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Abstract: A new scheme of quantum analysis, namely a non-commutative calculus
of operator derivatives and integrals is introduced. This treats differentiation of an
operator-valued function with respect to the relevant operator in a Banach space.
In this new scheme, operator derivatives are expressed in terms of the relevant
operator and its inner derivation explicitly. Derivatives of hyperoperators are also
defined. Some possible applications of the present calculus to quantum statistical
physics are briefly discussed.

I. Introduction

In theoretical sciences, non-commutative operators play an important role. In par-
ticular, the differentiation of an operator A(t) with respect to the relevant parameter
t is frequently used. As is well known, the derivative of A(t) is defined by

/ ( t ) s ^ = l i m , ( U )
w dt h->o h v J

Norm convergence of (1.1) can be discussed in a Banach space and strong conver-
gence is appropriate for unbounded linear operators.

In many situations, we treat an operator-valued function f(A(t)) of the operator
A(t), such as an exponential operator [1-15] exp^4(/). Since the derivative A'(t)
does not commute with A(t) in general, the derivative of zxpA(t) is given by the
following integral [1, 3, 5]:

L e"«) = e*'> Je-"<V(f)e"<'><tt . (1.2)
at o

When A'(t) = dA(t)/dt commutes with A(t), we have

A(J
dt
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This may be interpreted formally as

dt dA(t) dt ' K ' '

Here

when A'(t) commutes with A(t). How about the general situation in which A'(t)
does not commute with A{t)l One of the motivations of the present paper is to
answer this question.

A simple-minded extension of the ordinary differentiation to the operator-valued
function f{A) might be given by

lim(f(A + dA) - f(A))(dAyl (1.6)
a A—*0

for a regular operator dA. However, the above limit is not unique but depends
on how dA approaches zero (operator), as is easily seen in the simple example
f(A)=A2, namely

lim ((A + dA)2 -A2)(dA)"1 =A+ lim {dA)A{dA)~x . (1.7)
AQ dAO

Clearly, the second term on the right-hand side of (1.7) is not unique. It turns
out that (1.5) can not be extended to the noncommutative case, if we restrict the
derivative df(A)/dA on an operator space. Thus, we have to consider differentiation
of an operator-valued function with respect to the relevant operator in an extended
space, namely a hyperoperator space.

II. Definition of Operator Derivative

We start with the Gateaux differential df(A) of f(A) as [1]

(2.,)

for h € C and for a fixed operator dA. When there exists a bounded linear mapping
<£ satisfying the relation

lim U/04+2*) - f(A) - &{B)\\ / ||£|| = 0 , (2.2)
a—•U

££ is called the Frechet derivative [1]. Eq. (1.2) is such an example. The differen-
tiation df(A)/dA of f(A) with respect to A in our quantum analysis will be repre-
sented by

^ df(A) = fl(A95A)'dA , (2.3)

where f\(A,dA) is expressed in terms of the relevant operator A and the inner
derivation SA. This is kind of Frechet derivative. Namely, the derivative df(A)/dA is
a hyperoperator [1], which maps an arbitrary operator dA to the derivation df(A)
defined by (2.1). However, the product structure of (2.3) is crucial in our calculus,
as will be seen later. Here we have used a simple notation A to express the left mul-
tiplication hyperoperator LA :X —> AX [1]. Note that the left multiplication hyper-
operator LA and inner derivation hyperoperator SA (defined in (2.5) below) commute
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with each other, namely SA9(A) • dA = 8A9(LA)*dA — Q{LA)&A *dA = g(A)dA • dA.
Throughout the paper we will not distinguish between LA and A. Since f(LA) =
L/(A) for any function / , no confusion arises in this way.

In the above simple example f(A) =A2, we have

dA2 = \im((A + hdA)2 -A2)/h = A-dA + (dA)-A = (2A-dA)-dA, (2.4)
h—•()

where the inner derivation dA is defined by

SA -Q = $A(Q) = [A,Q]=AQ-QA . (2.5)

Thus, the "operator derivative" of A2 is given by

d-^=lA-6A. (2.6)

The second term on the right-hand side of (2.6) denotes a new effect due to
the noncommutativity of A and dA. We try in the present paper to express the
operator derivative df(A)/dA only in terms of A and the inner derivation SA as
a hyperoperator f\(A,SA)9 explicitly, as in the example (2.6). This idea is ex-
tended also to higher derivatives and partial derivatives in the Banach algebra.
This is a new aspect of the present quantum analysis, in comparison with other
formulations [1],

III. Basic Formulas and Theorems

We consider first the differential dAn for a positive integer n, where A belongs to a
Banach space. According to the definition (2.1), we have

dAn = l i m JA

(3.1)

The limit in (3.1) is defined by the uniform topology in a Banach space. Therefore,
we obtain

^ 6 A ^ . (3.2)

This can be rewritten in a compact form using the following formulas.

Formula 1. We have

fy(A)g(A) = f(A)Sg(A) + g(A)Sf(A) ~ Sg(A)$f(A) • (3.3)

In particular, we have

= ASgiA) + (g(A) - ^A^SA . (3.4)

Using Eq. (3.4), we obtain the following formula by induction.

Formula 2. For a positive integer n, we have

SA»=An-(A-8A)n. (3.5)
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The proof is by induction. First we assume (3.5) for a positive integer n. Then,
using (3.4) we obtain

<W> = < W = A5An - SAnSA +An5A = An+X -(A- 8A)n+l , (3.6)

because [A,SA] = 0.
Thus, we arrive at the following formula.

Formula 3. For a positive integer n,

^ ? = ̂ . (3.7)

Here the notation 8^1 in (3.7) is rather formal. Since the numerator in (3.7)
contains SA, the quotient (3.7) is well defined after the cancellation of 8A and <5j\
The proof of Eq. (3.7) is easily given.

The above formula (3.5) can be extended to a more general form.

Formula 4. When f(x) is analytic for \x-a\ < b, we have

= f(A)-f(A-8A). (3.8)

This is valid for \\A — a\\ < b when 8/(A) is applied to the operator dA in the domain
9 defined by

9 = {dA; \\(A -a- SAfdA\\ < bn for all n e Z} . (3.9)

The proof is given as follows. First we expand f(x) in a power series (i.e., a
Taylor expansion):

/() ! > ( < &\)\a). (3.10)
B=0 n-

Then, we have

= E Cn\A-af = E CM4 - of - {A - a - SA)")
n=0 n=Q

= f(A)-f(A-5A). (3.11)

In general, we easily obtain the following formulas.

Formula 5. When f(A) and g(A) are differentiable, we have

d ( UA\ -L tAW

^(f(A) + g(A)) = + .

Formula 6. When f(A) and g(A) are differentiable, we have

•jfiifiA) • g(A)) = (g(A) - dg(A

Using formulas 3, 4, 5 and 6, we finally arrive at the following theorem.

Theorem I. When f(x) is analytic for \x - a\ < b, the derivative df(A)/dA exists
uniquely and it is given by
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for \\A — a|| < b. This is valid when it is applied to the operator dA in the domain
2 defined by (3.9). Equivalently, we have

dA. (3.15)

Proof of Theorem I. First we expand f(x) as a power series in the form (3.10).
Then, we obtain

dA dA n=0 dA

= £ *MA -of-{A-a- dAf)/5A
n=Q

= if (A) - f(A - SA))/5A = 3 fp (3.i6)

in the domain Of defined by (3.9). The convergence of (2.1) for f{A) satisfying the
condition in Theorem I is shown as

\\f(A + hdA)-f{A) f(A)-f(A-SA) II
Inn ; j 'dA\\

|| h 5A II

(/0(|M || + | | | | | | ) - M \ \ A -a\\)- \h\ • \\dA\\fx{\\A - a

^ 4 + 6\h\ • H^ll) = 0 (3.17)

for 0 < 6 < 1, using the Maclaurin-Taylor theorem. Here, {f}(x)} are defined by

which are convergent for |JC| < b.
It should be instructive to remark here the following theorem.

Theorem EL When the derivatives df(A)/dA and dA{t)jdt exist, we have

This is ahnost self-evident from Definition (2.2) with (2.1). Anyway, the proof
of (3.19) is easily given as follows. From the condition in (3.19), we may put

A(t + h) = A(t) + hA\t) + hR(h) , (3.20)

where
lim*(/0 = 0. (3.21)
h—>Q
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Then, we obtain

h))-f(A(t))
lim

= hm
A-»0

h

h(Af(t) + R(h))) - f(A(t))

df(A(t)) dA(t)
( )} = ~dkW'~dT• ( 3 2 2 )

Theorem II is practically very important, as is shown in the following quantum
analysis. Concerning the derivative of a function of an operator-valued function,
f(g(A))9 we have the following.

Theorem DL When the derivatives df(A)/dA and dg(A)/dA exist and are bounded,
we have

df(g(A)) = df(g(A))dg(A)
dA dg(A) dA ' y }

The proof is given as follows. From the conditions in Theorem III, we may
put

f{g + hdg) = f(g) + hf'(g) dg + hRf(h, dg) , (3.24)

and
g(A + hdA) = g(A) + hg\A)dA + hRg(h,dA) , (3.25)

where
lim Rf(h,dg) = 0 and limRg(h,dA) = 0 . (3.26)
h—•() h—>0

Then, we arrive at

II f(g(A + hdA)) - f(g(A)) df(g(A)) dg{A)
dA\\ Z\\f'(g(A))\\-\\R9(h,dA)\\

|| h dg(A) dA

+ \\Rf(h,g'(A)dA+Rg(h,dA))g'{A)dA +Rg(h,dA)\\ -» 0 as h -> 0 . (3.27)

Similarly we have the following.

Theorem IV. Let f~x(x) be the inverse function of f(x). When the derivativesf
df(A)/dA and df~\A)/dA exist, we have

( 3 . 2 8 )

This is easily derived by putting B = f~x(A) and by differentiating

f(B) = A, (3.29)

with the use of Theorem III and Formula 3 for n — 1.
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Furthermore, we have the following formulas 7 ~ 12, in a region wider than the
domain 2 in Theorem I.

Formula 7. We have

±A-* = -A-* + A-%-*. (3.30)

Formula 8. For any positive integer /?, we have

±A-» = -A-»(A-»-5A^A^. (3.31)

Formula 9. For a positive-definite operator A, we have

d \ogA—\o%(A —6A) &\OZA &\ogA A-\
— XogA = - = —r— = Z£—- -A
dA 5A dA 1 - e d***

= ^ ( - l o g ^ ) - ^ " 1 = -5/1 log(l -A~l5A), (3.32)
where

and J - 1 ( ^ ) = — ^ — . (3.33)
44

In deriving (3.32), we have used the following formula.

Formula 10. For a positive-definite operator A, we have

es*A = l-A8A-i and e " ^ = 1 -A~X6A . (3.34)

Formula 11. When 4̂ is a positive-definite operator, we have

*̂ — V^ — V^ — °A) )I°A — \£SL — °All2) \D.JJ)

aA

for ||̂ 4 — a\\ < a.
Formula 12. Using A(-A) in (3.33), we have

-^-QA =cAA(-A). (3.36)

Proof. From Theorem I, we have

d A , A
a/x

This formula can be also derived directly from (1.2) and Theorem II as

l
e = e j c A ( t ) d i = eA{A{t)) • A\t) , (3.38)

at 0

using the identity QSAB = eABc~A. Formula 12 will be used effectively in deriving
higher-order exponential product formulas using the quantum analysis [16].
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IV. Higher Derivatives

It is not straightforward to extend the above quantum analysis to higher deriva-
tives, because the first-order derivative df(A)/dA is a hyperoperator which maps
dA to df(A).

It is convenient to introduce a higher-level hyperoperator which maps a hyper-
operator df(A)/dA to another hyperoperator as

d2f(A) f(A + hdA) + f(A - hdA) - If (A)
~— : dA • a A — lim -z

dA2 * - o h2

= lim f{A + 2hdA) + f{A) ~ 2f{A + MA) (4 1
* o h2

In general, the /1th order derivative is defined as

(") <4'2>

By the above notation on the left-hand side of (4.2), we mean that dnf{A)/dAn is
a hyperoperator in the Banach algebra [1], which maps the set or product of the
operators dA dA to the limit on the right-hand side of (4.2). It is given
by a hyperoperator-valued function of the operator A and the inner derivations
^1),<5^2),...,<^l) which operate on each dA of the set dA-dA dA in this
order. Using the notation dA'dA dA = (dA)n, the inner derivations
are defined more explicitly by

: (dAf = (dAf-J • (SAdA) •

and
f(A):(dA)n=f(A)(dAr. (4.3)

These hyperoperators {$J } commute with each other and they are multi-linear
hyperoperators.

As in Sect. Ill, we may first study dnAk/dAn using Definition (4.2), and then we
may derive dnf(A)/dAn. However, this procedure is extremely complicated. We find
that an exponential operator eM is the most basic in quantum analysis. We should
explain this remark later. Thus, we derive first the /1th derivative dnetA/dAn and
then we calculate dnAk/dAn through the formula

The /1th derivative dnf(A)/dAn of a general operator-valued function f(A) will be
obtained using the Laplace transformation and the derivative dn etA/dAn

9 as will be
discussed later explicitly. An alternative definition of higher-order derivatives will
be given as follows.

Alternative definition of the derivatives {df(A)ldAH}. The rP derivative dnf(A)/
dAn is defined by

^ ^ B " ( 4-5 )

in the present representation.
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The proof of the equivalence of the two definitions (4.2) and (4.5) is almost
evident. Namely, if we expand f(A + xB) as

f(A + xB) = J2 ^ f*(A) : Bn , (4.6)

then we find easily

using Definition (4.2). This is because the formal structure of (4.5) is the same as
the ordinary Taylor expansion

^ (4.8)

An ordinary operator Taylor expansion is given in the form [1, 4]:

z, (4.9)
c z-A\ z-A

where Jc denotes an anti-clockwise integration around the path C. However, this
formula contains the operator B in many intermediate places and consequently it is
different from our required multiplication form (4.5).

(i) General method for higher derivatives. Now we study the derivative of ttA with
respect to the operator A. From the above definition, we have

" • ( 4 1 0 )

On the other hand, we have the following Feynman expansion:

B(tn), (4.11)
«=1 0 0 0

W h e r e B(t) = e"ABetA = e-*A • B . (4.12)

Thus, we obtain the following formula. Hereafter we make the following abbrevia-
tion: 8^ = Sj for a fixed operator A.

Formula 13. We have

*=n\etAfdtlJdt2-. J dtnt-**-"-^ . (4.13)
aA 0 0 0

Formula 14. In particular, we have

- 1 - = e
M / Q~tlSl dt\ = eM ( — ^ — - J, (4.14a)

dA Q \ d\ )
and

dAL

(4.14b)
V <M2 {61+82)82 ) '
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In order to find an explicit expression of dn etA/dAn, we introduce the following
function:

Sn({xj};t) = ]dtx )dt2 • • • 7 ' A » e - ^ - ^ " - « * . (4.15)
0 0 0

Then, we have the following formula.

Formula 15. The function Sn({xj};t) is given by

Sn({xj};t)

1
X\(X\ +X2)(X\

e(xut)
X\X2(X2 + *3)(X2 + *3 + *4) * * * (*2 + •

e{X\ +X2,t)
+X4

+x2 -fx3)(x2 4-*3)*3*4(*4 4-x5)(x4 +x5 +x6)- • -(x4 -h

(*1 +X2 + '-+Xn)(x2 + '--+Xn)(X3 + --+Xn)-'(xn-{ +Xn)xn '

(4.16)

under the condition that JC,, +Xj2-\ 1 -^+0 for any set71,72,...,7* of 1,2,...,n,
where e(x,t) is defined by

= e" t t . (4.17)

For example, we have

S\(x\;t) = , (4.18a)

s2{XuX2;t) = _ _ L _ ^ _ f ^ £ l + f(fL±^£), (4.18b)
X(X+X2) XXX2 (X+X)X

and

+x2)(xi +x2

) e(xl+x2+X3,t)
+x2)x2x3 (xi +x2 +X3)(x2 +x3)x3



Quantum Analysis - Non-Commutative Differential and Integral Calculi 349

The proof of Formula 15 is given by mathematical induction as follows. If we
assume Eq. (4.16) for n, then we obtain

e(xut)
X\x2(x2 + x3)- • -(x2 H \-xn+i)

(X\ +X2-\ +*n+l)(*2 + )r Xn+\) - -Xn+\ '
(4.19)

Here, Mn+i(xi9x29...9xn+\) is defined by

Mn+1 (x i, x2,..., xn+1)

_ 1

* (x2 H \-xn+

1

(Xi +X2)X2X3(X3 +X4)(X3 +X4 +X5)'

-h

(4.20)

Now, we have the following relation.

Formula 16. The function AfB+i({x/-}) defined by (4.20) is reducible to the following
expression:

}) <4 2 1>
Xl(Xl+X2)iXl+X2+X3)...(Xl+X2 + .

This is also easily derived by mathematical induction. Now we put

Pn({xj}) = Mn({xj}) - \ - — . (4.22)
X\(X\ +X2)'-(X\-\ \-Xn)

If we assume Pn({xj}) — 0 for any {JC,}, then we obtain

(xi + x2 + • • •+xH+i}PH+i({xj})

0. (4.23)

This yields the proof of Formula 16. Therefore we finally arrive at Formula 15.
Using Formula 15, we obtain the following result.

Theorem V. For any positive integer n, we have

; 0 , (4.24)

where Sn({xj};t) is given by (4.16) and Sj = 5{
A

j) is defined by (4.3).
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The proof is evident from Formula 13 and Eq. (4.15).
Then, the derivative of An is given in the following.

Formula 17. For any positive integer n, we have

dnAk dnAn

^r=0 for k<n, ^jr=»!, (4.25a)

and
dnAk \dk

 fA 1
—— = n! —cieuSni{Sj}; t)) fork>n. (4.25b)
dA Idr ]t=0

It will be instructive to give a simple example of Formula 17, namely

d2A3

— 2 = 2(3A -281-62), (4.26a)
dA

or equivalently

d2A3j :dA-dA = 6AdA • dA - 4{5A • dA). dA - 2dA • (8A . rf^) . (4.26b)

It should be remarked here that the higher-derivatives are linear, namely we have
the following formula.

Formula 18. If f(A) and g{A) are n-times differentiable with respect to A, then we
have

—n{f{A) + g(A)) = gp + ^ . (4.27)

Now we derive the rfi1 derivative of a general operator-valued function f{A).
For this purpose, we make use of the inverse Laplace transformation

f(x) = T̂ -T **rfis)e*ds . (4.28)
2 n i a-/oo

Formally, we have

/ ^ ^ / 4 (4.29)
x—ioo

From Formula 15, the factor esASn({Sj};s) in (4.29) is rewritten in the form

esASn({6j};s) = E**,ki{Sj})e*p(sA-sbki{8,})) (4.30)
A:

with bk = Si + <52 + • • • + h and an,0 = Mw({^

Sk)(S2 + • • • + Sk) • • • i ^ + i ( ^ + i
(4.31a)
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for 1 ^ k ^ n - 1, and

Then, using the inverse Laplace transformation, we arrive at the following.

Theorem VI. If f{x) has a Laplace transform, then we have

—T~Jn— = "• Ylan k{{^j})f{A ~ ^*({<^'})) (4-32)
dA k

with aHtk({Sj}) and bk({Sj}) given by (4.31a) and (4.31b).

For example, we obtain Theorem I for n = 1, and the following generalized
formulas.

Formula 19. When f(x) has a Laplace transform, we have

Ol f/04) - fiA - <*i) f(A) ~ f(A - (^i + ^2))1 (A ~~ v

~J£- = 2! I —* ,* , ^ ^ 1 > (4-33a)
and

d3f(A) = 3! \f(4) - f(4 ~ Si) f(A) - f(A - (5! -f d2))
dA3 '[ Sihih + k) (81+62)8263

These formulas are derived immediately from Eqs. (4.18) and (4.18). Higher-
order derivatives for n ^ 4 are also easily obtained from Formula 15.

(ii) Direct method for deriving higher derivatives. It will be instructive to explain
here a direct method for deriving successively higher derivatives such as d2An/dA2

and d3An/dA3 for a positive integer /i, using lower derivatives such as dAn/dA and
d2An/dA2, respectively.

First we remark here the following general scheme.

Formula 20 (Direct general scheme). When the differential dnf{A) is given in the
form

dnf{A) = £gj(A)hj({5k}) : (dAf , (4.34)
j

we have

d«+lf{A) = Z {{dgj(A))hj({dk}) + gj(A)d(hj{Sk})} • (dA)n) . (4.35)
j

Here, </Ay({<5*}) can be calculated using the relation

S2):dA-dA (4.36)
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with MSuh) = 0, /2(<5i,<52) = d2 - <5, and

= («2 - *) £ ((*) - l) f̂-1 -̂*-1 • (4-37)

The formula (4.35) is evident from the definition of higher differentials. The
proof of (4.36) is given by the mathematical induction method as follows. If we
assume (4.36) with (4.37), then we obtain

d(S%+l) * d A = (d3A)• iiidA) + dA{d(6j • dA)) . (4.38)

Here we note that

{dSAy 62(dA) = bdA . 4J(A4) = dA • ̂ "(iM) - 52{dA) • ^

= (̂ 2 -8?):dA-dA, (4.39)

and

&(</(# • dA)) = fn(8l9S2)8A(dA • ii4)

= fn(Sud2)(A(dA-dA) - (dA-dA)A)

= WuhX&i + h) :dA-dA, (4.40)

using the relation

(dA • dA)A = dA • (AdA - SA(dA))

= A(dA • dA) - &(A4) -dA-dA- SA(dA) . (4.41)

Thus, we obtain the recursion equation

/*+i(<5i,<52) = 052" - 5?) + (Sx + 52)fn(5u82) (4.42)

with f 1(81,62) = 0. The solution of (4.42) is easily shown to be given by (4.37)
for / !+ 1.

For example, the derivation d2An is calculated directly from dAn
9 using

Formula 20 as follows.
We start from formula (3.8), namely

dAn = (An -(A- 8A)n)8jl • <£4 . (4.43)

Using Formula 20, we have

d2An =Z(-\)k
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Here we have used (4.43) and (4.36) to calculate dAn~k and db\~x • dA in (4.44).
The above formula (4.44) is also obtained from the general formula (4.32), as it
should be. Similarly we can calculate dkAn and dkf(A) in this direct method, using
the following formula.

Formula 21. For a product dA dA of n elements {dA}, we have

SA : d A - - - d A = (5{ + d2 + • • + d n ) : d A - d A - - - d A . (4.45)
n n

This is easily derived recursively from the relation

SA:dA-dA dA = (SAdA)-dA dA + dA • SA(dA dA) . (4.46)

In fact, the higher-derivative dnf(A)/dAn can be derived formally using the
above direct method as follows. Now we start with Theorem I, namely

SA(df(A)) = Sf(AydA. (4.47)

Differentiating both sides of (4.47), we obtain

SA(d2f(A)) = Sdf{A) • dA = -SdA(df(A)) . (4.48)

Here we have used the relations that d(SAQ) = S<uQ + faidQ) and d2A = 0. Thus,
we arrive at the relation

5A(d2f(A)) = -2SdA(df(A)) = 2SdAA) • dA . (4.49)

Differentiating both sides of (4.49) again, we obtain

SA(d3f(A)) = 3Sd2AA) • dA . (4.50)

By mathematical induction, we obtain the following.

Theorem VII. When f(x) is analytic for \x - a\ < 6, the «* differential dnf(A)
satisfies the following recursive relation:

SA(dnf(A)) = nSdn-if{A). dA (4.51)

in the domain 3 defined by (3.11). More explicitly, dnf{A) = n\(-S~lSdA)nf(A)9
namely

: {dAf = « [ ^ S ^ : (dAf-\dAJ , (4.52)
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or equivalently

(4.53)
for MA,6u...,8H) = dnf{A)/dA\

Equation (4.53) in Theorem VII is derived using the following formula.

Formula 22. When f(x9y\9...9yn-\) is a convergent power series of x and {}>,},
the following relation holds:

(4.54)

This formula is easily derived from the following relation:

dA -Am = Am • dA - 5Am . dA

= Am-dA- (Am -(A- 5i)m)-dA = (A- 8x)
m-dA (4.55)

for any positive integer m.
Note that the right-hand side of (4.53) contains the factor (5\-\ h 6n\ as is

easily seen recursively. Then, it can be divided by hyperoperator (5\-\ \-$n)-
Thus, we arrive at the following convenient recursive formula on higher-derivatives.

Formula 23. The /1th derivative fn(A9S\9...9Sn) is given by the following recursive
formula:

(4.56)
°\ o

and

fn+i(A9S\9...9dn+\) = — (fn(A9S\9...,dn) — fn(A9d\9...95n-\95n
On+l

(4.57)

This is easily derived from Theorem VII, using Formula 16. This recursive
formula gives again the explicit higher-derivatives (4.32) and Formula 19, as is
easily confirmed.

(in) Higher derivatives of hyperoperators. Here we introduce a derivation of the
hyperoperator / ( & ) as follows.

Formula 24. We have

. dA = (fMm+v _ f(s2)m+s2)\ :dAdA

The validity of this formula is easily confirmed from Eq. (4.36) with (4.37). Sim-
ilarly, we can define the derivation of any hyperoperator of the form f(A9 S\9...9S»).
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Using these derivatives of hyperoperators, we can derive again formula (4.31) and
Formula 19.

(iv) Operator Taylor expansion. Using the above higher-derivatives dnf(A)/dAn,
we obtain the following Taylor expansion.

Theorem VIII (Operator expansion theorem). When f(x) is analytic for \x — a\< b,
f(A + xB) is expanded as

f(A+xB) = E -77 ^«=o n\ dA B=o

= f(A) + £ Jt" fdtifdt2- J dtnpn\A - t\d\ tndn) : Bn

n=l 0 0 0
(4.59)

in the domain 3 defined by (3.11). Here, f{n\x) denotes the »* derivative of f(x).
The above operator expansion (4.59) is also formally obtained from the resolvent

expansion formula (4.9) as follows:

dA" 2ni r z — J

(4.60)

Here we have used the commutation relations

B BB
z-A

2

:B-B, (4.61)

(B_L.X =
V z-Aj (z-

Thus, we arrive at the formula

d^(A)=n}_f m
dA" 2 n i J

c ( z - A ) ( z - A + 8 x ) - - ( z - A + 5i + - - S n ) ' y' }

By mathematical induction, we can derive (4.59) from the above formula (4.62).
Although this derivation is much simpler, the previous elementary derivation using
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the Feynman formula is more transparent for understanding the structure of higher-
order derivatives, as already shown.

(v) Higher derivations with respect to a parameter. The above formulas can be
applied to an operator-valued function f(A(t)) of A(t) with a parameter /. It is easy
to derive the following theorem.

Theorem IX. If f(A) and A(t) are n-times differentiate with respect to A and ty

respectively, then we have

d2f(A(t)) = d2f(A(t)) m dA(t) dA(t) df(A(t)) d2A(t)
dt2 dA(t? ' dt ' dt dA(t) * dt2 '

d3f(A(t)) _ d\A(t)) dA(t) dA(t) dA(t)
dt3 ~ dA(t? ' dt * dt dt

d2f(A(t)) m dA(t) d2A(t) d2fA(t) m d2A(t) dA(t)
dA{tf ' dt ' dt2 dA{tf ' dt2 ' dt

For a general positive integer n, we have the following recursive formula.
If we put

dnf(A(t))

dA{ty

with k\ + ki H \-ks = n, then we have

dsf(A(t)) m d*A(t) dk*A{t) dk<A{t)

dA{ty * dt* ' dtk> dt- { }

dt°+} £

ds+xf(A{t)) dA(t) dk'A(t) dk'A(t)
X dA(ty+l : ~dt dtkl dtk*

+ E E E cn(kuk2,...,ks)

w d*f{A{t)) , d*A(t) dkJ+iA(t) dk'A{t)

When all the quantities A(t\A(l\t),...9 and A{n)(t) commute with each other,
these formulas reduce to Bell's polynomials concerning ordinary derivatives. They
will be useful in practical applications.
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V. Partial Differentiation for Multivariate Functions

In the present section, we discuss partial derivatives of an operator-valued function
of several variables, for example, f(A,B). The derivation df(AyB) is defined as

The differential of f({Aj}) is defined similarly as

df({Aj}) = lim l-m{Aj + hdAj}) - f({Aj})]. (5.2)

Then the partial derivative df({Aj})/dAk is defined in

(5.3)

The partial derivative df/dAk is a hyperoperator which maps the operator dAk to the
derivation for dAj = 0(y =(=£) and which is expressed in terms of {Aj} and {S^}.
We have the following.

Theorem X. If there exist the partial derivatives {df({Aj})/dAk} for all k, then
we have

The proof is quite similar to that of Theorem II.
Now we have the following formula.

Formula 25. If f(A,B) and g(A,B) are partially differentiable with respect to both
A and B9 then we have

+ (g(A,B) - < W ) ) ^ g ^ - (5-5)

and a similar formula holds for the partial derivative with respect to B.
The proof is given as follows:
d ( f(A Kn<A nw AA lim / ( ^ + hdA9B)g(A + hdA,B) - f(A,B)g(A,B)—(f(A9B)g(A,B)) • dA = lim(f(A9B)g(A,B)) dA = lim

namely ~ a a

> /|+(9-«|. (5.7,

Now we introduce a tilde hyperoperator / of any operator / as

Aj = A,=4-fy, (fgf=gf, (cfj=cf, (f + g)~=f + g (5.8)
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for any number c and any operators / and g. Then, we can easily derive the
following formulas on the tilde hyperoperator / .

Formula 26. When / = f({Aj}) is a convergent noncommutative power series of
{Aj}9 we have

Qf = CfQ) = hQ) (5.9)
for any operator Q.

The proof is easily given using the rule (5.8) by extending the procedure (4.55).

Formula 27. When f({Aj}) and g({Aj}) are convergent noncommutative power
series of {Aj}9 we have the following commutation relation:

(5.10)

for any operator Q.
The proof is given as

fg(Q) = fQg = (fQ)g = g(fQ) (5 . i i )

for any operator Q, using Formula 26.
Furthermore, we have the following relation.

Formula 28. When / = f({Aj}) is a convergent noncommutative power series of
{Aj}, we have

&f = f-f- (5.12)

This expression is immediately obtained from Formula 26 and is an extension
of Formula 4. Now we may regard the expression / = / — df as a definition of /
instead of the construction rule (5.8).

In general, we have the following formula concerning the multiproduct f\({Aj})

Formula 29. If {fj({Ak})} are partially differentiable with respect to A^9 then
we have

t j n n , j+l ( | £ ) (5-13)

The derivation of Formula 29 is easily given by using Formula 26. The order
of the operator functions is crucial in (5.13).

We have also the following formula.

Formula 30. If f{{Aj}\ g({Aj}) and h({Aj}) are partially differentiable, then
we have

This is easily derived as in Theorem III.
It is also interesting to remark the following theorem.
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Theorem XI. If f({Aj}) is partially differentiable with respect to all {A,}, then we
have

d/gA})
fa • (5.15)

The proof is given using the mathematical induction method as follows. We
assume that

(5.16)

for any polynomial fn({Aj}) of order n. Now, similarly to Formula 1 we note first
that

Then, using assumption (5.16) we obtain

-Tjfy + fnfa ~ ifmfa

d(Akfn)

< 5 , 8 )
j OAj

for any k, where fn — fn({Aj}). Thus, we arrive at the relation

* • (5-1

Therefore, we obtain formula (5.15) for any operator-valued function f({Aj}) that
can be expressed in a non-commuting power series of the operator polynomials

j
Now we consider explicitly the partial derivative of f({Aj}).

Formula 31. When f({Aj}) is expressed as a convergent noncommutative power
series of {Aj}, namely

we have

This formula is easily confirmed using Formulas 26 or 29.
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In order to obtain a more convenient formal expression of partial derivatives,
we introduce here the following partial inner derivation:

Here, SQ^ denotes taking the commutation relation only with respect to the opera-
tor Ak. For example,

SQ.k • (AkAjA2
k) = [Q,Ak]AjA2

k + AkAj[Q,A2
k] (5.23)

for j+k. Using this partial inner derivation, we find the following formula.

Formula 32.

In order to formulate higher derivatives of f({Aj}), we introduce here an ordered
partial inner derivation dBhBk^Bm\AjyAk,...,Am which is a linear hyperoperator to map
any operator of the form f\(Aj\)f2(Aj2) • • • fn(Ajn) as

= £

k)• • • [Bm,fkm(Am)]S(jkm,m) • • • fm(AJm) . (5.25)

For example,

dBuB2-AuAMiA^2) =AfAq
2[A

r
l9Bl][A

s
29B2] + [Af.BxlAlA'dAiM]

+ [A>9Bl][A
9
29B2\A

r
lA'2. (5.26)

Here, 5(j,k) denotes the Kronecker delta function. Using this ordered partial inner
derivation, the /1th order differential

J L J M d A h •dAh dAh , (5.27)

is defined by
dJiJir-J. = d5-^dAh^dAjn-Ah^Ajn • (5'28>

Here, we have assumed that the set C/i,./2,-••,./«) contains the figures 1,2,...,#,
n\ times, n2 times, ...nq times, respectively. Now, we have the following operator
Taylor expansion formula:

Formula 33.

n=0 ji,-..Jn

J!JZ^JM' i W -Bh Bj. . (5-29)

where the hyperoperators {dtj} are defined by

Sij : Bj, Bj,=Bh (-SAjBJt) Bh . (5.30)
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The hyperoperators dy and du commute with each other for £#=/. The above formula
(5.29) is an extension of Eq. (4.59), namely

f(A +xB) = gjf{-S?5Byf{A) • (531)
n=0

VI. Operator Integral and Differential Equation

(i) Integral It is convenient to define an integral of f(A) with respect to A as

h dA(t)
Jf(A)-dA = J f(A).dA = fAA(t))--^dt. (6.1)
C A(t0) t0

 a t

Here, the notation Jc denotes an integration along the path from A(to) to A(t\) with
some appropriate parameter t. In many cases, f{A) may be a hyperoperator which
maps dA(t)/dt to another operator.

For example, we have
/ e'AA(A) • dA = -e~A + constant, (6.2)

which corresponds to an indefinite integral in the ordinary function space. In general,
we have the following.

Theorem XII. When / (JC) is analytic for \x — a\ < b, then we have

J $6*1. dA = f ^P-'dA = /04) + constant. (6.3)
OA dA

This is easily seen from Theorem I.

(ii) Operator equations and differential operator-equations. We consider here the
following type of operator equation:

f(X(t)9{Aj(t)}) = 0. (6.4)
It is not easy to solve for X(t\ because of the noncommutativity of X(t) and
{Aj(t)}. Thus, we propose here a new method based on the quantum analysis. First
we differentiate (6.4) to get

dX{t) dt +^SAj{t) dt

Then, we obtain

dt \dX(t)J ydAj(t)' dt '

This nonlinear differential equation is convenient to solve perturbationally for X(t).

(Hi) Exact differential operator-equations. Similarly to an ordinary total differential
equation, we consider the following total differential operator-equation:

df({Aj}) = 0. (6.7)
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Then, the solution of (6.7) is given by /({j4/})=constant. Noting that dAdB^
dBdA, we obtain the following.

Theorem XIII. A differential operator-equation of the form

£fk({Aj})-dAk = 0 (6.8)

is an exact differential equation of the form (6.7), if and only if

^ - ( / * • dAk) • dAj = £-ifj • dAj) • dAk (6.9)

for all j and k. The general solution of (6.17) is given by

£ / c (6.10)

with some constant c and constant operators {Aj(0)}.

When the above condition (6.9) is not satisfied, an integrating factor may be
multiplied to (6.8) in order to reduce it possibly to an exact differential operator-
equation of the form (6.7).

VII. Concluding Remarks

The convergence proof of the formulas in the present paper for unbounded operators
can be studied using the strong norm convergence. For example, we have to show

= 0 (7.1)lim J v ' v '—^-^ - ¥-*-+ -dA)\l/
h-+o \\\ h dA ' r

for i// e 2 with some appropriate domain 2 in a Hilbert space. However, this kind
of proof is too mathematical to discuss here. Some preliminary convergence proofs
on higher-order exponential product formulas for unbounded operators have been
reported by the present author [17].

The quantum analysis will be useful for studying exponential product formu-
las [8-14,16], the nonequilibrium statistical operator [18-20] and the geometry of
canonical correlations on the state space of a quantum system [15].
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Added in proof. Recently it has been proven that the quantum derivatives {dnf(A)/dAn} are
invariant for any choice of definitions of the differential df(A) satisfying the Leibniz rule and
the linearity (M. Suzuki, J. Math. Phys.).
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