
COMM. MATH. SCI. c© 2003 International Press

Vol. 1, No. 2, pp. 269–292

BLOWUP OF SOLUTIONS AND BOUNDARY INSTABILITIES IN
NONLINEAR HYPERBOLIC EQUATIONS∗

ROBIN YOUNG†‡

Abstract. We construct elementary examples of systems of hyperbolic equations having solu-
tions which blow up in finite time. We explicitly describe the system, initial data and solution. First,
we exhibit a 3×3 system with compactly supported data which blows up in finite time. The solution
blows up in amplitude (L∞ norm) on an entire interval, so there is no possibility of continuing the
solution beyond the blowup time. We then consider a system of two Burgers equations which are
coupled through linear boundary conditions. We record the interesting observation that although
the IBVP with a single boundary condition is globally well-posed, when two boundary conditions are
used on a finite domain, the IBVP is ill-posed. Because waves are reflected back into the domain,
multiple interactions combine to give blowup in finite time, for arbitrarily small initial data. We
conclude that some global integral or energy condition must be imposed in order to expect stability
of solutions to IBVPs on compact domains. Finally, we show that the presence of shocks is not nec-
essary, by exhibiting solutions which are continuous in the nonlinear fields. However, our solutions
do contain discontinuities in the linearly degenerate field.

1. Introduction
Glimm’s celebrated existence theorem for hyperbolic conservation laws states that

weak solutions can be globally defined, provided that the initial data be small enough
in the total variation norm [3]. This was made more precise in [14, 13], in which the
author showed that global solutions exist provided that the total variation of the data
lie below a critical threshold, and the sup-norm be small enough. For general systems,
a small sup-norm is needed to solve Riemann problems [9], while the Glimm functional
for the total variation bounds the effects of all future nonlinear wave interactions. The
threshold arises because nonlinear interaction effects can be measured by a geometric
series, which must sum to provide global bounds. This threshold is not present for
2× 2 systems, for which the Glimm-Lax decay theory applies.

It is well known that in general, global solutions may not exist if the total vari-
ation of the data is beyond the threshold. This is essentially due to a Ricatti-type
blowup in wave amplitudes due to multiple interaction effects. Nonlinear instability
was first demonstrated for 3 × 3 hyperbolic systems by Hunter [5], using an asymp-
totic expansion which was made rigorous by Joly, Metivier and Rauch [8]. In [15],
the author found several explicit examples of solutions to 3 × 3 systems which ex-
hibit nonlinear instability, and which clearly show the cause of instability to be the
cumulative effect of many interactions of small waves. Some of these systems were
then modified by Jenssen, who found solutions which actually blow up to infinity in
finite time [6]. This is accomplished by having many interactions occur inside a wedge
formed by two approaching shocks, so that there is an infinite number of (unstable)
interactions in finite time. This same mechanism has been shown to work in systems
of three genuinely nonlinear families [1].

Following his own work on regularity of solutions to Hamilton-Jacobi equations
[11], Bo Su posed the question of whether, when the system is genuinely nonlinear
and the wavespeed grows rapidly, blowup of the solution can be avoided. Here we
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270 BLOWUP AND INSTABILITIES IN HYPERBOLIC EQUATIONS

show that this is not the case, and indeed growth in wavespeed causes interactions
to occur more frequently, in turn leading to growth in amplitude. As this process
continues, both states and wavespeeds approach infinity in finite time. Moreover, the
solution tends to infinity on the entire support of the initial data, so there is no way
of continuing the solution beyond the blowup time.

As in [15], we construct explicit piecewise constant solutions which have pre-
scribed interactions. Our construction is as follows: assume a 3 × 3 system with
forward, stationary and backward waves; starting with two stationary waves, start
with a (forward or backward) shock between them. We choose our system so that the
interaction of the shock with a standing wave has the effect of reflecting a stronger
shock. This in turn reflects another shock, and the pattern repeats. Since stronger
shocks travel faster, the time between interactions decreases, and by summing another
geometric series, we get infinitely many interactions and blowup in finite time.

Our 3 × 3 system can be regarded as an interpolation of 2 × 2 systems, with a
Riemann coordinate which changes across the standing waves acting as interpolation
parameter. The system has the form

ut + f(u, S, w)x = 0,

St = 0, (1.1)
wt − g(u, S, w)x = 0,

where f and g are chosen in such a way that the different 2 × 2 fluxes are given by
setting S = 0 and S = 1, respectively. This means that we can treat several different
fluxes and we have a number of tunable parameters. In a future paper [12], we will
carry out a bifurcation analysis which describes the transition from stability, when
Glimm’s theorem applies, to instability, when blowup occurs.

It is well known that the existence of a uniformly convex entropy implies that the
L2 norm of the solution is non-increasing, ruling out the blowup described here. Thus,
our interpolated systems do not have a convex entropy, although the existence of a
nonconvex entropy has not been ruled out. Regarding the 3 × 3 flux as a homotopy
of 2 × 2 fluxes, we would like to construct a nonconvex entropy as a homotopy of
2 × 2 entropies. Our results do indicate that general perturbations of fluxes must
be handled with great care; any general O(1) perturbation of flux and/or data may
lead to strong instabilities. It remains an open question whether a convex entropy is
sufficient to rule out strong nonlinear instabilities.

We note that unlike the systems in [15], the genuine nonlinearity of the interior
system is an essential ingredient in this construction. The increasing speed of reflected
waves ensures that the time between interactions decreases, and that we actually get
infinitely many interactions in finite time. If the wavespeeds were linear, the time
between interactions would be constant, and we could not get finite time blowup.
Although genuine nonlinearity is essential, the formation and presence of shock waves
is not an essential ingredient for blowup. Indeed, in the final section, we examine
solutions that consist of compression waves and again blow up in finite time, before
the compressive waves break down and shock waves are formed.

Returning to 2 × 2 systems, it is clear that we can generate the same unstable
wave pattern if we allow the 2× 2 flux to be spatially dependent and discontinuously
varying. A much more interesting observation is that the same interaction effect can
be modeled by boundary conditions. Thus, we get blowup of solutions of an initial
boundary value problem (IBVP) for a 2× 2 nonlinear system.
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Our 2× 2 system is particularly simple: it can be taken to be a pair of uncoupled
Burgers’ equations,

ut + (
1
2

u2)x = 0,

wt − (
1
2

w2)x = 0, (1.2)

on the domain {(x, t) | 0 < x < 1, t > 0}, together with linear boundary conditions

u− β w = 0 at x = 0, and
w − β u = 0 at x = 1. (1.3)

For this IBVP, we show that there are weak solutions with arbitrarily small data which
blow up in finite time, and which take on the boundary data in the strong sense. In
contrast, we show that the corresponding one-sided IBVP on an open domain x > 0,
with the same boundary condition at x = 0, is globally well-posed independent of the
size of the initial data. Again, the cause of instability is multiple interactions with
the boundary, while a single interaction is not enough to generate instability. System
(1.2), being a pair of uncoupled scalar equations, clearly has many convex entropies.

We draw the important conclusion that in order to have stability of solutions of
IBVPs on compact domains, we require more than the usual local conditions of count-
ing characteristics at a boundary. Indeed, it appears that we need a global (integral)
condition expressing the fact that the total energy of the system be conserved. Such a
condition would provide an essential physically meaningful coupling of the boundary
conditions with the interior system of equations.

The paper is arranged as follows: in the next section, we construct the flux and
describe those individual waves in our construction. We then consider interactions
and show that each reflected shock is stronger and faster than the incident shock. We
next carry out the inductive proof that the solution blows up, and does so in finite
time. In the following section, we show that the blowup can be generated by two-
sided linear boundary conditions, while the one-sided IBVP is well-posed. Finally, we
show that the blowup is independent of the gradient blowup characteristic of shock
formation, by replacing the shocks in the earlier sections by compressive waves. Note
that although there are no shocks in this solution, the solution is discontinuous along
the vertical lines x = ±`. Whether or not blowup is possible for classical solutions
with no discontinuities remains an open question.

2. The Construction
Because we are working with piecewise constant solutions, our analysis is essen-

tially algebraic. We start with two stationary waves, say at x = 0 and x = 1. We
then place a forward shock at the origin. This interacts with the standing wave at
x = 1, and a backward wave is reflected. In order to preserve piecewise constancy
of the solution, we want this reflected wave to be a shock. We want this reflected
shock to be stronger, which in turn implies it has a greater speed. By symmetry, if
we can accomplish this for one general interaction, the pattern repeats and we can
inductively construct a piecewise constant solution. Once we know the shock speeds,
we calculate the time between successive interactions of forward shocks with the right
stationary wave. If the shock speed increases by a uniform factor at each interaction,
then the time between interactions decreases by that uniform factor, and we sum a
geometric series to get an infinite number of interactions in finite time. We thus wish
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to construct the wave pattern of Figure 2.1, and exactly describe the states and times
of interaction therein.
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Fig. 2.1. The wave pattern

2.1. The Flux. We describe a general state by its three components u, S and
w. Generally u will be a coordinate for forward waves, w for backward waves, and S
will be the Riemann coordinate which describes stationary waves. Since we want S
to have zero wavespeed, we simply take the equation for S to be

St = 0. (2.1)

Note that this choice of equation for S allows us to effectively consider 2× 2 systems
with spatially varying coefficients. Indeed, our results apply unchanged for such 2× 2
systems, provided the coefficients are allowed to change discontinuously. Referring to
the figure, we take this component of our solution to be simply

S(x, t) = S0(x) = 1 for 0 < x < 1, (2.2)

and zero otherwise.
We now choose two different 2× 2 fluxes, one inside the strip 0 < x < 1, and one

outside. For simplicity, inside the strip we use two uncoupled Burgers’ fluxes for the
forward and backward waves,

ut + (u2/2)x = 0 and
wt − (w2/2)x = 0, (2.3)

for S ≡ 1. Since these are uncoupled, only u changes across a forward wave, while
only w changes across a backward wave inside the strip 0 < x < 1.
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Outside the strip 0 < x < 1, we again choose a convenient 2× 2 flux. It is easiest
and most convenient to simply take this 2×2 flux to be linear in u and w. This choice
ensures that there are no wave interactions outside the strip, so our solution will be
completely determined everywhere on its domain, and also simplifies interactions with
standing waves. Outside the strip, for S ≡ 0, we thus write

(
u
w

)

t

+ A

(
u
w

)

x

= 0, (2.4)

where we will choose the matrix A so that the wave interactions reflect shocks which
are stronger than the incident shocks. This matrix will be chosen by specifying its
eigensystem, or equivalently the behavior of the (linear) waves. It is simplest to
take the (constant) forward and backward wavespeeds to be c and −c, respectively.
Without loss of generality, we take A to have the form

A =
(

a b
−b −a

)
, where c2 = a2 − b2 > 0, (2.5)

and a and b will be chosen when we consider interactions. Note that only forward
waves leave the strip at the right edge, and only backward waves leave the left edge.
Moreover, since the flux is linear outside of the strip, there are no interactions there.

We now give the conservative flux as a function of all three variables u, S and w:
since our construction has only treated the discrete cases S = 0 and S = 1, and each
is in conservation form, we simply interpolate between the two fluxes. Using a linear
interpolation, we take the 2× 2 flux for u and w to be the vector

(
f
g

)
= S

(
u2/2
−w2/2

)
+ (1− S) A

(
u
w

)
, (2.6)

so that with A as in (2.5), the full 3× 3 system has the form

ut +(S u2/2 + (1− S) a u + (1− S) bw)x= 0,

St = 0, (2.7)
wt −(S w2/2 + (1− S) b u + (1− S) aw)x= 0.

Equivalently, we write

ut +f(u, S, w)x= 0,

St = 0, (2.8)
wt −f(w, S, u)x= 0,

where f is given by

f(p, S, q) = S p2/2 + (1− S) a p + (1− S) b q, (2.9)

and a and b are constants to be chosen.

2.2. The Waves. We now describe those waves that occur for our sys-
tem (2.8), for the reduced cases of S = 0 and S = 1. Since our solutions are piecewise
constant, we consider only shock waves and contact discontinuities. In a later pa-
per [12], we will describe all nonlinear waves and all ranges of S.
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The shocks and jump discontinuities are described by the usual Rankine-Hugoniot
conditions,

σ [u] = [f(u, S, w)],
σ [S] = 0, (2.10)
σ [w] = [−f(w, S, u)],

where σ is the speed of the discontinuity and [·] represents the jump in a quantity. It
is clear that either S is constant across the wave (either 0 or 1 in our case) or σ = 0.
In our construction, σ = 0 corresponds to the edges of the strip, x = 0 or x = 1.

If σ 6= 0, then S is constant across the shock, and we are simply dealing with
a 2-D flux. We are considering only S = 0 and S = 1, for which the corresponding
fluxes are linear and uncoupled Burgers’, and the equations reduce to (2.4) and (2.3),
respectively.

Inside the strip, taking S = 1, (2.10) reduces to

σ [u] = [
1
2

u2] and σ [w] = [−1
2

w2] (2.11)

so that either

σ = ū =
u+ + u−

2
and [w] = 0, or

σ = −w̄ = −w+ + w−
2

and [u] = 0, (2.12)

where the subscripts denote the states on either side of the discontinuity. In particular,
for S = 1, only one of the variables changes across the wave. Taking both u and w to
be positive inside the strip, these are forward and backward waves, respectively. The
entropy conditions for these waves require that the characteristic speeds (respectively
u and −w) impinge on the shock from both sides. This implies that the state u or w
should increase behind the shock, or towards later times. Thus, in our construction,
the requirement that the waves inside the strip be shocks of increasing speed is the
same as the requirement that u and w should increase in time.

Outside the strip 0 < x < 1, we have S = 0 and (2.10) reduces to

σ

(
[u]
[w]

)
= A

(
[u]
[w]

)
, (2.13)

so the eigenvalues of A give the wavespeeds and the eigenvectors describe the changes
of state across the waves. According to (2.5), the eigenvalues are ±c, and if the
corresponding left eigenvectors are `±, then the forward waves in the region x > 1
satisfy

`− ·
(

[u]
[w]

)
= 0 with speed c > 0, (2.14)

and similarly the backward waves in the region x < 0 satisfy

`+ ·
(

[u]
[w]

)
= 0 with speed − c < 0. (2.15)

Our choice of the left eigenvectors `± will prove to be critical in describing the wave
interactions and generating blowup.
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We now describe the stationary jumps, for which [S] 6= 0 but σ = 0. In this case
the jump relations (2.10) reduce to

[f(u, S, w)] = 0 and [f(w, S, u)] = 0.

Since we are interested only in jumps between S = 0 and S = 1, we get the simple
form

(
1
2 u2

1

− 1
2 w2

1

)
= A

(
u0

w0

)
, (2.16)

where the subscripts denote the corresponding value of S. Here we again see that S
indeed acts as a switch between the Burgers’ and linear fluxes.

We now have a complete description of the waves appearing in our construction,
which can readily be extended to all nonlinear waves to yield a general solution to the
Riemann problem, (see [12]).

2.3. Interactions. We now consider the interaction appearing in our con-
struction, namely a shock inside the strip 0 < x < 1 reaching the boundary and
transmitting a linear wave. Suppose the interaction occurs at the right edge x = 1,
so that the incoming shock is a forward shock, and the wave reflected back into the
strip will be a backward shock. We denote the states inside the strip (in increasing
time) by

(ua, wa), (ub, wa) and (ub, wb). (2.17)

Here we have used the fact that w (resp. u) is unchanged across a forward (resp.
backward) shock, and the subscripts a and b stand for the states ahead of and behind
the appropriate shock, respectively.

Our problem is the following: given the incoming states ua < ub and wa, to choose
the eigenvector `− of A in such a way that the reflected wave is a shock, so wb > wa,
and such that it has a greater absolute speed than the incoming shock,

wb + wa

2
>

ub + ua

2
. (2.18)

Note that by choosing the eigenvectors `± and linear speed c, we fully determine the
matrix A, and the states outside the strip are determined by (2.16). Thus, we do not
explicitly choose data outside the strip.

According to (2.16), the state outside the strip and ahead of the linear wave, say
(u0

a, w0
a), satisfies

(
1
2 u2

a

− 1
2 w2

a

)
= A

(
u0

a

w0
a

)
, (2.19)

while the state behind the linear wave and outside the strip, say (u0
b , w

0
b ), satisfies

(
1
2 u2

b

− 1
2 w2

b

)
= A

(
u0

b

w0
b

)
. (2.20)

We now relate the states outside the strip by (2.14): since they are joined by a forward
jump, we have

`− ·
(

u0
b

w0
b

)
= `− ·

(
u0

a

w0
a

)
.
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Combining this with (2.19) and (2.20), we describe the interaction as

`− ·
(

1
2 u2

b

− 1
2 w2

b

)
= `− ·

(
1
2 u2

a

− 1
2 w2

a

)
, (2.21)

and we regard this as giving wb as a function of ua, ub and wa.
The interaction at the left edge of the strip is entirely symmetric: we take the

incident states to be (ua, wa) and (ua, wb) and solve for the outgoing state (ub, wb).
Describing the waves in the same way, we get the identity

`+ ·
(

1
2 u2

b

− 1
2 w2

b

)
= `+ ·

(
1
2 u2

a

− 1
2 w2

a

)
, (2.22)

giving ub as a function of wa, wb and ua.
We now choose the left eigenvectors of the matrix A to ensure that our individual

interactions are unstable. If we choose

`− = (β, 1) and `+ = (1, β), (2.23)

then (2.21) becomes

w2
b − w2

a = β (u2
b − u2

a), (2.24)

while (2.22) becomes

u2
b − u2

a = β (w2
b − w2

a). (2.25)

In both cases the interaction will produce a stronger reflected shock provided we take
β > 1.

We remark that although there appears to be a choice of sign in (2.24) and (2.25),
we must take the sign of wb to be that of wa in (2.24) in order to satisfy the entropy
condition. Since |wb| > |wa|, if we chose the negative root, the reflected wave would
be a rarefaction from wa > 0 to wb < 0, and the right half of the rarefaction, with
speed −w > 0, would not be confined to the strip.

2.4. The Induction. We are now in a position to describe the wave pattern
of Fig. 2.1 fully. Referring to the figure, we label the states inside the strip as (ui, wi)
and (ui+1, wi), where these two states are spanned by a forward shock, and the states
(ui+1, wi) and (ui+1, wi+1) are spanned by a backward shock. We now use our de-
scriptions of a single interaction to get a difference equation relating successive values
of ui and wi.

According to (2.24), the interactions at the right edge of the strip x = 1 give

w2
i+1 − w2

i = β (u2
i+1 − u2

i ), (2.26)

while from (2.25), those at the left edge x = 0 give

u2
i+2 − u2

i+1 = β (w2
i+1 − w2

i ). (2.27)

Combining these, we see that both zi = u2
i and zi = w2

i satisfy the linear difference
equation

zi+2 − zi+1 = β2 (zi+1 − zi). (2.28)
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This difference equation has general solution

zn = c0 + d0 β2n, (2.29)

where the constants c0 and d0 are determined from the initial values z0 and z1.
In our case, choice of initial conditions corresponds to choice of the initial shock,

given in terms of u0 and u1, and of the initial value w0. The second initial condition
for w is then given by (2.26) with i = 0. Taking all values of u and w to be positive
inside the strip, we see that the initial forward wave will be a shock if u1 > u0, in
which case we have

d0 =
z1 − z0

β2 − 1
=

u2
1 − u2

0

β2 − 1
> 0 and

c0 =
β2 z0 − z1

β2 − 1
=

β2 u2
0 − u2

1

β2 − 1
. (2.30)

In particular, if u1 = β u0, then our solution simplifies to

un = βn u0, (2.31)

and since u0 > 0 and β > 1, un →∞ as n →∞.
With these choices of u0 and u1, it is also convenient to take w1 = β w0, which

by (2.26) reduces to the assumption w0 =
√

β u0, and for which we get the solution

wn = βn w0 = βn+ 1
2 u0, (2.32)

which is also unbounded as n → ∞. Note that these assumptions are only conve-
niences: the only condition that is necessary for our construction is that the initial
wave and first reflected wave be shocks, which will be the case if u1 > u0, which in
turn implies also w1 > w0.

Our final step is to show that an infinite number of interactions occur in finite
time, so n →∞ and the solution blows up in both u and w in finite time. Since inside
the strip we are simply dealing with Burgers equations, by (2.12) we know that the
shock speeds are given by

σ+
i =

(ui + ui+1)
2

and σ−i = − (wi + wi+1)
2

(2.33)

respectively. Since the ends of the strip are unit distance apart, the time between
successive interactions is thus

∆t+i =
2

(ui + ui+1)
, and ∆t−i =

2
(wi + wi+1)

, (2.34)

respectively, the superscripts corresponding to the direction of the wave.
We now sum these times between successive interactions to find the time at which

the 2J-th interaction occurs,

t2J =
∑

j≤2J

∆t±j =
∑

j≤J

2
(uj + uj+1)

+
∑

j≤J

2
(wj + wj+1)

. (2.35)

Using (2.31) and (2.32), we see that this is a pair of geometric series, both of which
converge. Indeed, we get

t2J =
2

u0 + u1

∑

j≤J

β−j +
2

w0 + w1

∑

j≤J

β−j

≤ 2
1 + β

(
1
u0

+
1
w0

)
1

β − 1
= t∗, (2.36)
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for each J . This clearly determines a critical time t∗ before which infinitely many
interactions happen, and the amplitude of the solution blows up to infinity.

We finally observe that by choosing w0 =
√

β u0 inside the strip, and zero initial
data outside the strip, we get the pattern we have described with two outgoing linear
waves which leave the strip at time 0. To see this, we solve the initial Riemann
problems. At the left corner of the strip, we solve the Riemann problem with zero on
the left and (u0, 1, w0) on the right. The solution consists of a backward linear wave,
stationary jump, and forward nonlinear wave for which the behind state is (u1, 1, w0).
Using (2.15) and (2.16), we get the relation

`+ ·
(

1
2u2

1
1
2w2

0

)
= 0, (2.37)

and by (2.23), this yields

u1 =
√

β w0 = β u0, (2.38)

consistent with our initial choice. Similarly, at the right corner of the strip, we get
a forward linear wave, stationary jump, and backward nonlinear wave, behind which
we have (u0, 1, w̃0). Using (2.14), (2.16) and (2.23), we derive

`− ·
(

1
2u2

0
1
2 w̃2

0

)
= 0 (2.39)

which yields

w̃0 =
√

β u0 = w0, (2.40)

and so there is no backward nonlinear wave from this corner.
We note that our choice of initial state (u0, w0) is not the only one which gives

a solution which blows up. Since the equations for u and w are uncoupled in the
strip 0 < x < 1, any state (u0, w0) which yields two shocks into the strip will lead to
blowup, because forward and backward waves do not interact. Equations (2.37) and
(2.39) still hold, and both waves will be shocks provided both

u1 =
√

β w0 ≥ u0 and

w̃0 =
√

β u0 ≥ w0, (2.41)

which holds provided

0 < u0 ≤
√

β w0 ≤ β u0. (2.42)

We also expect blowup for more general initial data, provided some condition analo-
gous to (2.42) holds. More general initial data will be considered elsewhere [12].

Our construction is based on the assumption β > 1,which we now relate directly
to the matrix A defined by (2.5). The eigenvalues of A are ±c, where c =

√
a2 − b2.

The corresponding left eigenvectors satisfy

`− ·
(

a + c b
−b −a + c

)
= 0 and `+ ·

(
a− c b
−b −a− c

)
= 0, (2.43)

and so have the form (2.23) for β given by

β =
b

a + c
=

a− c

b
. (2.44)
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It is routine to check that β > 1 only if both b < 0 and a < 0, and so our condition
on the entries of the matrix A becomes simply

a < b < 0. (2.45)

We have proven the following theorem.

Theorem 1. For the 3×3 system of conservation laws (2.8), (2.9) with (2.45), there
are solutions which blow up in finite time t∗ depending on the data. Moreover, the
states become infinite at time t∗ on the entire support of the initial data, and there
is no way to continue the solution beyond time t∗. The data consists of the single
constant state (u0, 1, w0), supported on the interval 0 ≤ x ≤ 1, and where u0 and w0

can be made arbitrarily small, provided (2.42) holds.
We note that this does not violate Glimm’s existence theorem because the total

variation of the initial data is not small. Glimm’s estimate rests on the ability to sum
a geometric series for the total variation, which in this case will diverge. In a future
paper [12], we will show that instability holds if S0 6= 1, and we will examine the
transition from stability (with S0 ≈ 0), to instability (with S ≈ 1).

The solution outside the strip consists of forward and backward linear waves, each
emanating from a point of interaction. We can describe the resulting states and jumps
using (2.16): if we write (ur

j , w
r
j ) for the state to the right of (uj , wj) as in Fig. 2.1,

then (2.16) gives
(

ur
j

wr
j

)
= A−1

(
1
2 u2

j

− 1
2 w2

j

)
, (2.46)

and by (2.31) and (2.32), this can be written
(

ur
j

wr
j

)
=

β2j

2
A−1

(
u2

0

−β u2
0

)

=
β2j u2

0

2(a2 − b2)

(
a− b β
a β − b

)
. (2.47)

Now, according to (2.44), we have a− b β = c and a β − b = −β c, so (2.47) becomes

ur
j =

β2j u2
0

2c
=

u2
j

2c
> 0 and

wr
j = −β2j+1 u2

0

2c
= −w2

j

2c
< 0. (2.48)

This is unsurprising because by taking the initial external state to be zero, we have
that each of the vectors (ur

j , w
r
j )

T is a right eigenvector of A, and (2.48) again follows
from (2.46). Similarly, the states to the left of the strip are

u`
j+1 = −u2

j+1

2c
< 0 and w`

j =
w2

j

2c
> 0. (2.49)

We now see what the solution u looks like for finite times: on the left of the
strip, u is piecewise constant decreasing from 0 to u`

j+1; u jumps from u`
j+1 to uj+1

at x = 0; in the strip u may jump to uj ; then at the right edge, u jumps to ur
j , and

to the right of the strip u is monotone decreasing back to 0. In particular, although u
takes on some negative values, as it must for the integral

∫
u to be conserved; there
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Fig. 2.2. Graph of the solution u(x, t)

are no wild oscillations. Note that negative values of u are created only at the left
edge, corresponding to the interactions at which a stronger shock is reflected back
into the strip. Since

∫
u must be conserved and a more positive value of u is reflected,

the state behind the transmitted wave must necessarily have a larger negative value.∗

This does not occur (for u) for the waves transmitted at the right edge of the strip.
See 2.2 for a plot of the solution u = u(x, t) which blows up. Entirely similar remarks
hold for the other component w, for which we have

w(x, t) = u(1− x, t). (2.50)

We remark that there are many systems similar to those we have constructed
here with solutions which blow up in finite time. As is clear from the construction,
the mechanism for blowup is the reflection of shocks which are stronger than the
incident shocks. As in our construction, we can regard such systems as interpolating
between 2× 2 systems, with the 2× 2 fluxes chosen so that the interactions have the
correct structure. That said, there are clearly some restrictions on the systems that
will yield such blowup: indeed, if the system has a uniformly convex entropy, then
the L2 norm of solutions is bounded, which rules out the blowup we have described
here. It is also apparent that a system with a physical meaning, such as the p-system
of isentropic gas dynamics, cannot be easily adapted to this framework. Indeed, one

∗I am grateful to James Glimm for pointing out a gap in my original construction here.
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of the components of such systems is usually a velocity, which is generally greater (in
absolute value) behind a shock, and can be thought of as driving the shock. In the
case of shocks repeatedly being reflected forwards and backwards, the result of a single
interaction with a (fixed) standing wave would be a complete reversal of direction of
the fluid velocity, which would appear to be impossible on physical grounds.

3. Instability due to Boundary Effects
We adapt our example by generating the wave interaction effect at the edge of

the strip with a boundary effect, which can be taken to be linear. In doing so, we
no longer need the third equation for the variable S. Thus, we consider a pair of
uncoupled nonlinear Burgers equations,

ut + (u2/2)x = 0 and
wt − (w2/2)x = 0, (3.1)

and for convenience, we restrict to the invariant region

U = {(u,w) | u ≥ 0, w ≥ 0}, (3.2)

which ensures that we have one positive and one negative wavespeed, and fixed bound-
aries are never characteristic. In particular, we require one boundary condition at each
boundary. We will consider both the one-sided boundary condition,

u− β w = 0 at x = 0, (3.3)

where β > 0 and the PDE holds on the domain Ω1 = {(x, t) | x > 0, t > 0}, and the
two-sided conditions

u− β w = 0 at x = 0, and
w − β u = 0 at x = 1, (3.4)

where the domain of the PDE is the strip Ω2 = {(x, t) | 0 < x < 1, t > 0}.
For this very simple system consisting of a pair of Burgers equations coupled

only through linear boundary conditions, our previous construction applies essentially
unchanged to (3.1), (3.4) inside the domain Ω2, and we get solutions which blow up in
finite time. On the other hand, we will show that the one-sided IBVP is globally well-
posed for any initial data. Thus, we draw the important conclusion that for nonlinear
problems, it is not enough to consider ‘local’ boundary conditions when working on a
finite domain, and in order to ensure stability, an extra global condition is necessary.
Such a condition should be analogous to the existence of an entropy for the Cauchy
problem in hyperbolic systems, which implies that the global L2-norm of the solution
is stable.

3.1. One-sided IBVP. We begin by solving the IBVP (3.1) in the domain
Ω1, with boundary condition (3.3), and initial data

u(x, 0) = u0(x) and (3.5)
w(x, 0) = w0(x) for x > 0, (3.6)

and where u0 and w0 are any nonnegative BV functions. We will see that the boundary
condition is taken on in the strong sense, that is pointwise for a.e. t > 0.
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Our solutions can be constructed either by by Glimm’s scheme [3, 10] or a front
tracking approximation [2], together with an explicit treatment of the boundary ef-
fects [4]. Since we have a pair of uncoupled scalar equations and a linear boundary
condition, there are no quadratic terms and the Glimm functional is easily bounded.

In the interior of the domain, we make use of the solution to the Riemann problem
with states (u`, w`) and (ur, wr). Since the equations (3.1) are uncoupled, we simply
solve the Riemann problems for u and w separately. Recalling that we are assuming
u ≥ 0 and w ≥ 0, we get a forward (resp. backward) wave across which u (resp. w)
changes, while the other variable is constant across the wave. Each wave is a shock or
rarefaction depending on whether the wavespeed (which is simply u or −w) is greater
behind or ahead of the wave, and we measure the strength of each wave by

|ur − u`| or |wr − w`|, (3.7)

as appropriate. As is well known [10], two forward or backward waves will interact
only if one is a shock, and the resulting wave is simply that scalar wave which joins
the two exterior states, so that the wave leaving the interaction satisfies

|ur − u`| ≤ |ur − um|+ |um − u`|, (3.8)

with the same relation for w. Since the two scalar equations are decoupled, they
do not interact, and forward and backward waves simply pass through each other
unchanged.

In dealing with the boundary, we first solve the boundary Riemann problem
(BRP), consisting of the IBVP (3.1), (3.3) and (3.6), and where the initial data
is taken to be identically constant,

u0(x) = uI and w0(x) = wI . (3.9)

Recall that we are taking u and w to be in the invariant region (3.2), so that we have
one characteristic (for w) leaving the domain, and one (for u) entering the domain.

We construct a solution to the BRP, where the boundary condition is taken on
in the strong sense. Since w does not change across forward waves, the value of w at
the boundary should be identically wI . Since the boundary condition (3.3) is taken
on in the strong sense, we must also have

u(0, t) = β w(0, t) = β wI . (3.10)

We now complete the solution to the BRP simply by filling in the forward u-wave
with u = β wI and u = uI behind and ahead of the wave, respectively. That we can
do this follows from the fact that both β wI and uI are nonnegative. This describes
the unique solution to the BRP, and the strength of the outgoing wave is clearly

|uI − β wI |. (3.11)

Our existence result is a natural extension of Glimm’s theorem.

Theorem 2. The one-sided IBVP (3.1), (3.3), (3.6) is well-posed in the following
sense: For any functions u0 and w0 of (locally) bounded variation, there is a globally
defined weak solution. The boundary condition is taken on in the strong sense, and
an appropriately weighted total variation of the solution is non-increasing in time.

Proof. The proof is a standard construction of the solution by Glimm’s random
choice method [10, 3] or front tracking approximations [2]. In the interior, we have two
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uncoupled Burgers’ equations, and the waves interact according to (3.8), separately
for u and w. Since the equations are scalar, there are no quadratic errors in an
interaction, and according to (3.8), the total variation of each component decreases
after such an interaction.

It remains to treat interactions of waves with the boundary. Clearly only back-
ward waves (across which w changes) enter the boundary, and we must resolve the
resulting BRP. A wave approaching the boundary is fully described by specifying an
ahead state (ua, wa) and a single behind state wb, and the interaction will be resolved
by specifying the wave which is reflected off the boundary. This is accomplished by
specifying the state ub behind the reflected wave (since the ahead state is ua). First,
note that since the boundary condition (3.3) is taken on in the strong sense, we must
have both

ua = β wa and ub = β wb, (3.12)

representing the boundary conditions before and after the interaction, respectively.
The outgoing wave is found by resolving the BRP with data (ua, wb), and the
strengths of the outgoing and incoming waves are related by

|ua − ub| = β |wb − wa|. (3.13)

We are now in a position to write down the Glimm functional for our system.
In the interior, the total variation of u and w are decreasing, and at the boundary,
backward w waves are converted to forward u-waves after scaling by β > 0. Also,
there may be an initial wave entering the domain due to a mismatch between the
initial and boundary data. Combining these, we write the discrete functional for the
total variation as

G({ui, wi}) = |u0 − β w0|
+

∑
|ui − ui−1|+ β

∑
|wj − wj−1|, (3.14)

where {ui, wi} are the states in the solution, with u0 and w0 being the leftmost states,
although the last term vanishes for t > 0. We can similarly write down a continuous
Glimm functional, namely

Gc(t) = |u(0+, t)− β w(0−, t)|
+

∫ ∞

0

(|ux(x, t)|+ β |wx(x, t)|) dx. (3.15)

It is now standard to show that these functionals are non-increasing and bounded by
the initial data, and the conclusions of the theorem follow. Details are left to the
reader.

It is clear that the IBVP is stable for all values of β > 0, and that the same result
holds for a linear boundary condition at the right edge of an unbounded domain
x < 0. We also note that we have no restrictions on the size of the initial data, and
that uniqueness and continuous dependence follow as for scalar equations [2].

3.2. Two-sided IBVP. Having established well-posedness of the IBVP for
a one-sided domain, we now consider the IBVP on a compact domain, subject to
the two-sided boundary condition (3.4). We wish to mirror our earlier unstable con-
struction in which the solution blows up in finite time. As in that case, it is most
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convenient to take constant initial data, and choose this in such a way that only one
shock enters the domain initially.

We thus choose the initial condition

u0(x) = u0 = uI , and w0(x) = w0 = β uI , (3.16)

where uI > 0 is arbitrary. For β > 1, we again get blowup in finite time, and indeed
the blowup is faster here than previously.

Theorem 3. The two-sided IBVP (3.1), (3.4) with β > 1 is ill-posed. For initial
data (3.16), the solution blows up in finite time on the whole support of the initial
data. In particular, no integral norm is finite, and the solution cannot be extended
beyond the time of blowup.

Proof. First we note that (3.16) is consistent with (3.4) at the right boundary
x = 1, so no wave enters the domain from the right-hand corner of the domain.
Therefore, there is only a single forward wave in the solution initially, generated by
the mismatch of the initial and boundary conditions at the origin. According to our
solution (3.10) of the BRP, the state behind this wave is

u1 = β w0 = β2 u0 > u0, (3.17)

so this wave is a shock.
Referring to Fig. 2.1 for notation, we now proceed inductively. Each forward

shock meets the right boundary and reflects a backward wave. Thus if the shock has
states (ui, wi) and (ui+1, wi) ahead of and behind the wave, respectively, then the
reflected wave will have (ui+1, wi+1) behind it, where

wi+1 = β ui+1 = β2 wi > wi, (3.18)

and so the reflected wave is also a shock. By induction, we thus have

ui+1 = β wi and wi+1 = β ui+1, (3.19)

and so in particular

un = β2n uI and wn = β2n+1 uI . (3.20)

The rest of the proof now proceeds as before, with equations (2.33), (2.34) and
(2.35) holding identically, while (2.36) becomes

t2J =
2

u0 + u1

∑

j≤J

β−2j +
2

w0 + w1

∑

j≤J

β−2j

≤ 2
uI

1
1 + β

∑

k

β−k ≤ 2
uI

β

β2 − 1
, (3.21)

and the conclusions of the theorem follow.

4. Blowup of Compressive Waves
We have seen that genuine nonlinearity is an essential ingredient of our construc-

tion, in that the increasing speeds of reflected shocks leads to infinitely interactions
in finite time. Here we show that the presence of shocks and the piecewise constant
character of the solution are not necessary for blowup. We study a solution consisting
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of compressive waves, and show that it blows up before the compressive waves break
down and form shocks. Clearly the gradients must increase, but they only become
infinite when the solution itself does. This shows that the cause of instability is the
nonlinear coupling of different families together with genuine nonlinearity, and blowup
of amplitude is a separate phenomenon from shock formation. For an analysis of other
mechanisms of blowup, including ‘gradient driven blowup’, in which the steepening
of gradients and shock formation drives an infinite growth in amplitude, see [7].

Our solution is not smooth in the Riemann coordinate S, since we need jump
discontinuities to effect the immediate change of flux at the ends of the strip 0 < x < 1.
If S changes smoothly but rapidly, resonances could develop inside the standing wave,
resulting in a much more complicated wave pattern. Moreover, by using compressive
waves, we would normally get an interaction zone in which forward and backward
waves interact nonlinearly, and in which it would be much more difficult to resolve
the solution exactly. Here, we have S = 1 inside the strip, so the reduced 2 × 2
system is uncoupled, and we can treat the compressive waves exactly. We expect
that for reasons of structural stability, solutions should still blow up if the jump
discontinuities were smoothed out. It is an interesting and challenging computational
problem to study these interactions and find blowup numerically.

u0(γ)
w0(γ)

t0(γ)

u1(γ)
w1(γ)

t1(γ)

u2(γ)
w2(γ)

t2(γ)

(uI , wI)

Fig. 4.1. The Compressive Case

Referring to Fig. 4.1, we concentrate on the solution inside the strip, consisting of
multiply reflected compressive waves. We parameterize the compression wave at x = 0
or x = 1 by t = ti(γ) and (ui(γ), wi(γ)) for γ ∈ [0, 1], where the subscript denotes
the number of reflections the compression wave has gone through. The states are the
limits from the inside of the strip, and we use the same parameter γ throughout by
following it along forward or backward characteristics. Thus, the states satisfy

u2k+1(γ) = u2k(γ) and w2k+2(γ) = w2k+1(γ), (4.1)
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while the times at which the characteristics intersect with the edges satisfy

t2k+1(γ) = t2k(γ) +
1

u2k(γ)
and

t2k+2(γ) = t2k+1(γ) +
1

w2k+1(γ)
, (4.2)

since the characteristic speeds are u and −w, respectively.
We now use the jump conditions (2.10) at the edges of the strip to relate ui(γ) to

wi(γ). Following our previous argument, we again get (2.16), where now the states
are varying and parameterized by γ. In our current notation, we rewrite this as

(
1
2 u2

i (γ)
− 1

2 w2
i (γ)

)
= A

(
ūi(γ)
w̄i(γ)

)
, (4.3)

where the bar refers to the corresponding limits on the outside edge of the strip. Again
as before, we now use the fact that the wave leaving the strip is a forward linear wave
on the right (when i is odd), or a backward wave. Since the flux is linear outside the
strip, this means that the change in state vector (ū, w̄) is parallel to the eigenvector
r+ (resp. r−) on the right (resp. left) of the strip,

d

dγ

(
ū
w̄

)
= α r±, (4.4)

or equivalently

`− · d

dγ

(
ū2k+1

w̄2k+1

)
= 0 and `+ · d

dγ

(
ū2k+2

w̄2k+2

)
= 0, (4.5)

for the forward and backward linear waves, respectively. Now using the jump condi-
tions (4.3) to relate the waves outside the strip to the interior waves, we get

`− · d

dγ

(
u2

2k+1

−w2
2k+1

)
= 0 and `+ · d

dγ

(
u2

2k+2

−w2
2k+2

)
= 0, (4.6)

or equivalently by (2.23),

d

dγ
(w2

2k+1 − β u2
2k+1) = 0, and

d

dγ
(u2

2k+2 − β w2
2k+2) = 0, (4.7)

at the right and left inside edges of the strip, respectively.
Integrating (4.7), we get the relations

w2
2k+1(γ)− β u2

2k+1(γ) = c2k+1 and
u2

2k+2(γ)− β w2
2k+2(γ) = c2k+2, (4.8)

respectively, for some constants ci. We now impose the condition that there are no
waves other than those we have identified: these are the conditions

u2k+2(0) = u2k(1) and w2k+1(0) = w2k−1(1), (4.9)
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which simply say that the state behind one forward or backward wave is the state
ahead of the next such wave. Using (4.9) and (4.1) in (4.8), we get

c2k+2 = u2
2k+2(0)− β w2

2k+2(0)
= u2

2k(1)− β w2
2k(1)

= c2k, (4.10)

and similarly c2k+1 = c2k−1 for each k. Thus, the constants in (4.8) are either c0 or
c1, and we can write

ci =
c0 + c1

2
+ (−1)i c0 − c1

2
(4.11)

for each i.
We now define

zi(γ) =

{
u2

i (γ), for i even,
w2

i (γ), for i odd,
(4.12)

and use (4.1) to rewrite (4.8) as

zi+1(γ) = β zi(γ) + ci+1, (4.13)

for both even and odd values of i. We solve this by writing

zi+1 + a + (−1)i+1 b = β (zi + a + (−1)i b), (4.14)

which immediately yields

zn(γ) + a + (−1)n b = βn (z0(γ) + a + b). (4.15)

Here, using (4.11), the constants a and b are given by

ci+1 = a (β − 1) + (−1)i b (β + 1)

=
c0 + c1

2
+ (−1)i+1 c0 − c1

2
, (4.16)

these being determined by our initial parameterization of the compressive wave.
Having solved (4.13), we rewrite (4.2) as

ti+1(γ) = ti(γ) +
1√
zi(γ)

, (4.17)

which we immediately solve to get

tn(γ) = t0(γ) +
∑

i<n

1√
zi(γ)

(4.18)

for all n. Our solution (4.15) implies that zn →∞ as n →∞ for β > 1, so the solution
blows up, and this occurs in finite time if the sum (4.18) converges. Moreover

1/
√

zn+1

1/
√

zn
→ 1√

β
< 1, (4.19)
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so convergence of the sum (4.18) follows from the ratio test, and the blowup does
indeed take place in finite time.

It remains to show that we can consistently choose our data so that this blowup
takes place before the compression collapses and a shock is formed. We need to check
two conditions, namely that successive forward or backward waves do not overlap, or
equivalently

ti+2(0) ≥ ti(1), (4.20)

for each i, and secondly that the characteristics inside each wave do not overlap, which
is the condition

dti+1

dγ
≥ 0 for every i ≥ 0. (4.21)

Together these imply that the blowup time t∗ is uniquely defined, that is

tn(γ) → t∗ for each γ ∈ [0, 1], (4.22)

with t∗ independent of γ. Taking the limit of (4.18), we thus see that t0(γ) is defined
by

t0(γ) = t∗ −
∑

i≥0

1√
zi(γ)

, (4.23)

and using this in (4.18), we have

tn(γ) = t∗ −
∑

i≥n

1√
zi(γ)

, (4.24)

for each n. Differentiating (4.24), we get

d

dγ
tn(γ) =

1
2

∑

i≥n

z′i(γ)
√

zi(γ)
3 =

z′0(γ)
2

∑

i≥n

βi

√
zi(γ)

3 , (4.25)

where we have used (4.15), so that (4.21) holds for each n. On the other hand, using
(4.24) in (4.20) gives

tn+2(0)− tn(1) =
∑

i≥n

1√
zi(1)

−
∑

i≥n+2

1√
zi(0)

= 0, (4.26)

where we have used (4.9), which we write as zj+2(0) = zj(1). Thus, (4.21) is satisfied
as an equality, and there is no strict separation of successive waves.

We summarize the steps in setting up this construction. Our goal is to choose the
profile of the initial compression wave in such a way that the blowup of derivatives
and amplitude is simultaneous. Start by choosing a positive increasing function h(γ),

h(γ) > 0,
dh

dγ
> 0 for 0 ≤ γ ≤ 1. (4.27)

We will set z0(γ) = h(γ), and using (4.15),

zn(γ) = βn (h(γ) + h+)− h(−)n , (4.28)
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where h± = a± b are constants. Requiring z2(0) = z0(1) leads to

h(1) = β2 (h(0) + h+)− h+, so that h+ =
h(1)− β2 h(0)

β2 − 1
, (4.29)

while the requirement z1(0) > 0 becomes

0 < β (h(0) + h+)− h−, so that h− <
β

β2 − 1
(h(1)− h(0)), (4.30)

where we have used (4.29). Thus, the constant h− can be arbitrarily chosen subject
to (4.30). Now the time of blowup t∗ is given by

t∗ =
∑

i

1√
zi(0)

, (4.31)

and the parameterization τ(γ) ≡ t0(0) is given by (4.23),

τ(γ) = t∗ −
∑

i

1√
zi(γ)

. (4.32)

This completes our specification of the initial compressive wave on the left of the strip,
x = 0. It is clear that by tracing characteristics forward or backward in time, we can
prescribe Cauchy data for an initial value problem.

Note that we still have the freedom to choose the initial parameterization h(γ).
Given (constant) initial states u0, u1 > u0 and w0, and referring to our definition
(4.12), if we choose

h(0) = u2
0 and h(1) = u2

1, (4.33)

then γ parameterizes the compression with ahead state u0 and u1 behind. According
to (4.29), we get

h+ =
u2

1 − β2 u2
0

β2 − 1
, (4.34)

and to ensure that z1(0) = w2
0 in (4.30), we set

h− =
β

β2 − 1
(u2

1 − u2
0)− w2

0. (4.35)

Using (4.33), (4.34) and (4.35) in (4.28) and (4.32), we can give τ = τ(u) as the
parameterization of the compression wave.

In particular, if we set

u1 = β u0 and w0 =
√

β u0 (4.36)

then we get h+ = h− = 0, and our description simplifies. It is convenient to set

h(γ) = βγ u2
0, (4.37)

so that

zn(γ) = βn+γ u2
0. (4.38)
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This in turn leads to

t∗ =
1
u0

∑

i

1
√

β
i

=
1
u0

√
β√

β − 1
, (4.39)

and similarly by (4.24),

τn(γ) = t∗ (1− 1√
β

n+γ ) = t∗ (1− u0√
zn(γ)

). (4.40)

We can now express the solution explicitly everywhere inside the strip: noting
that zi = u2

i for i even, we simply set

t(u) = t∗ (1− u0

u
) or u(t) =

u0 t∗
t∗ − t

, (4.41)

where here u = u(t) = u(0, t) is the value of u at the left edge, which propagates
along the forward characteristic having slope 1/u, which corresponds to speed u. The
characteristic through the point (0, t̄) can thus be written

t = t̄ +
x

u(t̄)
= t̄ +

x (t∗ − t̄)
u0 t∗

, or x = u0 t∗
t− t̄

t∗ − t̄
, (4.42)

and on this characteristic we have

u(x, t) = u(t̄) =
u0 t∗
t∗ − t̄

. (4.43)

It is easy to calculate the point of intersection of any two of these characteristics, or
simply observe from (4.42) that all of them pass through the point

t = t∗, x = u0 t∗ =
√

β√
β − 1

> 1, (4.44)

which in particular is outside the strip 0 ≤ x ≤ 1. We conclude that inside the strip,
the forward compression wave is that part of the infinite Burgers’ compression wave
which is centered at the point (

√
β√

β−1
, t∗).

We can similarly calculate the backward compression wave, but it is easier to
use symmetry. That is, our backward compression wave for w is the trace of the
infinite backward compression wave centered at the point (1 −

√
β√

β−1
, t∗). Thus, the

characteristics are the lines through this point, and corresponding value of w is the
absolute speed of the characteristic. Thus, each characteristic is given by

x +
1√

β − 1
= −w (t− t∗), (4.45)

and so the solution is

w(x, t) = (x +
1√

β − 1
)

1
t∗ − t

. (4.46)

As a final check, we verify that our solution inside the strip satisfies the correct jump
condition at the right edge x = 1. To do so, we fix some t̃ and calculate ũ = u(1, t̃)
and w̃ = w(1, t̃). From (4.46), we get

w̃ =
√

β√
β − 1

1
t∗ − t̃

, (4.47)
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and since also

1−
√

β√
β − 1

= ũ (t̃− t∗), (4.48)

we get

ũ =
1√

β − 1
1

t∗ − t̃
=

w̃√
β

, (4.49)

so the solution satisfies the jump condition (4.4) as expected.

–15

–10

–5

0

5

10

u

–3 –2 –1 1 2 3
x

Fig. 4.2. Snapshots of the solution u(x, t)

Figure 4.2 shows the profile of the first component u of our solution at various
positive times. It is apparent that most of the growth of u is driven by interactions
of w-waves with the jump in S at x = −`; for fixed x, it is also clear that the solution
is monotone in time. The vertical lines are plotting anomalies.

To find Cauchy data which leads to blowup, we simply take the trace of our
compressions on the Cauchy curve inside the strip, and it is enough to take the data
to be constant outside the strip as in the previous case. We find the linear waves
which leave the strip in the same way as before, by solving equations (4.3) at each
edge. We omit the details.

Theorem 4. There are Cauchy data for equation (2.8) which are continuous in
the genuinely nonlinear fields, and for which finite time blowup in amplitude occurs
without prior formation of shocks. In fact, the solution is smooth away from the jumps
in S at x = 0 and x = 1. The same comments hold for solutions of the IBVP (3.1),
(3.4).

The only change in the above construction necessary for the IBVP is to replace
√

β
by β as before. Our construction does suggest that repeated interactions with jump
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discontinuities could sustain and strengthen a compression wave until blowup occurs
in a number of situations. In particular, the blowup is stable under perturbations of
u and w subject to (4.27) and (4.30). However, we again note that smoothing out the
jump discontinuity may lead to some internal resonances which certainly complicate
the wave pattern, and may slow down blowup. Indeed, if our solution were mollified,
then there must be some point in the solution at which strict hyperbolicity fails, as
each of u and w do change sign at one of the edges of the strip (although the system
remains strongly hyperbolic). This loss of strict hyperbolicity will be studied further
in [12].
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