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1. Introduction
The theory of stochastic partial differential equations (SPDE’s) has become in-

creasingly important in the study of a vast number of random phenomena in natural
sciences and mathematical finance. SPDE’s driven by multiparameter Gaussian pro-
cesses have been investigated by many authors. See e.g. [41], [25] and [23] to mention
a few. However, from a modeling point of view the Gaussian setting is too special,
since phenomena in porous media or pollution growth indicate the influence of noises
of a different nature. SPDE’s perturbed by Lévy processes can be e.g. found in [4],
[32].

The object of this paper is to provide an application of the white noise framework,
developed in [28], [29], to analyze an important type of SPDE‘s driven by multipa-
rameter Lévy processes. More precisely we are interested in solving the stochastic
transport equation driven by Lévy white noise, given by

∂U

∂t
=

1
2
σ2∆U +Wφ(x)¦∇U +K(t,x)¦U +g(t,x); t>0,x∈Rd

U(0,x)=f(x); x∈Rd. (1.1)

Here ∆=
∑d

i=1
∂2

∂x2
i

is the Laplacian and ∇ is the gradient with respect to x=

(x1,...,xd)∈ Rd. Further, σ is a constant and K(t,x), g(t,x), f(x)∈ (S)−1 are given
stochastic distribution processes. The stochastic distribution space (S)−1 is a Lévy
version of the Kondratiev space, equipped with the product ¦ : (S)−1×(S)−1−→
(S)−1, which is a Lévy white noise analogue to the Wick product in the Gaussian
case (see [23]). The process Wφ(x) is the d−dimensional φ-smoothed Lévy white
noise (see Section 2 for definitions). System (1.1) can be e.g. used as a stochastic
model of environmental pollution (see [24]). In this model U(t,x) can be thought of
as the concentration of a pollutant that disperses at time t and location x in a tur-
bulent medium. 1

2σ2 is the dispersion coefficient, Wφ(x) describes the velocity of the
medium, K(t,x) is the leakage rate of the substance and g(t,x) is the rate of increase
of the concentration due to the deposits of the wasting substance. The function f(x)
models the initial concentration.

The theory of SPDE’s driven by Gaussian white noise was initiated by the works
of Gross [17], Daleckii [9], Malliavin [31], Fujisaki, Kallianpur, Kunita [13], Pardoux
[36], Zakai [42] and Walsh [41].
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Even simple types of SPDE’s as the stochastic Poisson equation do not possess
solutions, which are regular stochastic processes, unless the dimension d is chosen to
be low. Walsh [41] introduced a weak solution concept for the study of SPDE’s. The
approach, given by Walsh, is based on solutions u(x,ω) in the distributional sense,
that is

the map (x 7−→u(x,ω)) is a Sobolev distribution for a.a. ω. (1.2)

Although the construction of Walsh supplies a useful tool for the study of linear
SPDE’s, its applicability to nonlinear equations is limited. However, one can utilize
ideas of Colombeau’s nonlinear theory of distributions to cope with certain types of
nonlinear SPDE’s (see [7] and [1]).

Another approach comes from white noise analysis (see e.g. [23]), where general-
ized solutions u(x,ω) are in the sense that

(ω 7−→u(x,ω)) is a stochastic distribution for a.a. x. (1.3)

An advantage of this method is that one can establish a theory of nonlinear
operations on distributions to handle a wide class of nonlinear SPDE’s by using the
Wick product.

In this paper we will give a solution to system (1.1) in the sense of (1.3). We will
apply the framework in [28] to show that (1.1) admits a unique strong solution U(x,ω)
with values in the stochastic distribution space (S)−1, which is a Lévy version of the
Kondratiev space. The proof of this result rests on the use of the Hermite transform
and the Feynman-Kac formula.

In the Gaussian case similar equations to (1.1), involving multiplication by means
of Stratonovich integration instead of the Wick product, were investigated e.g. in [6],
[33] and [37]. See also the work of [38], based on the Hitsuda-Skorohod interpretation.
A more general method was given in [10]. The stochastic transport equation (1.1)
driven by Gaussian white noise was treated in [14]. The latter, that is the Gaussian
white noise analogue to (1.1), arose from a combination of two cases, studied in [14]and
[24]. Our solution is a generalization of [15] to the case of Lévy white noise.

In Section 2 we recall some results and definitions in [28], where a white noise
approach for the study of SPDE’s driven by multi-parameter pure jump Lévy prossses
is presented. Then in Section 3 we illustrate how the framework in Section 2 can be
applied to solve the stochastic transport equation driven by a pure jump Lévy noise
(Theorem 3.1). Finally, in Section 4 we explain the extension of Theorem 3.1 to the
case of a combination of Gaussian and pure jump Lévy noise.

2. A white noise approach for Lévy processes
White noise analysis has proved to be a vital and important area of mathematics.

The pioneering works of T. Hida (see [18] for an account) have stimulated a breath-
taking development of white noise analysis and its applications. Particularly, it has
served as a very useful tool in applications to mathematical physics. See [19] and
the references therein. As another example of a variety of applications white noise
theory has been successfully used in the study of stochastic partial differential equa-
tions (SPDE’s). See e.g. [23], [20] and other researchers. More recently, white noise
methods in connection with Malliavin calculus have fostered interesting applications
to mathematical finance (see e.g. [3], [8] or [35]). See also [2].

In this section we review some white noise concepts for the study of stochastic
partial differential equation driven by multi-parameter Lévy processes, developed in
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[28], [29]. In Section 3 we will demonstrate how this framework can be utilized to give
a solution to the stochastic transport equation driven by Lévy noise. The notational
style of this paper is leaned on [23], where Gaussian white noise is investigated. For
excellent treatments of general white noise theory the reader may consult [19], [27]
and [34].

In this section we first focus on square integrable (d-parameter) pure jump Lévy
processes without drift. In Section 4 we outline a framework for the study of combi-
nations of such processes and multi-parameter Brownian motion.

A Lévy process can be paraphrased as a stochastic process η(t) on R+ with
independent and stationary increments starting at zero, i.e. η(0)=0. Such a process
can be thought of as a random walk in continuous time. The probability law of
η(t) is infinitely divisible and its characteristic function is given by the famous Lévy-
Khintchine formula, that is

E exp(iλη(t))=exp(−tΨ(λ)); λ∈R (2.1)

with characteristic exponent

Ψ(λ)= iaλ+
1
2
σλ+

∫

R0

(1−eiλy + iλyχ{|y|<1})ν(dy),

for constants a∈R and σ≥0. The measure ν on R0 := R−{0} integrates the function
1∧y2 and is referred to as Lévy measure. Moreover, η(t) has a decomposition

η(t)=at+σB(t)+
∫ t

0

∫

R0

yχ{|y|<1}Ñ(ds,dx)+
∫ t

0

∫

R0

yχ{|y|≥1}N(ds,dy), (2.2)

where B(t) is the Brownian motion and where

Ñ(ds,dy)=N(ds,dy)−ν(dy)ds

is the compensated Poisson random measure of η(t). In particular, relation (2.2) shows
that a square integrable pure jump Lévy martingale takes the form

η(t)=
∫ t

0

∫

R0

yÑ(ds,dy). (2.3)

For a comprehensive account of the theory of Lévy processes we recommend the books
of [5] and [39].

We start with an explicit construction of a (space-time) Lévy process η(x),x∈Rd

on the white noise space S̃(X), which is a multi-parameter version of (2.3). We recall
the definition of S̃(X) (see for details [28]). Let S(Rd) denote the Schwartz space on
Rd and let S p(Rd) be its dual (the space of tempered distribution). Since S(Rd) is
a (countably Hilbertian) nuclear space its topology can be induced by a sequence of
increasing pre-Hilbertian norms ‖·‖p , p∈ N (see [16]). Moreover, the space S(Rd) is a
nuclear algebra, that is S(Rd) forms a topological algebra with respect to the pointwise
multiplication of functions. In the following we set X =Rd×R0 and we define the space
S(X) as a nuclear subalgebra of S(Rd+1) (with respect to the restrictions of the norms
‖·‖p) by

S(X) :=
{

ϕ∈S(Rd+1) :ϕ(z1,...,zd,0)=(
∂

∂zd+1
ϕ)(z1,...,zd,0)=0

}
(2.4)
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For the Lebesgue measure λ×d on Rd and ν for a Lévy measure on R0, we set π =
λ×d×ν and we define the closed ideal Nπ of S(X) by

Nπ :={φ∈S(X) :‖φ‖L2(π) =0} (2.5)

Then we define the space S̃(X) to be the quotient ring

S̃(X)=S(X)/Nπ. (2.6)

The space S̃(X) is again a (countably Hilbertian) nuclear algebra with the compatible
system of norms

∥∥∥φ̂
∥∥∥

p,π
:= inf

ψ∈Nπ

‖φ+ψ‖p , p∈N. (2.7)

See [16]. We indicate by S̃ p(X) the dual of S̃(X). By the famous Bochner-Minlos
theorem there exists a unique probability measure µ on the Borel sets of S̃ p(X),
characterized by the property that

∫

S̃p(X)

ei〈ω,φ〉dµ(ω)=exp
(∫

X

(eiφ−1)dπ

)
(2.8)

holds for all φ∈S̃(X), where 〈ω,φ〉=ω(φ) is the action of ω∈S̃ p(X) on φ∈S̃(X). We
call the probability measure µ on Ω= S̃ p(X) (pure jump) Lévy white noise probability
measure.

The measure µ is non-degenerate and fulfills the first condition of analyticity (see
[28]), entailing the existence of generalized Charlier polynomials Cn(ω) (see [26] for the
definition). The function α defined by α(φ)= log(1+ϕ)modNπ, if φ= ϕ̂ for ϕ(x)>−1
is holomorphic at zero and invertible. Then the exponential ẽ(φ,ω) := exp〈ω,α(φ)〉

Eµ[e〈ω,α(φ)〉] is
the generating function of the generalized Charlier polynomials Cn(ω), i.e.

ẽ(φ,ω)=
∑

n≥0

1
n!

〈
Cn(ω),φ⊗n

〉
, (2.9)

for all φ in an open neighbourhood of zero in S̃(X), where φ⊗n∈S̃(X)⊗̂n (n-th com-
pleted symmetric tensor product of S̃(X) with itself). We can identify the elements of
S̃(X) with functions f ∈ S(Xn) modulo Nπ×n such that f =f(x1,...,xn) is symmetric
with respect to the variables x1,...,xn∈X. Based on relation (2.9) it can be deduced
that the set {〈Cn(ω),φ(n)

〉
:φ(n)∈S̃(X)⊗̂n,n∈N∪{0}} is total in L2(µ) and that the

orthogonality relation
∫

S̃p(X)

〈
Cn(ω),φ(n)

〉〈
Cm(ω),ψ(m)

〉
dµ(ω)= δn,mn!(φ(n),ψ(n))L2(Xn) (2.10)

holds, where φ(n)∈S̃(X)⊗̂n, ψ(m)∈S̃(X)⊗̂m. Using a density argument and the or-
thogonality relation (2.10) one sees the extensibility of the functional 〈Cn(ω),fn 〉
from fn∈S̃(X)⊗̂n to symmetric fn∈L2(Xn,π×n). Note, that C1(ω)=ω−1⊗ ν̇, where
1⊗ ν̇ ∈S̃ p(X) is given by

〈
1⊗ ·

ν,φ
〉

=
∫

X
φ(x,y)π(dx,dy) (see [28]). Since the Lévy
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white noise measure µ has a Poissonian characteristic functional with intensity π, it is
natural to define the stochastic integral of a φ∈L2(π) with respect to the compensated
Poisson random measure Ñ associated with π as

∫

X

φ(x,y)Ñ(dx,dy) := 〈ω−1⊗ ν̇,φ〉. (2.11)

The latter definition gives rise to an explicit construction of a d−parameter (pure
jump) Lévy process or space-time (pure jump) Lévy process, denoted by (η(x))x∈Rd ,
which we choose to have right continuous paths with existing left limits in each com-
ponent of x=(x1,...,xd). That is we select a càdlàg version of the random field

η̃(x) :=
∫

X

χ[0,x1]×...×[0,xd](x) ·yÑ(dx,dy) for x=(x1,...,xd)∈Rd, (2.12)

where [0,xi] is understood to be [xi,0], if xi <0 and where the Lévy measure ν(dy) is
supposed to integrate y2. Note that the dimension d of the parameter set shall admit
the interpretation of either the time, space or space-time dimension of the system.
We proceed to define the multidimensional version of a d−parameter Lévy process.
For m∈N we consider the probability space

(S̃ p,B,µm) :=(×m
i=1S̃ p(X),×m

i=1B(S̃ p(X)),×m
i=1µ). (2.13)

The triplet (S̃ p,B,µm) is called the d−parameter multidimensional Lévy white noise
probability space. We define the m−dimensional (d−parameter pure jump) Lévy pro-
cess η(x) as a m−tupel of independent copies of the 1−dimensional Lévy processes
by the process

η(x,ω)=(η(x,ω1),...,η(x,ωm)) (2.14)

for ω =(ω1,..., ωm)∈S̃ p on (S̃ p,B,µm). Using (2.11) and (2.12) we introduce a stochas-
tic process, called the (d-parameter) smoothed white noise process Wφ(x,ω) by

Wφ(x,ω) :=
∫

Rd

φx(u)dη(u), (2.15)

where φx(u)=φ(u−x) is the x−shift of φ∈S(Rd), u,x∈Rd and where the stochastic
integral with respect to η(u) is defined as

∫

Rd

ϕ(u)dη(u)= 〈ω−1⊗ ν̇,ϕ(u) ·y〉

for ϕ∈L2(Rd). The m-dimensional smoothed white noise process Wφ(x,ω) is con-
structed as

Wφ(x,ω)=(W (1)
φ (x,ω),...,W (m)

φ (x,ω))
=(Wφ1(x,ω1),...,Wφm(x,ωm)), (2.16)

for φ=(φ1,...,φm)∈ ×m
i=1S(Rd), ω =(ω1,..., ωm)∈S̃ p. The process {Wφ(x,ω)}x∈Rd

can be used as a mathematical model for (coloured) white noise, which one encoun-
ters in random phenomena. We need the definition of various spaces of stochas-
tic test functions and stochastic distributions, based on chaos expansions. In the
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sequel we indicate by J the set of all multi-indices α=(α1,α2,...) with finitely
many non-zero elements αi∈N0 :=N∪{0}. Define Index(α)=max{i :αi 6=0} and |α|
=

∑
iαi for α∈J . Denote by {ξk}k≥1the Hermite functions (for its definition see e.g.

[40]) and take a bijection h :Nd−→N. Then choose an orthonormal basis {ζk}k≥1of
L2(Rd), by defining ζk(x1,...,xd)= ξi1(x1) · ... ·ξid

(xd), if k =h(i1,...,id) for ij ∈N. Fur-
ther let{πj}j≥1⊂S(X), d=0 (or ⊂L2(ν)) be an orthonormal basis of L2(ν). Using
the bijective map

κ :N×N−→N; (i,j) 7−→ j +(i+j−2)(i+j−1)/2. (2.17)

we define the function δk by

δk(x,y)= ζi(x)πj(y), (2.18)

if k =κ(i,j) for i,j∈N. Let Index(α)= j and |α|=m for α∈J and introduce the
function δ⊗α as

δ⊗α((x1,y1),...,(xm,ym))

= δ⊗α1
1 ⊗ ...⊗δ

⊗αj

j ((x1,y1),...,(xm,ym))
= δ1(x1,y1) · ... ·δ1(xα1 ,yα1)
·... ·δj(xα1+...+αj−1+1,yα1+...+αj−1+1) · ... ·δj(xm,ym), (2.19)

where we set δ⊗0
i =1. Then the symmetrized tensor product of the δk‘s, denoted

by δ⊗̂α, is defined as the symmetrization of δ⊗α with respect to the variables
(x1,y1),...,(xm,ym). Then, if we set

Kα(ω)=
〈
C|α|(ω),δ⊗̂α

〉
, (2.20)

we obtain an orthogonal L2(µ) basis {Kα}α∈J (K0 :=1). Now, for γ =(γ(1),...,γ(m))∈
Jm :=J × ...×J and ω =(ω1,...,ωm)∈S̃ p put

Kγ(ω)=
m∏

i=1

Kγ(i)(ωi) (2.21)

Then the family {Kγ(ω)}γ∈Jm constitutes an orthogonal basis for L2(µm). So every
F ∈L2(µm) has the unique representation

F =
∑

γ∈Jm

cγKγ (2.22)

for cγ ∈R with norm expression

‖F‖2L2(µm) =
∑

γ∈Jm

γ!c2
γ , (2.23)

where γ! :=γ(1)!γ(2)!... for γ =(γ(1),γ(2),...)∈Jm and where γ(j)!=γ
(j)
1 ! γ

(j)
2 !..., j =

1,...,m. Using a second quantization argument we introduce the following stochastic
test function and distribution spaces: for 0≤ρ≤1 the Kondratiev test function space
(S)ρ consists of all f =

∑
γ∈Jm cγKγ ∈L2(µm) such that

‖f‖2ρ,k :=
∑

γ∈Jm

(γ!)1+ρ
c2
γ(2N)kγ <∞, (2.24)



Frank Proske 633

for all k∈N0, where (2N)kγ =(2N)kγ(1) · ... ·(2N)kγ(m)
and (2N)kβ =(2 ·1)kβ1(2 ·

2)kβ2 ...(2 ·m)kβl , if Index(β)= l.
Similarly, the Kondratiev distribution space (S)−ρ can be described as the set of

all formal series F =
∑

γ∈Jm bγKγ such that

‖F‖2−ρ,−k :=
∑

γ∈Jm

(γ!)1−ρ
c2
γ(2N)−kγ <∞ (2.25)

for a k∈N0. (S)ρ is endowed with the projective and (S)−ρ with the inductive topol-
ogy, based on the above seminorms {‖·‖ρ,k}. The space (S)−ρ can be regarded as the
dual of (S)ρ via the action

〈F,f〉=
∑

γ∈Jm

bγcγγ! (2.26)

for F =
∑

γ∈Jm bγKγ ∈ (S)−ρ and f =
∑

γ∈Jm bγKγ ∈ (S)ρ . For general 0≤ρ≤1 we
have by definition the following chain of inclusions

(S)1 ↪→ (S)ρ ↪→ (S)0 ↪→L2(µm) ↪→ (S)−0 ↪→ (S)−ρ ↪→ (S)−1

The spaces (S)0 and (S)−0 coincide with Lévy versions of the Hida spaces (S) and
(S)∗, respectively (see [19] and [23]). Next, if we choose in (2.18) a L2(ν) basis (πj)j≥1

with π1(y)=y, we can represent η(t) as

η(x)=
∑

k≥1

m0

∫ xd

0

...

∫ x1

0

ζk(x1,...xd)dx1...dxd ·Kεκ(k,1) , (2.27)

where m0 =‖y‖2L2(ν) , the map κ is as in (2.17) and where εl∈J is defined by

εl(j)=
{

1 for j = l
0 else ,l≥1. (2.28)

Then relation (2.27) gives us the motivation for the definition of a d-parameter (pure
jump) or space-time Lévy white noise

•
η(x)= ∂d

∂x1...∂xd
η(x) as a space-time derivative

of η(x) in (S)∗, introduced as the formal expansion

•
η(x,ω)=m0

∑

k≥1

ζk(x)Kεκ(k,1) ∈ (S)∗ for all x. (2.29)

The m−dimensional (d−parameter pure jump) Lévy white noise
•
η(x) can be defined

by

•
η(x,ω)=(

•
η(x,ω1),...,

•
η(x,ωm)), ω =(ω1,...,ωm)∈S̃ p . (2.30)

A more general definition, which covers
•
η(x), is the ( d−parameter) white noise

•
Ñ(x,y)

of the Poisson random measure Ñ(dx,dy) (see [35]). The Lévy noise
•
η(x) can be

viewed as a marginal case of the smoothed white noise Wφ(x,ω) in the following
sense: if φndy tends to the Dirac measure δ0 in the weak star topology in the space
of measures on Rd for n−→∞, then Wφ(x,ω)−→ •

η(x) in (S)∗. This can be seen just
as in the Gaussian case (see [23]). The properties of Wφ(x,ω) serve as a useful tool
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in the study of stability questions of SPDE’s (compare [23]). Further, we endow the
Kondratiev spaces with the structure of a topological algebra with respect to the Lévy
Wick product, ¦ : (S)−ρ×(S)−ρ−→ (S)−ρ, defined by

(Kγ ¦Kβ)(ω)=(Kγ+β)(ω), γ,β∈Jm (2.31)

The product is linearly extended to the whole space. Note that e.g.

〈Cn(ω),fn〉¦〈Cm(ω),gm〉=
〈
Cn+m(ω),fn⊗̂gm

〉
(2.32)

for symmetric functions fn∈L2(π×n) and gm∈L2(π×m) (see [28]). The Wick product
reveals an interesting relation to Itô-Skorohod integration, that is

∫ T

0

Y (x)δη(x)=
∫ T

0

Y (x)¦ •η(x)dx. (2.33)

The left hand side is a Skorohod integral of Y (x)=Y (x,ω) with respect to the Lévy
process, satisfying the condition E

∫ T

0
Y 2(x,ω)dx<∞. The right hand side of (2.33)

is in terms of a Bochner-integral on (S)−1 (see [8] for definitions). The Lévy Hermite
transform (see [28]) gives a description of the Kondratiev space (S)−1 by means of
power series in infinitely many complex variables. The definition of this transform
utilizes the expansion along the basis {Kγ}γ∈Jm , just as in the Gaussian case, which
was initiated in [30]. Let F =

∑
γ∈Jm aγKγ ∈ (S)−1 with aγ ∈R. The Lévy Hermite

transform of F , denoted by HF , is defined by

HF (z)=
∑

γ∈Jm

aγzγ ∈C, (2.34)

where zγ =zγ(1)

1 ...zγ(m)

m , zj =(zj,1,zj,2,...)∈CN and zα
j =zα1

j,1z
α2
j,2...z

αn
j,n... for α=

(α1,α2,...)∈J , j =1,...,m (z0
i,j :=1)) under the assumption that the series con-

verges. The Hermite transform converges e.g. for some 0<q,R<∞ on the infinite-
dimensional neighborhood Kq(R) in (CN)m, given by

Kq(R)={ξ =(ξ1,...,ξm)∈ (CN)m :
∑

γ 6=0

|ξγ |2 (2N)qγ <R2}. (2.35)

By the characterization theorem (see Theorem 2.3.8 in [28]) any element in (S)−1 is
uniquely determined through its H-transform. For example the Hermite transform of
the Lévy white noise

•
η(x) is

H(
•
η)(x,z)=m0

∑

k≥1

ζk(x) ·zκ(k,1) , z∈CN. (2.36)

The Hermite transform H is an algebra-homomorphism between (S)−1 and the al-
gebra of power series in infinitely many complex variables. In particular we have the
relation

H(F ¦G)(z)=H(F )(z) ·H(G)(z). (2.37)

Relation (2.37) naturally elicits an extension to Wick versions of complex analytical
functions: if g has a Taylor expansion around ξ0 =H(F )(0) with real coefficients, then
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the characterization theorem (see [28]) implies that there exists a unique Y ∈ (S)−1

such that

H(Y )(z)=(g◦H(F ))(z) (2.38)

holds. We define the Wick version g¦(F ) of g applied to F by setting g¦(F )=Y. As
an example the Wick version of the exponential function exp can written as

exp¦(F )=
∑

n≥0

1
n!

F ¦n

with the n’th Wick power of F , given by F ¦n =F ¦F ¦ ...¦F (n times).

3. The stochastic transport equation perturbed by Lévy white noise
In this section we want to examine strong solutions of the generalized stochastic

transport equation in the Kondratiev distribution space (S)−1, that is we consider
the SPDE

∂U

∂t
=

1
2
σ2∆U +Wφ(x)¦∇U +K(t,x)¦U +g(t,x); t>0, x∈Rd

U(0,x)=f(x); x∈Rd, (3.1)

where Wφ(x)=(W (1)
φ (x),..., W

(d)
φ (x)) is the d−dimensional φ−smoothed Lévy white

noise in (2.16), σ a constant and where K(t,x), g(t,x) and f(x) are (S)−1−valued
stochastic processes.

For notational convenience we indicate by X̃ the Hermite transform H(X) of
a distribution X ∈ (S)−1. In the following let us require that the processes K :R+×
Rd−→ (S)−1, g :R+×Rd−→ (S)−1 and f :Rd−→ (S)−1 in (3.1) fulfill the conditions

(i)
∣∣∣K̃(t,x,z)

∣∣∣ + |g̃(t,x,z)|+
∣∣∣f̃(x,z)

∣∣∣ is uniformly bounded on R+×Rd×Kq(R)
for some q and R<∞.
(ii) For all z∈Kq(R) there exists a γ =γ(z)∈ (0,1) such that
K̃(·,·,z)∈C1,γ(R+×Rd), g̃(·,·,z)∈C1,γ(R+×Rd) and f̃(·,·,z)∈C2+γ(Rd),

(3.2)
where Cl,γ(U) resp. Ck+γ(U) (U an open set of Rn)denotes the space of all
C(U)−functions that are Hölder continuous of order γ and continuously differen-
tiable with respect to the first variable resp. the space of all functions in Ck(U),
whose partial derivatives up to order k are Hölder continuous of order γ.

Theorem 3.1. Let K, g and f be processes as in (3.2). Then there exists a unique
solution U of the system (3.1). Moreover, the solution is explicitly given by

U(t,x)= Êx

[(
f(σBt)¦exp¦[

∫ t

0

K(t−v,σBv)dv]

+
∫ t

0

g(t−s,σBv)dv¦exp¦[
∫ s

0

K(s−v,σBv)dv]ds

)
¦F ¦t

]
, (3.3)

with

F ¦t =exp¦[
d∑

k=1

σ−1

∫ t

0

W
(k)
φ (σBs)dB(k)

s − 1
2

d∑

k=1

σ−2

∫ t

0

(
W

(k)
φ (σBs)

)¦2
ds]. (3.4)
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where (Bt)t≥0 =(B(1)
t ,...,B

(d)
t )t≥0 is a d−dimensional Brownian motion, starting at

x, with probability law P̂ x on a filtered measurable space (Ω∗,F∗ ),{F∗t }t≥0 and where
the notation Êx[F ] stands for a Bochner integral of an integrable F :Ω∗−→ (S)−1 with
respect to the measure P̂ x.

Proof. In proving the result we proceed as in [14], [15], [21] and [22], where the
Gaussian case is treated.

To determine a solution candidate of (3.1) we (formally) apply the Hermite trans-
form to both sides of the equation and get the deterministic partial differential equa-
tion

∂u

∂t
=

1
2
σ2∆u+W̃φ(x) ·∇u+K̃(t,x) ·u+ g̃(t,x); t>0, x∈Rd

u(0,x)= f̃(x); x∈Rd, (3.5)

where u=u(t,x,z)= Ũ(t,x,z) for z∈ (CNc )d. The space (CNc )d denotes the set of
complex-valued sequences β =(β1,β2,...) with finitely many non-zero entries. We want
to solve equation (3.5), by using the Feynman-Kac formula. For this purpose consider
first the real part of system (3.5), i.e. assume that z =α=(α1,...,αm)∈ (RNc )d. Then
define the second-order differential operator

Aα =
d∑

k=1

1
2
σ2 ∂2

∂x2
k

+
d∑

k=1

W̃
(k)
φ (x,α)

∂

∂xk
. (3.6)

Using (3.6) we can reformulate (3.5) as

−∂u

∂t
+Aαu+K̃u=−g̃; t>0,x∈Rd

u(0,x)= f̃(x); x∈Rd. (3.7)

The stochastic differential equation, which is used to give a stochastic representation
of the solution of the Cauchy problem (3.7), takes the form

dXα
t =W̃φ(Xα

t ,α)dt+σdBt; t≥0,Xα
0 =0. (3.8)

on a filtered probability space (Ω∗,F∗,P ∗ ),{F∗t }t≥0. Since the k’th component of
W̃φ(x,α), namely W̃

(k)
φ (x,α), can be represented as

W̃
(k)
φ (x,α)=

∑

j≥1

(φk(·−x),ζj)L2(Rd)αk,κ(j,1) (3.9)

with κ in (2.17) and ζj in (2.18), one verifies that W̃φ(x,α) is Lipschitz continuous and
satisfies a linear growth condition. Hence (3.8) has a unique strong solution Xα

t =
Xα,x

t . Then the Feynman-Kac theorem (see [12]) in connection with the Girsanov
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transformation provides the existence of a unique solution u to (3.7) with

u(t,x,α)=Ex
P∗

[
f̃(Xα

t ,α) ·exp[
∫ t

0

K̃(t−v,Xα
v ,α)dv]

+
∫ t

0

g(t−s,Xα
s ,α) ·exp[

∫ s

0

K̃(s−v,Xα
v ,α)dv]ds

]

= Êx

[(
f̃(σBt,α) ·exp[

∫ t

0

K̃(t−v,σBv,α)dv]

+
∫ t

0

g̃(t−s,σBs,α) ·exp[
∫ s

0

K̃(s−v,σBv,α)dv]ds

)
·Ft

]
, (3.10)

where

Ft =exp[
d∑

k=1

σ−1

∫ t

0

W̃
(k)
φ (σBs,α)dB(k)

s − 1
2

d∑

k=1

σ−2

∫ t

0

(
W̃

(k)
φ (σBs,α)

)2

ds]. (3.11)

We observe in (3.10) that u(t,x,α) is real analytic in α∈ (RNc )d. Thus u(t,x,α) admits
a complex analytical extension to a function u(t,x,z), z∈ (CNc )d. Next we verify the
existence of a unique U :R+×Rd−→ (S)−1 with HU =u, by invoking (2.38) for g = id.
By the characterization theorem for (S)−1 in [28] boundedness of u(t,x,z) in z∈Kq(R)
for some q,R provides a sufficient condition for the validity of (2.38). However, taking
(3.2) (i) into consideration, one infers the latter condition from the representation of
u in the first equation of (3.10). By comparing the Hermite transforms we find that
the process U(t,x) coincides with the one in (3.3).

In the final step of the proof we check that U actually solves system (3.1). The-
orem 2.78 in [11] yields the following estimate for u(t,x) on every open and bounded
set G=(0,T )×D⊂R+×Rd :

‖u‖C1,2+γ(G)≤ const. ·
(
‖Lu‖C1,γ(G) +

∥∥∥f̃
∥∥∥

C2+γ(∂D)

)
,

where L is the differential operator, given by

Lu(t,x)=
∂u

∂t
− 1

2
σ2∆u−W̃φ ·∇u−K̃(t,x)u.

Since Lu(t,x,z)= g̃(t,x,z), the result follows from (3.2) and the next Lemma 3.2.

Lemma 3.2. Let G be a bounded open subset of R+×Rd. Assume a
process U :G−→ (S)−1 with HU =u such that u and its partial derivatives
∂u
∂t ,( ∂u

∂xj
)j=1,...,d,(∂2u

∂x2
j
)j=1,...,d are bounded on G×Kq(R), continuous with respect to

(t,x)∈G for all z∈Kq(R) and analytic in z∈Kq(R) for all (t,x)∈G, q <∞, R>0.
Then

H(
∂U

∂t
)=

∂u

∂t
, H(∆U)=∆u and H(∇U)=∇U

on Kq(R).

Proof. The proof of the Lemma is based on the same arguments as in Lemma 2.8.4
of [23]. We give the proof for the derivative ∂u

∂t . The case of higher order derivatives
can be obtained by rerunning the arguments.
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The mean value theorem implies that

1
∆t

(u(t+∆t,x,z)−u(t,x,z))=
∂u

∂t
(t+ξ∆t,x,z)

for some ξ∈ [0,1], for all z∈Kq(R). Because of the assumptions on u we conclude that

1
∆t

(u(t+∆t,x,z)−u(t,x,z))−→ ∂u

∂t
(t,x,z) as ∆t→0

pointwise boundedly for z∈ Kq(R). Since (S)1 is a nuclear space, one can show as in
Theorem 2.8.1 of [23] that the latter statement is equivalent to convergence in (S)−1.
That is

1
∆t

(U(t+∆t,x)−U(t,x))−→ ∂U

∂t
(t,x)

for all (t,x). Since the Hermite transform is a continuous linear functional on (S)−1,
the result follows.

Remark 3.3. System (3.1) reduces to the heat equation with stochastic potential K,
when φ=0 and g =0. In this case the solution in Theorem 3.1 simplifies to

U(t,x)= Êx[(f(σBt)¦exp¦[
∫ t

0

K(t−s,σBs)ds]]. (3.12)

The stochastic heat equation was studied in [33], where K was chosen to be the Gaus-
sian white noise. In [22] this equation was treated in the case of Gaussian Kondratiev
spaces.

COROLLARY 3.4. Consider the stochastic heat equation in Remark 3.3 for the poten-
tial term K(t,x,ω)=

∫
X

ϕ(s,y)Ñ(ds,dy),ϕ(s,y)>0 with deterministic initial condition
f as in (3.2). Then there exists a unique L2(µ)-solution of the heat equation, which
takes the explicit form

U(t,x)

= Êx[(f(σBt)exp¦[t
∫

X

ϕ(s,y)Ñ(ds,dy)]]

= Êx[(f(σBt)] ·
·exp[t

∫

X

log(1+ϕ(s,y))Ñ(ds,dy)+ t

∫

X

log(1+ϕ(s,y))−ϕ(s,y)π(ds,dy)].

Proof. Since relation (2.8) implies that

ẽ(ϕ,ω)=exp¦[
∫

X

ϕ(s,y)Ñ(ds,dy)],

we conclude by means of (3.13) the statement of the corollary.
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4. The stochastic transport equation driven by a mixture of Gaussian
and pure jump Lévy noise

Let us briefly describe how the framework in Section 2 can be extended to the case
of combinations of m Gaussian white noise and k pure jump Lévy white noise sources.
For notational simplicity we restrict ourselves to the case m=k =1. We proceed as in
the multidimensional pure jump Lévy noise case. Denote by µG the Gaussian white
noise measure on the measurable space

(ΩG,FG)=(S p(Rd),B(S p(Rd))),

that is µG is defined as the unique probability measure on ΩG such that
∫

ΩG

ei〈ω,φ〉µG(dω)=exp(−1
2
‖φ‖2L2(Rd))

for all φ∈S(Rd), where 〈ω,φ〉=ω(φ) (see [23]). Recall that the stochastic polynomials
{Hα(ω)}α∈J , given by

Hα(ω)=
∏

j≥1

hαj (〈ω,ζj〉)

form an orthogonal L2(µG)−basis, where hn is the n’th Hermite polynomial and ζj

is a tensor product of j Hermite functions (see [23] for details). Let us indicate by
µL the pure jump Lévy white noise measure on

(ΩL,FL)=(S̃ p(X),B(S̃ p(X))).

Define the Lévy white noise measure µ to be the product measure µG×µL on the
measurable space

(Ω,F)=(ΩG×ΩL,FG⊗FL).

Further set

Lγ(ω1,ω2)=Hα(ω1)Kβ(ω2)

for γ =(α,β)∈J 2. Then we see that any f ∈L2(µ) can be uniquely written as

f(ω1,ω2)=
∑

γ∈J 2

cγLγ(ω1,ω2),

Moreover, we have the isometry

‖f‖2L2(µ) =
∑

γ∈J 2

c2
γγ!

with γ!=α!β!, if γ =(α,β)∈J 2. The definitions and results of Section 2, regarding
the Kondratiev spaces, the Wick product and the Hermite transform carry over to

the combined case of Gaussian and pure jump Lévy noise. If we denote by
•
B the

Gaussian noise (see [23]) and by
•
ηL the pure jump Lévy white noise, then the white

noise of the Lévy process η =σB+ηL can be introduced as

•
η(ω1,ω2)=σ

•
B(ω1)+

•
ηL(ω2).
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In the same way as in the last section we define the (d-parameter) smoothed white
noise process by

Wφ(x,ω1,ω2)=(〈ω1,φ1(u−x)〉,
〈
ω2−1⊗ •

ν,φ2(u−x)y
〉
)

for φ=(φ1,φ2)∈S(Rd)×S(Rd). With the above definitions one checks that Theorem
3.1 also holds for the stochastic transport equation driven by Gaussian and pure jump
white Lévy white noise.
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space, to appear in Math. Scand. 2004.

[30] T. Lindstrøm, B. Øksendal and J. Ubøe, Stochastic differential equations involving positive
noise, in Barlow, M. and Bingham, N. (editors): Stochastic Analysis, Cambridge Univ.
Press, 261-303, 1991.

[31] P. Malliavin, Stochastic calculus of variations and hypoelliptic operators, Proceedings of In-
ternational Symposium SDE, Kyoto, ed. K. Itô, Kinokuniya, Tokyo, 195-263, 1978.
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