used these representations to study simplified models of orientation
selectivity to suggest the roles of large fluctuations and cortico-cortical excitation in
the orientation tuning of complex cells [17, 18]. This kinetic theory approach has been
shown to be rather powerful, allowing for both computational scale-up and structural
insight into the mechanisms of cortical networks [17, 19].

In this paper, we present the detailed theoretical framework for capturing these
coarse-grained dynamics that can be fluctuation-dominated. (For earlier proba-
bilistic representations, upon which our coarse-grained theory is based, see, e.g.,
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 14]). Starting with networks
of conductance-based integrate-and-fire (I&F) neurons, we derive a full kinetic de-
scription directly, without introduction of any new parameters. We present details of
how to extend our novel moment closure to construct kinetic theories for networks with
both excitatory and inhibitory neurons. In the limit of infinitely fast conductances,
these kinetic equations can be further reduced to one-dimensional Fokker-Planck equa-
tions. As the number of point neurons N tends to infinity, we show that our kinetic
theory reduces further to the classical firing rate representation [34, 23, 13]. Through
this sequence of mathematical reductions, we can gain analytical insights into the be-
havior of various dynamic regimes of neuronal networks. As pointed out in Ref. [17],
at moderate and even small N , this kinetic theory captures the effects of large fluctu-
ations, with numerical efficiency and surprising accuracy. Here, we further establish
dynamical accuracy of our kinetic theory by benchmarking its predictions against the
full simulations of the point neuron network under time-inhomogeneous inputs. Al-
though the derivation of our kinetic theory assumes that the number of neurons in a
coarse-grained patch is large, the numerical verification of this asymptotic shows that
the number N can become as small as O(10), with accuracy retained [17]. As ex-
pected [35, 36, 33, 17], the kinetic representation is far more efficient computationally
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than the full I&F network. The savings are two-fold: (i) For a given I&F network,
the probability density representation eliminates the need for simulating to very long
times or for simulating many ensembles so as to reduce the statistical error in com-
puting firing rates; (ii) The reduction of the dimension, achieved by our closure, for a
probability density description provides truly significant computational savings. For
example, to achieve a firing rate computation within 1% accuracy for a network of
100 neurons, a reduction in computation time of 4-6 orders of magnitude can be easily
obtained [17, 37].

The paper is organized as follows: In Sec. 2, we briefly describe the dynamics of
conductance-based integrate-and-fire neuronal networks; In Sec. 3, for the dynamics
of a single I&F neuron, with an infinitely fast conductance, driven by a Poisson input
spike train, we derive an exact kinetic equation and study its properties under a
diffusion approximation; In Sec. 4, using a conditional variance closure, we describe
in detail the derivation of kinetic equations for all-to-all coupled networks of purely
excitatory neurons; In Sec. 5, we extend this kinetic theory to coupled networks
consisting of both excitatory and inhibitory neurons; Finally, in Sec. 6 we indicate
how to generalize our kinetic theory to multiple interacting coarse-grained spatial
patches.

2. Integrate-and-fire neuronal networks
For convenience of description, we briefly review conductance-based integrate-

and-fire (I&F) neuronal networks [38]. We consider the following all-to-all coupled
network of NE excitatory neurons and NI inhibitory neurons, with its I&F dynamics
of ith neuron’s membrane potential, V λ

i , of λ-type governed by

τ
dV λ

i

dt
=−(

V λ
i −εr

)−GλE
i (t)
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, (2.1c)

with λ=E,I labeling excitation and inhibition. Whenever V λ
i (t) crosses the firing

(spiking) threshold VT , a spike is recorded with the spike-time tsp such that V λ
i

(
t−sp

)
=

VT and V λ
i

(
t+sp

)
= εr, where εr is the reset voltage. Here, GλE

i (t) and GλI
i (t) are the

excitatory and inhibitory conductances of the ith neuron of λ-type, with corresponding
reversal potentials εE and εI , respectively. Note that, from physiology, we have εI ≤
εr <VT <εE =0mV. (Typical values are εI =−80mV, εr =−65mV, VT =−55mV, and
εE =0mV.) τ is the membrane time constant of membrane potential, whereas σ

E
and

σ
I

are decay time constants of excitatory and inhibitory conductances, respectively.
For external inputs, we assume that, the ith neuron of the excitatory (inhibitory)
population receives external spikes,

{
tiµ

} ({
T i

µ

})
, each of which is an independent

realization of the Poisson process with rate ν0E
(t) (ν0I

(t)). tEjµ

(
tIjµ

)
is the spike-

time of the µth spike of the jth excitatory (inhibitory) neuron. Note that, under
Poisson external inputs, spiking events of a neuron in the network, in general, are
not Poisson, i.e., for a fixed j,

{
tEjµ

}
and

{
tIjµ

}
are not Poisson, in general. The

parameter fλ determines the size of conductance increase associated with a spike
from the external input. The parameters SλE (SλI ) describe the strength of network
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couplings from the excitatory (inhibitory) population to the λ-population of neurons.
PE (PI) denotes the set of excitatory (inhibitory) neurons. The factor 1/NE,I ensures
that there is a well-defined network coupling in the limit of NE,I →∞. pE,I

jµ describes
the probability of synaptic release upon arrival of each spike. The synaptic release is
modeled as a Bernoulli process, with release probability equal to p, i.e., pE,I

jµ =1 with
probability p; 0, otherwise.

We note that, in our coarse-grained procedure as discussed in Introduction, the
network described by Eqs. (2.1) can be viewed as a network in a coarse-grained
patch, as its architectural properties are approximated as uniform over the patch.
This is the motivation behind our consideration of the coupled network with these
particular all-to-all couplings. As described above, the external input for Eqs. (2.1)
is assumed to be Poisson. This can be intuitively justified along the same spirit of
coarse-graining: There are many spike-trains from many neurons in other patches.
The spike-train to one neuron in the network described by Eqs. (2.1) is a spike
process summing over all incoming spike-trains. Therefore, under certain conditions,
this input process can be naturally approximated by Poisson [39]. Finally, we comment
that the process of synaptic release as described in the end of the last paragraph is not
crucial for our coarse-grained dynamics as far as the closure argument is concerned.
However, we mention this model of synaptic release here for the purpose of comparison
between the kinetic theory we derived below and the full, original I&F neuronal
dynamics. The synaptic release as modeled above can often induce the system to
operate in an asynchronous firing regime, in contrast to a regime, say, with a spike-
to-spike synchrony that can appear in a more regularly structured network. It is to
asynchronous firing regimes that the kinetic theory can be very successfully applied
with high accuracy.

3. Probabilistic description of a single neuron

3.1. Evolution of probability density ρ. First, we illustrate how to turn
the description of the trajectory of a neuron into a probabilistic description of its
dynamics by way of deriving an equation governing the evolution of a probability
density function (pdf). As motivation for the realistic extensions which follow, we
consider the simplest case, in which there is only one excitatory neuron with its
conductance time scale being infinitely fast, i.e., σ≡σ

E
→0. Between any two firings

of this I&F neuron, the dynamics of the integrate-and-fire neuron now is governed by

d

dt
V =−V −εr

τ
− f

τ

[∑

k

δ (t− tk)

]
(V −εE), (3.1)

where V (t) is the membrane potential of the neuron and {tk} is a Poisson process with
rate ν (t). Note that the Dirac-δ function in Eq. (3.1) comes from the conductance
time-course from Eq. (2.1b) in the σ→0 limit, limσ→0

f
σ e−

t
σ θ(t)=fδ (t), where θ(t)

is the Heaviside function.

3.1.1. Solutions for trajectories. Note that, the solution of Eq. (3.1)
should be interpreted as the σ→0 limit of the solution of the following I&F neuronal
dynamics:

τ
dV

dt
=−(V −εr)−G(t)(V −εE), (3.2a)

σ
dG

dt
=−G+f

∑

k

δ (t− tk), (3.2b)
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in which the decay time constant σ of the conductance is finite. In particular, for
a single input spike arriving at time t=0, it is easy to show the solution V (t) thus
obtained in the limit of σ→0 has a jump between V (0+) and V (0−), which satisfies

V
(
0+

)−V
(
0−

)
=

(
εE−V

(
0−

))
Γ, (3.3)

where Γ≡1−exp(− f
τ ). (See Appendix A for a simple formal way of obtaining the

result (Eq. (3.3))). The voltage of the neuron, after the jump induced by the input
spike-time tk, follows the leakage dynamics V̇ =−(V −εr)/τ (until the next external
input spike arrives) and is simply given by

V (t)=
(
V

(
t+k

)−εr

)
exp

(
− t− tk

τ

)
+εr

for V
(
t+k

)
<VT . If, upon receiving the input spike tk, the jump (3.3) indicates

that V
(
t+k

)≥VT , then V
(
t+k

)
is reset to εr, i.e., V

(
t+k

)
=εr. Therefore, for a given

realization of Poisson input spikes {tk}, we can easily piece together the whole solution
of V (t) following I&F dynamics.

3.1.2. Kinetic equation. Now we change the point of view from that of
following an individual trajectory to a statistical one. First, we construct an ensemble
of trajectories that correspond to independent realizations of Poisson input spike
trains. Then, we ask what is the probability of finding a neuron in this ensemble
which, at time t, has membrane potential within the interval (v,v+dv). Clearly, the
corresponding probability density is

ρ(v,t)=E[δ (v−V (t))], (3.4)

where E(·) is the expectation with respect to all independent realizations of the input
Poisson spike process with rate ν (t) for given initial data. (Note that we can further
average over an ensemble of initial conditions V (0) if necessary.)

We invoke the property of conditional expectation, in our setting, that is,

E[δ (v−V (t+∆t))]=E[E[δ (v−V (t+∆t))|V (t)]] (3.5)

i.e., an average over all trajectories at time t+∆t can be achieved by, (i) first, in the
interval [t,t+∆t], averaging over all trajectories conditioned on a fixed V (t) at time t
(i.e., over all those trajectories starting from V (t) at time t), (ii) then, in the interval
[0,t], averaging over all possible trajectories terminating at V (t) at time t, for each
possible value of V (t). For a neuron whose voltage is V (t) at time t, there are two
possibilities in the interval (t,t+∆t) — either receiving an input spike or not. For a
Poisson input, the probability of receiving an input spike is ν∆t for a small interval
∆t and the probability of receiving no spike is (1−ν∆t). If the neuron receives a
spike, the voltage will have a jump described by Eq. (3.3). Otherwise, the neuron
will follow the streaming dynamics of relaxation V̇ =−(V −εr)/τ. Therefore, up to
O(∆t), we have the conditional expectation

E[δ (v−V (t+∆t))|V (t)]=ν∆tδ(v− [V (t)+(εE−V (t))Γ])

+(1−ν∆t)δ(v−
[
V (t)+

(
−V (t)−εr

τ

)
∆t

]
), (3.6)
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where the first term describes the jump and its associated probability whereas the
second term describes the streaming of membrane potential and its associated prob-
ability. Note that the second term in Eq. (3.6) can be expanded up to O(∆t) as

δ

(
v−

[
V (t)+

(
−V (t)−εr

τ

)
∆t

])
= δ (v−V (t))+

(
∂
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∂

∂v

(
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[
v−εr

τ

])
∆t,

by using aδ (x−a)=xδ (x−a) inside the large parentheses. For the first term in
Eq. (3.6), within ∆t, beside the jump, there is still a streaming of V under the
relaxation leakage dynamics. However, its contribution is O(∆t) in the argument
of the δ-function, combining with ν∆t to yield a higher order O

(
∆t2

)
-term. As a

consequence, this term does not need to take into account the streaming contribution
in the interval [t,t+∆t]. Eqs. (3.4) and (3.5) yield

ρ(v,t+∆t)=E[δ (v−V (t+∆t))]
=ν∆tE[δ(v−V (t)−Γ(εE−V (t)))]

+(1−ν∆t)E
[
δ(v−V (t))+

∂

∂v

[
δ(v−V (t))

(
v−εr

τ

)]
∆t

]

=
ν∆t

1−Γ
ρ

(
v− Γ

1−Γ
(εE−v)

)
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(
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∂

∂v

[
ρ(v,t)

(
v−εr

τ
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∆t

)

where use is made of the fact that, by definition,

ρ

(
v− Γ

1−Γ
(εE−v)

)
=E

[
δ

(
v− Γ

1−Γ
(εE−v)−V (t)

)]

=(1−Γ)E[δ (v−V (t)−Γ(εE−V (t)))].

Taking the limit ∆t→0, we obtain the equation governing the evolution of the
pdf ρ(v,t):

∂tρ(v,t)=∂v

[(
v−εr

τ

)
ρ(v,t)

]
+ν (t)

[
1

1−Γ
ρ

(
v− Γ

1−Γ
(εE−v),t

)
−ρ(v,t)

]
(3.7)

for v∈ [εr,VT ). Eq. (3.7) constitutes the kinetic equation for the single neuron dy-
namics. Note that Eq. (3.7) is an exact kinetic equation for the I&F dynamics (3.1)
without any approximations.

Eq. (3.7) can be cast into a form of the conservation of probability

∂tρ(v,t)+∂vJ (v,t)=0 (3.8)

by defining the probability flux J (v,t)=Jr (v,t)+Jν (v,t), where

Jr (v,t)≡−
(

v−εr

τ

)
ρ(v,t), (3.9)
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is a streaming flux due to the relaxation dynamics, and

Jν (v,t)≡ν (t)
∫ v

εr

[
ρ(u,t)− 1

1−Γ
ρ

(
u− Γ

1−Γ
(εE−u),t

)]
du

is an input-driven flux induced by the voltage jumps upon receiving input spikes. In
general, the input-driven flux Jν can be written as

Jν (v,t)=ν (t)
∫ v

εr

ρ(u,t)du−ν (t)
∫ v/(1−Γ)

εr/(1−Γ)

ρ(u,t)du

where, for notational simplicity, we have set εE =0, which is the physiologically real-
istic value for εE . Note that 0>εr >εr/(1−Γ), and 0>v >v/(1−Γ). Since ρ(v)=0
for v outside [εr,VT ], it is easy to see that

Jν (v,t)=ν (t)
∫ v

v/(1−Γ)

ρ(u,t)du (3.10)

As conforming with intuition, Eq. (3.10) shows that the input-driven flux Jν (v,t) is
proportional to the input rate ν (t), and the input-driven flux crossing the voltage v
depends on ρ only in a voltage layer below v, i.e., (v/(1−Γ),v), because all neurons,
in the ensemble, with voltages in the interval (v/(1−Γ),v) will move across v upon
receiving an input spike (see Eq. (3.3) with εE =0).

BOUNDARY CONDITIONS: Note that, the neuron in this setting with an
infinitely fast conductance can only fire by receiving a spike and it cannot stream up
to cross the firing threshold. Since VT >εr, we have, in general,

Jr (v,t)|v=VT
=−

(
VT −εr

τ

)
ρ(VT ,t)≤0.

A negative streaming flux at V =VT is impossible since the neuron can never stream
down via the relaxation leakage dynamics at VT — it can only reset once it arrives at
the threshold. Therefore, Jr (VT ,t)≡0. Hence,

ρ(VT ,t)≡0,

which is a boundary condition for solving Eq. (3.7).

FIRING RATE: The neuronal dynamics is quantified by its firing rate in re-
sponse to the external input with rate ν (t). The firing rate is the probability per unit
time for the neuron moving across the threshold VT , which is simply the probability
flux across the threshold:

m(t)=J (VT ,t)=Jν (VT ,t).

From Eq. (3.10), we obtain

m(t)=ν (t)
∫ VT

VT /(1−Γ)

ρ(u,t)du. (3.11)

As conforming with intuition, Eq. (3.11) shows that, for the single neuron case, the
firing rate m(t) is proportional to the external input rate ν (t) and depends on ρ(v,t)
only within a thin layer near the threshold VT , if jump sizes are small, i.e., f is small
and VT /(1−Γ)≈VT (1+f/τ).
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3.2. Diffusion approximation. The exact kinetic equation (3.7) for the
single I&F neuronal dynamic (3.1) is a partial differential equation with a delay in
v-space (i.e., ∂tρ(v) at v depends on ρ at a finite distance away, that is, at v−

Γ
1−Γ (εE−v)). If f is sufficiently small, we can derive a diffusion equation as an
approximation to Eq. (3.7) to gain insight into the I&F dynamics. Since 1/(1−Γ)≈
1+f/τ +f2/(2τ2), the length of the integration interval in the integral in Eq. (3.10)
is O(f). Using the trapezoidal rule to approximate the integral, it is easy to show
that, to O(

f2
)
, Eq. (3.10) can be written as

Jν (v,t)=−ν (t)
[(

f

τ
+

f2

2τ2

)
ρ(v)v+

f2

2τ2
v2 ∂ρ

∂v

]
+O

(
f3

)

which, by substituting, together with Eq. (3.9), into Eq. (3.8), yields the Fokker-
Planck equation:

∂tρ(v,t)=∂v

{
1
τ

[
v−εr +ν (t)

(
f +

f2

2τ

)
v

]
ρ(v,t)+

f2ν (t)
2τ2

v2∂vρ(v,t)
}

(3.12)

for v∈ [εr,VT ). We note that we use εE =0 in the derivation of Eq. (3.12).
As is assumed, the input spike train is a Poisson point process. If the rate

ν (t) is sufficiently high, intuitively, we can approximate the conductance G(t)=
f [

∑
k δ (t− tk)] in Eq. (3.1) by G(t)= Ḡ(t)+σGζ with the mean Ḡ(t)=fν (t) and

variance σ2
G =f2ν (t), where ζ is a Gaussian-white noise with

〈ζ (t)〉=0
〈ζ (t)ζ (t′)〉= δ (t− t′).

Then, the governing equation of the I&F neuron evolution (3.1) is replaced by the
Langevin equation:

τ
dV

dt
=−(V −εr)−(V −εE)[fν (t)+σGζ]. (3.13)

It is important to point out that the diffusion approximation (Eq. (3.12)) is the
corresponding Kolmogorov forward equation for the diffusion process (3.13) when
interpreted according to the Stratonovich sense, i.e.,

τdV =−[(V −εr)+fν (t)(V −εE)]dt−σG (V −εE)◦dW,

where W (t) is a Wiener process.

4. All-to-all coupled excitatory neuronal networks
Going beyond the probabilistic description of the dynamics of a single neuron,

we now turn to a discussion of a coupled network consisting of N all excitatory neu-
rons with an exponential time-course for conductances, i.e., Eqs. (2.1) without any
inhibitory neurons, N

I
≡0. The dynamics of an all-to-all coupled excitatory I&F neu-

ronal network is governed by

τ
dVi

dt
=−(Vi−εr)−Gi (t)(Vi−εE), (4.1a)

σ
dGi

dt
=−Gi +f

∑
µ

δ
(
t− tiµ

)
+

S

N

∑

j

∑
µ

pjµδ (t− tjµ), (4.1b)
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where Vi is the membrane potential of the ith neuron in the network and σ is the decay
time-scale of the excitatory conductance time-course. S is the strength of coupling
between neurons in the network. pjµ describes the probability of synaptic release,
which is modelled by a Bernoulli process, with release probability equal to p, i.e.,
pjµ =1 with probability p; 0, otherwise. For each incoming external spike, the jump
in the conductance of a neuron is f/σ, and, for each incoming spike from other neurons
in the network, the jump in the conductance is S/Nσ.

As mentioned before, for a fixed neuron j, the output spike statistics of {tjµ} are,
in general, not Poisson. However, the input to the ith neuron is a spike train summed
over output spike trains from many neurons in the network. If we assume that each
neuron firing event has a very low rate and is statistically independent from each
other, then the spike train obtained by summing over a large number of output spike
trains of neurons in the network asymptotically tends to be a Poisson spike process
[39]. Therefore, in our derivation, we will assume that the input spike train summed
from all other neurons to the ith neuron is Poisson with rate pNm(t), where m(t)
is the population-averaged firing rate per neuron and pN is an effective number of
neurons that are coupled to neuron i.

To study the statistical behavior of the network, we again construct a statistical
ensemble of identically structured neuronal networks that differ only in their input,
each of which is an independent set of N independent realizations of the Poisson input
spike trains with the same rate ν0 (t). We are interested in what is the probability of
finding a neuron whose voltage is in (v,v+dv) and whose conductance is in (g,g+dg)
at time t. The corresponding probability density function is

ρ(v,g,t)=E

[
1
N

N∑

i=1

δ (v−Vi (t))δ (g−Gi (t))

]
,

where E(·) is the expectation with respect to all possible sets of N independent real-
izations of the input Poisson spike process with rate ν0 (t) for given initial data (again,
we can further average over an ensemble of initial conditions V (0) if necessary.) De-
note ρ=ρ(v,g,t), the governing equation for the probability density is (see Appendix
B for a detailed derivation)

∂tρ=∂v

{[(
v−εr

τ

)
+g

(
v−εE

τ

)]
ρ

}
+∂g

( g

σ
ρ
)

(4.2a)

+ν0 (t)
[
ρ

(
v,g− f

σ
,t

)
−ρ(v,g,t)

]
(4.2b)

+pm(t)N
[
ρ

(
v,g− S̄

pNσ
,t

)
−ρ(v,g,t)

]
, (4.2c)

for v∈ [εr,VT ) and g∈ [0,∞), where S̄ =pS. The first two terms in Eq. (4.2) describe
the streaming (i.e., relaxation) dynamics of neurons without receiving any spikes
and the second term in Eq. (4.2a) describes the streaming arising from a finite σ,
and is absent in Eq. (3.7). The third and fourth terms in Eq. (4.2) describe the
conductance jumps of the neurons upon receiving external input spikes and spikes
from other neurons in the network, respectively.

Again, Eq. (4.2) is a (2+1)-dimensional partial differential equation with delays
in g-space. Unlike Eq. (3.7), Eq. (4.2) is not exact since the summed input from other
neurons in the network is only approximately Poisson, and thus term (4.2c) is valid
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only in an asymptotic sense. To further shed light on the dynamics of the coupled
I&F network, we invoke a small-jump approximation to derive a (2+1)-dimensional,
nonlinear advection-diffusion equation below, and discuss how to reduce the dynamics
in two dimensions (v,g) to dynamics in only one dimension v.

4.1. Diffusion approximation. Note that the jump in conductance of a
neuron, induced by a single spike from another neuron in the network, is S̄/(pNσ),
whereas the jump, induced by a single spike from the external input, is f/σ. Assuming
that these jumps are small, we can expand terms (4.2b) and (4.2c) via Taylor expansion
to obtain

∂tρ=∂v

{[(
v−εr

τ

)
+g

(
v−εE

τ

)]
ρ

}
+∂g

{[
1
σ

(g− ḡ (t))ρ+
σ2

g (t)
σ

∂gρ

]}
(4.3)

with

ḡ (t)≡fν0 (t)+ S̄m(t), (4.4a)

σ2
g (t)≡ 1

2σ

[
f2ν0 (t)+

S̄2

pN
m(t)

]
. (4.4b)

Eq. (4.3) can be cast in the form of the conservation of probability:

∂tρ+∂vJV (g,v)+∂gJG (g,v)=0, for v∈ [εr,VT ), and g∈ [0,∞),

with the flux

JV (v,g)=−
[(

v−εr

τ

)
+g

(
v−εE

τ

)]
ρ(v,g), (4.5a)

JG (v,g)=−
[

1
σ

(g− ḡ (t))ρ(v,g)+
σ2

g (t)
σ

∂gρ(v,g)

]
, (4.5b)

where the flux JV (v,g) and JG (v,g) are the flux along the v-direction and the g-
direction, respectively.

Now we discuss boundary conditions. As described in Section 2, the reset dy-
namics of our I&F neurons are instantaneous, i.e., once a neuron’s voltage crosses
the threshold VT , the voltage resets immediately without any refractory period (i.e.,
without any delay) and the conductance stays with the same value upon voltage reset.
Hence,

JV (VT ,g)=JV (εr,g), for ∀g∈ [0,∞). (4.6)

Boundary condition (4.6) simply expresses the fact that the neurons that just fired
all enter through the reset voltage. Furthermore, since there are no neurons whose
conductance will go below zero or go to infinity, the g-flux vanishes at the boundary
g =0 and g =∞, i.e.,

JG (v,g =0)=0, JG (v,g =∞)=0, for ∀v∈ [εr,VT ). (4.7)

Eqs. (4.6) and (4.7) constitute boundary conditions for Eq. (4.3).
One of the most important statistical characterizations of neuronal networks is the

firing rate, which is often measured in physiological experiments to describe neuronal
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network properties. Here, the dynamics of the network (4.1) are described by the
population-averaged firing rate per neuron as determined by the total probability flux
across the threshold regardless of the values of conductance, i.e.,

m(t)=
∫ ∞

0

JV (VT ,g,t)dg

=−
∫ ∞

0

[(
v−εr

τ

)
+g

(
v−εE

τ

)]
ρ(VT ,g,t)dg. (4.8)

Once the solution ρ(v,g,t) is known, we can determine the firing rate via Eq. (4.8).
However, Eq. (4.3) is specified with the parameters ḡ (t) and σ2

g (t), which are functions
of m(t) (see Eqs (4.4)). The firing rate m(t), in turn, depends on the boundary value
of ρ(VT ,g,t) through Eq. (4.8). In this sense, therefore, Eq. (4.3) is a nonlinear
equation.

Since Eq. (4.3) is a nonlinear (2+1)-dimensional partial differential equation,
clearly, we can achieve computational advantage by reducing the dynamics described
by Eq. (4.3) to a (1+1)-dimensional effective dynamics. Through this reduction, we
can also gain analytical insight into the neuronal network dynamics. In what follows,
we discuss, in turn, two possible reductions: (i) in the limit of mean-driven dynamics
and (ii) in the limit of fluctuation-driven dynamics.

4.2. Closure in the mean-driven limit. We define the mean-driven limit
as the limit where N→∞, and f→0, ν0 (t)→∞, but fν0 (t)=finite. Obviously, in
this limit, σ2

g (t)=0 from Eq. (4.4b) and there will be no fluctuations in the input
conductance for a neuron from either external input or the input from other neurons
in the network. In this all-to-all network, the input conductance from the external
input without fluctuations will be the same to all neurons, i.e., the effect of the second
term f

∑
µδ

(
t− tiµ

)
in Eq. (4.1b) is equivalent to a smooth input fν0 (t), whereas the

third term, which signifies the network interaction, in Eq. (4.1b), is equivalent to
a smooth input pSm(t) to a neuron from all other neurons in the network — the
fluctuations have been scaled away by the factor 1/

√
N . Notice that, under these

smooth conductance inputs without fluctuations, Eqs. (4.1) show that the voltages
of neurons can move rapidly from the reset voltage εr to the threshold VT and fire,
which leads to the observation that the knowledge about the value of conductance
of a neuron does not provide much information about the value of the voltage of the
neuron statistically. Therefore, intuitively, the dynamics of conductance and voltage
are uncorrelated in the mean-driven limit. If the dynamics of conductance and voltage
are assumed to be statistically independent, i.e.,

ρ(v,g,t)=ρ(v) (v,t)ρ(g) (g,t),

then, the marginalization of Eq. (4.3) to v and g yields

∂tρ
(v) (v)=−∂vjV (v) (4.9a)
d

dt
〈g〉=− 1

σ
[〈g〉− ḡ (t)] (4.9b)

where

jV =−
[(

v−εr

τ

)
+〈g〉

(
v−εE

τ

)]
ρ(v) (v), and 〈g〉≡

∫
gρ(g) (g,t)dg.
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Fig. 4.1. Mean-driven Limit: Plotted here is the probability density function of a neuron’s
voltage. Solid line: Theoretic Prediction (4.10); Circles: Simulation of the original I&F neuronal
network dynamics (4.1) in a steady state. Parameters are N =1600, f =0.02ms, ν0 =20000s−1,
S =0.05, σ =3ms, τ =20ms and p=1. Inset: plotted is 1/ρ(v), which is a linear function of v
from Eq. (4.10). We have scaled voltage units such that εr =0, VT =1, and εE =14/3 [3]. This
convention of units will be used throughout all the figures.

In the derivation, we have used the fact that the flux across the threshold VT is equal
to the flux entering through the reset voltage εr, i.e.,

∫ VT

εr

∂v

{[(
v−εr

τ

)
+g

(
v−εE

τ

)]
ρ(v,g)

}
dv =−JV (VT ,g)+JV (εr,g)=0

by the boundary condition (4.6). Eqs. (4.9) are closed with respect to ρ(v) (v,t)
and 〈g〉(t): Eq. (4.9a) is a (1+1)-dimensional PDE that describes the evolution
of ρ(v) (v,t), whereas Eq. (4.9b) describes the evolution of the average conductance
〈g〉(t).

For the case of time-homogeneous external input, i.e., ν0 (t)=ν0, a constant, we
can determine the steady-state firing rate as follows. First, note that the flux jV in Eq.
(4.9a) is constant over (εr,VT ) for a steady state. This constant can be determined
by the flux at the boundary VT , at which, the flux jV is equal to the firing rate.
Therefore,

m= jV (v)=−
[(

v−εr

τ

)
+〈g〉

(
v−εE

τ

)]
ρ(v) (v).

For a steady state in a mean-driven regime, the probability density thus has the
following form:
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ρ(v) (v)=− mτ

(v−εr)+〈g〉(v−εE)
for v∈ [εr,VT ), (4.10)

and ρ(v) (v)=0 for v /∈ [εr,VT ), where 〈g〉= ḡ =fν0 + S̄m by Eq. (4.9b). Using the
normalization condition

∫ VT

εr
dvρ(v) (v)=1 and noticing that the denominator in Eq.

(4.10) must be negative to ensure ρ(v) (v)≥0, we arrive at

m=





1+ ḡ

τ log
∣∣∣∣

ḡ (εr−εE)
(VT −εr)+ ḡ (VT −εE)

∣∣∣∣
, if ḡ >

VT −εr

εE−VT

0, otherwise

(4.11)

with ḡ =fν0 + S̄m. By solving Eq. (4.11) for m, we can determine the firing rate.
Note that Eq. (4.11) is not a new result and is commonly quoted in literature (see,
for example, [23, 13]). Here, we merely illustrate how to use the probability density
description to reproduce this result.

Finally, we point out that, for an integrate-and-fire neuronal network operating in
a mean-driven regime, the probability distribution for voltage is indeed well captured
by Eq. (4.10), as is illustrated in Fig. (4.1).

4.3. Closure in fluctuation-driven regimes. In general, in contrast to the
mean-driven limit, g and v are correlated. Stronger fluctuations in g are expected
to correlate with larger values of v. To describe this general dynamics, here, for the
network described by Eq. (4.1), we derive a system of (1+1)-dimensional kinetic
equations, which is one of our central results.

4.3.1. Dynamics of conductances. First, we discuss the dynamics of
ρ(g) (g)=

∫ VT

εr
ρ(v,g)dv. Using the flux condition (4.6) at the boundary, we integrate

Eq. (4.3) over v to obtain

∂tρ
(g) (g)=∂g

[
1
σ

(g− ḡ (t))ρ(g) (g)+
σ2

g (t)
σ

∂gρ
(g) (g)

]
(4.12)

for g∈ [0,+∞). Clearly, in Eq. (4.12), the flux Jg (g)=
−[

σ−1 (g− ḡ (t))ρ(g) (g)+σ−1σ2
g (t)∂gρ

(g) (g)
]

vanishes at g =0 and g =∞. We note
that, for time-homogeneous input, ν0 and σ2

g are constant, and the time-invariant
solution can be approximated by the following Gaussian solution

ρ(g) (g)=
1√

2πσg

exp
[
− 1

2σ2
g

(g− ḡ)2
]

(4.13)

where ḡ =ν0f + S̄m, under the condition fν0 + S̄mÀσg. Hence, the mean and vari-
ance of the conductance are

mean(g)= ḡ, var(g)=σ2
g ,

respectively. If the domain of g were (−∞,∞), then Eq. (4.13) would be exact. The
numerical simulation of the full original I&F dynamics (4.1) demonstrates that in
certain regimes this approximate solution well captures the distribution of conduc-
tance as shown in Fig. (4.2). Note that the time-scale for the evolution of ρ(g) (g)
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Fig. 4.2. Conductance Dynamics: Probability density function of g. Circles: Simulation of the
original I&F neuronal network dynamics (4.1); Solid line: Gaussian fit (4.13).

is σ. For sufficiently small σ, starting with any initial condition of ρ(g) (g), the solu-
tion rapidly converges to the approximate form in Eq. (4.13). If the time-scale of a
time-dependent σ2

g (t) is much slower than σ (which generally is the case for AMPA
conductances, which are much faster than typical time-scales of stimulus input [38]),
then, in the limit of σ→0, ρ(g) (g,t) is essentially slaved to the time-invariant solu-
tion that has the approximate form in Eq. (4.13). We note in passing that in the
mean-driven limit, i.e., σ2

g→0,

ρ(g)= δ
(
g−ν0f− S̄m

)
.

That is, the conductance does not fluctuate around the mean ḡ =ν0f + S̄m, as is
expected.

4.3.2. Dynamics of membrane potentials. Next, we project out the
variable g from Eq. (4.3). Define the conditional moments

µ1 (v)=
∫ ∞

0

gρ(g|v)dg, µ2 (v)=
∫ ∞

0

g2ρ(g|v)dg,

where

ρ(v,g)=ρ(g|v)ρ(v) (v), and ρ(v) (v)=
∫ ∞

0

ρ(v,g)dg.
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Integrating Eq. (4.3) over g yields

∂tρ
(v) (v)=∂v

{[(
v−εr

τ

)
+µ1 (v)

(
v−εE

τ

)]
ρ(v) (v)

}
, (4.14)

and multiplying Eq. (4.3) by g, then integrating over g yields

∂t

[
µ1 (v)ρ(v) (v)

]
=− 1

σ
[µ1 (v)− ḡ (t)]ρ(v) (v) (4.15)

+∂v

[(
v−εr

τ

)
µ1 (v)ρ(v) (v)

]
+∂v

[(
v−εE

τ

)
µ2 (v)ρ(v) (v)

]
,

where we have used Eq. (4.5b) and the boundary conditions (4.7). Using Eq. (4.14),
we can cast Eq. (4.15) in the following form

∂tµ1 (v)=− 1
σ

(µ1 (v)− ḡ (t))+
[(

v−εr

τ

)
+µ1 (v)

(
v−εE

τ

)]
[∂vµ1 (v)]

+
Σ2 (v)
ρ(v) (v)

∂v

[(
v−εE

τ

)
ρ(v) (v)

]
+

[
∂vΣ2 (v)

](
v−εE

τ

)
, (4.16)

where

Σ2 (v)≡µ2 (v)−µ2
1 (v)

is the conditional variance.

4.3.3. Closure. Equations (4.14) and (4.16) show that the evolution of
ρ(v) (v) depends on the first conditional moment µ1 (v) and that the evolution of
µ1 (v) depends on the second moment µ2 (v) through the conditional variance Σ2 (v),
··· . Therefore, projecting the dynamics (4.3) to the variable v generates an infinite
hierarchy of equations governing the conditional moments. Thus, the closure issue
naturally arises, i.e., how to truncate this hierarchy to close equations to a lower
order such that the truncated dynamics can still capture the essential dynamics of
the system. Mathematically, a closure issue is often a coarse-graining issue, namely,
whether there exits a scale below which the dynamics either by itself is sufficiently
smooth (without much structure) or can be averaged out1. In our setting with exci-
tatory neuronal networks, if the conditional variance is a sufficiently slowly varying
function of v, then, we can naturally postulate the closure:

Σ2 (v,t)=σ2
g (t). (4.17)

Therefore, we have ∂vΣ2 (v)=0 and Eq. (4.16) becomes

∂tµ1 (v)=− 1
σ

[µ1 (v)− ḡ (t)]+
σ2

g (t)
ρ(v) (v)

∂v

[(
v−εE

τ

)
ρ(v) (v)

]

+
[(

v−εr

τ

)
+µ1 (v)

(
v−εE

τ

)]
∂vµ1 (v). (4.18)

1Note that this coarse-graining in dynamics is different from the spatial coarse-graining procedure
we described in Introduction about partitioning a region of cortex into coarse-grained patches.
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Now Eqs. (4.14) and (4.18) are closed with respect to ρ(v) (v) and µ1 (v). In summary,

∂tρ
(v) (v)=∂v

{[(
v−εr

τ

)
+µ1 (v)

(
v−εE

τ

)]
ρ(v) (v)

}
, (4.19a)

∂tµ1 (v)=− 1
σ

[µ1 (v)− ḡ (t)]+
σ2

g (t)
ρ(v) (v)

∂v

[(
v−εE

τ

)
ρ(v) (v)

]
(4.19b)

+
[(

v−εr

τ

)
+µ1 (v)

(
v−εE

τ

)]
∂vµ1 (v)

with

ḡ (t)≡fν0 (t)+ S̄m(t),

σ2
g (t)≡ 1

2σ

[
f2ν0 (t)+

S̄2

pN
m(t)

]
,

constitute our key result: kinetic equations for the dynamics of coupled excitatory
neuronal networks. From Eq. (4.19a), the corresponding probability flux clearly is

JV (v,t)=−
[(

v−εr

τ

)
+µ1 (v)

(
v−εE

τ

)]
ρ(v) (v). (4.20)

Therefore, the population-averaged firing rate per neuron is determined by the flux
(4.20) at the threshold:

m(t)=JV (VT ,t).

4.3.4. Boundary conditions. Now we discuss how to derive boundary
conditions for kinetic equations (4.19). Note the probability flux (4.5a) along the
v-direction satisfies the boundary condition (4.6). Therefore,

∫ ∞

0

JV (VT ,g)dg =
∫ ∞

0

JV (εr,g)dg,

which leads to

[(VT −εr)+(VT −εE)µ1 (VT )]ρ(v) (VT )=(εr−εE)µ1 (εr)ρ(v) (εr). (4.21)

Furthermore, for the quantity,

η (v)=
∫ ∞

0

gJV (v,g)dg

using the closure (4.17), it is easy to show that

η (v)=JV (v,t)µ1 (v)−σ2
g

(
v−εE

τ

)
ρ(v) (v)

with JV (v,t) as in Eq. (4.20). The boundary condition (Eq. (4.6)) entails

η (VT )=η (εr),
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Fig. 4.3. Steady State Accuracy of Kinetic Theory for Fluctuation-Dominated Dynamics: The
population-averaged firing rate per neuron m as a function of mean input conductance Ginput =
fν0. Inset: probability density function of the membrane potential. Circles: Simulation of the
original purely excitatory I&F neuronal dynamics (4.1) in a statistical steady state; Solid line:
Kinetic Theory (4.19)with BCs derived from Eqs. (4.21) and (4.22); Dot-dashed line: Fokker-
Planck Equation (4.24); Dotted line: Mean-Driven Limit (4.11). Parameters: f =0.2ms, S =0.05,
σ =3ms, τ =20ms, N =300, and p=0.25. εr =0, VT =1, and εE =14/3. (ν0 =1200s−1 for the
inset.)

i.e.,

JV (VT ,t)µ1 (VT )−σ2
g

(
VT −εE

τ

)
ρ(v) (VT )

=JV (εr,t)µ1 (εr)−σ2
g

(
εr−εE

τ

)
ρ(v) (εr)

Note that JV (VT ,t)= JV (εr,t)=m(t). Hence,

τm(t)[µ1 (VT )−µ1 (εr)]=σ2
g

[
(VT −εE)ρ(v) (VT )−(εr−εE)ρ(v) (εr)

]
. (4.22)

Eqs. (4.21) and (4.22) constitute nonlinear boundary conditions for the kinetic equa-
tions (4.19).

4.4. Accuracy of kinetic theory. As pointed out in Ref. [17], our kinetic
theory can reproduce the voltage distribution and firing rate very well. Figure (4.3)
illustrates a comparison between the predictions of our kinetic theory and the full
numerical simulation of the original I&F purely excitatory neuronal networks (4.1)
in a steady state. Note that even when the conductance mean input Ginput =fν0 is
not sufficiently strong to force a neuron to fire in the mean-driven limit (for exam-
ple, for the values of Ginput <13.6 in Eq. (4.11)), our kinetic theory captures the
fluctuation-induced firing very well, as shown in Fig. (4.3). Further, here we show
that the time-dependent solutions of our kinetic theory can also capture very well the
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ted for a network (4.1) of N =100 purely excitatory I&F neurons driven by a time-varying in-
put rate ν0(t)=νa exp

ˆ
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˜
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firing rate m(t) (Thin solid line: simulation result averaged over an ensemble of 104 identically
structured networks. The firing rate is measured using a bin size of 1msec. The upper and lower
boundaries of the gray area mark the values one-standard deviation away from the mean, measured
from the ensemble of the 104 networks. Thick solid line: Kinetic theory (4.19). Dashed line: Mean-
driven limit (4.11)); (B) Instantaneous probability density function of the membrane potential at
time t=79.625ms (The upper and lower boundaries of the gray area mark the values one-standard
deviation away from the mean, measured from the ensemble of the 104 networks. Thick solid line:
Kinetic theory (4.19)). Parameters: f =0.5ms, τ =20ms and σ =0.1ms, S =0.125 and p=0.
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original dynamics of the full I&F neuronal network (4.1). Figure (4.4) clearly demon-
strates this dynamic accuracy of our kinetic theory. It is important to emphasize that
our kinetic theory can capture fluctuation-dominated dynamics accurately, including
fluctuations induced by finite sizes of networks.

We note that under the mean-driven limit, i.e., N→∞, and f→0, ν0→∞, with
fν0 =finite, for which σ2

g =0, the kinetic equations (4.19) recover the mean-driven
equations (4.9) with 〈g〉 being slaved to ḡ. Therefore, our kinetic theory has a wide
range of validity — from the mean-driven regimes to the fluctuation-dominate regime.
We will further discuss the issue of v-g correlation and fluctuations below.

4.5. Fokker-Planck Equation. The kinetic equations (Eqs (4.19)) can be
viewed as asymptotic equations for describing the neuronal network dynamics for a
small but finite σ. Now we discuss the σ→0 limit of kinetic equations (Eqs (4.19)).
Note that

σσ2
g (t)=

1
2

[
f2ν0 (t)+

S̄2

Np
m(t)

]
∼O(1).

As σ→0, Eq. (4.19b) reduces to

µ1 (v)= ḡ (t)+
σσ2

g

ρ(v) (v)
∂v

[(
v−εE

τ

)
ρ(v) (v)

]

= ḡ (t)+
σσ2

g

τ
+

σσ2
g

ρ(v) (v)

(
v−εE

τ

)
∂vρ(v) (v). (4.23)

This expression of µ1 (v) makes transparent the meaning of corrections to the first
term in Eq. (4.23), i.e., ḡ (t), which describes the mean-driven, uncorrelated limit.

1. Due to the spread with size σg of g, there is a fluctuation correction σσ2
g

τ to
ḡ (t). This fluctuation correction will effectively lower the threshold.

2. Fluctuations induce a correlation correction between g and v as signified by
the last term in Eq. (4.23). As will be seen below (Eq. (4.27)), ∂vρ(v) (v)<
0 at the threshold VT , the correlation correction is thus positive near the
threshold. Therefore, the net effect of this last term also lowers the effective
threshold for firing.

The combined effects of fluctuations is to effectively lower the firing threshold.
Therefore, even if ḡ is subthreshold, neurons in the network can still fire.

Finally, substituting Eq. (4.23) into Eq. (4.19a) yields the following Fokker-
Planck equation,

∂tρ
(v) (v)=∂v

{[(
v−εr

τ

)
+γ (t)

(
v−εE

τ

)]
ρ(v) (v)+σσ2

g (t)
(

v−εE

τ

)2

∂vρ(v) (v)

}

(4.24)
where γ (t)≡ ḡ (t)+σσ2

g (t)/τ . Clearly, we have condition that
∫ εE

εr
ρ(v) (v)dv =1. The

probability flux in Eq. (4.24) is

JFP (v,t)=−
[(

v−εr

τ

)
+γ (t)

(
v−εE

τ

)]
ρ(v) (v)−σσ2

g (t)
(

v−εE

τ

)2

∂vρ(v) (v).

It is easy to verify that, in the absence of network couplings, i.e., S =0, Eq. (4.24)
reduces to Eq. (3.12) (Note that εE is set to 0 in Eq. (3.12)).
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We observe that Eq. (4.24) is derived by taking the σ→0 limit of the kinetic
equations (4.19), which is derived with a finite σ under the diffusion approximation
(4.3), whereas Eq. (3.12) is derived under the diffusion approximation of Eq. (3.7),
which is an evolution equation for ρ(v) with an infinitely fast (i.e., σ =0) conductance.
There is a certain internal consistency reflected in the fact that these two limiting pro-
cedures yield the same Fokker-Planck equation. This consistency further stresses the
significance of the Stratonovich interpretation mentioned above as a correct physical
interpretation of stochastic dynamics (3.13).

Finally, we discuss the boundary conditions for solving Eq. (4.24). There is
a subtlety in choosing boundary conditions: One way is to use the σ→0 limit of
boundary conditions derived for the kinetic equation. In this limit, Eqs. (4.21) and
(4.22) become

JFP (εr,t)=JFP (VT ,t)=m(t),

(VT −εE)ρ(v) (VT )=(εr−εE)ρ(v) (εr), (4.25)

respectively. However, there is another way of prescribing boundary conditions if
we interpret the σ→0 limit as the following physical process: the conductance has
a vanishing decay time and upon receiving an input spike, a neuron still receives a
finite but very small jump (diffusion approximation) in v. When near the threshold,
it jumps across the threshold, and immediately resets, i.e., no longer dwelling near
the threshold as with the case of finite σ (With a finite σ, this dwelling is possible due
to a slow upward streaming of v under the network dynamics (4.1) ). Therefore, there
is no accumulation of neuron population at the threshold. Hence, we can postulate
the boundary conditions

ρ(v) (VT ,t)=0, (4.26)
JFP (εr,t)=JFP (VT ,t),

the second of which simply reflects the fact that the neurons that just fired all enter
through the reset potential. The firing rate now is expressed as

m(t)=JFP (VT ,t)

=−σσ2
g

(
VT −εE

τ

)2

∂vρ(v) (v)
∣∣∣
v=VT

.

In general, m(t)>0, therefore,

∂vρ(v) (v)
∣∣∣
v=VT

<0. (4.27)

We note that these two different boundary conditions reflect the difference in funda-
mental “microscopic” I&F neurons. Boundary condition (Eq. (4.25)) corresponds to
an I&F neuron with a finite σ, as σ→0, whereas boundary condition (Eq. (4.26))
corresponds to an I&F neuron with σ =0. In some parameter regimes, these two
boundary conditions (i.e., Eq. (4.25) vs. Eq. (4.26)) produce very similar solutions
of ρ(v) (v) as illustrated in Fig. (4.5 ). In terms of practical purposes of modeling
qualitative statistical behavior, either of the boundary conditions can be used in the
limit of σ→0.
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Fig. 4.5. Comparison of Boundary Conditions: Solutions of the Fokker-Planck equation (4.24)
solved with boundary conditions (4.26) (solid), and boundary conditions (4.25) (dashed), with cor-
responding m=7.05 and m=7.65, respectively. f =0.6ms, ν0 =4000s−1, N =75 and S =0.01.

5. Networks with excitatory and inhibitory neurons
In this section, we extend our kinetic theory to the case of the coupled I&F

dynamics (2.1) with both excitatory and inhibitory neurons. The detailed description
of the network is already given in Section 2. Following the similar arguments in
previous sections, the probability density function we are interested in is now defined
by

ρλ (v,g
E
,g

I
,t)=E

[
1

Nλ

Nλ∑

i=1

δ
(
v−V λ

i (t)
)
δ
(
g

E
−GλE

i (t)
)
δ
(
g

I
−GλI

i (t)
)
]

for the λ-population, λ=E,I, labeling excitation and inhibition, where E(·) is the
expectation with respect to all possible sets of independent realizations of the input
Poisson spike process in an ensemble of identically structured networks. Denote ρλ≡
ρλ (v,g

E
,g

I
,t), S̄λλ′ =pSλλ′ . Assuming (i) N

E
,N

I
À1, and (ii) the Poisson property

for summed spike trains from all other neurons in the network, a similar derivation
to what is described in Appendix B leads to

∂tρλ =∂v

{[(
v−εr

τ

)
+g

E

(
v−εE

τ

)
+g

I

(
v−εI

τ

)]
ρλ

}
+∂g

E

(
g

E

σ
E

ρλ

)
+∂g

I

(
g

I

σ
I

ρλ

)

+ν0E
(t)

[
ρλ

(
v,g

E
− f

E

σ
E

,g
I

)
−ρλ (v,g

E
,g

I
)
]
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+ν0I
(t)

[
ρλ

(
v,g

E
,g

I
− f

I

σ
I

)
−ρλ (v,g

E
,g

I
)
]

+pm
E

(t)N
E

[
ρλ

(
v,g

E
− S̄λE

pN
E
σ

E

,g
I

)
−ρλ (v,g

E
,g

I
)
]

+pm
I
(t)N

I

[
ρλ

(
v,g

E
,g

I
− S̄λI

pN
I
σ

I

)
−ρλ (v,g

E
,g

I
)
]

(5.1)

for v∈ (εI ,VT ), g
E
∈ (0,∞), and g

I
∈ (0,∞). Note that the probability flux for Eq.

(5.1) along the v-direction is

Jλ (v,g
E
,g

I
,t)=−

[(
v−εr

τ

)
+g

E

(
v−εE

τ

)
+g

I

(
v−εI

τ

)]
ρλ (v,g

E
,g

I
,t).

Therefore, the population-average firing rate per neuron for the λ-population is

mλ (t)=
∫

Jλ (VT ,g
E
,g

I
,t)dg

E
dg

I
. (5.2)

At v =εr, we have the flux condition

Jλ

(
ε+

r ,g
E
,g

I
,t

)
=Jλ

(
ε−r ,g

E
,g

I
,t

)
+Jλ (VT ,g

E
,g

I
,t), (5.3)

where Jλ (VT ,g
E
,g

I
,t) is the probability flux of neurons at v =VT for the population

λ — neurons that just fired come out from the reset voltage (Note that the reset
dynamics we are considering is instantaneous, i.e., no refractory period). Clearly, we
have the flux condition at the boundary v =εI ,

Jλ (εI ,gE
,g

I
,t)=0, (5.4)

since no neurons have a voltage below the inhibitory reversal potential.
A diffusion approximation reduces Eq. (5.1) to

∂tρλ =∂v

{[(
v−εr

τ

)
+g

E

(
v−εE

τ

)
+g

I

(
v−εI

τ

)]
ρλ

}

+∂g
E

{
1

σ
E

[
(g

E
− ḡ

λE
(t))ρλ +σ2

λE
∂g

E
ρλ

]}

+∂g
I

{
1
σ

I

[
(g

I
− ḡ

λI
(t))ρλ +σ2

λI
∂g

I
ρλ

]}
(5.5)

with

ḡ
λE

(t)=f
E
ν0E

(t)+ S̄λEm
E

(t), ḡ
λI

(t)=f
I
ν0I

(t)+ S̄λImI
(t) (5.6a)

σ2
λE

=
1

2σ
E

[
f2

E
ν0E

(t)+
S̄2

λE

pN
E

m
E

(t)
]
, σ2

λI
=

1
2σ

I

[
f2

I
ν0I

(t)+
S̄2

λI

pN
I

m
I
(t)

]
. (5.6b)

We note that, again, through Eqs. (5.2) and (5.6), Eq. (5.5) is a nonlinear partial
differential equation over space (v,g

E
,g

I
). Our aim is to extend our closure to derive a

system of (1+1)-dimensional kinetic equations to capture the essential coarse-grained
dynamics of Eq. (5.1).
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5.1. Dynamics of conductances. First, we discuss the dynamics of conduc-
tances. Using flux boundary conditions (5.3) and (5.4), we have

−
∫ VT

εI

dv∂v

{[(
v−εr

τ

)
+g

E

(
v−εE

τ

)
+g

I

(
v−εI

τ

)]
ρλ

}

=Jλ (VT ,g
E
,g

I
,t)−Jλ

(
ε+

r ,g
E
,g

I
,t

)
+Jλ

(
ε−r ,g

E
,g

I
,t

)−Jλ (εI ,gE
,g

I
,t)

=0.

Therefore, integration of Eq. (5.5) over v from εI to VT leads to

∂tρ̃λ (g
E
,g

I
)=∂g

E

{
1

σ
E

[
(g

E
− ḡ

λE
(t))+σ2

λE
∂g

E

]
ρ̃λ (g

E
,g

I
)
}

+∂g
I

{
1
σ

I

[
(g

I
− ḡ

λI
(t))+σ2

λI
∂g

I

]
ρ̃λ (g

E
,g

I
)
}

(5.7)

where ρ̃λ (g
E
,g

I
)=

∫ VT

εI
dvρλ (v,g

E
,g

I
,t). Using the fact that the flux along g

I
vanishes

at g
I
=0 and g

I
=∞, and further integrating Eq. (5.7) over g

I
yields

∂tρ
(E)
λ (g

E
)=∂g

E

{
1

σ
E

[
(g

E
− ḡ

λE
(t))+σ2

λE
∂g

E

]
ρ
(E)
λ (g

E
)
}

, (5.8)

where ρ
(E)
λ (g

E
)=

∫∞
0

dg
I
ρ̃λ (g

E
,g

I
). Similarly, we obtain

∂tρ
(I)
λ (gI)=∂g

I

{
1
σ

I

[
(g

I
− ḡ

λI
(t))+σ2

λI
∂g

I

]
ρ
(I)
λ (gI)

}
. (5.9)

Next, we discuss the correlation between the inhibitory conductance and the excita-
tory conductance. For the moments defined by

〈g
E
g

I
〉=

∫ ∞

0

dg
E

∫ ∞

0

dg
I

g
E
g

I
ρ̃λ (g

E
,g

I
),

〈g
E
〉=

∫ ∞

0

dg
E

∫ ∞

0

dg
I

g
E
ρ̃λ (g

E
,g

I
), 〈g

I
〉=

∫ ∞

0

dg
E

∫ ∞

0

dg
I

g
I
ρ̃λ (g

E
,g

I
).

Eqs. (5.7), (5.8), and (5.9) lead to

d

dt
〈g

E
g

I
〉=−

(
1

σ
E

+
1
σ

I

)
〈g

E
g

I
〉+ 1

σ
E

〈g
I
〉 ḡ

λE
(t)+

1
σ

I

〈g
E
〉 ḡ

λI
(t), (5.10)

d

dt
〈g

E
〉=− 1

σ
E

[〈g
E
〉− ḡ

λE
(t)], (5.11)

d

dt
〈g

I
〉=− 1

σ
I

[〈g
I
〉− ḡ

λI
(t)], (5.12)

respectively. Then, the correlation,

C (g
E
,g

I
)≡〈g

E
g

I
〉−〈g

E
〉〈g

I
〉,

can be shown to follow the dynamics

d

dt
C (g

E
,g

I
)=−

(
1

σ
E

+
1
σ

I

)
C (g

E
,g

I
), (5.13)
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using Eqs. (5.10),(5.11), and (5.12). Even if there is an initial correlation in the initial
population ensemble, according to Eq. (5.13), the correlation will quickly decay over
the time-scale σ

E
σ

I
/(σ

E
+σ

I
). Therefore, the inhibitory conductance can be regarded

as uncorrelated with the excitatory conductance.
Similar to the case of a purely excitatory neuronal network, if both σ

E
and σ

I

are considered to be small, then the time-invariant solutions of Eqs. (5.8) and (5.9)
are nearly Gaussian with means and variances given by Eqs. (5.6).

5.2. Closure in fluctuation-driven dynamic regimes. To project the dy-
namics (5.5) to v-space, we consider the evolution equations governing the conditional
moments defined by

µλE (v)=
∫ ∞

0

dg
E

∫ ∞

0

dg
I

g
E
ρλ (g

E
,g

I
|v), µλI (v)=

∫ ∞

0

dg
E

∫ ∞

0

dg
I

g
I
ρλ (g

E
,g

I
|v),

µ
(2)
λE (v)=

∫ ∞

0

dg
E

∫ ∞

0

dg
I

g2
E
ρλ (g

E
,g

I
|v), µ

(2)
λI (v)=

∫ ∞

0

dg
E

∫ ∞

0

dg
I

g2
I
ρλ (g

E
,g

I
|v),

µ
(2)
λEI (v)=

∫ ∞

0

dg
E

∫ ∞

0

dg
I

g
E
g

I
ρλ (g

E
,g

I
|v),

where ρλ (v,g
E
,g

I
,t)=ρλ (g

E
,g

I
,t|v)ρ(v) (v,t). Integration of Eq. (5.5) over

g
E
,g

I
yields

∂tρ
(v)
λ (v)=∂v

{[(
v−εr

τ

)
+µλE (v)

(
v−εE

τ

)
+µλI (v)

(
v−εI

τ

)]
ρ
(v)
λ (v)

}
. (5.14)

Multiplying Eq. (5.5) with g
E
, g

I
, then integrating over g

E
, g

I
, respectively, upon

using Eq. (5.14), leads to

∂tµλE (v)=− 1
σ

E

[µλE (v)− ḡ
λE

(t)]

+
[(

v−εr

τ

)
+µλE (v)

(
v−εE

τ

)
+µλI (v)

(
v−εI

τ

)]
[∂vµλE (v)] (5.15)

+

{
Σ2

λE (v)

ρ
(v)
λ (v)

∂v

[(
v−εE

τ

)
ρ
(v)
λ (v)

]
+

[
∂vΣ2

λE (v)
](

v−εE

τ

)}

+

{
CλEI (v)

ρ
(v)
λ (v)

∂v

[(
v−εI

τ

)
ρ
(v)
λ (v)

]
+[∂vCλEI (v)]

(
v−εI

τ

)}
,

and

∂tµλI (v)=− 1
σ

I

[µλI (v)− ḡ
λI

(t)]

+
[(

v−εr

τ

)
+µλE (v)

(
v−εE

τ

)
+µλI (v)

(
v−εI

τ

)]
[∂vµλI (v)] (5.16)

+

{
CλEI (v)

ρ
(v)
λ (v)

∂v

[(
v−εE

τ

)
ρ
(v)
λ (v)

]
+[∂vCλEI (v)]

(
v−εE

τ

)}

+

{
Σ2

λI (v)

ρ
(v)
λ (v)

∂v

[(
v−εI

τ

)
ρ
(v)
λ (v)

]
+

[
∂vΣ2

λI (v)
](

v−εI

τ

)}
,
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where

Σ2
λE (v)=µ

(2)
λE (v)−µ2

λE (v), Σ2
λI (v)=µ

(2)
λI (v)−µ2

λI (v),

CλEI (v)=µ
(2)
λEI (v)−µλE (v)µλI (v)

are conditional variances and conditional correlation, respectively. Eqs. (5.14),(5.15),
and (5.16) constitute the first equations in the infinite hierarchy of conditional expec-
tation expansions.

Closures:
To truncate the infinite hierarchy of the equations governing conditional moments

to a lower order to obtain essential effective dynamics, using the same intuition as
described above, we postulate the following closure:

1. Closure Condition I:

Σ2
λE (v)=σ2

λE (t), Σ2
λI (v)=σ2

λI (t), (5.17)

which are similar to the closure used in obtaining the kinetic equations for a
purely excitatory neuronal network.

2. Closure Condition II:

CλEI (v)=0, (5.18)

i.e., the conditional correlation of inhibitory conductance and the excitatory
conductance vanishes (As shown above, if not conditioned on v, the inhibitory
and excitatory conductances are uncorrelated).

With these closure conditions, naturally ∂vΣ2
λE (v)=0, ∂vΣ2

λI (v)=0, and we ob-
tain the following equations for µλE (v),µλI (v) and ρ

(v)
λ (v) for λ=E,I :

∂tρ
(v)
λ (v)=∂v

{[(
v−εr

τ

)
+µλE (v)

(
v−εE

τ

)
+µλI (v)

(
v−εI

τ

)]
ρ
(v)
λ (v)

}
, (5.19a)

∂tµλE (v)=− 1
σ

E

[µλE (v)− ḡ
λE

(t)]+
σ2

λE
(t)

ρ
(v)
λ (v)

∂v

[(
v−εE

τ

)
ρ
(v)
λ (v)

]
(5.19b)

+
[(

v−εr

τ

)
+µλE (v)

(
v−εE

τ

)
+µλI (v)

(
v−εI

τ

)]
[∂vµλE (v)],

∂tµλI (v)=− 1
σ

I

[µλI (v)− ḡ
λI

(t)]+
σ2

λI
(t)

ρ
(v)
λ (v)

∂v

[(
v−εI

τ

)
ρ
(v)
λ (v)

]
(5.19c)

+
[(

v−εr

τ

)
+µλE (v)

(
v−εE

τ

)
+µλI (v)

(
v−εI

τ

)]
[∂vµλI (v)],

which now are closed with respect to µλE (v),µλI (v) and ρ
(v)
λ (v). Eqs (5.19) constitute

our kinetic equations for dynamics of coupled excitatory and inhibitory networks.
We note that, following the procedure in Sec. 4.3.4, boundary conditions can be
similarly derived for Eqs. (5.19) by using Eqs. (5.3) and (5.4). Figure ( 5.1) illustrates
the accuracy of this kinetic theory by comparing its solution with a full numerical
simulation of I&F networks with both excitatory and inhibitory neurons.
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Fig. 5.1. Accuracy of Kinetic Theory for Neuronal Network Consisting of Both Excitatory and
Inhibitory Neurons: The population-averaged firing rate per neuron m for the excitatory population
as a function of mean input conductance Ginput =fν0E . Inset: probability density function of the
membrane potential for the excitatory population. Circles: Simulation of the original I&F neuronal
network dynamics (2.1) in a statistical steady state, under the shunting inhibition, i.e., εI = εr;
Solid line: Kinetic Theory (4.19); Dashed line: Mean-Driven Limit (Eq. (4.11) extended to this
network of both excitatory and inhibitory neurons). The coupling parameters are SEE =SIE =0.1,
SEI =SII =0.5, (Note that, for these particular couplings, either in the original I&F network (2.1)
or in our kinetic theory (5.19), we have mI =mE , which can be easily concluded from the symmetries
in these values of Sλλ′ , λλ′=E,I, see Eqs. (2.1) and Eqs (5.6)). Other Parameters: f =0.2ms,
ν0I =0, σE =3ms, σI =5ms, τ =20ms, NE =300, NI =100, and p=0.25. (ν0E =1300s−1 and
ν0I =0 for the inset.)

5.3. Fokker-Planck equations (The σ
E
,σ

I
→0 limit): Here, we point out

that in order to obtain the Fokker-Planck equation similar to Eq. (4.24), there is no
need to postulate Closure Condition II for the conditional correlation (Eq. (5.18))
even if the conditional correlation CλEI (v) does not vanish in the dynamics of the
network. By imposing only Closure Condition I, in the limit σE→0, σI →0, by
noticing that σ

E
σ2

λE
∼O(1) and σIσ

2
λI
∼O(1), Eqs. (5.15) and (5.16) reduce to

µλE (v)= ḡ
λE

(t)+
σ

E
σ2

λE

ρ
(v)
λ (v)

∂v

[(
v−εE

τ

)
ρ
(v)
λ (v)

]
,

µλI (v)= ḡ
λI

(t)+
σ

I
σ2

λI

ρ
(v)
λ (v)

∂v

[(
v−εI

τ

)
ρ
(v)
λ (v)

]
.

Substituting these into Eq. (5.19a) results in Fokker-Planck equations for the dynam-
ics of coupled excitatory and inhibitory neuronal networks:

∂tρ
(v)
λ (v)+∂vJFP

λ (v)=0
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λ=E,I, with the probability flux JFP
λ (v) defined by

JFP
λ (v)≡−

[(
v−εr

τ

)
+γ

λE
(t)

(
v−εE

τ

)
+γ

λI
(t)

(
v−εI

τ

)]
ρ
(v)
λ (v)

−
[
σ

E
σ2

λE
(t)

(
v−εE

τ

)2

+σ
I
σ2

λI
(t)

(
v−εI

τ

)2
]

∂vρ
(v)
λ (v).

where γ
λE

(t)≡ ḡ
λE

(t)+σ
E
σ2

λE
(t)/τ, γ

λI
(t)≡ ḡλI (t)+σ

I
σ2

λI
(t)/τ.

6. Extension to many coarse-grained patches
In this article, we have presented a detailed statistical physics framework of cap-

turing the effective dynamics of neuronal networks of both excitatory and inhibitory
neurons. It is easy to extend our kinetic theory to include interactions among coarse-
grained patches created by a spatial coarse-graining procedure. Let x be the coarse-
grained coordinate labeling a patch, then ρ

(v)
λ (v,t) and µλλ′ (v,t), in Eqs (5.19), where

λ,λ′=E,I, are generalized to be ρ
(v)
λ (x;v,t) and µλλ′ (x;v,t) with the following cou-

pling between coarse-grained patches:

ḡ
λE

(x;t)=f
E

(x)ν0E
(x;t)+ S̄λE

∫
KE (x,x′)m

E
(x′;t)dx′,

ḡ
λI

(x;t)=f
I
(x)ν0I

(x;t)+ S̄λI

∫
KI (x,x′)m

I
(x′;t)dx′,

σ2
λE

(x;t)=
1

2σ
E

f2
E

(x)ν0E
(x;t)+

S̄2
λE

2σ
E
pN

E
(x)

∫
K2

E (x,x′)m
E

(x′;t)dx′,

σ2
λI

(x;t)=
1

2σ
I

f2
I
(x)ν0I

(x;t)+
S̄2

λI

2σ
I
pN

I
(x)

∫
K2

I (x,x′)m
I
(x′;t)dx′,

which are the generalizations of Eqs. (5.6). Here, KE,I (x,x′) are smoothed (i.e.,
coarse-grained) spatial interaction kernels for excitatory and inhibitory neurons, re-
spectively.

Finally, we mention that our kinetic theory can be readily generalized to include
a finite refractory period τref , i.e, after reset, a neuron’s voltage stays at εr for a finite
duration τref , then follows the dynamics of Eq. (2.1a). This generalization will be
published elsewhere.

Appendix A. The result (Eq. (3.3)) of a voltage jump upon receiving an input
spike can also easily be seen as follows. The dynamics of integrate-and-fire neuron in
response to a single input spike at time t=0 is described by

d

dt
V =− (V −εr)

τ
− f

τ
δ (t)(V −εE),

which can be interpreted as

dV

V −εE
=−1

τ

(
V −εr

V −εE

)
dt− f

τ
δ (t)dt.

By integrating from −ε to +ε, ε¿1, we have

ln
(

V (0+)−εE

V (0−)−εE

)
=O(ε)− f

τ
. (A.1)

Therefore, in the limit of ε→0, we obtain the jump (Eq. (3.3)) from Eq. (A.1).
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Appendix B. We repeat here the description of a network consisting of N all
excitatory neurons with an exponential time-course for conductances. The dynamics
of an all-to-all coupled excitatory neuronal network are governed by

τ
dVi

dt
=−(Vi−εr)−Gi (t)(Vi−εE) (B.1a)

σ
dGi

dt
=−Gi +f

∑
µ

δ
(
t− tiµ

)
+

S

N

∑

j

∑
µ

pjµδ (t− tjµ) (B.1b)

where Vi is the membrane potential of the ith neuron in the network and σ is the
decay time-scale of the excitatory conductance time-course. The external input is
modeled by the second term in Eq. (B.1b), where

{
tiµ

}
is a Poisson spike train for

the ith neuron with rate ν0 (t). For each external input spike, the jump induced in
conductance is f/σ. The third term in Eq. (B.1b) describes the spike input to the ith
neuron from the jth neuron. pjµ describes the probability of synaptic release, which is
modelled by a Bernoulli process, with release probability equal to p, i.e., pjµ =1 with
probability p; 0, otherwise. As discussed in Section 4, under certain conditions [39],
it is reasonable to assume that the input spike train to the ith neuron is Poisson with
rate pNm(t), where m(t) is the population-averaged firing rate per neuron and pN is
an effective number of neurons that are coupled to neuron i. For each incoming spike
from other neurons in the network, the total jump of the conductance is S̄/(pNσ),
where S̄ =pS. We consider the probability density function:

ρ(v,g,t)=
1
N

N∑

i=1

E[δ (v−Vi (t))δ (g−Gi (t))].

First, we evaluate ρ(v,g,t+∆t). We use again the identity (Eq. (3.5)) to write

E[δ (v−Vi (t+∆t))δ (g−Gi (t+∆t))]
=E[E[δ (v−Vi (t+∆t))δ (g−Gi (t+∆t))|Vi(t),Gi (t)]].

Given a neuron that has a voltage Vi (t) and a conductance Gi (t) at time t, with prob-
ability up to O(∆t), there will be three possibilities in the interval (t,t+∆t): (i) the
neuron, with probability (1−ν0 (t)∆t)(1−pm(t)N∆t), receives no spikes from either
external input nor other neurons in the network, and the neuron relaxes according to
dynamics Eq. (B.1) without any δ-functions on the right-hand side; (ii) the neuron,
with probability ν0 (t)∆t(1−m(t)pN∆t), receives only one spike from the external
input but no spikes from other neurons in the network, and its conductance jumps
by the amount of f/σ; (iii) the neuron, with probability pNm(t)∆t(1−ν0 (t)∆t),
receives only one spike from other neurons in the network but not from the external
input, and its conductance jumps by the amount of S̄/(pNσ), S̄≡pS. Therefore, to
O(∆t), we have

E[δ (v−Vi (t+∆t))δ (g−Gi (t+∆t))|Vi(t),Gi (t)]
=(1−ν0 (t)∆t)(1−pm(t)N∆t)×

δ

(
v−

[
Vi (t)+

[
−1

τ
(Vi (t)−εr)−Gi (t)

τ
(Vi (t)−εE)

]
∆t

])

×δ

(
g−

[
Gi (t)− 1

σ
Gi (t)∆t

])
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+ν0 (t)∆tδ (v−Vi (t))δ
(

g−
[
Gi (t)+

f

σ

])

+pNm(t)∆tδ (v−Vi (t))δ
(

g−
[
Gi (t)+

S̄

pNσ

])

=(1−ν0 (t)∆t)(1−pm(t)N∆t)×{
δ (v−Vi (t))+

∂

∂v
δ (v−Vi (t))

[
1
τ

(Vi (t)−εr)+
Gi (t)

τ
(Vi (t)−εE)

]
∆t

}

×
{

δ (g−Gi (t))+
∂

∂g
δ (g−Gi (t))

[
1
σ

Gi (t)∆t

]}

+ν0 (t)∆tδ (v−Vi (t))δ
(

g− f

σ
−Gi (t)

)

+pNm(t)∆tδ (v−Vi (t))δ
(

g− S̄

pNσ
−Gi (t)

)

with S̄ =pS. We can move terms, such as
[

1
τ (Vi (t)−εr)+ Gi(t)

τ (Vi (t)−εE)
]
, inside

the partial derivative ∂/∂v. Thus

E[δ (v−Vi (t+∆t))δ (g−Gi (t+∆t))|Vi(t),Gi (t)]
= [1−ν0 (t)∆t−pm(t)N∆t]δ (v−Vi (t))δ (g−Gi (t))

+
∂

∂v

[
δ (v−Vi (t))δ (g−Gi (t))

[
1
τ

(Vi (t)−εr)+
Gi (t)

τ
(Vi (t)−εE)

]]
∆t

+
∂

∂g

[
δ (v−Vi (t))δ (g−Gi (t))

1
σ

Gi (t)∆t

]

+ν0 (t)∆tδ (v−Vi (t))δ
(

g− f

σ
−Gi (t)

)

+pNm(t)∆tδ (v−Vi (t))δ
(

g− S̄

pNσ
−Gi (t)

)
,

which, after noticing δ (x−a)a= δ (x−a)x, yields

E[δ (v−Vi (t+∆t))δ (g−Gi (t+∆t))|Vi(t),Gi (t)]
= δ (v−Vi (t))δ (g−Gi (t))

+
∂

∂v

[
δ (v−Vi (t))δ (g−Gi (t))

[
1
τ

(v−εr)+
g

τ
(v−εE)

]]
∆t

+
∂

∂g

[
δ (v−Vi (t))δ (g−Gi (t))

1
σ

g∆t

]

+ν0 (t)∆t

[
δ (v−Vi (t))δ

(
g− f

σ
−Gi (t)

)
−δ (v−Vi (t))δ (g−Gi (t))

]

+pNm(t)∆t

[
δ (v−Vi (t))δ

(
g− S̄

pNσ
−Gi (t)

)
−δ (v−Vi (t))δ (g−Gi (t))

]
.
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By taking expectation over all possible trajectories of {Vi (t),Gi (t)} and averaging
over all neurons, we have

∂tρ=∂v

[((
v−εr

τ

)
+g

(
v−εE

τ

))
ρ

]
+∂g

( g

σ
ρ
)

+ν0 (t)
[
ρ

(
v,g− f

σ
,t

)
−ρ(v,g,t)

]
+pm(t)N

[
ρ

(
v,g− S̄

pNσ
,t

)
−ρ(v,g,t)

]

in the limit of ∆t→0, where ρ≡ρ(v,g,t). This is Eq. (4.2) in the main text.
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