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Abstract: An elliptic analogue of the g deformed Knizhnik-Zamolodchikov
equations is introduced. A solution is given in the form of a Jackson-type inte-
gral of Bethe vectors of the XYZ-type spin chains.

Introduction

In this paper we introduce a holonomic system of difference equations associated
to elliptic R matrices and give its solution in the form of a Jackson-type integral,
following Reshetikhin’s idea [R] for the trigonometric R matrices.

Reshetikhin constructed a solution to the g-deformed Knizhnik—Zamolodchikov
equations [FR] by a Jackson-type integration of Bethe vectors of the XXZ-type spin
chain models. Matsuo [Ma] also found the same kind of formulae from a different
viewpoint.

On the other hand, the Bethe Ansatz method for the spin chain models associated
to the elliptic R matrices has been studied since Baxter [B]. Hence a natural question
is how to find an elliptic version of Reshetikhin’s approach to the g-KZ equation.
It turns out that the argument in [R] can be carried out for the elliptic R matrices
as well, except for one point. In contrast to the trigonometric case, an elliptic spin
chain model does not have a unique vacuum vector in its local state space but a
series of “pseudo-vacua” which depend non-trivially on a spectral parameter. This
dependence breaks down naive analogy.

We overcome this difficulty by introducing a “space of Bethe vectors” and a
boundary operator which shifts a spectral parameter.

In the vertex picture the linear space of Bethe vectors depends on spectral pa-
rameters. Therefore we have to use the IRF picture in order to interpret the system
as a holonomic matrix difference system in the sense of Aomoto [A]. In this con-
text, our system is described in terms of representation of Felder’s elliptic quantum
groups [F].

*Present address: Department of Mathematics, The University of California, Berkeley, CA94720,
U.S.A. (till August 1997). Fax: +1-510-642-8204.
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This paper is organized as follows. In the first section we recall several facts
related to the elliptic R matrices and introduce a space of Bethe vectors and a
boundary operator. We define a system of difference equations in the next section
and show its holonomicity. The third section is devoted to construction of a solution
of this system by a Jackson-type integral of Bethe vectors.

1. Space of Bethe Vectors

In this section we define a space of Bethe vectors of an elliptic spin chain and
linear operators acting on this space. The state space J# of a finite XYZ-type spin
chain is defined to be a tensor product of the local state spaces:

H=Vierhte. ...V, (1.1)

where V% (j =1,...,N) are the spin / ; representation spaces of the Sklyanin alge-
bra. (See Appendix A for a review of the Sklyanin algebra and its representations.)
We will introduce a direct sum of subspaces of »# depending on spectral parameters
which we will call a space of Bethe vectors. On this subspace act not only the R
matrices but also a boundary operator which shifts the spectral parameters.

We assume that the parameter # which determines the structure constants of the
Sklyanin algebra is a rational number, n = #//r. This assumption is necessary to
consider analytic solutions of the system later.

Space of Bethe vectors. Baxter [B] introduced vectors which intertwine vertex-type
Boltzmann weight of the eight-vertex model and IRF-type Boltzmann weight. They
are generalized to higher spin cases. (cf. [DJKMO], [T1]!)

Definition 1.1. An (outgoing) intertwining vector, ¢\, (u), is a vector in the spin
[ representation space V' = @3{,‘“ of the Sklyanin algebra, defined by:

l 1
&2 (w) = ¢, (w3 »)
I4+m

,1__
= 1 610 (y+—2—“+(21—1—1)n) 010 (y—
Jj=1

A—u

—(21'—1—1)'1)

AM4u

= A+ .
<1 1o (y+ 52 4i=1= 1) 000 (-

Jj=1

-@2j-1= l)ﬂ) » (1.2)

where A, ' are parameters satisfying A — 2’ =4mn,m e {—1,—1+1,...,1}, and u
is a complex parameter called a spectral parameter. We call

o () = ¢, 41y(®) (1.3)
a local pseudo-vacuum.
It is easy to see that generically {¢iiamn,i(4)}m=—1,—14+1,.2 is a basis of v

Graphically an intertwining vector is denoted as in Fig. 1.

IThe normalization in previous papers [T1] by the author has been improved. Several complicated
factors are absent now. Vectors ¢, ,/(u) in those papers correspond to ¢/ ;(u) in the present paper.
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Fig. 1. An outgoing intertwining vector ¢, ;,(u)

Definition 1.2. 4 path vector is a vector in 3# defined as follows:

7 ) (k) ()
a0, a1,...,an; 21,25 4) == @5 (21) ® 937 (22) ® - ®@ ¢, (2w) ,

AN-1,AN
(1.4)
where ag,ay,...,ay are integers, satisfying the admissibility condition,
aj_| —aj € {-25,-25+2,...,2[; - 2,2[;}, (1.5)

o o
z;’s are complex parameters, A, = A + 2ann and A is a fixed parameter which we
omit hereafter unless necessary. We call a path vector

erll ..... IN(ZI,--"ZN) = |aOaala--~,aN;zl,---,ZN>
= 0l (21)®0l(z)® - @l (av) (1.6)

withay=a, aj=a+2(lL+---+1;), 4= j + 2a;n, a (global) pseudo-vacuum.

We often denote Q¥ (zy,...,zy) by Qu(z1,...,2x5) for simplicity.
Since n = r//r is a rational number,

|a0 +ra +r,...,an +r;z;,...,zN) = |ao,a1,...,aN;zl,...,zN) . (1.7)

because of the periodicity of theta functions.

A graphical notation for a path vector |ag,ai,...,an;z21,...,2y) is shown in
Fig. 2. Though we should write 4, in this figure instead of a, for the consistency
with Fig. 1, we use a, for later convenience.

Definition 1.3. The space of Bethe vectors B!~!¥ with spectral parameters 7' =
(z1,22,...,2N) is a space of functions

fZZ>v— f(v)E K
of the form

r—1

f(v)= 2 ezmv"z, <Pa'|ao,al,---,an;zl,---,ZN) s

a=0

where @z are complex numbers and sequences of integers d = (ag,ay,...,ay) sat-
isfy ap = ay = a and the admissibility condition (1.5). (¢f. (1.7).)
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ao a1 a2 aGN-2 GN~-1 aN
21 22 ZN-1 ZN
Fig. 2. Path vector |ag,ay,...,aN;21,-..,2N)
Generically,
— . a=ay=ac{0,...,r—1},
{e2 a0, - ax3 21, ’ZN) (ao,...,ay) satisfies (1.5). (1.8)

is a basis of B/i~¥ Thus

dim B/ — r dim (weight zero space of #' ® ... ® W), (1.9)

§ PYoY ZN

where W' are the spin / (i.e., (2] + 1)-dimensional) irreducible representations of
the Lie algebra si/(2, C).

Remark 1.4. When 7 is not a rational number (or, exactly speaking, not a point
of finite order on the elliptic curve €/Z + tZ), the sum should be taken over all

a € Z and v is a continuous parameter. The sum might be considered as a formal
series.

R matrices. Elliptic R matrices R = R*" () acting on the space ¥’ ® V' are con-
structed by means of the fusion procedure (cf. [Ch, DJKMO, HZ, T2]). We recall
the following most important properties and refer details to [T2].

(i) R""(u) is a linear endomorphism of ¥’ ® V'’ meromorphically depending
on a complex parameter u (Fig. 3).
(ii) Yang—Baxter equation.

RI’ 14 11" 1
2 @ —22)R13 (= "7-3)Rz3 (z2 —23)
i 2,1 LI
=Ry;" (22— 23)Ry3 (21 — z3)RY, (21 — 22) (1.10)

as an endomorphism of V' ®@ V! @ V! (Fig. 4).
(iii) Unitarity.
RE (u = 0)RS; (v — u) = 1dpugyr (1.11)
as an endomorphism of V' ® v’ (Fig. 5).
(iv) R%" () acts on the intertwining vectors as follows:

AN
won|®

R -0 s 80 =S (5§ |u-0) 60w 600, 12
l‘,
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v vt

22 21

Fig. 3. R matrix RY' (2 — ;)

Vl VI: Vlll V‘ Vll Vln

23 22 2 23 22 2

Fig. 4. Yang—Baxter equation

’

v vt vt vt

e
<
3
<

Fig. 5. Unitarity
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where the sum on the right-hand side is taken over y’ satisfying y’ — u = 4mn (m €
{-L,-1+1,...,1}) and A—p/ =4m'n (me {-I',—I' +1,...,1'}). Scalar factors
W are the Boltzmann weights of the IRF-type model. (Fig. 6. In the figure W is
denoted by a crossing of dashed lines.)

Thanks to (iv), the R matrix defines a map between the spaces of Bethe vectors:

> — . ot sl 1ndn [ FROW P /Y
R;j1(zj = zj4+1) := B j41R;, j41(2j — 2j11) 1 B2 2 700 m 02w — Bz itz 5
(1.13)

where P j,; is a permutation operator of the Jj® and the (j+ 1)® component of
the tensor product V' ® --- ® V. With respect to the basis (1.8), the R matrix
is described by the IRF-type Boltzmann weight, and thus by a representation of
Felder’s elliptic quantum group [F]. For our purpose, the following special cases of
(1.12) are important.

When both ¢{,(v) and ¢§’,',L(u) are local pseudo-vacua (1.3), i.e., when A’ =
A+4in and u = A’ +4l'n, Eq. (1.12) is simply

R""(u - v)wf{)(u) ® wﬁ'_’,‘h’(v) = wf{l“,,,(u) ® wg.' )(v) . (1.14)

When / = 1/2, the R matrix R'/?/ is expressed as the L operator (A.4) through
the identification (A.9):

011(2n) 3 0uCnWa(u+n)
RY21 () = 1 9 — a * ® oP(5%) .
= s @+ Dm” “EFD =25 wr@irom” 27 )
(1.15)
In particular, RY>2(u) is proportional to Baxter’s R matrix (A.5). Likewise the
intertwining vectors ¢%22"(u) correspond to the following vectors in C2:
—001((A £ u)/2;7/2
B =) =C (@ £0)25/2) ) (1.16)
" Boo((A = u)/2;7/2)

4_.,;'..__...._-‘-___-

u u

Fig. 6. R and IRF weight are intertwined
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where C is a constant:

C = —™t/8 800(0; 7)*601(0; 7)810(0; 7)
2010(0; 7/2)801(0; 27)010((1 + 7)/4; T)010((1 — 7)/457)

Under this identification, the action of R/%/ (1.12) can be stated in the following
form which will be used later. Let us define a matrix of the gauge transformation
by

M) i (—om(u —W/2%%/2) b+ u)2 r/z)) (1 0 )
e B00((4 — u)/2;7/2)  Boo((A+u)/2;7/2) ) \O On(&7)~"!

(1.17)
and a twisted L operator by

oy (u0)  Paar(u;v)

L, (uyv) =
2 (4:2) (m(u;v) 81.2/(1:0)

) = M(u) "' L(u — v)My () . (1.18)

Then the matrix elements of L, ;-(u; v) act on an intertwining vector as follows: Let
A—A=4mn (me {-1,-1+1,...,1}). Then,

B11(u — v + 2mn)0u (A + 2(1 — m)n) (1
011(A)611(2n) D -2ma2q®)  (1.19)

011(u — v+ A —2mn)01,(2(1 + m)n)
011(4)611(4 — 4mn)611(2n)
011 (u — v — A+ 2mn)01,(2(—1 + m)n)
0u(2n)

011 (u — v — 2mn)611 (A — 2( + m)n) ()
OG- Ammnny  xemsn(®): (122)

oz, 2 (u; v) w;( )=

Ba (15 0)95) 1 (v) =

B3 201-2q(®)» (1.20)

Vo (u0)¢5) ,(v) = B 2y ar2q(®) » (121)

C O (u30)9 1(0) =

This formulation was found in the context of the quantum inverse scattering method
and the algebraic Bethe Ansatz [TF]. See also [T1]. Note that the column vectors of
M;(u) are essentially outgoing intertwining vectors. Therefore, defining the incoming
intertwining vectors ¢ 11 (u) as row vectors of M;(u)~ 1.

_ G112 —1)
M()'=(- " ), (1.23)
o ¢},,1+211(“ =)

and denoting them as in Fig. 7, we can rewrite formulae (1.19)—(1.22) as in Fig. 8.
(Exactly speaking, the normalization here is different from that in Fig. 6, which is
not essential. In general, incoming intertwining vectors are defined as a dual basis
of {@a+4mn,a4(4)}m=—1,~141,.4- See [H].)
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Fig. 8. An element of a twisted L operator acts on ¢ ;(v)

Especially o, y and é act on a local pseudo vacuum as follows:

o (4 0) 0 (0) = o (u — V)@ 5, (v) (1.24)
Va0 (0) 0P () =0, (1.25)
81, (u; )P (v) = 8 (u — v)wﬁ{)n”(v) , (1.26)
where
O N I

Boundary operator. We introduce an opefator Z which shifts a spectral parameter
of a Bethe vector. Let x and ¢ be fixed complex parameters.

Definition 1.5. 4 boundary operator Z = Z!'—!(x,c) is a linear map from Bl
to BXlo-r dofined by

ZN+Ky21y . ZN—1

Z(ez""“”""lao,...,aN;zl,...,zN))

= mian-gelan—an—1=2W)\qy | gy ....an_1;2n + K, 21,...02v—1) . (1.28)

(Note that ag = ay by Definition 1.3, c¢f. Fig. 9)
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Qo ay a2 aN-2 aN-1 aN
21 22 ZN-1 ZN
w/

1 1 ] ]

1 1 ] 1
L ] 1] 1
GN—-1 1t Qo ] a1 [ a2 AN-2 1 GN-1
] ] ! 1]

ZN +K 2 22 ZN-1

Fig. 9. A boundary operator

With respect to the basis (1.8), Z is a composite of a permutation and a diagonal
matrix.

The following property is important.
Lemma 1.6. The operator Z commutes with an R matrix as follows:

U N IN Ay ol — Lyl
Rl2 (ZN—I —2ZN )Zz:+:c,z;,:z;;__1 (K, C)Zz:,...,z:(x’ c)

IN—1s 01y IN—2,1 Ly v —2, I DN — xIv—1,In
= Zz:-:ﬂ’c,n.Z,z;-}:,m(x’C)Zz:,..wz:_zz,zg,z:—: (,c)Ry -LN (zv—1—2y) (1.29)

Uy v Iy—i, e Iv—2
as\a map ﬁom gz:,..,zx to $zn+x,zN_y+x,zl,...,zN_z'

This is easily proved by comparing the action of the both sides on the basis
(1.8). A graphical notation for this equality is shown in Fig. 10.

2. Difference Equation

In this section we introduce a system of difference equations which is an elliptic
analogue of the equations introduced in [FR], and show holonomicity of this system
in the sense of Aomoto [A].

Let us first define a linear operator A4(Z), = (z1,...,2n), from B~ to

] ey ZN
Qb ly by

2150003 Zj K, e 2N,

- xli 1 xl;, 1y
4i(2) :=le——1,j (zi+x—2zj_1)---R); (zi+Kx—21)

w w

TN P O I, I Lol
© Z T (6 CRY Zy v (25 — 2n) - Ry (25— Z1) 5 (2.1)
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ay tee GN-2 v+ GN-1 aN

a e aN-2

ZN-1+K

ZN-1
21
ZN + K ( )

Fig. 10. RZZ = ZZR, Lemma 1.6

or, equivalently,

A/ =RV g+ ki —2jm) R (@ + K —21)

j’j_l
i 5l 5,
o ZO, ORI (2 — 2n) - R (2 — zja1) 22)
where
Z0(x,€)=Pj-1,jPj-2,j-1 - Pra
Zle:---olj—lrlj+hu-yIN,[j( P P 23
© Z2y) 5 gz (6, COPN 1N - - Pignja2P i - (2.3)
Then we can define our main object, a system of difference equations:

f(E) =4/2)f(2), (24)

for j =1,...,N, where Zj = (z1,...,zj +K,...,2y) and f(Z') € %ﬁ}::g. Expanding
f as in (1.3),

r—1 .
f@)= ‘@oez"“"” ) (@) & 2)

we can regard the system (2.4) as a system of equations for fz(Z). In this IRF
picture,wtrhis system is holonomic in the sense of Aomoto [A] due to the following:

Proposition 2.1. Operators Aj(Z’) are compatible:
Aj(Z)A(Z) = A(Zj)4(Z) -
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...................................................... ||
@1_..1 | 1...1@

2 Zj-1 zi+kK Zjt1 ZN

Fig. 11. Operator 4;(2)

This follows from the Yang-Baxter equation (1.10), the unitarity (1.11) and the
commutativity of R and Z (Lemma 1.6) as in Theorem 5.4 of [FR]. Symbolically, we
have only to change the order of crossings of lines in Fig. 12, using the procedures
of Fig. 4, Fig. 5 and Fig. 10.

3. Jackson-Type Integral Solution

In this section we give a solution of the system of difference equations (2.4) which
is expressed as a Jackson-type integral of Bethe vectors. This result is an elliptic
analogue of that of [R]. We assume that M :=/; 4 --- + Iy is an integer.

First let us define the monodromy matrix T(u;z,...,zx5) by

Aty zy, ..., 21) B’"*"*"(u;zN,...,zl))

T (u;2zy,...,21) =
(52x,-,21) Co-h(u;zy,...,z1) D"™-"(u;zy,...,21)

=Ly (u—2n) - L (u — )L} (u — 21) 3.1)

as an endomorphism of C2@ # =C2 @ V" ®---®@ V'V. Here L]l.’(u) acts non-
trivially only on €? and V%:

L) = g WHw)o" ® g%,

Pl =10 ®1@p ®1® - ®1: Upy(si(2)) - End (#).

Bethe vectors of the XYZ type spin chains are constructed by means of the twisted
monodromy matrix defined as follows:

Inyealigy,. Inyenli(y.
A} (wz,. . z) B '(u,zN,...,zl))

Iy slig, .
TLN).I ](u,ZN,---,zl) = ( Il INy... i
CLi," (u;ZN,...,Z]) Dl,i/, (u;ZN,.-.,ZI)

= M)~ T (s zy, .. 20 M (0) (32)

where M;(u) is defined by (1.17). We often denote, for example, B**~", by
A+2an,i+2a'n

B! or B, o+ for simplicity, and graphically as in Fig. 13 (cf. Fig. 8).

a,a’
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o a—

Y
21 2+ K Zk+K ZN
' 1 1 [ [} [ [ [
[ | [ [ ' [ 1 ]
[ ' [ [ ' [ [} [
ag ' ' 1 ] 1 ] 1 GN
] ] ' [ [} [ ' 1

2k

21 Zit+kK 2+ K ZN

Fig. 12. Holonomicity of the system (2.4)

21 Z;5 ZN

Fig. 13. Operator B:”;;"'I'(u; ZNy---r21)

It follows from (1.24), (1.25), (1.26) that

N .

Alsih (2w, ..,21)R(2) = ( II oli(u —zj)) Qu1(2), (33)
]=

Chrsti(w 2y, ...,21)Q2() =0, (3.4)

N
Dt (2w, ..., 21)R20(Z) = ( Hl 8% (u —z,-)) Q1) . (3.5)
J=
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By a standard argument in [TF], these operators satisfy the following commutation
relations:
Baa +1(4;2N5 - . -21)Bas 1,0 (U; 2N, - . -, 21)

= Baar+1(0; 2N, - . .,21)Bay 1,0 (U3 2N, .. .,21) , (3.6)

Ag,a+1(82N, - - -, 21)Bar 1, (V3 2N5 - -5 21)
= a(u - U)Ba,a’—l(v;zlv,- -es21 )Aa-l-],a'(u;zN,- ”921)

+Ba(u — 0)Bo o —1(4 2N, - . . ,21 Yat1,a (V3 2N, - . ., 21) 3.7

Dy y,o(u;2n,...,21)Bg 0 —1(V; 2N, . . ., 21)
= (v — u)Boy1,00(V; 2N, - . -, 21 )D0 0 1 (U3 2N, . . ., 21)
— Ba(u — v)Bay 1,00 (42N, - . . .21 )Dg 0 1 (V3 2N, . . ., 21) (3.8)

where

611 (u — 21)

_ o  6uu— A — 2an)0u(2n)
o(u) = ) ’ Ba(u) = .

611(2)011(4 + 2an)
Let us recall the definition of N-cycle with step x in [R].

(3.9)

Definition 3.1. Let ¥ be a function on CV and € be a subset of {(x; + mx,...,
xy + myx)|(my,...,my) € ZV} for a certain (x,...,xy). We call € an N-cycle
with step x for ¥ if

> W@ +ik) = ¥ ¥(@),

fe¢ fe¢
for any it e ZV.

Functions F/(t) and &(t) are defined as solutions of the ordinary difference
equations:

o'(t)

Flt+x)= mﬁ"(t), (3.10)
_o-t)
¢(t+x)—a(t+x)¢(t). 3.11)

We shall give an explicit solution to these equations later in terms of infinite
products.
The main theorem of this paper is:

Theorem 3.2. Let

@) =Tt . [ Wt—t)- HHF’ 4 -z,.), (3.12)

1Si<jsM Jj=1n=1
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where t = (t,,...,ty). Then
f@) =Y o)) (3.13)

re¥

is a solution of (2.4), where

r—1 .
P(E)=3 " Bui1,a—1(t132N;- - »21)Bar2,a-2(t23 2N, - - - 21)
a=0

- BayMa—m(tu; 20, .., 21)20—m(2) (3.14)

and € is an N-cycle with step x for o(Z|¥)¥ (7).
Graphically, a summand in (3.14) is denoted as in Fig. 14.

Remark 3.3. The vector P(f) gives an eigenvector of the transfer matrix of the
XYZ type spin chains when {v,1,,...,4)} satisfies so-called Bethe equations. (See
[B, TF, T1]).

The proof of the theorem is essentially the same as that of Theorem 1.4 of [R].
We first reduce Eq. (2.4) including the operator 4; ((2.1) or (2.2)) to the system

xl, 1 '11—1 ] .
Ry, (zl —Zj— K)-- ,—1 J (Zj—l —Zj— 'C)f(zj)

1Y P FOCT Y0/ vlj s -
ll,...,zj’-ll,z{i:ll,...,:ylz]( 5 C N—l N(zj - ZN) ]]+l (zj —Zjy )f(Z) » (3'15)

using the unitarity (1.11).

a—-M

% S T Y (-
a—-M+2,

t t ... tm
L a—M+2h+-+li)
P feeae-
’ P a—M+20 4 +l)

a+M-2y

N —— 4+ -----
a+ M

............ !'V"

Fig. 14. By 1,4-1(t1) - - BayMa—M ()20 —m(2)
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Assuming the form of the solution (3.13), we can show that (3.15) is equivalent
to

S W T )
> ozt )ehm"B,,’_’,.l,a'_{(tl;ZN,---,Zl,Zj + k)
a, i

IN,..,II,IJ . bislyy o In
.. 'Ba+M,a—M(tM’ZN" ->21,2Z; + K)QEI_M (Zj + K,21,...,2N)

o iavey pljs N o
=z(p(2|t)2(eznm"Bl v ]l(tl;zj,zN""’zl)
a,i

a+l,a—
5yl . yediy
"'Ba]+:{,,,_;1(tu,2j,21v,---,21)9,,'_”" "(215--52N52))) - (3.16)

Here, for example, (zy,...,21,z;) means (zy,...,Zj+1,2j-1,---,21,Z;). Equivalence of
the left-hand side of (3.15) and (3.16) is proved as illustrated in Fig. 15. We move
the line with the spectral parameter z; + k, repeatedly using the procedures Fig. 4,
and then Fig. 6. Because of the admissibility condition (1.5) and Eq. (1.14), the
IRF-type weights appearing in Fig. 15 (crossings of dashed lines) are equal to the
unity. The right-hand side of (3.16) is derived from the right-hand side of (3.15)
in the same manner.
In the next step we need a counterpart of Lemma 2.3 of [R].

Lemma 3.4 (Two-side formula). Fix n 1 Sn<N-1)and m (1 <m<M)

and let a be an integer, ap = a and aj =a+2(l) +---+ I;) for all j € {1,...,N}.
Then

Inyosl ‘ . sadigs. . VA g
BYh s aoim1(tms 2N, s21) - - Blo ol (s 2w, . 20200 (Z)

= 2 I1 at)]] ﬁ o (t; —z) T1 ﬁts'*(ti'—Zk)

{1,..,m}=ILII i€L i €Nl i€l k=n+1 ifell k=1
x Blml (t:2 z1)
ap—HD+H(ID)+1,00+m—1\ i3 “ms - - <541

- . IisesIn
ctc Ba,.+t(il),ao+#(ll)(til(l)’ 2ny--+521 )Qa:,+3(1[)(zls oo ,zil)

INy s I .
®B‘,7,_,,.:11’4._3(1)+5(1])_1(ti{ 3ZNse3Zn+l)

INy ooy I . | AP/
T Ba:_z(ﬁ;__g(l)(ti;m), ZNs.--32p+1 )Qa tl_s(l)u(zr&l, <e2ZN) (3.17)

where {1,...,m} =1U 1l is a partition, % denotes the number of elements, i, des-
ignates an element of 1 and i, an element of 1L

Due to (3.6), the right-hand side of (3.17) is well-defined.
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Fig. 15. Equivalence of (3.15) and (3.16)
One can prove this lemma by induction on m. Using (3.7), (3.8) and a formula

Inyliyg, . Ny, . Insenig, .
Ba},va’ l(u’zl\/"-'szl) =Aa7b "“(uazN"--,zn-f—l)Bb:a' l(u9zm--'1zl)

INy e, . Insen i g,
+Ba),vb "“(u,zN,...,z,,+1) b:a' '(u,z,,,...,zl)

for any integer b, which is easily derived from (3.2), one can apply the formula
(5.6) of [TF] to this case.

Applying (3.17) for (m,n) = (M,1) and (M,N — 1) to Egs. (3.16), using (1.28)
and comparing the coefficients of
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+28(11)—24)v gl .y
2rila Jj \'Ba_'_l Ja+28(10)— 21}__,([,-; + K;Zj + K)

I
- Baj+t(u),a+n(n)-21,(’ oy T 552 T KR +:(n)(21 +x)

IN s ji 1 i 13 1 .
®B +2‘(j;i) 1211+l a—1 (l,'l,ZN...,Zj+],2j_1,...,21)

INsesljrts lj—1,
“+ B ol e, a—#(l)(t‘t(l)’ > Zjt1rZj=15+++>21)

ST FRRYY FROTIY |V
X Qa+M-—21 /,+¥(11) (Z] ceesZj1sZj415. .,ZN)

of the resulting equation for a partition {1,...,M} = IUII, we can show that (3.13)
gives a solution to (2.4) if ¢(Z'|7) satisfies

N
oGt +xdi) T1 ot +x6) [T TI o™t +x—x) [16%(t — x; — x)
i€Li’ell i'ell k=1 i€l
k+j

= @Z|D)e 2D [ a1 )Ha’f(t, -x) 11 n Mty —x).  (3.18)
ieLi’ell i'ell k=1
k+j

Here in the left-hand side é;;; =0 if i €I and = 1 if i € II. The function defined
by (3.12) is a solution of (3.18). Thus we have proved the theorem.

Ordmary difference equations and cycles. We now return to Egs. (3.10) and (3.11)
and give the solution to them in the form of infinite products.

First let us consider Eq. (3.10). Using the infinite product formula of the theta
functions (see, e.g., [Mu]), we have

) 5’(1) _ e—41"'1'l (e—Znit+41tih]; P)oo (pe21tit—4m'h); p)oo
dl(t-{- K) (q—le—-2xit—41rilq; P)oo (pquxile'Iq; P)oo >

(3.19)

where p = exp(2znit), ¢ = exp(2znix) and (x; p)oo = H:f:a(l — px). It is easy to
see from (3.19) that

—21i iln. it+4niln.
Fl(t) = e'—41tilﬂt/x (qe i+ " D, q)OO (pqunzt s b, ‘I)oo (320)

(e—Zzit—41tilq; P, q)w ( pe21tit—4xihy; D, q)oo

satisfies (3.10), at least formally, where (x; p,q)oo = [Tnep [Treo(1 — P"q"x).
Similarly, Eq. (3.11) has a formal solution

(@e™2™"~*"; p, Yoo (P4E™~*™™; p, q)oo
(e~2nit+nin; p q)o,  (pe2™it+min; p q)o,
(21)

¢(I) = 41tim/x( e—Zm‘t; P)oo( pelm't; P)oo

In fact, the infinite products in (3.20) and (3.21) gives meromorphic functions
on the whole complex plane, provided that Imx > 0. The function F’(t) has
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zeros at

{t = n+mn’+m2x+21r)|n €EZm € 1go,mZ € z>o}
Uf{t=n—mt—mx—-2lnln€Zm €L om €L,o}, (3.22)

and poles at

{t=n+mr+mx—-2n|n€Z,m € Lzo,m € Lo}
U{t=n—mt—mx+2ln|n€Zm € omecy}. (323)

Taking these properties of F(¢) into account, we can choose an N-cycle
“in (3.13) so that the sum over ¢ € € reduces to a finite sum, if x satisfies a certain
rationality condition. Suppose that there exist integers (n,mg,m;) € Z o X Z X Z ¢
satisfying
nK =mg +mt+ 4l (3.29)
for a certain j € {1,...,N}. Then all but finite points in the set

€ .={t= mg + m‘l’t +mk + 21n |me Z} (3.25)

fall into the set of zeros of F'(t) (3.22) for any integers mJ and m} = 0. We can
choose a cycle € so that t, —x; € ¢’ for all n=1,...,M and, thanks to the zeros
of function F%, the sum over ¢ € € in (3.13) is essentially a finite sum. Hence
Eq. (3.13) gives an analytic solution of the difference equation (2.4).

4. Comments

In recent years several difference equations with elliptic coefficients related to the
g-Knizhnik—Zamolodchikov equations have been proposed:

o Etingof’s equation: Etingof [E] showed that a (modified) trace of certain inter-
twining operators of representations of quantum affine universal enveloping algebras,
U,(8) satisfies a difference equation with elliptic coefficients.

o Jimbo-Miwa-Nakayashiki’s equation: Jimbo, Miwa and Nakayashiki [JMN]
found a difference equation which should be satisfied by correlation functions of
eight vertex models.

Unfortunately we do not know the relation of our difference equation (2.4) with
any one of above equations. It might be possible that one system turns into another
by specialization of parameters. We can also expect that a quasi-classical limit of our
system (2.4) is related to the Knizhnik—Zamolodchikov—Bernard equation. In fact,
Felder introduced a g-KZB equation in [F] whose semiclassical limit is the KZB
equation, and our equation should be related to it by a vertex-IRF correspondence.?

It is a challenging problem to give a representation theoretical interpretation to
the solution (3.13) like that of the integral solution of the (¢-)KZ equations [Ma,
FFR].

2 The author thanks Professor G. Felder for pointing out this relation.
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Appendix A. Review of the Skilyanin Algebra

In this appendix we recall several facts on the Sklyanin algebra and its representa-
tions from [S1] and [S2]. We use notations in [Mu] for theta functions:

Ous(z;7) = 3 exp (ni(g+n)2r+2ni(‘2—'+n) (g+2)), (A1)

neZ

where 7 is a complex number such that Imt > 0. The Pauli matrices are defined as
usual:

P38 (22 2= D). 2o %) o

The Sklyanin algebra, U, ,(s/(2)) is generated by four generators S° S!, 82, 53,
satisfying the following relations:

Riz2(u — v)L13(u)L23(v) = Las(v)Li3(u)Rr2(u — v) . (A3)
Here u, v are complex parameters, the L operater, L(u), is defined by

L(u) = i Wiu)e* ® §°, (A4)
a=0
where
Liy O11(u; 7) Loy 010(u; 1)
#o) = om0 )
Loy Ooo(u; 7) Lrn 001 (u; 7)
(LT s v s SIS T Y e e

R(u) = R(u; 7) is Baxter’s R matrix defined by
R(u) = 23: Wru)e® ® o4, WERwu) := 0,,2m; 0)WEhu + 1), (A5)
a=0

and indices {0,1,2} denote the spaces on which operators act non-u'ivially: for
example,

3 3
Ro)=Y Wiw1®c*®c", Liw)=) W(u)"®10S".
.a=0 a=0

The above relation (A.3) contains u and v as parameters, but the commutation
relations among. $* (@ = 0,...,3) do not depend on them:

[8°, 5% = il olS%, 87y,  [5%8%)- =ilS°, 5", (A6)
where (a, ,7) stands for any cyclic permutation of (1,2,3), [4,B]. = AB + BA,
and Jo g = (W2 — W})/(W} ~ W3) depend on  and # but not on u.

The spin / representation of the Sklyanin algebra, p’ : U, ,(s/(2)) — Ende(O3)

is deﬁned as follows: The representation space V' is
= 65" == {fWISG+ D =f(=p) = f), Sy + 1) =exp™ ™D f(3)} .
(A7)
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It is easy to see that dim ¥/ = 2/ + 1. The generators of the algebra act on this
space as difference operators:

sa(y =) f(y+n)—sa(=y—In)f(y—n)
0u(2y; 1) ’

P SV = (A8)

where

so(y) =0u(n; 7)0n(2y; 1), 51(y) = 010(m; ©)010(2y; 1) ,
52(y) = i000(m; T)000(2y5 1),  53(¥) = Oo1(m; T)001(2y; 7) -

These representations reduce to the usual spin / representations of U(s/(2)) for
Jap — 0 (n — 0). In-particular, in the case / = 1/2, §° are expressed by the Pauli
matrices ¢%: Let us identify ©2F and €? by

Oro2yi20) ~ a2 20) = (4 )

Oro25i20) + ro2yi2e) = () . (A9)

Under this identification S¢ have matrix forms

p'2(5%) = 0,1(2n; 1)0” . (A.10)
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