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THREE-DIMENSIONAL LOCALIZED SOLITARY
GRAVITY-CAPILLARY WAVES ∗

PAUL A. MILEWSKI†

Abstract. In a weakly nonlinear model equation for capillary–gravity water waves on a two–
dimensional free surface, we show, numerically, that there exist localized solitary traveling waves for a
range of parameters spanning from the long wave limit (with Bond number B >1/3, in the regime of
the Kadomtsev-Petviashvilli-I equation) to the wavepacket limit (B <1/3, in the Davey-Stewartson
regime). In fact, we show that these two regimes are connected with a single continuous solution
branch of nonlinear localized solitary solutions crossing B =1/3.
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1. Introduction
There has been considerable computational, experimental and theoretical work on

localized solitary water waves on a one-dimensional free surface. For gravity waves, the
celebrated shallow water Korteweg-de Vries solitons, and their (numerical) extensions
to the full Euler equations are well known [4]. There are also well known solitary
capillary-gravity waves, either of the Korteweg –de Vries type (albeit of depression)
when the depth is very small compared to the surface tension length scale, or of
wavepacket type when the depth is larger (or infinite) [8, 16, 4, 12, 7]. For a two-
dimensional free-surface (three–dimensional fluid) there is considerably less work on
the subject of localized solitary waves. With gravity alone, localized waves can be
ruled out (by the physical argument herein or, rigorously for the full Euler equations
in [3]). For capillary gravity waves, physical arguments do not rule out localized
solutions. In the regime of small depth compared to the surface tension length scale,
the Kadomtsev-Petviashvilli-I equation is the generalization of the Korteweg–de Vries
equation, and it supports solitary “lump” solutions [14, 2]. Recently these solutions
have been shown to exist in full Euler equations in [5]. In a deeper water regime
there is so far little evidence that solitary localized waves exist. In this paper we find
such localized solitary waves in deeper water for an equation derived from a small
amplitude expansion of the three-dimensional free surface problem. We compute
them numerically by finding a continuous branch of solutions linking KP-I–like lumps
and the new waves of wavepacket type. (This continuous branch exists also for the
one-dimensional free surface problem.) Furthermore, given that there appears to be no
bifurcations on the branch of solutions linking shallow lumps to deeper water lumps,
we think that these waves are stable. We also believe that the full Euler equations
should support capillary–gravity localized solitary waves in deeper water.

Traveling solitary waves in weakly nonlinear regimes of 1+1 dimensional disper-
sive wave equations are usually of two types: long waves that bifurcate from linear
solutions near k =0 (k is the Fourier wavenumber), and which are usually described
by solitary solutions of Korteweg-de Vries or other long wave equations (see Figure
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3.2 left panel), and those which bifurcate from a local extremum of the phase velocity
c(k) at finite k. At this wavenumber,

0= c′(k)=
(

ω(k)
k

)′
=

ω′(k)
k

− ω(k)
k2

=
1
k

(cg−c), (1.1)

implying that cg = c. This allows a modulation envelope and its carrier wave to travel
at the same speed, creating a traveling “wavepacket” solitary wave [1](see Figure 3.2
right panel for an example). These are usually described by a Nonlinear Schrödinger
or other modulation–type equation. Both of these types of solutions exist in water
waves [4]. Note that, despite the fact that long solitary waves bifurcating from k =0
look different from wavepacket solitary waves, a linear wave near k =0 (with ω(0)=0)
also has equal phase and group velocity.

In 2+1 dimensions one may ask whether spatially localized solitary waves (waves
which decay to zero in both spatial directions-not only in the direction of propagation)
exist in a particular problem. A physically motivated necessary condition for this is
that there exist no other linear modes (other than the mode from which the wave
bifurcates) resonant with the speed of the solitary wave. If such a resonance is present,
the small amplitude “periphery” of the traveling wave would radiate energy away and
thus destroy its coherence.

This condition means that a localized nonlinear traveling wave may bifurcate from
a particular wavevector k∗ with c∗= ω(k∗)

|k∗|2 k∗ only if

ω(k)−c∗ ·k=0, has no solutions fork 6=k∗. (1.2)

This condition can be satisfied at k∗=0 or at finite k∗. If it is satisfied locally near
a wavenumber k∗, clearly, it implies that there, cg =c. However cg =c at a point
does not imply (1.2). We refer the reader to Section 4 for a graphical interpretation
of (1.2).

Note that (1.2) is satisfied locally, that is, near k∗, in both 1+1 dimensional cases
described above. In fact in 1+1 dimensions satisfying (1.2) is equivalent to c(k) having
an extremum. This is not the case in 2+1 dimensions, where the phase speed may
have an extremum without (1.2) being satisfied (as in deep water gravity waves near
k∗=0). Lastly, in 1+1 dimensions, if (1.2) is satisfied locally but not globally, then
there may exist “generalised” solitary waves–waves with nondecaying oscillations at
infinity.

If condition (1.2) is satisfied for a 2+1 dimensional problem, one can then explic-
itly seek traveling solutions, eliminating an independent variable, and reducing the
problem to finding localized solutions to an equation in 2 spatial dimensions.

We shall consider here the problem of capillary-gravity waves in a fluid of finite
depth modeled by the weakly nonlinear equations

utt +(1−B∆)Lu+εN (u)=0 (1.3)

with

L=(−∆)
1
2 tanh

[
(−∆)

1
2

]
(1.4)

and

N =(1−B∆)
(∇·(∇u (1−B∆)−1ut

))
+

1
2
(∇u)2t (1.5)

+(Lu)2t +
(
(1−B∆)L2u

)(
(1−B∆)−1ut

)
.
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Here, ε=a/H¿1, the ratio of wave amplitude to depth and B =γ/H2 is the depth
based Bond number, the ratio of the surface tension coefficient to the depth squared.
The dispersion relation of the linear problem is the well known finite depth capillary-
gravity relation

ω2 = |k|tanh(|k|)(1+Bk2). (1.6)

The water surface is given by H(1+εη(x,y,t)), where, to leading order,

(1−B∆)η =−ut. (1.7)

This paper is organized as follows: in Section 2 we briefly derive the governing
equations. In Section 3 we describe the possible long and wavepacket travelling solu-
tions for a one-dimensional free surface, and show numerically that these two are, in
fact, part of the same nonlinear solution branch. In Section 3 we extend the results
to a two-dimensional free surface, and find new localized two-dimensional wavepacket
solitary waves for values of B <1/3. We show also that they are connected by a
nonlinear solution branch to long localized solitary waves of the KP-I equation.

2. Gravity-Capillary Finite Depth Equations
We give a brief derivation of our small amplitude gravity-capillary wave equation

for water of finite depth. The method is similar to that of [10, 2, 13]. We first derive
the form appropriate for the deep water limit and describe the different scalings needed
for the equation more appropriate for the shallow water limit (1.3).

Given a surface tension coefficient γ, an undisturbed fluid depth H, and a typical
wave amplitude a, then using γ1/2 as the length scale, a as the scale for typical free
surface displacements, aγ1/4g1/2 as the velocity potential scale, γ1/4g−1/2 as the time
scale, the dimensionless inviscid, irrotational water wave equations can be written in
terms of the velocity potential φ(x,y,z,t) and free surface displacement η(x,y,t) with
unit normal n̂ as

∆φ+φzz =0, 0<z <b+εη, (2.1)

φz =0, z =0, (2.2)

ηt +ε(∇η ·∇φ)−φz =0, z = b+εη, (2.3)

φt +ε
1
2
(∇φ)2 +ε

1
2
φ2

z +η−∇· n̂=0, z = b+εη. (2.4)

Expanding the two surface boundary conditions about z = b, and eliminating η,
leads to a single boundary condition in φ at z = b, correct to O(ε):

φtt +(1−∆)φz +εQ(φ)=0, z = b (2.5)

where

Q=(1−∆)
(∇·(∇φ (1−∆)−1φt

))
+

1
2
(∇φ)2t (2.6)

+
1
2
(φz)2t −

(
φtz(1−∆)−1φt

)
t
.



92 SOLITARY GRAVITY-CAPILLARY WAVES

Next, we solve Laplace’s equation with the bottom boundary condition, obtaining

φ(x,y,z,t)=cosh
[
z(−∆)

1
2

]
Φ(x,y,t), (2.7)

with

u(x,y,t)=φ(x,y,b,t)=cosh
[
b(−∆)

1
2

]
Φ(x,y,t) (2.8)

being the velocity potential at z = b. With this notation, it follows that φz(x,y,b,t)=
Lu and where L is defined as L=(−∆)

1
2 tanh

[
b(−∆)

1
2

]
and has the symbol L̂(k)=

|k|tanh(b|k|). Thus if û(k,t) is the Fourier transform of u(x,t), then

Lu=
1
2π

∫ ∞

−∞
|k|tanh(b|k|)eik·xû(k,t)dk. (2.9)

Substitution of (2.7) into the boundary condition (2.5) yields, after some simplifica-
tion, the equation

utt +(1−∆)Lu+εN (u)=0 (2.10)

with

N =(1−∆)
(∇·(∇u (1−∆)−1ut

))
+

1
2
(∇u)2t (2.11)

+(Lu)2t +
(
(1−∆)L2u

)(
(1−∆)−1ut

)
.

Here, ε=a/
√

γ¿1 is the ratio of wave amplitude a to characteristic capillary scale√
γ, b=H/

√
γ is the inverse square-root Bond number, and u(x,y,t) is the velocity

potential at the undisturbed free surface. The dispersion relation obtained by setting
ε=0 in (2.10) is the familiar

ω2 = |k|tanh(b|k|)(1+k2). (2.12)

The water surface is given by b+εη(x,y,t), where to leading order, η can be obtained
by inverting

(1−∆)η =−ut. (2.13)

Another possible nondimensionalization of the equations is based on using depth
as a length scale. Choosing H as the length scale, a as the scale for typical free surface
displacements, a(gH)1/2 as the velocity potential scale, (H/g)1/2 as the time scale.
Proceeding as above, one obtains the equations (1.3–1.7).

In practice, (2.10–2.13) is more appropriate for capillary waves in deeper water
since we can fix γ and take the limit H,b→∞, whereas (1.3–1.7) is more appropriate
for shallow water, when the surface tension coefficient varies.

Many further simplifications of these equations are possible. In particular, for long
waves, expanding for small wavenumber and truncating at sixth order, one obtains
from (1.3), the approximate Benney-Luke type equation

utt−∆u+
(

B− 1
3

)
∆2u−

(
2
15
− B

3

)
∆3u+ε

[
(∇u)2t +ut∆u

]
=0. (2.14)

We shall use this equation, because as we shall see, it captures the right form for the
dispersion relation and nonlinearity of (1.3) in the regimes that interest us.
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Fig. 3.1. Phase speed plots for linearized equations 3.3 (solid) and 3.1 (dot) and 1.3 (dashed)
for (a) B =1/3+1/20, (b) B =1/3−1/20.

3. One Dimensional Free Surface
For a one dimensional free surface one can write from (2.14), and upon further

truncation, a Boussinesq equation:

utt−uxx +
(

B− 1
3

)
uxxxx +2uxuxt +utuxx =0. (3.1)

The Korteweg-de Vries (KdV) equation is easily obtained from (3.1) by seeking solu-
tions traveling one-way. We have taken ε=1 for simplicity, that is, we incorporate ε
into the solution u and seek solutions with small norm. This Boussinesq equation has
the well known sech2 solitary wave solutions, given by

ux =a sech2 [κ(x−ct)], c2 =1−4
(

B− 1
3

)
κ2, a=

c2−1
c

. (3.2)

In this approximation, (1.7) implies η =−ut = cux. Thus, for right-traveling waves
(c>0), if B <1/3, the waves are of elevation and if B >1/3, they are of depression.
For water, γ =7.2×10−6m2 and B =1/3 corresponds to waves on a fluid of depth
H≈0.5cm. This small depth is often cited as a reason for the physical irrelevance of
this regime, since at such small depths viscous effects are important.

The inclusion of the sixth derivative term of (2.14) to (3.1) yields the sixth order
Boussinesq equation

utt−uxx +
(

B− 1
3

)
uxxxx +

(
2
15
− B

3

)
uxxxxxx +2uxuxt +utuxx =0, (3.3)

which is asymptotically correct for B≈1/3 since both dispersive terms can be formally
made to have the same order [11]. The higher derivative term changes the waves of
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elevation and depression in different ways, and allows for the possibility of wavepacket
solitary waves as we describe below. (We restrict here B <6/15 to fix the sign of the
sixth derivative term so that the dispersion relation is qualitatively similar to the full
problem.) The dispersion relations for the fourth-order Boussinesq (3.1), sixth-order
Boussinesq (3.3) , and the full problem (1.3) are shown in Figure 3.1 for B <1/3 and
B >1/3.

For B >1/3 in Figure 3.1(a), the dispersion relation does not qualitatively change
for the three cases, and the solitary waves of depression (3.2) which bifurcate from
point A are similar to each other (see Figure 3.2, leftmost plot). For B <1/3 in
Figure 3.1(b), the dispersion relation changes substantially from the addition of the
sixth derivative terms, and one should either use a sixth-order Boussinesq or a full-
dispersion weakly nonlinear equation such as (1.3). These two equations for a Bond
number close to 1/3 and small nonlinearities are qualitatively similar. The solitary
waves of elevation (3.2) which bifurcate from point B are now resonant with the
shorter wave at points C (i.e. the condition (1.2) is satisfied only locally at B but not
globally), and thus exhibit nondecaying oscillations. These waves, with exponentially
small (due to the smoothness of the main wave [9]) tails, are usually called generalized
solitary waves. However, in Figure 3.1(b) there is also a new family of wavepacket
solitary waves, bifurcating from the minima of c(k) at points D1 or D2. Since, as B
is increased towards 1/3, the D’s move toward the origin, it is reasonable to expect
that this branch of solitary waves is connected to the branch of depression waves at
point A.

The preceding discussion was based completely on the linear dispersion relation.
We shall establish numerically that the nonlinear terms support solitary waves.

This is indeed the case, as can be seen in Figure 3.2. It shows a sequence of
solitary traveling wave solutions obtained by a continuation method by fixing the
norm of the solution and varying B in the sixth-order Boussinesq (3.3). (B decreases
from left to right in Figure 3.2.) The leftmost wave is obtained by using the solution
(3.2) to (3.1) as an initial approximation. Note that we show ux, which is proportional
to the free surface displacement with η = cux in this limit.

These solutions were computed by Newton’s method on a Fourier spectral decom-
position of the solution. Specifically, we expand solutions to (3.3) as

u(θ)=
N∑

n=−N

an einκθ, θ =x−ct, (3.4)

with an =a−n real. Thus we assume that the solution is real, symmetric about x=0,
and periodic with period 2L=2π/κ. There are N +2 unknowns aj , j =0 ...N and c.
The N +2 equations are the N projections of (3.3) on einθ, j =1 ...N , the equation
fixing ||ux||2, and, setting u(−L)=0. Typically, N =128 or 256.

The rightmost solitary wave has a Fourier spectrum peak at k≈0.9 and corre-
sponds to the point D1 in Figure 3.1. If one would continue this solution branch
by lowering the amplitude with B fixed, it would approach a carrier wave with an
envelope solitary wave and c≈0.977 (the value of c at k≈0.95, the minimum D1).
The important conclusion is that there is a branch of solutions connecting the long
solitary waves to wavepacket solitary waves. Lastly, we note that the solitary waves
shown in Figure 3.2 are stable. In fact in [11] such waves are shown to be generated
naturally in a model of flows over a bump.

We will now show that for two-dimensional free-surface waves this is also the case
and we will be able to compute localized solitary two-dimensional wavepackets for
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Fig. 3.2. Solitary waves of equation (3.3) (ux is shown) for varying B. All solutions have
||ux||2 =0.1. From left to right: 1. B =1/3+1/20. The solution to (3.1) given by (3.2) (c=0.9681)
and the solution to (3.3) (c=0.9692) are both shown and are almost identical. 2. B =1/3 (c=
0.9630). 3. B =1/3−1/20 (c=0.9556). 4. B =1/3−1/10 (c=0.9471). Note that the scales are
considerably stretched for emphasis, and that the computational domain was larger than is shown.

B <1/3.

4. Two Dimensional Free Surface
We now focus our attention on two-dimensional, localized, solitary waves. We

begin with the counterpart of the KdV equation for a two dimensional free surface,
which is the Kadomtsev-Petviashvilli (KP) equation

[
ηt +ηx +ε

[
3
2
ηηx +

1
2

(
1
3
−B

)
ηxxx

]]

x

+
1
2
ηyy =0. (4.1)

This equation can be obtained from (2.14) by seeking one-way solutions with y→
ε1/2y, and further truncation. It was first derived in a study of the stability of KdV
line solitons (the solution (3.2) with no variation in y) to slowly varying transverse
perturbations. It turns out that for B <1/3, line solitons are stable and that for
B >1/3 they are unstable. For B >1/3 (the so-called KP-I equation) there also
are solitary waves decaying in all directions, called lump solitons. These are given
explicitly by

η =A




A
8(B−1/3) (x−ct)2 + 3A2

64(B−1/3)εy
2 +1

[
− A

8(B−1/3) (x−ct)2 + 3A2

64(B−1/3)εy
2 +1

]2


, c=1+

3
16

εA, (4.2)

with A<0. Note that these solutions decay only algebraically in x and y. Further-
more, there is numerical evidence that the instability of line solitons of KdV within
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Fig. 4.1. Dispersion relation (1.6) and the plane p=c ·k for c=(1,0) at (a) B =1/3−1/10.

The curve on the k plane is the projection of the point where p and ω intersect. (b) B =1/3+1/10.
There are no intersections of p and ω.

KP-I tend to produce such lump solitary waves. For B <1/3, one obtains the KP-II
equation which does not support localized solitary waves.

A simple argument for whether a nonlinear wave equation may support lump-
like solitary waves, bifurcating from a point k∗ was given in the introduction (1.2).
Graphically, (1.2) is equivalent to the dispersion surface ω(k) not intersecting the
plane given by p(k)=c∗ ·k. For an isotropic dispersion relation where ω(|k|), (1.2) is
equivalent to ω/|k| having a minimum at k∗. Note that if ω/|k| has a maximum the
condition (1.2) will not be satisfied due to the surface ω(|k|) not being locally convex,
thus ruling out localized solitary waves. (For a 1+1 dimensional problem minima and
maxima both permit solitary waves according to (1.2).)

This condition explains clearly why the KP equation (and the full dispersion
relation (1.6)) can only support lumps bifurcating from k∗=0 (with c=(1,0) in the
scaling of (1.6)) for B >1/3 and not for B <1/3. This is shown graphically in Figure
4.1 using the full dispersion relation (1.6). For B <1/3 there is a family of resonant
linear waves, whereas for B >1/3 there are none. If the dispersion relations for the
KP equations were used instead, the results would be qualitatively similar. However,
since the KP equations are not isotropic, the dispersion relations are not surfaces of
revolution.

There is, however, the possibility of two-dimensional localized traveling waves
for B <1/3, bifurcating from finite k∗ in the problem with the full dispersion relation
(1.6). This case is the two-dimensional equivalent to the solutions bifurcating from the
minimum of c in Figure 3.2 (b). For example, Figure 4.2 shows that a plane through
the origin and tangent to the bifurcation point does not have other intersections with
the dispersion surface (1.6) for B =1/3−1/20.

Furthermore, as B is increased towards 1/3, this “wavepacket” lump bifurcation
point tends to the KP-I bifurcation point k∗=0. Therefore, it is possible that the
KP-I lumps for B >1/3 can be continued into wavepacket lumps with B <1/3 which
would be in an “envelope equation” regime. The relevant envelope equation here is
the Davey-Stewartson Equation, which has been shown to support localized envelopes
[14], further indication that travelling localized solitary waves may be possible.
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Fig. 4.2. Dispersion relation (1.6) and the plane p=c ·k for c=(0.989,0) at B =1/3−1/20.
The “o” on the k plane is k∗, the projection of the point where p and ω touch tangentially.

We note that these B <1/3 wavepacket lumps would be more physically relevant
than for B >1/3, since, as B decreases, depth increases and viscous bottom effects
become less important.

Within (2.14) we can indeed continue the KP-I lumps to wavepacket localized
traveling waves with B <1/3 as shown in Figure 4.3. The solution on the left is a
solution to (2.14) with B >1/3 obtained by using (4.2) as an initial approximation.
This solution is very similar to the KP-I lump (see [13],[2]). The solution on the
right is obtained by continuing this solution by varying B until B <1/3. The solution
has developed typical wavepacket oscillations in the x direction. We conjecture that
the wavepacket solution is stable since it is connected on a continuous branch (no
numerical evidence of bifurcations) to the KP-I solutions and these are known to be
stable. Furthermore, in [2], KP-I-like lumps were numerically stable and shown to
be generated in a model of shallow water flow over a localized bump in an equation
similar to (2.14) for B <1/3.

Computationally, the method is similar to that for one dimensional waves. We
write solutions to (2.14)

u(θ,y)=
M∑

m=−M

N∑

n=−N

am,n ei(nκxθ+mκyy), θ =x−ct, (4.3)

with am,n =a−m,n =am,−n real. Thus the solution is real, symmetric with respect to
both axes, and periodic on the rectangle of size 2Lx =2π/κx by 2Ly =2π/κy. There
are (M +1)(N +1)+1 unknowns, and we solve the equations obtained by projecting
the spectrally truncated nonlinear terms of (2.14) on ei(nκxθ+mκyy), m=0,... ,M, n=
1,.. .,N (yielding N(M +1) equations), by setting u(−Lx,y)=0 (yielding M +1 equa-
tions), and by fixing ||ux||2 (yielding one equation). Typical computations shown use
M,N =64.

Figure 4.4 shows the magnitude of the Fourier transform of the solutions in Figure
4.3. The figure shows clearly that the nature of the solution has changed from a
“long” wave (with spectrum centered at k=0) to a “wavepacket” with spectrum
centered at the point of tangency in Figure 4.2. The spectra also show that the
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waves are well resolved since the spectrum decays to zero well within the domain,
even though the continuation method did not require the solution to do so. Both
the wavepacket solutions and the lump solutions appear to decay algebraically to
zero. We are currently exploring the possibilities of using (by continuation methods)
the wavepacket solutions we have found to construct localized travelling solutions to
infinite depth model equations and to model equations intermediate between those of
Benney-Luke type and the full Euler.

5. Conclusion
We have shown, in a model for shallow water capillary-gravity waves, that two-



P. MILEWSKI 99

dimensional localized solitary solutions exist even in deeper water. That is, they exist
for B <1/3, and take the form of wavepacket solitary waves. Qualitatively, from the
form of the dispersion relation, once such waves are found for B <1/3, there is no
reason why these waves cannot exist in infinite depth. In fact, we conjecture that
two-dimensional wavepacket gravity-capillary solitary waves exist in water of infinite
depth.

[The author has learned of two developments with interesting results related to
this paper. Vanden-Broeck [15] has computed localized wavepacket solitary wave solu-
tions of the full Euler equations in infinite depth, and in [6], wavepackets analogous to
those described here are shown to arise from an envelope Davey-Stewartson equation.
(Paragraph added after the acceptance of this manuscript for publication.)]
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