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SOME MODELLING ISSUES IN THE THEORY OF
FRAGMENTATION-COAGULATION SYSTEMS∗

JEAN–FRANÇOIS COLLET

Abstract. This paper is meant as an introduction to some of the most classical models in the the-
ory of fragmentation-coagulation. The main models presented are the Becker-Döring, fragmentation-
coagulation (discrete or continuous) and Lifshitz-Slyozov ones. Rather than focusing on mathemat-
ical technicalities, we have chosen to insist on the physical ideas behind their derivation, in order
to present them in a unified framework. The unifying physical principle in this context is the mass
action principle, which we expose in detail, our philosophy being that these models may be thought
of as technical variations on this theme. We then present some qualitative properties of the models,
which include saturation, criticality, and dissipation. The second part of the paper collects some
mathematical tools which are of recurrent use in this context, namely the use of moments, of the
Laplace transform, and of Lyapunov functions.

1. Introduction: the physical picture
In a very informal way, the systems under consideration here may be described

as a population of particles which are free to move about in space and may merge
after collisions, or spontaneously breakup. These two processes, respectively called
coagulation and fragmentation in what follows, tend to modify the size and shape of
the particles.

A vast amount of literature has been devoted to the study of the morphogenetic
aspects of these systems, i.e. to the appearance and evolution of complex shapes
that these dynamics may lead to (such as for instance dendritic growth induced by
diffusion-limited aggregation, etc.).

We will however restrict the discussion here to situations where shape is not
considered as a dynamical variable, so that the size profile of the system will be the
fundamental quantity of interest. Our approach is therefore population-dynamical in
spirit, and focuses on the time evolution of sizes.

Depending on the particular situation to be modelled the number of particles
may be assumed to be finite or infinite, and their size may be treated as a discrete
or continuous variable. Although this may lead to a variety of mathematical models,
the physical nature of the corresponding systems is not fundamentally different.

Once these choices for the description of the number of particles and treatment of
the sizes have been made, the derivation of a mathematical evolution model naturally
proceeds in two steps:

1. Write a balance equation, which will involve some collision frequencies (or
reaction rates in chemical terminology) as given coefficients;
2. Do some physics to obtain from physical assumptions on the dynamics of
the interaction, an explicit expression for the coefficients.

This in principle leads to a closed model for the evolution of the size profile; interesting
(and physically relevant) mathematical issues are then well-posedness, and qualitative
properties of the corresponding Cauchy problem. Step 1 amounts to the expression
of mass conservation, and basically consists of straightforward accounting with very
little physics in it; Step 2 on the other hand requires a precise physical description
of the agglomeration (or fragmentation) mechanism. In this connection it is maybe
worthwhile pointing out that agglomeration mechanisms are significantly better doc-
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36 MODELLING FRAGMENTATION-COAGULATION SYSTEMS

umented in the physical literature than their fragmentation counterpart. For the
more mathematically inclined, Step 2 may be replaced by some assumption on the
(abstract) coefficients, typically some form of bound, to ensure that the evolution is
well-defined and has a certain number of properties.

Part I

Some Modelling

1. Collision frequencies and reaction rates

1.1. General mass action kinetics. The basic principle to be used here
is the so-called mass action principle, which roughly says that the advancement rate
of a chemical reaction is proportional to the concentrations of the involved reactants.
To be more precise, let us consider a formal chemical reaction written as

n∑
i=1

νiXi −→
n∑

i=1

ν′
iXi. (1.1)

Here the Xi’s are arbitrary chemical species. For notational convenience all Xi’s
have been placed on both sides of the reaction, setting some of the coefficients to
zero whenever necessary. This is harmless since the only quantities which will be
involved in specifying the reaction velocities are not the stoichiometric coefficients νi

but their differences αi := ν′
i − νi. Let us denote by ci the concentration of species

number i; since we are only considering space-homogeneous situations (or equivalently,
quantities at a fixed point in space), the reader unfamiliar with chemical language may
think of this just as a number of molecules. The mass action principle then provides
a system of ordinary differential equations for the concentrations:

dci

dt
= αikΠn

j=1c
νj

j .

Here k denotes the so-called rate constant, and again may be thought of just as
a time frequency of reactive collisions. More precisely if ci denoted the (integer)
number of molecules of species number i in a space homogeneous system, k would
exactly represent the number of encounters of ν1 molecules of species 1, ν2 molecules
of species 2, and · · · and νn molecules of species n per unit time, to produce ν′

1

molecules of species 1, ν′
2 molecules of species 2, and · · · and ν′

n molecules of species
n.

Of course in the case of several simultaneous reactions, the time derivative dci

dt is
obtained by adding the contributions of all reactions, each of which is of the previous
form. An important point to be stressed here is that in the time derivative of ci, the
only i−dependent term involved is the net gain αi.

1.2. The precise accounting for fragmentation-coagulation equations.
Let us apply mass-action kinetics as described in the previous paragraph, to an

infinite system of discrete particles undergoing fragmentation and coagulation at the
same time. This means that particles are defined by their size i, an integer which
represents the number of elementary blocks (or “monomers” in the sequel) they are
made of. These particles (or grains, or clusters in what follows) are free to merge or to
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break, which may be schematically represented by the doubly infinite set of chemical
reactions:

(i) + (j) ↔ (i + j), i, j = 1, 2, 3, · · · (1.2)

If we focus our attention on one fixed size i, it is easy to see that this size is involved
in two sets of reactions: on one hand, the ones written above with i fixed and variable
j, and on the other hand, the following:

(i − k) + (k) ↔ (i),

where k ranges from 1 to i − 1 (not to be taken in consideration if i = 1). The
accounting here is slightly complicated by the fact that in this second set of reactions
the symetry obtaining upon exchanging k and i − k has to be taken into account.
In other words the term corresponding to these reactions has to be divided by two...
except in the case where i is even, and k = i

2 . Considering only coagulation for
simplicity, we obtain the following expression for odd i:

dci

dt
=

1
2

i−1∑
j=1

kj,i−jcjci−j −
∞∑

j=1,j �=i

ki,jcicj − 2ki,ic
2
i ,

and for even i:

dci

dt
=

1
2

i−1∑
j=1,j �= i

2

kj,i−jcjci−j + k i
2 , i

2
c2

i
2
−

∞∑
j=1,j �=i

ki,jcicj − 2ki,ic
2
i ,

where ki,j is the collision frequency between particles of sizes i and j. This somewhat
unpleasant system may be recast in a simpler form. Indeed if one sets k′

i,j = ki,j for
i �= j and k′

i,i = 2ki,i, then (dropping of course the primes immediately) it assumes
for any i the usual form:

dci

dt
=

1
2

i−1∑
j=1

kj,i−jcjci−j −
∞∑

j=1

ki,jcicj .

A large number of articles devoted to this topic take this system as a starting point,
but overlook the fact that ki,i is not equal to the frequency of i-i collisions, but its
double. If this is of no importance for mathematical results which rely on boundedness
assumptions for the coefficients, on the other hand it means that some results on
explicit solutions are in error. It is of course very easy to include fragmentation,
which yields the system:

dci

dt
=

1
2

i−1∑
j=1

(kj,i−jcjci−j − qj,i−jci) −
∞∑

j=1

(ki,jcicj − qi,jci+j). (1.3)

In consistency with our notations for agglomeration coefficients, qi,j denotes the time
frequency of fragmentations of i + j-particles into i− and j− particles for i �= j, and
twice that frequency for i = j.
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1.3. Some modelling for the collision frequencies. The relations derived
so far are just balance equations, and we now give some indication on how the rate
coefficients may be obtained from physical assumptions.

Coagulation seems to be in the present state better understood than fragmenta-
tion, so that we will restrict ourselves here to that case. For the case of fragmentation
we refer the reader to the contribution of C. Baranger in this series. As was empha-
sized in the introduction, the expression for the collision frequency has to be derived
from the study of the motion of the particles in physical space, and a description of
the interaction mechanism. For simplicity we leave aside the physical chemistry of
the interaction involved when particles meet, and concentrate on kinematics. This
means that the collision frequency will be derived by computing the number of en-
counters per unit time, and assuming all collisions to be effective, that is to lead to
agglomeration. These theoretical derivations typically proceed in two steps: first,
consider a fixed i− particle and compute the number of j−particles which hit it per
unit time; then, take into account the fact that the i−particle itself is in motion. To
give an indication of the sort of kernels that may arise, we will present three academic
kinematic situations: flow-driven motion, Brownian motion, and sedimentation.

1.3.1. Flow-driven motion. If particles are advected by a fluid flow, col-
lisions will result from velocity differences (an extreme case would be advection by
some uniform constant velocity, in which case particles would never collide since they
would all follow streamlines which do not intersect). This clearly shows that the
driving mechanism here is velocity gradients. Therefore the simplest situation one
can consider is that of a laminar shear flow, which we now consider as a case study
(the following derivation is nothing but a slightly edited version of the original one
given by Smoluchowski in [30]). A laminar shear flow is a flow which takes place
along a fixed direction x, with a velocity u depending linearly on some coordinate z
perpendicular to that direction: u = (Gz, 0, 0), where G, the so-called shear rate, is
a given positive constant. Consider a fixed spherical particle of radius Ri located at
the origin. A moving spherical particle of radius Rj will stick to the fixed one as soon
as the centers come to a distance Rij := Ri + Rj . In other words, the problem comes
down to the computation of the number of point masses which hit the sphere Sij of
radius Rij per unit time. This flux is easily computed by using spherical coordinates:

z = r cos θ, x = r cosφ sin θ, y = r sin φ sin θ, −π

2
≤ θ ≤ π

2
, 0 ≤ φ ≤ 2π.

Due to the symetry of the picture the incoming flux Jij on the sphere Sij is the flux
on the area

{z ≥ 0, x ≤ 0} ∪ {z ≤ 0, x ≥ 0},

or equivalently, twice the flux on the first part. We readily obtain

Jij = 2
∫ π

2

θ=0

∫ π
2

φ=−π
2

uxnx ds

= 2
∫ π

2

θ=0

∫ π
2

φ=−π
2

(GRij cos θ)(cos φ sin θ)(R2
ij cos θ) dθ dφ

=
4
3
GR3

ij ,
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hence the expression for the rate constant for this regime:

kij =
4
3
G(Ri + Rj)3.

1.3.2. Brownian motion. We now consider the case of particles in Brownian
motion. Here each i− particle should be thought of as moving along a Brownian path
with a diffusion coefficient given by the Stokes-Einstein formula:

Di =
kT

6πRiµ
,

where T is the absolute temperature, k is Boltzmann’s constant, and µ is the viscosity
of the fluid. Again considering a fixed i−particle located at the origin, the problem
is reduced to the computation of the flux of j− particles through the sphere Sij .
The concentration cj of j− particles in the medium surrounding the fixed i−particle
evolves according to the diffusion equation:

∂cj

∂t
= Dj∆cj ,

with appropriate boundary conditions at r = Rij and r = ∞ (we refer to [30] for
details). This diffusion problem can then be solved in the steady state approximation
to obtain that the number of j− particles contacting the fixed one per unit time in a
unit volume is given by:

4π(Ri + Rj)Djcj . (1.4)

This now has to be corrected by taking into account the fact that the i− particle itself
is not fixed, but moves along Brownian paths with diffusion coefficient Di. Assuming
that particles do not interact during their free flights, the motions will be independent,
so that the average relative displacement may be evaluated as follows:

(∆xi − ∆xj)2 = (∆xi)2 + (∆xj)2 = (Di + Dj)∆t.

This justifies the usual practice of replacing Di in (1.4) by the so-called “mutual diffu-
sion coefficient” Di +Dj . Using Einstein’s formula we obtain the following expression
for the Brownian coagulation rate:

kij =
2kT

3µ

(Ri + Rj)2

RiRj
.

Let us note that this has the important consequence that in the case of a monodisperse
solution (i.e. when all sizes are equal) we obtain the constant value

k = kB :=
8kT

3µ
,

whatever the common size is. This justifies the classical approximation which consists
in neglecting the dependence on size; however as was pointed out in section 2, the
corresponding explicit solution usually found in the literature is in error, since in
equation (1.3) the coefficient ki,i should be taken to be 2kB, and all others set to kB.
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1.3.3. Sedimentation. Sedimentation is the simplest possible situation in
which particles velocities differ from that of the fluid. The picture here is a fluid at
rest, in which particles fall under the action of gravity. Sticking in this context will
occur because due to friction, particles with different radii fall with different velocities
(as given by Stoke’s formula, see [16] for details). The resulting coefficient is given by

kij =
2πg

9µ
(ρs − ρ)(Ri − Rj)(Ri + Rj)3,

where g is the gravity acceleration, µ is the dynamic viscosity of the fluid, ρs is the
density of the particles, and ρ is that of the pure fluid (the derivation may be found
in [16]).

2. A few classical models
System (1.3) may be thought of as the prototype for most models in fragmentation-

coagulation. It is then very easy to design variations on this theme, by taking size
as a continuous variable, placing restrictions upon the interaction coefficients, adding
spatial dependence via transport or diffusion, adding more variables besides size such
as energy or magnetization... The list of possible variations being endless (as well
as the list of potential papers to be written on the corresponding Cauchy problems)
we will now just present a few of the most classical models found in the physical
literature.

Let us begin with the continuous size-version of (1.3). Denote by x some measure
of the size of the particles (such as their volume, or radius if they are assumed to
be spherical) and by f(t, x) the size-density of the system. The continuous analog of
(1.3) is now readily obtained by replacing the discrete sums with integrals:

∂

∂t
f(t, x) =

1
2

∫ x

0

[k(x − y, y)f(x − y, t)f(y, t) − q(x − y, y)f(x, t)] dy

−
∫ ∞

0

[k(x, y)f(x, t)f(y, t) − q(x, y)f(x + y, t)] dy. (2.1)

Here the so-called “coagulation and fragmentation kernels” k(x, y) and q(x, y) are
the continuous analogs of the coefficients ki,j and qi,j , and again have the physical
meaning of time frequencies.

An interesting particular case of (1.3), the so-called Becker-Döring model, is ob-
tained by assuming that only monomers can be captured or shed at a time. Mathe-
matically this means taking:

ki,j = qi,j = 0 for min (i, j) > 1. (2.2)

Changing slightly the notations we set

ai := ki,i+1, bi := qi,i−1.

The system now becomes

dci

dt
= Ji−1 − Ji, (2.3)

dc1

dt
= −2J1 −

∞∑
i=2

Ji. (2.4)
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Here we have denoted by Ji the velocity of the reaction:

(i) + (1) ↔ (i + 1), i ≥ 1,

that is to say:

Ji = aic1ci − bi+1ci+1 for i ≥ 1.

This is the Becker-Döring system, introduced in [6]. The interested reader will find a
very complete mathematical theory of this system in [5]. Obviously if the total mass
is to be preserved, the following relation should hold true:

d

dt

∞∑
i=1

ici(t) = 0. (2.5)

This can be formally derived by multiplying (2.3) by i and then summing over i, so
that (2.4) may be replaced by (2.5). It is shown in [5] that the physically reasonable
solutions to systems (2.3)-(2.4) on one hand and (2.3)-(2.5) on the other hand, are
unique, and are the same, so that from now on what we refer to as the Becker-Döring
system is the following:

dci

dt
= [ai−1c1ci−1 − bici] − [aic1ci − bi+1ci+1] i ≥ 2, (2.6)

∞∑
i=1

ici(t) = ρ. (2.7)

From a formal mathematical point of view, it may look from (2.2) as though (2.6)(2.7)
is just a particular case of (1.3). From the physical point of view however, let us
emphasize that this situation should be thought of as a different regime from the full
fragmentation-coagulation regime, or more precisely as an earlier stage. Think of an
initially monodisperse population of grains (call them monomers), which for some
reason are unable to fragment. In the early stage of the evolution, these monomers
will interact to build larger grains, but will still constitute the bulk of the population,
in such a way that the reactions

(i) + (1) ↔ (i + 1)

will dominate. At a later stage however there will be enough large (here large means
i > 1) grains so that they may interact between themselves, and possibly fragment,
so that the full system (1.3) has to be taken into account. The earlier stage is the so-
called nucleation stage, and the later one is the so-called coalescence, or fragmentation-
coalescence stage.

As before, size may be treated as a continuous variable in the nucleation stage.
Let us denote by x the volume variable, and by f(t, x) the density with respect to x.
The continuity equation reads

∂f

∂t
+

∂J

∂x
= 0 x > 0, t > 0, (2.8)

where J(x, t) denotes the flux in x-space. This equation expresses the mass balance
for large grains; it has to be coupled to the relation expressing total mass conservation:

c(t) +
∫ ∞

0

xf(t, x) dx = const,
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where c(t) denotes the concentration of monomers in the bath. In such a mean field
description, the flux of clusters in size space may or may not include a diffusive
part, depending on whether or not one decides to take fluctuations into account. If
fluctuations are not taken into account one deals with the pure transport regime,
in which the flux is given by J(x, t) = f(x, t)G(x, t), where G denotes the growth
velocity of a grain of volume x. In complete analogy with fluid mechanics (replacing
the position variable by the size variable), if one thinks of x and t as Lagrangian
coordinates, G represents the Lagrangian velocity. In physical language this means
that a fixed macroscopical grain of size x grows according to dx

dt = G(x, t).
The precise expression for G has to be derived from physical assumptions on the

kinetics of the interaction between large grains and monomers. Assuming that large
grains are a minority phase, this depends on how monomers move about, and how
they attach to (or are liberated from) large grains. Perhaps the most studied case is
that of the diffusion-limited regime, in which monomers diffuse around crystals, the
equilibrium concentration being given by the Gibbs-Thompson formula. This yields
the celebrated Lifshitz-Slyozov system (first derived in the seminal paper [26]; see also
[33]):

∂f

∂t
+

∂

∂x
((c(t)x

1
3 − 1)f(x, t))) = 0, (2.9)

c(t) +
∫ ∞

0

xf(t, x) dx = ρ. (2.10)

Here again x is the volume variable, c(t) is the concentration of monomers in the bath
at time t, and as before f is the density of grains with respect to the x variable.

3. Some qualitative features of the dynamics

3.1. Lifshitz-slyozov: critical radius and ostwald ripening. From rela-
tion (2.9) above one sees that at any fixed time, the growth velocity of grains vanishes
and changes sign at the so-called critical volume vc defined by:

vc(t)
1
3 =

1
c(t)

.

The interesting point here is that supercritical grains (i.e. grains whose volume is
larger than vc) grow, whereas subcritical ones shrink. One might then think that the
dynamics are trivial in the sense that the profile continuously gets shifted towards large
volumes, but here mass conservation provides a natural feedback: as large grains grow
the solution gets depleted in monomers, thus c decreases, and therefore the critical
volume increases, so that supercritical grains become in fact “less supercritical” as
time passes (the precise inequalities on the characteristic velocities which translate
this idea may be found in [28]). This is the essence of the so-called phenomenon of
“Ostwald Ripening”. Since we have a system maintained out of equilibrium in the
presence of a nonlinear feedback, it is natural to expect that some interesting patterns
will develop; the paper [26] presents qualitative arguments supporting the idea that
some nontrivial intermediate asymptotics (i.e. self-similar behaviour) will develop,
and these arguments have since then been refined in [24].

3.2. Becker-Döring: saturation and “weak” phase transition. Let us
now turn to the Becker-Döring system, and in particular to its steady-state solutions.
From the physical principle of micro-reversibility we are interested in solutions for
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which all reactions are turned off. Denoting by (mi)i∈N such a solution, we obtain

mi = Qi(m1)i, where Q1 = 1, Qi =
i−1∏
k=1

(
ak

bk−1

)
i ≥ 2. (3.1)

Thus we obtain a one-parameter family of equilibria, parametrised by the value of the
monomer concentration m1. We can then compute the total mass associated to m:

ρ =
∞∑

i=1

imi =
∞∑

i=1

iQi(m1)i. (3.2)

All coefficients being positive, this is a strictly increasing function of m1, so that the
family of equilibria may be parametrised by the total mass ρ(m1). The interesting
fact is that for such an equilibrium to exist, the monomer concentration has to be less
than the radius of convergence of the power series (3.2), which we will denote by cs:

m1 ≤ cs :=
(

lim sup
i

(Qi)1/i

)−1

. (3.3)

If the kinetic coefficients are such that this convergence radius is finite, then the
corresponding mass

ρs :=
∞∑

i=1

iQi(cs)i (3.4)

corresponds to the saturated vapor density: that means, the maximum mass which
the system can withstand without trying to manufacture a new phase (see the section
on asymptotic behaviour, lower, for more details on this).

3.3. Change of scale and “Hydrodynamic” limits. As was explained
above the Becker-Döring and Lifshitz-Slyozov regimes are physically different, and
correspond respectively to the nucleation and coalescence stage - a point completely
misunderstood by many mathematicians working in this area. In the nucleation stage
fluctuations still play an important role, and there is no notion of critical size. In
the (later) coalescence stage there is a well-defined critical size, and grains move in
size-space in a deterministic fashion, depending on whether they are supercritical or
subcritical. In a more probabilistic language, system (2.6)(2.7) has the flavor of the
Kolmogoroff equation of some Markov process which acts on sizes, whereas (2.9)(2.10)
describes a pure transport regime. If one thinks of the similarity with the various
possible levels of description of fluids (i.e. many-particle, kinetic and fluid), it is on
the other hand natural to ask whether (2.9)(2.10) may be obtained from (2.6)(2.7) via
some change-of-scale argument (The mathematicians alluded to above would however
just think of (2.6)(2.7) as a finite difference approximation to (2.9)(2.10)).

Various approaches to this issue may be found in [9],[35] and [14]. As the reader
familiar with hydrodynamic limits will expect, a scaling argument for the Becker-
Döring yields the transport term of the Lifshitz-Slyozov equation as a leading term,
and an ε− order viscosity correction. More precisely, if one introduces a rescaling
parameter ε in the Becker-Döring system in order to view the right hand side of (2.7)
as a difference quotient (therefore a flux divergence in the limit of vanishing ε), the
equivalent equation may be shown to be the following:

∂

∂t
f +

∂

∂x
[(a(x)c(t) − b(x))f − ε

∂

∂x
(
a(x)c(t) + b(x)

2
f(t, x))] = 0. (3.5)
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This model was introduced with formal arguments in [12]; a rigorous derivation of
the equation, as well as appropriate boundary conditions, may be found in [14]. This
result is in a sense comparable to a diffusive hydrodynamic limit; to pursue the analogy
with fluid mechanics, let us remark that the corresponding drift-diffusion problem has
not been yet investigated. More precisely, it would be interesting to give a rigorous
derivation of either (2.6)-(2.7) or (3.5) from (1.3), much in the way one can go from
a kinetic equation to a drift-diffusion equation (see [25] for details). Alternately one
could start from the continuous version (2.1), and rescale the interaction kernel.

4. Moments
Considering the discrete-size case, for instance (2.6)(2.7) or (1.3), it is quite easy

to understand why moments of the solution, i.e. quantities of the form

mα(t) :=
∞∑

i=1

iαci(t) (4.1)

should come very handy in the mathematical analysis. From the mass conservation
relation (2.7) it appears that a natural space to be working in is the Banach space w1,1

(our notation is chosen to emphasize the analogy with Sobolev spaces) of sequences
(ci)i∈N such that the quantity

∑∞
i=1 i|ci| (which turns out to provide a norm) is finite.

Most results on existence or asymptotic behaviour rely on some compactness property,
which in the space w1,1 is obtained by bounding from above some moment of the form
(4.1) with α > 1. More generally, we will be interested in the time evolution of some
quantities associated to the size profile, which in the discrete size case for instance
take the form:

Φ(c) :=
∞∑

i=1

φici.

For instance upon taking φi = i, the quantity Φ represents the total mass of the
system, or with φi = i

2
3 it represents the total area of the grains, and finally just like

in kinetic theory, the choice φi = log ci gives the entropy of the system. To illustrate
this, let us consider system (1.3): we immediately get

dΦ
dt

=
1
2

∞∑
k=1

φk

k−1∑
j=1

(kk−j,jck−jcj − qk−j,jck) −
∞∑

k=1

φk

∞∑
j=1

(kk,jckcj − qk,jck+j).

Fubinizing the first sum and symetrizing the second one we obtain the relation:

dΦ
dt

=
1
2

∞∑
k=1

∞∑
j=1

(φk+j − φk − φj)(kk,jckcj − qk,jck+j). (4.2)

The physical meaning of this relation is obvious, since the quantity φk+j − φk − φj

represents the net increase of the quantity φ during one elementary step (i)+(j) → (i+
j), and the corresponding factor (kk,jckcj−qk,jck+j) is the number of such elementary
steps per unit time. In stochastic parlance, the right hand side of (4.2) defines the
action on φ of the infinitesimal generator of a Markov semigroup associated to the
transitions (1.2). Of course as a byproduct we obtain (formally) mass conservation:

d

dt

∞∑
i=1

ici = 0.
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The continuous analog is straightforward: defining Φ(t) by

Φ(t) :=
∫ ∞

0

φ(x)f(t, x) dx,

any solution to (2.1) will satisfy

dΦ
dt

=
1
2

∫ ∞

0

∫ ∞

0

[φ(x+y)−φ(x)−φ(y)][k(x, y)f(y, t)f(x, t)−q(x, y)f(x+y, t)] dxdy.

(4.3)
Besides providing the time evolution of quantities of this type, note that this for-
mulation may be readily used to define the notion of solution to the agglomeration
systems even in a measure-valued context. More precisely let us consider the pure-
agglomeration system obtained by taking all fragmentation coefficients to be zero in
(2.1):

∂

∂t
f(t, x) =

1
2

∫ x

0

k(x − y, y)f(x − y, t)f(y, t) dy −
∫ ∞

0

k(x, y)f(x, t)f(y, t) dy. (4.4)

A time-dependent measure µ will be said to be a solution to (4.4) if for all t > 0,
and any φ in a suitable class of test functions, the following relation:

d

dt

∫ ∞

0

φ(x)µ(dx, t) =
1
2

∫ ∞

0

∫ ∞

0

[φ(x+y)−φ(x)−φ(y)]k(x, y)µ(dy, t)µ(dx, t). (4.5)

holds true (we refer to the lecture by J.Norris in this series for a study of this equation).
In more physical (and pompous) terminology, this is a “principle of virtual work”

for chemical kinetics.

5. Some exact solutions: the laplace transform trick
The Laplace transform may be used to obtain explicit solutions for some particular

kinetic coefficients, as well as to show convergence to some self-similar profile for large
time. The general methodology here is to derive some integro-differential equation
for the Laplace transform of the size profile (since agglomeration mathematically
amounts to taking a convolution product, it should come as no surprise that the
Laplace transform has a role to play here). In the case where the coefficients have a
power dependence on size this equation turns out to be a partial differential equation
which may sometimes be solved explicitly. The size profile may then be recovered by
just taking an inverse Laplace transform. Besides providing an interesting calculus
exercise, these computations lead to the very natural issue of stability of these profiles
with respect to the coefficients. Let us now illustrate the method on the simplest
possible example, the discrete agglomeration equation:

∂ci

∂t
=

1
2

i−1∑
j=1

kj,i−jcjci−j − ci

∞∑
j=1

ki,jcj . (5.1)

We introduce the associated “generating series”, i.e. the discrete Laplace transform
of the sequence (ci(t))i with respect to i:

G(x, t) =
∞∑

k=1

ck(t) exp(kx).
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The partial derivatives of G are given by:

∂pG

∂xp
(x, t) =

∞∑
k=1

kpck(t) exp(kx).

The keypoint here is that the time derivative of G may be expressed by setting
φk := exp kx in (4.2):

∂G

∂t
(x, t) =

1
2

∞∑
k=1

∞∑
j=1

(e(k+j)x − ekx − ejx)kkjcj(t)ck(t). (5.2)

In this relation, the right hand side turns out to be an exact derivative of G in the
case where kij is a power of ij.

In cases where the equation for G may be solved explicitly, the profile may then
be obtained by an inverse Laplace transform:

kpck(t) =
1
2π

∫ iπ

−iπ

e−kx ∂pG

∂xp
(x, t) dx. (5.3)

Let us begin by the simplest case kij = 1 for all i, j; equation (5.2) becomes:

∂G

∂t
(x, t) =

1
2
G(x, t)2 − G(0, t)G(x, t). (5.4)

This may be solved explicitly to yield:

G(x, t) =
G(x, 0)

(1 + γ0t
2 )(1 − t

2 (G(x, 0) − γ0))
,

where γ0 := G(0, 0). Note that here the initial value G(x, 0) is known:

G(x, 0) =
∞∑

k=1

ck(0) exp(kx).

The concentrations ck may then be recovered by inversion formula, and their
behaviour for large time may be then directly read-off from the explicit formula. This
method works equally well for the case of additive and multiplicative coefficients, and
we refer the reader to [18] for details.

In the continuous case, let us indicate a nice computational device which is very
close to the usual Laplace transform. We consider (2.1) in the absence of fragmenta-
tion, i.e. we set q(x, y) = 0:

∂f

∂t
=

1
2

∫ x

0

k(y, x − y)f(y, t)f(x − y, t) dy − f(x, t)
∫ ∞

0

k(x, y)f(y, t) dy.

We now set

N(p, t) :=
∫ ∞

0

f(x, t)φp(x) dx,

with the notation

φp(x) := exp (−px) − 1.
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This device may be found in [23], and was used later in [27] under the name “desin-
gularized Laplace transform”. The beauty of subtracting 1 to the integrand in the
usual definition of the Laplace transform is that φp satisfies:

φp(x + y) − φp(x) − φp(y) = φp(x)φp(y). (5.5)

Combining (4.3) and (5.5) we see that N satisfies the following relation:

∂N

∂t
(p, t) =

1
2

∫ ∞

0

∫ ∞

0

f(x, t)f(y, t)φp(x)φp(y)k(x, y) dxdy.

This relation turns out to be a Partial Differential Equation for N in the case where
k has a simple homogeneity property. For instance if k = 1 we obtain

∂N

∂t
=

1
2
N2

(compare to (5.4)). In the case where k(x, y) = xy, noting that

∂N

∂p
(p, t) = −

∫ ∞

0

x exp (−px)f(x, t) dx,

we obtain the equation

∂N

∂t
(p, t) =

1
2
(
∂N

∂p
(p, t) − ∂N

∂p
(0, t))2,

which may be integrated explicitly. In either (constant or additive) case, the integrated
version of this equation involves the Laplace transform of the initial profile, which can
only be computed for simple enough data (a large number of articles in the applied
literature deal with a monodisperse initial state). Without delving too much into
details, let us just say that this method provides explicit solutions for initial data
which are simple enough (i.e. whose Laplace transform is known), and for kinetic
coefficients which are simple enough (mostly, constant, additive, and multiplicative).

6. Asymptotic behaviour via Lyapunov functions

6.1. Motivation: intermediate versus final asymptotics. As regards
asymptotic behaviour, two types of asymptotics may be studied here: the so-called
“intermediate”, and “final” one. This is a quite typical feature in the study of dissipa-
tive dynamical systems. To illustrate the point, let us consider the simplest example
which exhibits this sort of behaviour, namely the heat equation in the whole space.
For simplicity we look at a one-dimensional situation, although the behaviour is qual-
itatively dimension-independent:

∂u

∂t
=

1
2

∂2u

∂t2
, x ∈ R, t > 0.

It is very easy to show that for any fixed x ∈ R the solution goes to zero for large
time:

u(x, t) → 0, t → ∞.

This is the “final”, or trivial, asymptotics. However a proper rescaling of the solution
has a non trivial large-time behaviour. The precise result in one spatial dimension is
the following:

√
tu(x

√
t, t) → C exp (−x2

2t
), t → ∞,
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where C is a constant which is uniquely determined from the initial data (via mass
conservation). Of course in such a simple case this behaviour may be directly read-off
from the explicit representation of the solution in terms of the heat kernel. Such inter-
mediate asymptotic results are however valid for more general equations, in which case
they may be derived by using either relative entropy [32, 36] or renormalization-group
methods [7]. To summarize, some rescaled version of the solution has an interesting
behaviour for large time, in the sense that it converges to some unique point in a class
of functions which depend on a small number of parameters. This number is equal to
the number of quantities which are prescribed by the dynamics (here one, the total
space integral), and the selected values for the parameters are uniquely determined
from the conserved quantities. Let us now indicate the relevance (or lack thereof) of
this scenario in the context of agglomeration systems.

6.2. Mass action kinetics as a dissipative mechanism and the invariance
principle. The main tool here is Lyapunov functions, which roughly means, quan-
tities which decrease along the flow (the precise definitions and results will be given
below for the reader’s convenience). Let us take a step back and consider the general
chemical reaction (1.1), which will be supposed to take place both in the forward and
backward directions. Denoting respectively by kf and kb the corresponding rates, the
differential system for the chemical concentrations will be:

dci

dt
= αikfΠn

j=1c
νj

j − αikbΠn
j=1c

ν′
j

j = αikbΠn
j=1c

νj

j (K − Πn
j=1c

αj

j ),

where the equilibrium constant K is defined by K = kf

kb
. An array (mi) of equilibrium

concentrations therefore has to satisfy the relation:

Πn
j=1m

αj

j = K. (6.1)

Assuming that such a point m exists, the time-derivative of ci may now be rewritten:

dci

dt
= αikbΠn

j=1c
νj

j (Πn
j=1m

αj

j − Πn
j=1c

αj

j ) := αi
dξ

dt
,

where the last equality serves as a definition (within an additive constant) for the
advancement of the reaction ξ. If we define the entropy (which should in fact be more
appropriately be called free energy here) by

H(t) =
n∑

i=1

ci(t)(log
ci

mi
− 1), (6.2)

it is very easy to check that its time-derivative is given by

dH

dt
= kb(Πn

j=1c
νj

j )(log Πn
j=1c

αj

j − log Πn
j=1m

αj

j )(Πn
j=1m

αj

j − Πn
j=1c

αj

j ),

and is therefore nonpositive. This dissipation property is a fundamental feature of
chemical systems. It is in fact (as well as the very form of the entropy production
term) in striking analogy with the famous H−theorem of Boltzmann, and may be
used to infer the stability of the equilibrium m. The important point here is that
not only does H decrease along orbits, but its time derivative vanishes only at the



JEAN–FRANÇOIS COLLET 49

equilibrium point. This strongly suggests that the orbit converges to this equilibrium
point for large time, which can be rigorously proved by the use of the well-known
invariance principle. Let us now recall the precise mathematical tools which may be
used to carry out this program; the interested reader may consult [20], [3] and[4] for
more details.

Recall that a dynamical system, or a flow on a complete metric space X is a
family of continuous maps (S(t))t≥0 from X into itself (t should be thought of as the
time variable), such that for any point x ∈ X the trajectory t 
→ S(t)x is continuous
from [0,∞[ into X , and which enjoy the usual semigroup property:

S(0) = IdX , S(t + s) = S(t)S(s), ∀s, t ≥ 0.

A subset K of X is said to be invariant under the flow if for any point x0 ∈ K there
exists a curve x : R → K such that x(0) = x0, and

S(t)x(s) = x(t + s) for all t ≥ 0, s ∈ R.

This merely expresses the idea that the complete (i.e. for both positive and negative
times) orbit x(t) passing through x0 at time zero is defined and lies entirely in K.
Finally a Lyapunov function for the flow is a continuous real-valued function H defined
on X , such that for any x ∈ X the quantity Ḣ(x) defined by

Ḣ(x) := lim sup
t→0+

H(S(t)x) − H(x)
t

is nonpositive. Here the idea is to look at the time-derivative of H along the orbit,
and note that by taking the limsup we ensure that V decreases along the orbit,
without necessarily being differentiable. We may now state the simplest version of
the invariance principle:

Theorem 6.1. Let X be a complete metric space, and (S(t))t≥0 a flow on X, endowed
with a Lyapunov function H. Let E be the set of points of X where Ḣ vanishes, and
M be the largest invariant set contained in E. Let x0 be a point in X, and assume
that the positive orbit through x0 lies in a compact set of X. Then the conclusion is
that it approaches M for large times:

S(t)x0 → M as t → ∞.

In many applications the flow has an isolated equilibrium point x∗, which also is an
isolated zero of Ḣ , and which is stable in the sense that any orbit started in a certain
neighborhood V of x∗ remains in it. Considering the flow restricted to V and noting
that M = E = {x0}, the immediate conclusion is that all orbits that started in V
converge to x∗ for large times.

6.3. Final asymptotics: the H-Theorem for various agglomeration sys-
tems. Having seen that mass action kinetics is a dissipative mechanism, it is
natural to expect that the various systems presented above should have Lyapunov
functions. This is indeed the case, and we now give some of them. Starting with the
Becker-Döring system (2.6)(2.7), assume that the total mass ρ is less than the satu-
ration mass ρs defined by (3.4), so that a detailed balance equilibrium m = (mi)i≥1

defined by (3.1) exists (it is therefore unique). Setting

H(c) =
∞∑

i=1

ci(ln
ci

mi
− 1), (6.3)
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It is very easy to check that any solution to the Becker-Döring system satisfies

d

dt
H(c(t)) =

∞∑
i=1

(aicic1 − bi+1ci+1) ln
bi+1ci+1

aicic1
≤ 0.

This was used in [5] to infer that for large time:

ci(t) → mi.

This being only a qualitative conclusion, one may then ask about the rate of conver-
gence. It is quite well-known now that for many dissipative systems, some logarithmic
Sobolev inequality may be used to derive a Gronwall estimate for the entropy, which
then in turns yields a convergence rate. This is typically the case when the equilibrium
state is given by a Gaussian distribution, for which a logarithmic Sobolev inequality
is valid. Of course the Becker-Döring equilibria do not fall into that category, but it is
quite interesting to note that this scheme of proof was used successfully in [22], where
the authors obtain a rate for the convergence to the final state, by using a weaker
inequality.

The final state is somehow a trivial regime. However here an interesting thing
happens in the case where one imposes supersaturated initial data. Assume that the
saturation mass ρs defined by (3.4) is finite, and take initial data which are super-
saturated, that is with total mass ρ larger than ρs. In this situation the dissipation
is still present, but the total mass cannot be identified. More precisely if one knows
that there is convergence to some detailed balance equilibrium:

ci(t) → Qim
i
1 i = 1, · · ·,

then in order to identity the corresponding m1 one feels like using the string of equal-
ities

ρ = lim
t→∞

∞∑
i=1

ici(t) =
∞∑

i=1

i lim
t→∞ ci(t) =

∞∑
i=1

iQi(m1)i.

The keypoint here is that being on the circle of convergence prevents us from
inverting the pointwise limit and the infinite sum, hence the second of these equalities
is false, so that the knowledge of ρ is not sufficient to identify the selected value for
m1. What happens then is that the excess mass ρ − ρs runs away to infinity, and is
asymptotically lost; the precise convergence result may be found in [5], but suffice it
here to say that for supercritical data, the usual folklore exposed above on the heat
equation does not apply: knowledge of the conserved quantities is not sufficient to
identify the limit.

Let us now turn to the general abstract fragmentation-coagulation system (1.3).
Let us assume that a detailed balance equilibrium, i.e. an array m of concentrations
for which all reactions are turned off, exists. This means that m satisfies the infinite
set of relations:

ai,jmimj = bi,jmi+j , i, j = 1, · · ·∞
(note that the mere assumption that such an m exists places very severe restrictions
on the kinetic coefficients). Defining the entropy H by

H(t) =
∞∑

i=1

ci(t) log
ci

mi
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and using (4.2) with φi = log ci

mi
, we obtain:

dH

dt
=

1
2

∞∑
i=1

∞∑
j=1

ki,jmimj(log
ci+j

mi+j
− log

cicj

mimj
)(

cicj

mimj
− ci+j

mi+j
) ≤ 0.

Note that in fact, the Becker-Döring case is just a particular case of this one. In either
case, the physical meaning of the quantity H is that of free energy (recall the famous
relation in classical thermodynamics relating the chemical potential to the logarithm of
the concentration). Let us conclude this section with the Lifshitz-Slyozov system, for
which the Lyapunov function has a very different meaning. Starting from (2.9)(2.10)
we put

H(t) = 3
∫ ∞

0

x
2
3 f(t, x) dx + c(t)2.

It is then straightforward to check that

dK

dt
= −2

∫ ∞

0

x
−1
3 (1 − c(t)x

1
3 )2f(t, x) dx ≤ 0.

This fact was used in [10] to obtain information on the asymptotic behaviour of the
solution to (2.9)(2.10). The interesting thing here is the physical meaning of H :
recalling that x is the volume variable, the first integral represents the total area of
clusters. If the quadratic term were not present in the expression of H this would
exactly mean that the system tries to minimize its total area under the constraint
(2.10) of constant total volume; the term c2 should be thought of as a penalization
of the monomer-monomer interaction. Another indication of this fact is given in [14],
where it is shown that in order to go from the Becker-Döring system to the Lifshitz-
Slyozov system by changing scale, it is necessary to turn off the reaction

(1) + (1) → (2)

in the continuous limit, in order to avoid a singularity at small sizes (see [14] for
details).

6.4. Intermediate asymptotics and self-similar behaviour. As was
explained above, the Laplace transform provides explicit solutions when the initial
data have an easily computable Laplace Transform, and the kinetic coefficients are
homogeneous of degree α = 0, 1, or 2 (so that the Laplace Transform at time t
satisfies a Partial Differential Equation of order α, which can be explicitly integrated).
This raises the question of the stability of these solutions with respect to both the
initial data and the coefficients. If either the initial data or coefficients are slightly
perturbed, it is conjectured in the applied literature that the relevant self-similar
profile will continue to attract the solution for large time. Note that in the framework
of parabolic equations, such a stability result was proved by renormalising arguments
[7]. We are not aware however, of any rigorous proof of such a stability result for
agglomeration systems. Very recently, some results on the stability with respect to
initial data were obtained in [11], [2] and [27] for the cases α = 0, 1, 2. To give the
reader an idea of the results, let us give the precise statement in [27] for the case of
constant coefficients:
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Theorem 6.2. (Menon, Pego): Consider the solution µt to equation (4.5), with
constant coefficient k = 2. Define the size-biased distribution F by

F (x, t) :=
µt([0, x[)
µt([0,∞[)

.

Assume there exists a number ρ ∈]0, 1] and a function L slowly varying at ∞ such that
the initial mass of clusters smaller than x is equivalent to x1−ρL(x) as x approaches
infinity. Then there exists a rescaling factor λ(t) which strictly increases to infinity,
such that for any x:

F (t, λ(t)x) → Fρ(x) as t → ∞,

where Fρ is the Mittag-Leffler distribution (see [27] for the definition).
Similar results are available for the additive and multiplicative case.
This is in our opinion a major breakthrough in the rigorous study of intermediate

asymptotics for agglomeration; it is quite likely that the method of proof developed
in [27] (which of course uses the Laplace Transform in an essential way) will prove
fruitful in more general contexts.

7. Conclusion
The mathematical theory of these systems has been burgeoning over the past few

years, due to increasing recognition of the fact that:
• Obviously from the similarities between the involved interactions, many of

the mathematical tools that had been previously developed for classical (me-
chanical) kinetic theory could be used to good advantage in this context.

• The underlying stochasticity of the process involved when chemical species
react makes it very natural to view these evolutions as Markov processes.

• The striking analogy between the conjectured self-similar behaviour in coagu-
lating systems and the self similarity property of some heavy-tailed stochastic
processes cannot be fortuitous (in this connection, a decisive contribution was
made recently in [27]).

We have strived here to convey the main mathematical ideas that are relevant
to the field rather than expose state-of-the-art technical results. This paper being
introductory, it is incomplete by nature. In particular, a vast area of activity which
has not been touched upon here are the stochastic constructions which lead to these
(deterministic) models. The reason for this is twofold: first, it falls out of the domain
of competence of the author, and second, it is hard to improve upon the excellent
introduction in [1].

It is of course very easy to complicate the models presented above by including
other types of interaction, or new variables, or coupling them to some fluid-mechanical
model, or other, and it is quite likely that for a large number of these “new” models,
the classical techniques presented above would apply. If this could in some instances
(very few in the author’s opinion) be a worthwile exercise, one has to be very cautious
about the physical relevance of the outcome.

It is our belief that most of the interesting developments in this area will come
from an interplay between ideas from the theory of partial differential equations and
the theory of stochastic processes, and our hope that this paper may have served to
trigger the reader’s interest.
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[11] M. Deaconu and E. Tanré, Smoluchowski’s coagulation equation: probabilistic interpretation
of solutions for constant, additive and multiplicative kernels, Ann. Sc. Norm. Pisa Cl. Sci.,
XXIX(4):549–579, 2000.

[12] S. Hariz and J.F. Collet, A modified version of the Lifshitz-Slyozov model, Letters in Applied
Mathematics, 12:81–85, 1999.

[13] J.F. Collet, Quelques exemples de transitions de phase du premier ordre: les modèles
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