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Abstract: Expansions of the type described in the inductive hypothesis (H.5) in the
paper [1] are constructed for local functions of the “background” configurations, i.e.,
solutions of the variational problems studied in the previous paper [3]. A main part
of this construction is a further analysis of a local structure of the solutions.

1. Introduction

In this paper we discuss a new kind of problem connected with expansions assumed
in the inductive hypothesis (H.5) in [1], but methodologically it is a continuation
of the paper [3] on the variational problems for background configurations. Our
main concern here is to “localize” properly these configurations, and to do this we
use extensively the results and methods of [3]. One of the most important tech-
nical problems in the renormalization group approach is to construct expansions
of non-local functions of basic variables into sums of localized functions, like the
expansions in (H.5) [1]. There are several types of non-localities and non-local func-
tions, we have to consider. In this paper we construct such expansions for a simplest
and most frequently occurring type of non-local functions given by compositions of
localized functions with one of the background configurations, like for example
terms &(X; Y 7)) of the effective actions. Obviously values ¢(x; ), y(y; ) at
points x, y of corresponding lattices are non-local functions of i, in fact they depend
on Y on the whole lattice, or on a generating set IB; determining the functions.
Let us describe now in detail basic goals of this paper. Consider a genera-
ting set IB;, which we can identify with the sequence of domains {Q,..., 2}, see
the definitions (1.1)—(1.3) in [3], and assume that a next domain ;.| is given,
such that adding it to the sequence yields a new generating set B ;. We denote
A=B(Ae1) = QF),, ie, A T®. Taking the first j domains in the sequence
determines a generating set IB;. Consider a function &(X;y;), where X is a
localization domain, X € 2, and y; is a spin variable on the lattice 7). We assume
that this function has the same properties as a term of the localization expansion in
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(H.5) [1], and for simplicity we assume that X C Q4. After k steps the variable
Y, is replaced by the function y(IB;,B;; ), and in the k + 1* step Y, is split into
the background field x//(IBk,IBk+1,9) associated with the new spin configuration 6,

and the linear function f8, 1 C )Zl// of the ultralocal spin fluctuation variable { that
is about to be integrated out. In this situation we consider the function

S Y(B), By; (B, Beyr; 0) + B 2Py, (1.1)

where 6 is a spin configuration dleﬁned on By, ¥ is the so-called spin fluctuation
variable defined on A, and Cﬁk)i is a positive square root of a positive operator
Cflk), which is an operator of a quadratic form connected with a fluctuation integral
on A. We will write an explicit formula for this operator and we will analyze it in
Sect. 3. Now let us mention only that a kernel of this operator is defined on A x A,
and is an analytic function of the configurations ¢(By,1;0), (B, 1;0). Functions
of the form (1.1) appear naturally in a fluctuation integral, which will be discussed
in the next paper. Obviously (1.1) is a non-local function of the variables 6,y, and
the main goal of this paper is to construct its localization expansion in both of the
variables. To explain a form of this expansion we need some new definitions. We
will use systematically domains in the continuous space I' of a type described in
the definition

P9(B;)={Y:Y C T,Y is a connected domain, connected components of
YNQ,NeQ,., belong to ,,n < j,
where we put here Qo =T, Q. = 0}. (1.2)
This definition holds for any j < k + 1. For such domains we generalize the concept
of the linear size function d; introduced in (2.27) [1], and we define
d i(Y) = inf {ﬁlf |p, : " is a continuous tree graph contained in ¥
and intersecting all cubes [T contained in one of the domains

Yne,nex,, and belonging to the cover 7,n < j},
where [Ilw, = 32(L"€)~ [0 @, 0 5, (1.3)
n=1
The length in the last equality is in the scale & = L™/, ‘which means that we take
the original lattice as Tz, and TU) as the unit lattice T/,
To simplify the formula below let us denote the function W(IB;,B;) by ¥”,
and (1B, 1B;.1) by ®. The main goal of this paper is to prove the following
statement:

The function (1.1) has a localization expansion of the form

SCYPWPO) + B C )y = T s Y0y, (14)

YED(Byy1): Y DOX

where the terms of the expansion depend on the variables 0, restricted to the
corresponding domains Y and satisfy the bounds

|6 Y;60,9)| < Eo exp(—rod;(X) — 2xdy41(Y)). (1.5)
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The formula (1.4) has prepared for integrating out ¥ in such a way that lo-
calization in 6 will be manifest afterwards, because Y is an ultralocal variable.
The formulation of the above statement is not complete yet because we have not
described analyticity domains for the terms of the expansion, but we postpone for-
mulations and a discussion of these more technical issues to Sect. 4. The statement
gives a precise formulation of main aspects of these localization expansions, and it
establishes a pattern for all related propositions in this and subsequent papers.

Let us explain briefly what is a main problem connected with constructing the
expansion (1.4). It should be quite clear that it has to do with appropriate localization

expansions of the functions ., tﬁ(") C( 3 , because they introduce a non-locality
into the function (1.1). However, it is not enough to localize them in an arbitrary
way, the point is that we have to use representations and bounds of Sect. 3 [1],
in particular Corollary 3.11 [1], and they hold on rather small subspaces of natural
analyticity domains, like subspaces ¥5(X; CoL/n, ) defined in (3.13), (3.14) [1].
These subspaces incorporate in their definitions various scaling properties, some of
them “anomalous,” related to the singular nature of the basic variational equations
for the problem (1.6) [3]. We have to localize the function l//,gf ) in such a way
that the properties are preserved at least on the domain X, so its values are in the
subspace above. This problem is solved in two steps, actually in three, the first step
was the introduction of the auxiliary variable o and the variational equations (1.10)
[3], in which the parameter A occurs only as 7 The important step is to use the
fundamental compos1t10n formula (4.39) [3] together with the representatlon 4.21)
[3], and to write tﬂk as a composition of such a function localized in a neigh-
bourhood of X, and a suitable non-local function, which énters only into “boundary
conditions” of the local one, and may satisfy more relaxed conditions described by
correspondlng spaces ¥¢ in (1.11), (1.12) [3]. Such a representation of the func-
tion 1//k’ is presented in the formula (4.16), which is one of the most important
formulas in the paper, a key to the localization procedure. It reduces the problem
to a simpler one of localizing the functions of the type y(IB;,IB;) with fewer and
simpler conditions to be satisfied. This is reduced again, through the representation
(4.21) [3], to the problem of localizing the function ¢(IB;), which is still not quite
standard, in particular the second non-linear variational equation in (1.14) [3] has
to be treated with some care, and this is the third of the steps mentioned above,
but it is resolved in a number of small technical details not worthwhile, or even
impossible to describe here.

Let us describe now the content of the following three sections. We reverse in
a sense the steps described above, and we start with localizations of the functions
¢(IBy), y(IB;,By), which is the subject of Sect. 2. It is achieved by introducing
suitable interpolating parameters into their definitions and studying analytic exten-
sions in the parameters, their regularity properties and bounds. We do the same for
the covariance operator Cﬁlk , and for some functions of this operator, in Sect. 3. In
Sect. 4 we start with a derivation of the representation (4.16), and then we construct
the expansion (1.4) using the results of the previous sections and applying some
simple interpolation formulas. All results of this paper are very technical and it is
more convenient to start with definitions and constructions, and then to formulate
the most important conclusions as propositions; for some of them it is even not
possible to do it another way.

Finally let us remark that the size M of large cubes in the following two sections
does not have to be equal to the size of large cubes used in the renormalization
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group procedure. In these sections we consider M = L™ as a parameter which must
satisfy appropriate conditions, in particular M~! is one of the fundamental factors
controlling convergence of all expansions we will construct in this paper. These
issues will be discussed in the last section.

2. Localization Expansions for the “Background” Configurations

In this section we introduce the localization parameters into the functions ¢(IBy),
y(IB;,B;), and other functions we use in these papers. This construction for functions
¢(IBy) is a basis of all other constructions, so we start with its detailed description.
We use here extensively the constructions and the results of the papers [2,3].

We fix now a generating set By, and we denote the functions ¢(By), «(BBy) sim-
ply by ¢, . Our basic goal is to construct extensions of the functions ¢y, oy in the
interpolating parameters, and to investigate their analyticity properties and bounds.
This is based on the proof of Proposition 3.1 given in the third section of [3]. We
start with the representation ¢p = ¢po + dhx, o = o9 + dax. The functions ¢y, %o
are already almost local functions of Y + ', A+ /', as it follows from their defini-
tions (3.2), (3.3) [3]. More precisely ¢o, g restricted to 4;(y), y € A;, depend on
Y+, h+ I restricted to 4,(y). Thus the basic problem mentioned above concerns
the functions d¢, da;. They are constructed as solutions of Egs. (3.19), and we
consider again the more general system (3.20), to cover some other applications.
The function d¢y is represented in the form (3.23), to which we apply the identity
(3.25). We write explicitly this representation for future reference

opr = G(a)Q"ady + f1) — G(ag)Podox — G(a)dax G0 )(Q* adyy + f1)
+G (a9 )00 G0t )Podoy + G(arg Yoo Gt ) ooy G(0to + oy Q™ adyy + f1)
—G (0 )ooux G(alg Yooy G(atg + Sy )podoy . .1

The function doy satisfies Egs. (3.24), or (3.26). We consider at first the function
¢y, or a more general function given by the above formula with Joy replaced
by some da. We introduce the interpolating parameters based on the generalized
random walk expansion for G(a) constructed in Sect. A of [2b], see in particular
the formula (2.40). Let us describe this expansion. We start with a construction of
a cover of the domain ;. .Each Qjis a localization.domain from Z;, so it is a
union of large cubes in L™/-scale, or a union of ML’/n-cubes in the n-scale, with
centers at points of the lattice T, ;;Lt;"), where M = L™. We take the domain @77, i..
the domain obtained by adding one layer of the large cubes touching €2;, and the
set

A =@\ )N T,

which is the set of centers of the large cubes contained in Q7 and disjoint with
Q;41. For each point z in this set we take a cube of the size 3ML/n with a center
at z and denote it by [J,. The family of cubes

k
{Dz:z € UAy"H'} is a cover of the domain €.
j=1
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We take a decomposition of unity corresponding to this cover and similar to the
decomposition in (3.1) [3]. More precisely we take a decomposition of unity {4}
with functions %, having the properties

h,€C3(,), h, =0, |0h,| < 2(ML/n)~!, |00h,| < 4(ML/n)~2,

S"h* =1 on a neighborhood of Q. (2.2)

It is easy to construct such a decomposition starting with a function 4 € C3(] — 1,
1),0 < h <1, |I| < 2,|K"| < 4, and such that A2(¢) + h*(t — 1) = 1 on a neigh-
borhood of the interval [0,1]. Then almost all functions /4, can be defined by the
formula A,(x) = HZ:I h((ML/n)~'(x, — z,)), that is for all z except those in the
boundary layers Q7 \Q;, where two adjacent scales meet. It is easy to see how
to adjust the definition for those points, so we do not write the rather awkward
formulas here.

For each cube [J, of the cover we take the basic operator —Ag’l” +Q0%"aQ+v+a
and restrict it to [J, taking the Neumann boundary conditions on the part of the
boundary contained in ©;. Denoting the corresponding Laplace operator by (Ag’l”)gz
we define

GOz ) = (—(4g"E, +(Q%aQ + v+ ®)a.ne) " (2.3)

For all OJ, which do not intersect the boundary 0€; the Laplace operator is sim-

ply A%”. Also the operator Q*aQ restricted to [J, is either equal to an operator

a(L’/ n)"zQ}‘Qj if O, is contained in Q;\Q;,;, or to a sum of two such operators for
j and j + 1, restricted to the subdomains (1, N Qj +1 and 00, N Q;, if OJ; intersects
the boundary 02, . The inverse operators (2.3) have been investigated thoroughly
in the paper [2b], see in particular the bound (2.33) there. We reformulate this
bound here, but at first we have to recall the definition of the scaled distance d(y, y’)
between two points y, y’ € By. Take the set of all paths I'), ,» connecting the points
»,»', contained in ©;, and such that the intersections I';, ,» N (2;\Q)41) are unions
of paths in the lattice A, i.e. are unions of bonds of this lattice. Define

ko
d(y,y") = inf [Ty, |p,. | T, = ZI(L’n)“IFﬂ QN (2.4)
»y! j=

This function is determined by the set By, and it is obviously a distance on this
set. We will need all the properties of this function proved in [2b], in particular
the bounds (2.50)—(2.53) in Lemma 2.1. Notice that if y, )" € O, C 2;\Q)41, then
d(y,y') =L)"Yy — y'|, where |y — /| = |y = ¥'|s = Yo [yu — ¥p| is the dis-
tance in the #-scale.

If O, intersects the boundary 0,1, then we have the bounds (L/"n)~!|y —
Y| £d(y,y") £ @n)"'|y — ¥'|. Now we can formulate the following property of
the operators (2.3): there exist positive constants By, Yo, y1 such that if « has complex
values and satisfies || < 7;, the norm restricted to [, y € 0, N A;, y € 0, N Ay,
then

L34, GOz, 014, ) f 1 + 122,00 GOz 14,61 f |

< Boe 0L 1) 4, ) f | (2.5)
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for any function f defined on ], N Q. This is the bound (2.33) in [2b], after
rescaling to the #-lattice and using the distance (2.4). Next, we define an operator
K, = K(h,) by the formula

K f)x)= > (0"h)(B)@"f)(D) + (4"h.)(x) f(x)

best(x)

—a,('m) ¥ L) = h(x))f (')

X' €B;(y)
forx € Bi(y),yeO,Nn4;, (2.6)
or in the operator form
K(h,) =2Vh, - V + 4h, — [Q*aQ, h,] .

We will use this definition also in cases in which %, is replaced by some other
functions, possibly vector valued. Using the properties (2.2) of the functions 4, we
obtain the following simple bound for the operators K:

X4, Kef| S 4dMLN) " 4,000 | + 4d(ML'1) 2 (x4, |
3o
+5(Ln) 22dM 3,00 f |

S 4dM N D) ea @ f I+ T Paaom /D) @)
for y €0, N 4.

At first we construct the generalized random walk expansion for the operator
G(a) defined by (3.22) [3]. These random walks are sequences @ = (g, ®1,. .., WOy),
n=20,1,... such that w; € Ulle Aﬁm)+, i.e. w; are centers of cubes belonging to the
considered cover, and Cl,, NCly,,, 0. The expansion has the following form:

G(0) = D 1oy G wys e Koy, GOy s oy * -+ Koo, GO, , @, - (2.8)
[

We have proved in [2b], see the proof of Proposition 2.2, that the series above
is convergent in all the relevant norms, like the norms | - |o, |0" - |1,]0" « |(a),2—0
|4" - |,, and the operator G(a) satisfies the bounds (2.57) in that theorem. We have
used these bounds in Sect. 3 [3]. Now we need some stronger estimates for the
series. Let us simplify the notation and denote the cube 4;(y) for y € A; by 4(y).
We have the equality 1 = cp x4(y) on €, and we insert these decompositions
between the factors 4, and Ky, ,, in (2.8). Denoting || = n, where w is a sequence
(wg, w1, ...,wy,), we have

o0
XaG@)f = 3 2o Xahay GOy, 0wy Xaon)
=0 w:|w|=n (¥1,Y2,Yn,)")
* X4 Ko, G(0w, 0l La(2)
LI XA(y,,)Kw,,G(Dw,,aa)ha),,XA(y’)f~ (29)

At first we estimate the number of walks @ with a fixed |w| = n. The number of
o such that A(y) C O, is not greater than 2 - 24 because there are at most 2¢

=
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cubes of a fixed scale containing A(y). For w; fixed there are less than (2L + 1)¢
points ;41 such that supp A,,,N supp 4, +0, and generally, if w; is not in one
of the boundary layers, there are 3¢ such points. Thus the number of walks does
not exceed 2971(2L + 1)". Next, consider one factor in (2.9) enclosed between two
characteristic functions. From the bounds (2.7), (2.5), we get

@Y |10y K=G Oz, Oz Y a(rn) f| S 4dBoM e 1902 (L2 y 4,0 f]. (2.10)

Applying this bound and (2.5) to the sum in (2.9) we obtain

[e.9)
[2an G f] < X2 > > Bo(4dBeM ™'Y’
1=0 w:|w|=n,y€ Dy (V1,252 ¥my" )Y€ 0w, NOo;,y’ €L,

. e—vOd(y,yl)e—Vod(yl,yz)

L. e_)’()d(yn—I’Yn)e"yod(yrny’)(Lj,’1)2|XA(y,)f|

< Y Boc (d%%) <4dBOCI (%%)’o) M_I)
n=0

1 3 /’
T e indie) sup (I ) x40 f |

w:|w|=n,y€0y, y' €0,
x 1 1 d 1 '
< > Boci | d, =0 ) | 8dBoci (d, =0 | QL+ 1)° M~
=0 4 4
1 1

1 "
. > — e . e NI £,
a):|w[=n,y€l:|m0 27 (2L + I)dn

1
§ 2d+23001 (d, Z)’o) |f‘2, where

d(y; w) = inf(d(y, 1) +d(y1, y2) + -+ - + d(Ym, ¥)),
the infimum is taken over (y1, y2,..., Y, V'):
Vi € 0y,_, N0y, ¥ € Uy,,assuming that y € O, ;
ci(d.y) = 12¢§(y), co(y) = Y e M
x€EZ

_ 14+e77
T l—e

<~ ifo<y<1; (2.11)

4
7
and assuming 8dBoci(d, $70)(2L + 1)?M~1 < 1.

In the second inequality above we have used Lemma 2.1 in [2b]. We have written
these inequalities in such detailed form because it is not the final bound which is
most interesting for us, but bounds and expressions in the intermediate stages, which
indicate possible improvements. In particular we have not made proper use of the
factors M " and exp(—%yod( y; )), for example we may replace M~! by M~z in
the last assumption, and use the factor M =17 for some other bounds. This remark
will be important when we will study analytic extensions in interpolating parameters.

o=
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Another possibility is to represent the sum in (2.9) as a sum over domains X
containing the cube A(y), with terms equal to the sum of terms in (2.9) determined
by random walks @ such that X, = (JO,, = X. These terms are localized in the
domain X in the sense that they depend on « and f restricted to X, and we can
use the exponential factor to get a bound of the form (H.5). This way we obtain a
localization expansion for the operator G(a), but it is not enough for our purposes,
so we do not discuss any details.

Consider the representation (2.1) of the function d¢,(do) obtained by replacing
the function doy by the variable do. We expand each operator G(ag) and G(ag + o)
in this formula into the generalized random walk expansions (2.8). It is easy to see
that multiplying and summing these expansions yield an expansion of basically the
same form as (2.8), but with some small modifications. Some operators K,, may be
replaced by a multiplication operator, the multiplication by the function —dok,, . We
can have at most two such replacements. The localized Green’s operators depend
on o, except the case when there are exactly two replacements, then the operators
occurring after the last one depend on o + da. Finally, at the end of each term
of the expansion there is a function f, which is equal either to Q*ady + fy, or
to —¢oda. We can represent this expansion in the form of a generalized random
walk expansion, like in (2.8), if we introduce random walks w = (o, ®i,...,w,)

whose elements ; are not points, but pairs w; = (z;,0;), where z; € Uf;l Aj-m)Jr,
o; € {0,1}. We define operators K,,, variables 9;, and functions g,,0 € {0,1}, as
follows:

Ko =K, ifo;i=0, Ko =—6ah, ifo =1
79,':0 if0'1+"'+0'i<2, 19,21 1f0'1++0'122,l21,

go = Q" ady + f1, g1 = — oo (2.12)

The random walks w are restricted by the conditions: O, _, N0, 0, i = 1,---,k,
O,_,=0;,0rzi_y =z if6; = 1,01 + - - - + a¢ < 2. The first condition actually has
the stronger form: if both cubes U,_,,[], are in the same scale, then [, C L7 |,
hence also [, , CJ;, and if they are in adjacent scales, then the cube in the
smaller scale is contained in the larger cube. We will use sometimes this stronger
condition in the future. The expansion of the function d¢;(da) can be written now

in the following form:
o]
0P (0a) = > hyy GOy, 00 Yz ( 1Ko, G, 00 + 19,~5a)hz,.) Joo - (2.13)
w i=1

Let us remark that there is an even simpler expansion of this function, exactly
of the form (2.8), if we use the representation (3.23) [3] directly, i.e. we write
Odr(da) = G(ag + 0a)(Q*ady + f1 — Poda), and we use the expansion (2.8) for
G(ag + 0a). This is enough for a localization of the function d¢x(da), but we have
to study and localize the equation for da, and for this we need the more detailed form
(2.12). This expansion can be bounded as in (2.11), with some small modifications
only. We will discuss this bound later, after introducing interpolating parameters.
To do this we have to describe at first a geometric setting.
Consider two domains Xj, X; such that

X0, X1 C ., X0, X1 € Dy, Xy C Xi,r9 is a positive integer to be fixed later.
(2.14)
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We could consider more general domains from 2(IBy), but in future applications
we will use only the above simpler case. We would like to localize the function
O¢r(da) restricted to the domain Xp, i.e. to represent it as a sum over domains
X D X of functions which depend on ¢y, %, dat, 0y, f restricted to X. We do it
by introducing interpolating, or localization parameters into the formula (2.13) for
this function. Let us introduce at first the notations:

for a walk w = (wg, wy,...,w,) we denote

(Z):(CO],...,CO,,) and Icﬁl:lwl:n,
o]
(KGY(®) = [] Ko, G(O;,, 000 + 9;00)h,, if |@] > 0,
i=1

(KG) (@) = 1 if |®]| = 0. (2.15)

The domains ©;\Q;,; are unions of disjoint large cubes in the L~/-scale, i.e., the
cubes from the partition 7;, where n; was defined in [1] between (2.25) and (2.26).
We denote these cubes by [J, and to each cube we assign a variable so. The set
s = {sp} is the set of interpolating, or localization parameters. We define

O¢r(0a,8) = 3 hzy G(Olay, 20 )z (KGN B)go, I 500, (2.16)

OCXoNXf

where X, = U,";’L O,,. This function has the following simple properties:
Opr(da, 1) = O¢(da), where s = 1 means that all sgp = 1;
1%, 00x(d,0) is the sum in (2.13) over random walks @
satisfying DZNO NXo+0, X, C X, hence it is localized in X;.

It is obviously an analytic function of s, actually it is a polynomial in s, and we
consider it on the polydisc {s:|s| < e}, where x; is a sufficiently large positive
number. We would like to prove bounds (3.47) in Proposition 3.1 [3] for the function
(2.16), assuming that M is chosen sufficiently large, depending on x;. We can obtain
them in the same way as the bound (2.11), and we have for y € By,

1 1 1 Lot
X4(»)0¢r(da,8)| < Bocy (d, —yo) D —— )
| x40 47 ) waGyen, 2191 2L + Dydlel

1
. [M—%lwl + oM~ 20@1=D2B e, (d, Zyo) QL + 1)%]6a)20, (|| — 1)

1 1 2
+5l0l(o] -4~ (280er (4, Gr0) @L +171550) 0110l - 2)

3 3 kool .
(310004 171+ 3100 exprr 2 s X N9 N
Jj=

(2.17)

where we use the function 0,.(¢) =1 for t = 0,0,(¢) =0 for ¢t < 0.
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Here we have used the first two inequalities in (2.11) together with the as-
sumption 8dByci(d, 1p0)(2L + 1)?M~1 < 1. We assume further that 4Boc;(d, 170)
(2L +1)%|6af; < 1. This assumption is almost the same as |da|, < 1y;, because
y1 is an inverse of the norm of the operator G, and this may be taken as
the constant on the right-hand side of the last inequality in (2.11). Now the
expression in the first parenthesis can be bounded by 1+ % +}‘ < 2, because
M3l <1 for |w| 20, M~2091=Dje] <1 for || = 1, and M~z@I=D 1|y
(Jjo| = 1) =1 for |w| = 2. The expression in the second parenthesis is bounded
by 301 + 2|6a/,. Consider the exponential in the third parenthesis and assume that
X, N X[ +0, otherwise the exponential is equal to 1. We combine the exponential
with the first exponential on the right-hand side of (2.17), and we would like to
estimate the product. At first we estimate it in a general case, for an arbitrary walk
o, and then in the case considered here.

Take a walk o and the corresponding sequence of cubes (O0,,00,,,...,0,,),
where y € O, N Bg. By the definition of d(y,w) in (2.11) we take the infimum
over a finite set, so it is equal to a value of the function at some elements of the
set. Let the sequence yy = y, y1,..., ¥n be one of them, thus

d(y,w) =d(y,y1) +d(yi,y2)+ - +d(Yn-1,¥n), yi €0, N0, N By,
i=1,...,n,y, €0, NIB.

We have y;, yiy1 €0, and we take a path I'(y;, yiy1) connecting the two points,
contained in [, and satisfying the equality d(yi, yiv1) = |T' (¥, yi+1)|B,» Where the
scaled length is defined in (2.4). Combining these paths we get

d(y,0) = |I'|g, where I' =I'(y,y)UT'(y1,2)U - UL (Yn_1,¥n)-

We assume that [J,, N X} %0 for some i, and we denote by » a minimal i with this
property, i.e. Oj,...,0,_, does not intersect X{, and O, NX{ +0. Generally we
can have » = 0. The point y, divides the path I' into two parts, the one from y to
¥, is denoted by I'°, and the other from y, to y, is denoted by I". The index r
divides also the walk w into two walks: @’ = (wy,...,®,—;), which may be empty,
and o’ = (wy,...,w,). Obviously we have X, N X{ = X,y N X{. Let us divide now
the path I'” into a union of subpaths I';,i = 1,..., p, such that

P P
I = LJI 1",<, IF/IIBk = 2'[‘,']13,‘, IFiIIBk =M fori< D, Irpl]Bk =< M.
= =

Each path I'; contains some number of points from the sequence (yy,..., y,); the
number may be 0. Let us fix I'; and denote the points by ys, Vet1,..., Vi—1,8 < ¢,
the set is empty if s = ¢. The points determine the cubes [J,,00,, ,...,00; ,. The
scaled length of the path I'; is < M, so it may intersect at most two of the domains
{Q;\Qj11}, and the same is true for the cubes. Therefore there exists an index j
such that O, C ;_;\Q;; for i =s,5+1,...,¢ — 1. The ordinary length of I'; in
the n-scale is < ML’/n, hence the projections of I'; onto the coordinate axis are
intervals of lengths < ML/#, and I'; is contained in a continuous space cube [J; of
the size ML/n. Take a cube [J; of the size 7ML/n, which has the same center as the
cube [J;. The cubes [0,,,...,03,,_, have either the size 3ML/y, or the size 3ML/~ !y,
and they have non-empty intersections with [J;, hence they are contained in (7.
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Thus the sum in the second exponential in (2.17) for the domain O, U---U0,,_,
is reduced to two terms with indices j — 1,/, and we have

1 1
- i - c 0, Q.N
g | (U) 120+ s | (U.) ne e
1 (TMLin) . (7L)
= WI i = ML Tny (TIL)* = ——ITi|B,>

the last equality holds for i < p, for i = p we have simply the bound (7L)%. Sum-
ming the above inequalities over i from 1 to p we get

k 1

j;) W[Xw/ ﬂchﬂQjﬂ.Q]C-+1|

(7L)d

< Z L, + Lyt < TE° )

—|I"|m, + (TL)". (2.18)

This is a basic estimate in the general case. We have also d(y,w) = |I'|p, =
||, + |I''|p,, hence the product of the two exponentials in (2.17) can be bounded
as follows:

1
e 2Y0d(yw)expklz 7 )le ﬂXl ﬂQjﬂQﬁ_”

=07
7Lk, 1 1
< exp (( ./1)4 L _ sz) II'|B, - exp (—zyolf"lmk +(7L)drc1>

1 . (7TL)k 1
exp (—5V0|F0|1Bk + (7L)d'<1>, if (—ij_l 5% =0,

lIA

or M = 2(7L)d1<1;)1—. (2.19)
0

We assume that M satisfies this second restriction, together with the first for-
mulated just after (2.17). We would like to estimate the length [I"|p, by a quantity
independent of the walk . Let us recall that I'° is a path starting at the point y and
ending at the point y, € O, _, N0,,, where the cubes [J,,,...,[J, _, are contained in
X1, and [, intersects both domains X1, X{. From this it follows that all these cubes
are from the cover 7, and that OJ, C (X] )2 hence y, belongs to this domain and
the path I connects the point y with the point y, € (Xf)™2. Thus we have

e =dy, ) = inf  d(y,y")=d(y,(X)?), 2.20
s, 2 (y,y)_y,e(XllCr;Nmk (3, ¥") =d(y, (X)) (2:20)

and we obtain finally the inequality

e~ 17040 ex KIZ [Xo N X7 N QN Q%L

1
 (MLTn)?

1
< exp (—Eyod(y» (Xf)~2)+(7L)"m> . if X, NXT#0. (221)
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Generally the distance in the last exponential above is equal to 0, so the exponential
can be estimated further only by exp(7L)%k;.

Consider now the special case of (2.17), when 4(y) C [, and [, N Xy +0. Take
the cube [ € m; containing 4(y), then O C X;2, O™ C X5 and O™ N(XF)™? =
0if24+r <rg—2, or ¥ £ rg— 4, by the condition (2.14). From this we obtain
the bound

d(y,(X7)™?) > (ro — 4)M. (2.22)

In this case the product of the exponentials on the left-hand side of (2.21) can be
bounded by

exp (—1yo(ro — 4)M + (TL)k1) < exp (—iyo(ro — 5)M) < 1

if o = 5, which we assume from now on.

Combining all the above estimates, we obtain bounds for the expression in (2.17)
for all possible cases, and we obtain the inequalities

(0uCon) < 24Bacr (d, 30 ) &7 (361 + 310wk,
1 5 3
14070k (6%, 5)| < 29 Bycy (d, ZVo) (551 + 515“12) for A(y) C Xo,
XA ( k OC,S) — k OC,] <2 B()C] d, —Y0 | e e
(391(32,5) — 5562, )] < 2°*Bucy (d, 70 ) &P

- oxp (—gnd0n ) (3o Shosk) . )

and the same inequalities for the norms |07 - |1,]0" * |(x)2—a, |4" + |2 Of the functions
on the left-hand sides above. The function d¢4(da,s) has also some localization
properties dependent on zeros of s, but these will be discussed below.
Consider now the function doy determined by the second equation in (3.20) [3].
It is a non-linear equation, and we construct an analytic extension dax(s) of doy by
introducing properly the localization parameters s into this equation. Let us recall
that it is . . :
o - O (da) + 55¢k(506) « 0 (da) — zérx =0 (2.24)
Unfortunately we cannot do it simply by putting d¢;(da,s) in place of d¢x(dor)
above, and solving the resulting equation. A problem is a bit subtler, it is a sin-
gular equation in du, the inverse of the operator determining a linear part of it is
unbounded, and we have to use quite a lot of a structure of the function d¢y(da) to
deal with this problem. Fortunately enough of this structure is preserved in terms of
the random walk expansion (2.13) of this function, so we substitute it in the above
equation, and using the definition (2.15) we write it in the form

. 1 .
Z¢0 ‘ hzo G(Dzoa odi] )hzo(KG)(a))goo + 5 Z hz(’) G(Dz(’,’ Go )hz(’) (KG)(C()/ )ga",
) o', @'

~ 1 1
. hzélG(Dzél,OCo)hz(')'(KG)(w/,)gaé’ - i&x = Ial- (225)
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The equation has been analyzed in Sect. 3 [3], and we can apply this analysis to the
above particular form of the equation without any essential changes, only with some
slight changes of constants in the bounds. At first, we apply the operator G~!(ap)
to the above equation and we obtain, after simple transformations and using the
identities after (3.33)[3] and the definition (2.6), the following one:

1 1
o + Z(—Ag’l” + 0*a0 + v)do + (P% — 1Yo + 7%8% — o + 4o

+2_K(hzy o) + Gz, %01z (KG YD), — (2(: 0¢o - (KG)(@)(go + 1)

1 ~ ~/
) Z,,K(hzé’hzéG(Dzé’aO)(KG)(wl)ga(',) * GOy, %0y (KG)G " )gay
!

5 2 hy GOz, 00)hey (KG) (S )gop + (KGYH@" )go + 1)

wl,a"j//
1
= —I(—Ag’ln + 0%aQ + v + ag)ay. (2.26)

The notation used above for terms of the third sum is rather awkward and does
not give justice to simplicity of these expressions. We can rearrange terms of the
equation, introduce some new definitions, and write it in a simpler form. Using the
condition |@| > 0 we can write @ = (w1,...,w,), n = 1, as @' = (wp,...,0,_;),
n—1 = 0, with obvious identification of elements of the two walks, and we
have

Y. o - (KG)@)(go + g1)

@:|d|>0
= 3 ¢oK(hy) - GOz, %0 )h;(KG)&' )N go + 1)
(z5:8")
— > o - 0ok GOz, %)y (KGYE )go + g1) -
(29:")

We combine the first sum on the right-hand side above with the first sum in (2.26)
replacing the operator K(%;,¢) there by K(¢oh,,) — poK(hy,). Let us introduce a
new operator V'(h,) acting on a pair of two functions by the following formula:

V(h:)(f,9) = K(hf)-g—f - K(h)g=2V"(hf) - Vg
=2f - (V'h; - V"g)+2(V"h; - V' f) - g+ (4"f) - hog
—[0%aQ, f1 - h.g =2V"f - V"(h:9) + (4" f) - h.g
—[Q%aQ, f1- h.g =K(f) - hzg . (2.27)

Notice that the definition is not symmetric in f,g, so the operator acts on ordered
pairs. Next, we define operators V,,, for wy = (zp,00) by the formulas

Vo (f,9) = V(b )(f,9) if 6g=0,
Vo (f59) = [+ 0ah,g ifaog=1,
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and we change slightly the definition of the variables 9; in (2.12) by including oy
also, i.e.

% =0 ifog+o+--+0 <2, %=1 ifop+o1+---+0; =2.
Thus the first two sums in (2.26) combined can be written as follows:

> Veo(@0, GOz, 20z, (KG YD) (9o + 91)) - (2.28)

In the same way we combine the last two sums, except that we have to take the
last sum with the restriction |&"| > 0, so we get

1 N o
Y Vap(hy GOy (KGYG Mo + 91), GOy, 00 Yoy (KGY(S)

2 o', 0" aj=0

1
x(90+ 1) — 5 .Z_O(go + g1) * hzy GOz, 20) o (KG YD) (g0 + 91) -

(2.29)

Notice that the walks @',” must begin with points zj,z; such that supp/,N
supph, ~=|=(0 which means that either [,; C [0, or Uy C EIN,, or both, depend—
ing on the sizes of the cubes. We obtam the equatlon in which the four sums in
(2.26) are replaced by the sum of the above two expressions. The next operation is
to apply the operator

1 —1
1+ z(_Ag’ﬁ + Q% a0 +v)| =AG(A)

to both sides of this equation. The operator G(1) is a special case of G(a); we take
simply the constant « = A, and therefore it has the random walk expansion (2.8).
We combine this expansion with the expansions in (2.28), (2.29), and we obtain
sums which can be interpreted as sums over random tree graphs of a simple form.
We have two classes of tree graphs. The first consists of graphs with a trunk, a
vertex, and one branch. The trunk is a random walk 7 of the simplest type appearing
in (2.28), the branch is a random walk ® as in (2.28), and the vertex corresponds to
wg. We denote these tree graphs by #;, i.e. #{ = (7, w). The second class is formed
by tree graphs with a trunk 7 and two branches ', w”, g, = 0 and the vertex at wy{.
We denote them by 1, i.e. &, = (1,0’,w”). We have also sums corresponding to
simpler graphs, like random walks 7 or . Now, to every graph ¢ described above
we assign a domain X,. This domain is equal to X;, or X,,, defined in (2.16), if
t=1or w Fort=1t we put X;, =X, UX,, and for t =1 X;, = X; U Xy UXy.
We introduce parameters s into the terms of the equation as in the first sum of
(2.16), and we obtain the following equation:

80 + S he AG(yy, A)ey(KG(A))(E) ((qsg — 1)+ %ao) s TI so

OcX.Nx¢

+ Z h‘to AG(DIO s i)hro (KG(/{))(f) Vwo(d)o’ G(I-_—‘zo > %o )hzo (KG )((b)

t=(1,w)
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x(go+91)) I so+ 5 > hoAG(Or, DAy (KG(A)X(T)

0OcXx, Nxy 2 h=(t,0’ ")

X Vg (g GOy, 00 Yoy (KG Y@ Ngo+g1), Gy a0 sy (KGN Ngo+-91))

XTI so—2 % hyiG@u s - KGANDGo + 1)

OcXx, NXxy t=(t,0")

. hz(; G(Dzé, Ofo)hzlf)(KG)(cT)')(go +g9)] I so
DCX,{F‘IXIC

= thiG(DTo’A)hTo(KG(l))(f)(ﬁO * 90 H So— ZhTO’IG(DTo’ j')

OcX.nx;

thO(KG(/l))(f)%(—AgI" +Q%aQ+v+oau [ so, (2.30)

ocx.nxe

where ' in the third and fourth sums satisfy oy = 0. Arranging properly terms
in the above equation we can write it in the form (3.43) [3], but the functions
Hy, H,H, depending on s also. We consider them again on the complex polydisc
{s:]s| £ e*}. Of course they are analytic functions on this polydisc, and we would
like to obtain their bounds. They follow from the basic bounds (2.11), (2.17), and
the geometric combinatorial bounds (2.18), (2.19), but we need also additional ones
for the operator AG(], 4), ones which are uniform in A.

The operator G({(J,, 1) alone satisfies the bound (2.5) with the same constants
independent of A, and for all A = 0, but AG(O,, 1) does not satisfy such a bound.
It is easy to see that this operator approaches 1 if A — 400, so it may satisfy only
bounds which hold for the identity operator. We need the following one:

WP |1, AGO 2, Ma, (V)| < Boe O ) s, )], (231)

where f is an arbitrary function defined on 0, NQ;, y €O, NA4;, y €0, NAj.
This bound may be proved for arbitrary 4 = 0, but for simplicity, we prove it for
J = X only, ie. for A such that > > 1. The proof follows from several simple
remarks. At first notice that j,// may differ at most by 1, |j — /| < 1, so (2.31)
follows from the same inequality without the scaling factors, with a possible increase
of the constant By by the factor L?. Assume that [J, intersects A ;, and possibly A1,
and rescale the operators and the domain to the natural -scale, ¢ = L™/, Then (2.31)
follows from the rescaled inequality

2,00 A GO Va0 | < Boe ™ g, £, (2.32)
where A’ = A(L/n)?. Notice that d(y, ") is properly rescaled, in particular if [J, in-
tersects A; only, then d(y,y’) = |y — )'|¢, the distance in the &-scale. Consider

the operator —(Ag’lf)gz +Vv + 4/, which is equal to the inverse of the operator
G*(., ) without Q*aQ. Denote its inverse by Cg(Dz, A’) and assume that

a2 C§ @Oz XY, 0 f| < Be = ks 1 (2.33)
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It is easy to see that the above inequality implies (2.32) for A’ sufficiently large,

because then the following Neumann series is convergent:

16O = YACGOLN) (-2 0nana,,

n=0

_aJ;lL_ZQ;HQj-HXDQO) ° AICg(Dh j',):| .
We can bound it using (2.9), (2.33) and (2.11) with the simpler exponential func-
tions coming from (2.33). Using also the simple inequality d(y,y’) < |y — »/|¢ for
¥,y €0, we obtain (2.32) with yo = 37, By = 2B{cd(370), if 5By ca(37) < 1,
or X' = 3B{cd(3y0). If ' < 3B{cd(3y4), then (2.32) follows from the correspond-
ing bound (2.5) for G°(O,, A') multiplied by the bound for A’. Thus the inequality
(2.31) is reduced to (2.33). This can be rescaled further to the unit lattice, because
of our assumption A" = 1'é2 = in* = 1. The rescaled operator is equal to

/'L”C(%(Dz,/l”) — ;L//(__(Ag,ll)gz + v’ + ;L//)—~1 — AH(}.” + v’ +2d, — tz)—-l

A 1 !
= 1—¢
l”+v”+2dz < ZA//+VII+2dZ)

l/l o) 1 n
= Z (tz ) s
ATV 2d, o\ A+ v 4 2d,
where 2d, and —t, are diagonal and off-diagonal parts of the operator —(Ag’l1 )]sz- The
above series gives the usual random walk expansion of the kernel of the operator,
and from this we obtain easily the bound

[A’ci@., A5 x,x")|

l/l /1”+V”+2d )."+V”+2d ,
. pl—{log———— ) |x—x"|s

<
STV T vird o 2d

1 ’
< 2e~wm ¥

It implies (2.33) with ¥y = 57 and B{ = 2cd(;75)exp(3%%), which concludes
the proof of (2.31).

Let us finish the proof of the inequality (3.41) used in Sect. 3 [3]. We take
the random walk expansion (2.8) for G(1), and apply (2.9), (2.11) to it, using the
inequalities (2.31) and (2.10) with A instead of «. We obtain

1
[AG(A)f |2 £ 2%%2Byc, (d,zy()) |f |2, (2.34)

which is the inequality (3.41) [3] with the precisely defined constant.

Now we estimate the expressions in Eq. (2.30) in the norm |-|,. We estimate at
first the whole sums in (2.30) by polynomials in |d«|; and from such inequalities
we obtain estimates for the functions Hi(s), Hz(s; 6a), Hy(s). We start with the first
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sum in (2.30). Estimating as in (2.11) and using (2.31), (2.19) we obtain
lx4(y) (the first sum)|,

1 1 1 1
<8B d,- e pmawdy) | sl
= Dol ( ) 43’0> r:y;D; 2]1[ (2L + l)dl,[' e

% (4 C
X (60|5a|2+ l-zoéoz) )expxlz (ML! i IX: N XFNQ;NQ7|

1 1 1 1 c\~2 d
< B d,- e (o~ 270d(yAX))TT) (TL) K
= Boc ( 4)’0> T:yzeju‘oﬂq (2L + 1)d|,|(e e
x (if X; ﬁch*@) + 13 X; N X{ = 0)) (50 + - P [aolz) [da|2
1
é 2d+3Bocl (d, Z}'o) 8(71‘)‘1’cl 50|(50€|2 . (235)

This holds for all y € By. If 4(y) C Xo, then we can remove the factor e(75)'
from the bound, which is not important. Again for arbitrary y we have the bound

|%4(y)((the first sum) — (the first sum for s = 1))|,

1 d 1
< 29" Byey <d, Zy()) 7D 1 exp (—Eyod( ¥, (Xf)~2)> dolday  (2.36)

which is very important. The two sums on the right-hand side of (2.30) can be
estimated in the same way and we obtain the above inequalities for them, but with
260|0a), replaced by

< 51

N W
N L

1 .
|0 + gola + l;(—d’é’," + 0%aQ + v+ o)
2

1 1
,1 — <4d+ +1 +6o) lo|a < (4d + 5)d,.

To estimate the second and third sums we have to obtain a bound for the operator
V(h;). From (2.27) we have for y € BBy,
[2aon V(R XS, 9|2 S 2424050 f 11| Xa()0(hzg)1
a4 f 2l xaphzgl + dlxap)0f 1| xah9l.

For simplicity let us drop the characteristic functions y(,) in the inequalities below,
but we always mean the localized inequalities. Taking f = ¢y we get

[V(h:)(o.9)|2 < 2d|0¢ol1(|0h, - ndg|r + |(0h)g|y + |h-0g]|1)
+|A¢O|2|hzg| + d|a¢0lllhzg'

I\

2
2d <§M“‘ |0gly +2Mg| + |0g|1) +(d + 1)dolg|

IIA

(2d + 1)60|0gl1 + (d +2)dolg| = (2d + 1)do(|g]| + |9g]1),
(2.37)
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where we have used the assumptions (3.21) [3] on ¢¢. Finally, using the same
elementary bounds we get

[V (ho )b f,9)]2 = 2d + 1) S+ 1011 + 14 2)(Ug] + 10g]1)- (2.38)

Consider now the second sum in (2.30). Using the estimates (2.11), (2.17), (2.19)
we obtain

|x4(y)(the second sum)|,

1 1 1
é BOCI (da —7’0) ‘
3\ ciFpen, 2T T QLY AR

1 :
. ((2d + 1)do + %|5a|2) 2Byc) (d, Zyo) (2L + 1)~ 270d03t)

1 1 1 1
x M2l [M‘fl‘“'+|wlM'5(|“’|‘1)ZBoc1 (d, Zyo) L+1)|6al, 04 (Jw]—1)
1 | 1 g
+5 lol(jo| - 1p 0@ (25’001 (d, ZYO) <2L+1)"|6a|z) 0+<|w|—2)]

5 3 k 1
. (551 + 5'5042) €Xp K1 ]§) (—AJL—/}’]?I‘X}I ﬂXf N Qj N Q;"+1|

1
< Bycy (d,%w) * 2Bocy (‘%Vo) QL+1) e <(2d+ 1)5o+%léalz)

5 3 1
. (561+§|5al2> |:1 + ZB()Cl (d, Z'))()) (2L + 1)d|50(|2

2
+(23001 (d,%vO)(ZLH)"IfSaIz)}- S o

f=(t,0):y€l, 21l

1 1 .
" L Tyl (eXP (—E)’od(y, X))+ (7L)d’€1) (f X, N X7 +0)

1
+1(lf )(,1 ﬂXf = @)) é 2d+2Boc1 (d, Z'))()) B3 <(2d + 1)50+%|5a|2)

5 3
X (551 +§|50(|2> (1 +Bz‘50€|2 + B%léod%) s (2.39)
where we have denoted || = |1] + |@| 4 1, and

1
B, = 2Byc (d, Z?o) (L + 1),

1
B3 = 2Byc (d, Z)’o) 2L + l)de(n)d"l = Bze(u)d"l,

The last bound holds for all y € By. The difference of the second sum and
this sum with s =1 can be estimated by the right-hand side above multiplied by

2 exp(—190d(, (X)~2)).
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The fourth sum in (2.30) has the same form as the second sum, but the operator
Vs, in the vertex is replaced by a simpler multiplication operator by the func-
tion gy + g1. Therefore this sum can be bounded as in (2.39), but with the factor
(2d + 1)8¢ + 2|60, replaced by 38, + 2|dal,, i.e. we have

1 5 2
|x4(y)(the fourth sum)lz < 2d+lBocl (d 4))0> ( =01 + —]5O(|2>
(1 + By |6, + B3|af3) . (2.40)

The difference of the sum and the sum with s =1 can be estimated again by the
above bound multiplied by 2exp(—%yod( 1 (X)),

Consider finally the third sum in (2.30). It has a more complicated structure,
the summation is not just over random walks, but over tree graphs with one vertex
and two branches. We estimate it again as in (2.11), (2.17), (2.39), and we obtain
the following preliminary bound:

[x4¢y)(the third sum)|,

1 1 1 :
< EB()Cl (d, ZV()) 2d+1+ I&O(Iz) 2 (23061 (d, Z))o) QL + 1)d>

1

2]

5 3 2
- (1 + By|daly + B3|6af3)? (—51 + —|5<x|2>
2 2 ty=(1,0’ 0" ): yE€y, 2

1

G e KIE

1
¢ (MLiny o NXT N0 0051,

(2.41)

where || = |1| + |&'| + || + 2, and d(y; #,) is defined in the same way as d(y; w)
in (2.11), but now we take points along two branches ', " of #,. It is easy to
see that there is a tree graph I' in the domain X,,, consisting of a path starting at
y and ending at some point y, of the last cube in 7, and of two paths starting at
y» and ending at points of the last cubes in w',w”, such that d(y; ) = |I'|p,. We
decompose the graph I' into two disjoint parts I', I as in the proof of (2.19), and
applying this inequality to the two branches of I'" we obtain an inequality of the
form (2.19), but with the term (7L)%k; in the last exponential multiplied by 2. Thus
in a general case we obtain the bound

1
|Xa0)(the third term)l; < 2772Boc, (d, Z'}’O) B3(2d + 1+ |6a)2)

5.3
x (55,+§ ]5oc|2> * (1+ Bafduly + B3|oaf3 )
(2.42)

If X,, intersects X{, then we can choose a maximal path in I'°, and the argu-
ments leading to the inequalities (2.20), (2.21) can be applied to this maximal path.
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Thus the difference of the third sum and the third sum for s = 1 can be estimated
by the right-hand side of (2.42) multiplied again by 2exp(—%y0d( 7 (XEY).
Equation (2.30) can be written in the form
o+ Hi(s)oa + Hy(s; 6a) = Hy(s), (2.43)

where the functions Hy, H;, H, are defined by gathering together terms in (2.30) of
the corresponding orders in dux. We obtain bounds for these functions by gathering
together terms of the corresponding orders in |da|, in bounds discussed above. For
simplicity we introduce the following preliminary restrictions on dg, 01, |5c|2:

1
3250 = 323351 =< le(sfxlz é E .

1 1
= 1_0, = 1_07
Our final restrictions will be much stronger. Using these restrictions we obtain, after
some simple estimates, the inequalities

[Ho(s)2 < B361, [xac(Ho(s) — Ho(1))]2 < exp (*%Vod(y,(Xf)Nz)) B3dy ,
|[Hi(s)0als < B1(Jo + 61)|0ala, |xayy(Hi(s)0o — Hi(1)da)]2
< exp (—%Vod(% (Xf)Nz)) B1(60 + 61)[0af2,
|Ha(s; 00)|2 < Bil0al3, [Xacy)(Ha(s; 00) = Ha(1;0))2

exp (=3 70d0, X)) ) Bloal (2:44)

IIA

where we may take B; = 27B,B3. The functions above are analytic functions of s
and 6o on the spaces {s:|s| £ e} and {0a:|da|, < y,}, where 7y, =
min{%B; ! %yl}. We repeat the reasoning leading to Lemma 3.2 [3], and we con-
clude that Eq. (2.43) has a unique solution in {da: |6a], < c} if B3d; < lc, Bidy <
%, Bic £ %, ¢ < 7,. A maximal such ¢ is denoted by ¢, and is given by ¢ =
min{%Bl'l,yz}. The solution dax(s) is an analytic function of s, @g, %, O, f1,%; on
the corresponding domains, and it satisfies the bound

|5O(k(S)|2 < 2|H0(S)|2 < 23351 . (2.45)

This ends the construction of the “localization extension” of the function doy.

We also need a bound for the difference do(s) — da(1) of a type of the sec-
ond bound in (2.44). We subtract Egs. (2.43) for da(s),da(1), and we obtain the
following equation for the difference:

(o (s) — S (1)) + Hi(1)(dox(s) — dore(1))
1
+bfdt(<%lfz) (1; 180 (s) + (1 — 1)d0 (1)), (S0 (s) — o (1)))

= (Ho(s) — Ho(1)) — (Hi(s)d0u(s) — Hi(1)dox(s))
—(Hy(s; bou(s)) — Ha(1; do(s))) - (2.46)

In order to be able to use the inequalities for the differences in (2.44) we have to
localize the above equation, i.e. we multiply it by x4(y), y € By, and we introduce
the decomposition 1 = Zy,emk X4(y) before the differences da(s) — da(1) in the
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second and third terms on the left-hand side. We have to obtain bounds for the lo-
calized expressions x4, Hi(8)x4¢,)08 and ¥4y (( ﬁHz )(s; 001, x4(y1)08). We need
them for s = 1 only, but we use all the bounds proved until now for the general ad-
missible s, so we may consider these general expressions also. Let us start with the
operator H;(s). The function H;(s)y 4,04 is represented as a sum of terms over the
class of random tree graphs ¢ described before. We estimate it making only a few
simple changes in the proof of the third inequality in (2.44). The basic steps yielding
the exponential factors for each term are described in (2.9), (2.11). We replace each
factor by a product of three factors, one with y, replaced by %yo, and two with y, re-
placed by 17o. The product of the factors with }y, is bounded by exp(—1y0d(y, y')),
one product of the factors with ‘—“yo is bounded by exp(—%yod( ¥,t)), where ¢ is the
graph connected with the term, and the remaining factors with %yo are used to con-
trol the sum over the sequences of points (3;), as in (2.11). We obtain the same
bounds as before, but with the constants ¢;(d, %yo) instead of c¢;(d, %yo), and with
the condition on M stronger than the condition in (2.19) by the factor 2. Also, there
is no summation over )’, hence one factor c¢;(d, %yo) is missing. Thus we obtain
the inequality

[ H1(8)x a1y 082

1 _ 1 .
< exp (—Emd(y, y’)) Bicy! (d, g%) (60 + 1) |xa¢y0d]2 - (2.47)

For s = 1 the constant B; may be improved by replacing the constant B3 by B; in
all the estimates, but it is not important. Consider now the second expression, the
differential of H,. The function H, is also a sum of terms of the class of random tree
graphs, but now we have at least two vertices with the function do, and at most
seven, including the expressions at end-points of the graphs. The differentiation
replaces one of the functions da by y4,)0d, or one of the operators G(OJ,,ap +
oa) by its differential equal to —G(O,,ap + do)y4,0& G(,, a0 + o). The first
operation results in an increase of the number of terms by the factor 7 at most, each
term is bounded in the same way as in the proof of (2.47). The second operation
results in replacing the terms 1|w|(jw| — 1) - M~309I=2)(B,|54|,)* in the bounds
(2.39), (2.40), (2.41) by

1 —L(o|— ~ -
gl + Diol(] — )b~ 21728, |5al, ) Bol xaid3l2 < B3|003Bolracdle

and the rest of the bound is again the same as in the proof of (2.47). We obtain a
bound in which B;|dal, is replaced by (7OBlB2c1‘1(d, %yo) + B1Bo)|14(y)08l2, and
we denote the new constant by Blcl_l(d, éyo). Obviously this new By is bigger than
the one in (2.44). We obtain the inequality

5 ~
LA(y) < (WHZ) (S; 6(1), XA(y’)5a> ,

1 _ 1 .
<exp (-Eyod(y, y’)) Bicy! (d, §}’0> [0atl2] x4y )082 . (2.48)

Notice that the third and fifth inequalities in (2.44), follow from (2.47), (2.48).
Now we are ready to estimate the difference doy(s) — dax(1) using the lo-
calized equation (2.46). We take the norm ||, of both sides, and multiply by
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exp $70d(y,(Xf)™~?). The norm of the left-hand side is bounded from below by the
norm of the first term minus the norms of the second and third terms. We estimate
the norm of the second term as follows:

1
exp ZYod(y, X)) EB X4y H1 (1) x4y (00 (s) — do(1))
y' €By

2

1 N 1
< 3 exp—pod(y, (X7)*)exp (——Vod(y,y’))
Sk, 4 2

1 _ 1
X exp (“Z%d(}’/a (Xf)Nz)) Bicy! (d, g)’o) (60 +01)
1 o
* exp ZVod(Y’,(/Y] )% x40y (80(s) — S0 (1))

1 _ 1
< > exp (—Z)’od()’, y’)) Bicy! (d, g?o) (00 + 01)

¥ E€By

1
x exp 7p0d(¥', (Xf )2 a0 (o(s) — do(1))2

3 -
E sup exp 4y0d(y, X)) a0 (60 (s) — do(1))]2s
y

where we have used the conditions B;dy < %, B1B36; £ %B1c6 < %, which imply
Bi(6p + 01) < %+ % = ﬁg. We estimate in the same way the norm of the third
term using the inequality (2.48), and we bound it by

By sup [téock(s) +(1 - t)é(lk(l)[z
te[0,1]

1 ~
- supexp ZVod(y, X)) tacy) (o) — Sox(1))] -
y

The first supremum is bounded by 2B3d;, and 2B;B3d; =< %, hence the above

expression can be bounded by —}; times the second supremum. Thus the supre-
mum over y € By of the norm of the left-hand side is bounded from below by

1— 2 —1 =1 times the second supremum above. Using the second, fourth and

sixth inequalities in (2.44) we bound the norm of the right-hand side by
B36) + B1(8o + 61)|00x(s)|2 + B1|Sau(s)|3

13
< B36; +Bl((50 + 51)23351 +4BlB§5% < —8—3351.

Combining the bounds we obtain

[Xa(y) (00 (s) — dox(1))]2 < 3exp (*%Vod(y, X2 )> B301. (2.49)
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The two bounds (2.45), (2.49) are the basic bounds for the solution da(s) of
the equation (2.43). It also has the following fundamental localization property: if
s = 0 on a family € of cubes [, then doy(s) = 0 on the domain ., 0, and oy (s)
does not depend on ¢y, g, Y, f1, o) restricted to this domain. This property follows
immediately from the form (2.30) of the equation.

Let us come back to the function d¢y(de,s). For s = 1, it becomes a solution
of Egs. (3.20) [3] if we substitute doy (1) instead of da. Generally we substitute
the solution doy(s) instead of da, and we denote d¢i(s) = dpr(dox(s),s). From the
inequalities (2.23) we obtain

1 5
léd)k(s)l < 2d+3Bocl (d, Zyo) e(7L)";<1 (5 + 3B3> 51 < B%é],

[%40)(0(s) — dPr(doe(s5),1))| < exp (—%Vod(% (Xf)N2)> B35y,
(2.50)

and the same inequalities for the other norms listed after (2.23). To estimate the
difference d¢i(s) — 0¢r(1) we have to estimate the difference

0k (Sox(s), 1) — 6dr(do(1),1)

1
= {dt < (3—(%06—)5¢k) (oo (s) + (1 — t)ooy (1), 1), dar(s) — 50(k(1)> .

(2.51)

We do it in the same way as for (2.46), we estimate the localized differential
XA(y)<(3(g—a)5¢k)(50(,S), X4(y)0%). The function d¢r(da,s) is given by the random
walk expansion (2.16) with at most three functions do at vertices of the walks. The
differential is obtained by replacing one of the functions du by y4(,/)0d, or one of the
operators G(;, %o + da) by —G(, o + 00)14(yy0&G(O 2, a9 + da). We estimate
it in exactly the same way as in the proof of (2.48). In this simpler case we can
do it a bit more carefully, as in the inequality (2.17), and we obtain the following
bound:

5 ~
XA(y) <(W5¢k) (00, ), XA(y')5a>
1 _ 1 N
< exp (_5?061()’, y')) Bscy! (d, §y0> [xa(y108l2 (2.52)

holding for all da in the space {da:|da|, < y.}. Combining (2.51), (2.52) and
(2.49) we obtain
%40y (0Pr (B0 (5), 1) — (S (1), 1))]

1 /1 1 -
=) exp <—§Vod(y, y')) Bycy! (d, g)’o) - exp (—Zyod(y',(Xl ) 2)) 3B30,
yl

IIA

1 -~
exp (—Zyod(y, X7 2)) 3B35;.
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This inequality and the inequalities (2.50) yield finally
6¢k(s)| < B3o1,

[140)(3x(s) = S (1)] < exp (—},md(y, (Xf)~2)) 4Bl (253)

The function yy,d¢(s) has also a similar localization property as doy(s): if s = 0 on
a family € of cubes, then y x,d¢i(s) does not depend on ¢, og, OV, f1, 0 restricted
to the domain (Jy, . Actually, a stronger statement holds, the function depends
on the variables restricted to this connected component of the domain ({Jgcq O)°
which contains Xjp.

We summarize the main results obtained until now in this section in the follow-
ing proposition.

Proposition 2.1. Consider the solutions oy, o0y of the system of Egs. (3.20) [3]
defined on the space (3.21) [3]. There exist constants By, K3, ce such that Bicg < %,
c6 < 12, and if B1dy < %, B3, < %06, then the solutions are extended to ana-
Iytic functions ¢y (s), S (s) defined on {s: |s| < e*1}. The function doy(s) satisfies
Eq. (2.30), and o¢(s) is given by the formula (2.16) with da = doy(s). For s =1
they coincide with the solutions ¢y, doy, Le. dPr(1) = Sy, dog(1) = doy. Let €
be a family of the large cubes, and let s =0 for 0 € 4. Denote Yy = gy D,
then xx,0¢(s) depends on the variables in the space (3.21) [3] restricted to
the connected component of Y§ containing the domain Xy, dox(s) =0 on Yy and
X4(y)0%(s) depends on the variables restricted to the component of Y§ containing
A(y). The functions 5¢i(s), oo (s) satisfy the bounds

|0di(s)| < K304, |0"0¢x(s)|1 < K301,
[0"0¢k(5)(a),2—a < CuK301 for 0 <o <1,
|45"0¢i(s)]2 < K31, |d(s)2 < K301, (2.54)

|x40y)(6i(s) — 6i(1))] < exp (—%VOd(y, (Xf)N2)) K301, (2.55)

and the same bounds for the remaining norms written in (2.54), only with the
additional factor C, for the third norm,

x40 (Oox(s) — do(1))]2 < exp (—%wd(y, X7 )N2)> K361 (2.56)

It follows from (2.53), (2.45) and (2.49) that we can take K3 = 4B in the
above proposition. We can also simplify the formulation assuming K3 = B; without
any important loss of generality, although B; is considerably bigger than 4B3. The
estimates of the two differences are particularly important in the future. We need
them on the domain Xj, and it is enough then to replace the exponential functions
of y by small exponential factors. We use the bound (2.22), and we obtain the
inequalities

|xx, (0x(s) — Opr)| < exp <—%)’0"1M) K364, (2.57)
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and the corresponding bounds for the remaining norms in (2.54),

[Xx,(Oox(s) — b )2 < exp (_}‘VOVIM) K36,
where r; = ro — 4 is a positive integer, e.g. we may take r; = 4.

The above proposition is an extension of Proposition 3.1 [3], and it plays a fun-
damental technical role in all localization expansions we construct in these papers.
Let us apply it now to the solution ¢y, a; of the basic system of Eqgs. (1.14) [3]. This
solution has been constructed in the form ¢y = ¢g + O, = g + oo, where
0,00 is the approximate solution defined in (3.2), (3.3) [3], and the functions
Oy, 0oy, satisfy the system (3.20) with the above ¢, 09, and with oy =0, f| =
—fo0,01 = 0. In this case dyp = C39,0; = C30, where ¢ satisfies the assumptions of
Proposition 2.1 [3],i., 0 < 8 <& & < ¢4, v&? < 6°. We assume that B1C36 < g,
B3C30 < %06, which means that 6 < c¢;, where ¢; = min{cs, %(B1C3)_‘,
%(B3C3 )~!cg}. Then the solutions d¢, e can be extended to the analytic func-
tions O¢y(s), da(s) by Proposition 2.1, with one small modification. In the above
constructions we have used the localized Green’s functions G(J,,a),a = oy or
o = oy + 0 and we have obtained the localization property with respect to o.
It is not good enough now, because we are interested in localization with respect to
the variables (Y + y/,h+ k'), and y4,)% depends on these variables restricted to
A(y), or even to A~( y'), where )’ is a center of a block containing the point y. For
A(y) close to the boundary of [J, this will involve a dependence of G(O_, ap) on
(W +/',h+ 1) beyond the cube [J,, on some neighborhood of [J,. It is a small
neighborhood, but to have the same simple formulation as in Proposition 2.1 we
modify slightly the Green’s functions. We use the fact that supph, C (0%, where
(1% is a cube with a center at z and of the size 2ML/y, if z € A" From this it
follows that agh, = X,jgocohz, hence we can replace the Green’s functions G((J,, o)
by G(U;, o), and all the formulas, bounds and statements remain the same. Now
the function ymoog depends on (Y + ', + k') restricted to the small neighborhood
of Dg, which is contained in [J,. Therefore the localization property with respect
to these variables holds in the same form as in Proposition 2.1. Thus we define

Pi(s) = do + oi(s),  ouls) = oo + dou(s), (2.58)

and we obtain analytic extensions of the solutions ¢,o;. They do not satisfy
Egs. (1.14) [3], in particular the relation o = %(qﬁz — 1) does not hold for them.
Otherwise they satisfy all the properties formulated in Proposition 1.1 [3], and also
the remaining ones in Proposition 2.1, with the constant Ky = (2K3 + 1)C;. We
formulate these conclusions in the following proposition.

Proposition 2.2. Consider the solutions of Egs. (1.14) [3] with the assumptions
of Proposition 1.1 [3). There exist positive constants c;,K4 such that if 6 < ¢;
then the solutions have the analytic extensions ¢p(s), ox(s) defined by (2.58).
They satisfy the bounds (1.15), (1.16), of Proposition 1.1 [3] with the constant K,
instead of K, and the differences ¢i(s) — ¢k, 0 (s) — oy satisfy the bounds (1.15)
[3], except the first and the sixth ones, on the domain Q; N Xy with K| replaced
by exp(—%yod(y,(Xf)”z))KA;, or by exp(—%ygrlM)Ké;. If s =0 on the family of
cubes €, as in Proposition 2.1, then yx,¢r(s), xx,0k(s) depend on the variables
(Y + Y/ h+ 1) restricted to the component of Y§ containing Xp.
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The existence and the properties of the analytic extensions ¢y (s),ox(s) imply
existence and properties of x//,gj )(s), where np,jf ) is the simplified notation for the func-
tion Y(IB;, B,) constructed in Sect. 4 [3]. It is expressed by the formula (4.21) [3] in
terms of the function ¢} = ¢(IB}), and the extension of the last defines an extension

of (//,fj ) by that formula. We have also
V() — " = O(B))(6i(s) — 56%)

1 , o /
——a(IBj)Q*(IBk, ]Bj)a(IBk)Q(]Bk)(5¢k(s) — 5¢k)’ (259)

or more explicitly, for y € 4,(y") N Ay, y' €A},

W (35) =) = 0u(S¢i(s) — 56)(»)
—Z—j(L"L‘P)ZQp(ém(s) — 30)().

This representation implies that the difference l//,gj )(s) — lﬁ,ﬁ’ ) satisfies the bound
(2.55), or (2.57) on Xy NIB;. We will need to know that w,f’)(s) satisfies also
the properties (4.29),(4.37) [3]. Let us consider again the proofs of these state-
ments. In those proofs we have used the bounds (1.15),(1.16) [3] only, with one
exception. Estimating the expression IW,E’ )( »)| — 1 we have used the second equation
(1.14) [3]. This equation is not satisfied by the analytically extended configurations
¢(s),0(s), so we have to use instead an almost identical argument relying on
properties of ¢, . We have

W ()] = 1] < [[(Cae())(D)] = 1] + (L"L™PYKad < ||(0nbp)()] — 1

3 1
+K3C38 + Kid < Q)P — 1|+ 5K < 5 S L™
2 2x1,szB,.(y)

3
|666x1) = $o@2)I” + (Qullgol” — 1)) + 5Kad
| - — P22 52 2 ’ 3
< _2_d (L L )C35 + I(Qn|a0|)(y)+ 5K45
loas 25p 2 3
< SC58 4+ S(LPN) T Ci0 + 5Kad < 2Kao,

which is the same bound as in the proof of (4.29) [3], but with K, instead of Xj.
Let us explain that in the above inequalities we take a real configuration (Y, %),
but an arbitrary complex s from the considered domain. The remaining arguments
in the proofs of (4.29),(4.37) [3] are the same for l[/,E’ )(s), except that we get the
constant K, instead of K. This yields the following proposition.

Proposition 2.3. The function y(IB;,IB}) defined on a space lI~’C(]B;(;(5,8) with 0, ¢
satisfying the assumptions of Proposition 1.1 [3] and 6 < c¢; has the analytic
extension y(IB;,1B;;s) defined in terms of ¢(IBj;s) by the formula (4.21) [3]. It
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satisfies the properties (4.29), (4.37) [3], with the constant K, instead of K,
1 ~
W (B, By; y;5) — Y(B), By; y)| <exp (—Zyod(y, X1 2)) K46
< exp (—%')’07‘1M> K46 on XoN ]Bj, (2.60)

and the same localization property as in Proposition 2.2.

In the following sections we have to use the extensions for background functions
determined by a generating set IBy.;. They usually involve also the set IB; obtained
by omitting the £ + 1% domain Q4;;, and we consider them on lattices connected
with the basic lattice in the #-scale, i.e., with T,. We construct their extensions
taking the partition into large cubes determined by IBj; only, that is disregarding the
domain ;. For cubes [, intersecting €2, we take the corresponding operators
G(O,, ) as in (2.3), but with the operator aL~2Q;} +1Qk+1 on the intersection (J, N
Qi+1. These operators satisfy the same basic bounds (2.5),(2.7), (2.10) with properly
chosen constants By, 7y, hence all the remaining bounds, and Propositions 2.1-2.3
hold for such background functions also.

3. Localization Expansions for Functions of the Covariance Operator

Besides the background configurations in the function (1.1) we have the oper-

ator C( )2, which depends non-locally on 6 through the configurations ¢;.; =
¢(]Bk+1) og+1 = &(BBxy1). It is a function of an operator defining a basic quadratic
form in k + 1% fluctuation integrals. We will discuss these integrals in the next
paper, where we will derive the following formula for the quadratic form:

(W, (aL™20*Q + 4Dy
= aL 72| QY |12 + al|¥'||* — 2, OxGloy11 ) QYY)

+ak<¢k+1 Gos )Y, [ + Grr1 - G(ohs1)Prs1|  Prra

. G(Otk+1)Q}:W>- (3.1)

Here the operator G(a) is determined by the generatm% set IB and defined by
(3.22) [2], and configurations /' have supports in A = Q It is rather easy
to see that for real configurations ¢, 04 the operator of the above quadratic form
is symmetric, positive and bounded and we will prove it in the next paper. We are
interested in two functions of this operator, namely in

CPt = (L7200 + 4P) 1) and log((aL™20"Q + 4D) 1).
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The second will appear as a main contribution to logarithm of the fluctuation integral.
We consider these functions for the operator with the background configurations
¢r+1,%+1 replaced by arbitrary configurations ¢y, o in the space (3.21) of [2], with
do sufficiently small. Because of their importance let us write here the conditions
defining the space

S <1gol < 2, 16— 11 < bo, 10"ols < 8o, |41ols < 3o, faols < 0. (32)
At the moment we consider real configurations, but in the future we will extend
all constructions onto the complex space. The operator aL—2Q*Q + A%) defined by
configurations ¢y, ®y and restricted to the set A is symmetric, positive and bounded.
Denote a positive lower bound by 9. We can define a function f of this operator,
where f(z) is an analytic function on a domain containing the interval [yg,+o0],
by the formula

S(@L™20"0 + 4©) = ﬁ [dzf @)@ = (L2 Q"Q + 497, (33)
C

where C is a contour in the analyticity domain of f(z) and surrounding the spectrum
of the operator. For simplicity we omit the set A in all notations; we assume that
all the unit lattice operators are restricted to A without writing it explicitly. We

are interested in two functions: one is f(z)=z72 = %, more precisely we take

a branch of ./z having positive values for z real positive, and a cut along the
real negative half-axis; another is f(z) = logz, which is a branch of logarithm
having real values for z real positive, and a cut along the real negative half-axis.
By the formula (3.3) the localization problems for the two operators are reduced
to such a problem for the resolvent of the basic operator aL=2Q*Q + A%, We
solve it by constructing a generalized random walk expansion for the resolvent,
similar to the expansions (2.8),(2.13). There are at least two ways of constructing
such an expansion. We can do it using the method and the theorem on unit lattice
operators in the fifth section of [2a]. This can be applied directly to the resolvent
operator, but it requires an additional construction of a random walk expansion for
the operator A®), It turns out that it is possible to obtain an explicit representation
of the resolvent, which is quite similar to the formula (3.1), and we can construct
a random walk expansion based on it. This is a bit shorter way, and we follow it
here. To simplify properties of a representation of the resolvent we transform the
integral in the formula (3.3), taking into account the particular functions we are
interested in. The resolvent itself is analytic on the whole plane, except an interval
[y0,71] in the positive half-axis. For the functions described above we can take the
contour C as a union of a circle |z| = R with a large radius R, a circle |z| =7
with a small radius », and two “sides” of the interval [—R,—r]. For the function
flz)= z™% we can take the limits R — o0, » — 0+ in the integral, and we obtain
the representation

o} — % T TR0 0+ 40 4an) (34)
0

For the function f(z) = logz it is slightly more complicated, because |logz| — +o00
as |z| — 400, so we cannot take the limit R — +oo. In this case we consider
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[-R,—r] as a union of two subintervals [—R, —Ry] and [—Ry, —r], and we write
the integral (3.3) as a sum of two integrals, one given by a contour which is a
union of the large circle and two “sides” of the interval [—R, —Ry], another given
by a contour which is a union of the small circle and two “sides” of the interval
[—Ro, —r]. For the first integral we use the resolvent equation, which yields the
additional factor %, and then we take the limit R — +o00. For the second integral
we can take the limit » — 0+. We obtain the following representation:

log(aL™20*Q + AP = (aL™20*Q + 4%)) f ( L720*Q + AW 4 x1)7!

- f dx(aL™20*Q 4+ A® + xI)™! 4+ logRy . (3.5)
0

It is easy to see directly, using the resolvent equation, that the right-hand side above
does not depend on Ry,. We will use it in the future. To derive the representation
of the resolvent in the formulas (3.4),(3.5) we start with the formula

exp [ 504.C01)| = i diexp | ~3al VI = 5049

~ e+ ).

CH = (@L2Q*Q + 4W +x1)7", (3.6)

where f is an arbitrary function on A with values in R", and we take x > 0. Let us
recall again that the variable ¥ in (3.6) is restricted to A. Consider the exponential
factor exp[—1 (¥, 48)y)] under the integral. It can be represented by the integrals

exp [——w A“‘w] 7 Jdsex [--w/ 06, a0 — 09))

-%@5,(-4‘” + vk +ag)o) — %lk“% - B

= %f d¢ [ doexp [—%(l// - 0¢,a(y — 0¢))
k
_1<¢,(—A'7 + Vi + a0)P) — i do + P)

-5zl G7)

where the variables ¢,a are restricted to the domain €, the first domain in the
sequence connected with the generating set By, and O denotes the corresponding
averaging operation Q(IB;), as in (3.22) [3]. Notice that Q in the formulas (3.1),
(3.3)—(3.6) denotes O, i.c., the basic 1-block averaging operation. It is easy to
see that integrating first with respect to ¢, and then with respect to «, yields the
corresponding quadratic form on the right-hand side of (3.1), which represents A%).
Now we substitute the last integral above in place of the exponential factor in
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the integral (3.6), and we obtain a Gaussian integral in the variables ¥, ¢p,o. We
integrate first with respect to ¥, then with respect to ¢, and finally with respect to a.
We do not discuss here these elementary Gaussian integrations. They are reduced to
a simple linear algebra; let us write a final result only. We introduce the following
two operators:

L—2
Gix(g) = (_Ag;"+akQ;: [ak’; ~(I-0°0) + EiTLj;x—HQ*Q] Ok o,
-1
+ 0" (B)a(B)O(BY) [z, +V+0)
1 * *
Ay = ak—i-x([_Q 0)+ mQ 0, (3.8)

where, in order to avoid confusion, we have written explicitly which operators are
determined by IB;. The operator C® has the representation

CH = Apr + afdi 2 Ok G x(00)Of Ak x — az Ak x Ok G, (0 ) o

—1
® [/lik + o - Gk,x(ao)(pO:l D0 G x(00)Of Ak x- (3.9)

It is very similar to the representation (3.1) for A%), the most important change is
that the operator G(ag) in (3.1) is replaced by Gy x(a) given by (3.8). Let us notice
that the above representation holds quite generally for the resolvent operator, and
we have the identity (3.9) with x replaced by —z, for z in a quite large domain in
the complex plane, but then we have more complicated properties and bounds of the
operator Gy _.(o). They become very simple for —z =x = 0. The second operator
in the parenthesis in (3.8) is equal to the linear combination of two projection
operators

a2al ™2
(ar +x)ar +al=2 +x)

(423 * *
ak +kaQk + Ok +19k+1

3 1

= Zak+1L—2Q;:+1Qk+l for0 < x = g% and
1, 1

= §akaQk for x > gak~

From the above inequalities we conclude easily that the operator in the paren-
theses in (3.8), ie., the operator G xl(cxo), is positive for oy real and sufficiently
small, or its real part is positive for oy complex and sufficiently small. We can get
a more precise bound using the following well known simple inequalities:

c(—AZ’N)-i-c’Q}‘Qj > (') ?min{4c,c’} on L*(4), where 4 is a j-block,
Jj =<k and AZ’N is the Laplace operator on A4 with Neumann boundary con-
ditions; c(—A%") + ¢/L72Qf, 1 Ok+1 = L2 min{dc,c'} on L*(4'), where 4’ is a
k + 1-block, i.e., an L-cube of Tj.
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Of course we have assumed that ¢,c’ are positive numbers. Let us take a cube
O C @4 which is a union of k + 1-blocks. By quite elementary considerations, using
the above inequalities, we obtain the bound

ala
(ar +x)ar +aL=2 +x)

- axXx * —2 %
Re [e(‘I) ! (‘Ag’[N'*‘[ kaQk+ L7205 1 0k1| longen,

ai +

. 1 1

+ax 0y Ok Tones,, +vi + flo) e(q)} 2 g(—Aé’lN) + gl 2
on LX), where e(q;x')=e? %, x €T,qecR?

1 _ 1 _
and  |qoo = max g, < L 20 ol < Ty %L 2 x20. (3.10)

The numerical factors above are to some extent arbitrary. If we take a cube 0 C Q;,
J < k, which may intersect £, but does not intersect £;,,, and which is a union
of j + 1-blocks, then the operator in the parentheses in (3.8) restricted to this cube
is equal to the corresponding operator in (2.3), and for it we have the above bound
with the second term on the right-hand side multiplied by (L/5)~2. Let us define
an operator Gy ((J,a9) by the formula (3.8), but with the operator in the paren-
theses restricted to a cube [, the Laplace operator with Neumann boundary condi-
tions on [ Of course we have Gy ([0, 00) = G([0,00) if O is disjoint with Q.
The operators Gy (2, %) play a crucial role in constructing the generalized ran-
dom walk expansion (2.8) for the operator Gy x(9). Convergence of this expansion
depends on the bounds (2.5). They hold for the operators Gy (L, #g) also, but strictly
speaking the proofs given in [2a] do not cover this case, although they can be easily
extended to yield the bounds. Instead of doing this we notice that now it is enough
to prove the convergence in the L?-norms, because we want to use the expansions
for the operators in the expression on the right-hand side of (3.9), and the aver-
aging operations (; can be interpreted as taking scalar products with characteristic
functions of k-blocks, that is with functions having Z?-norms equal to 1. This is a
crucial remark, because the bounds (2.5) in Z?-norms are immediate consequences
of the bound (3.10). We obtain

L/l x4)9" G (3, 20) 220 S| + 14809 Grx (@, 00)xa5) f |

< Boe OO LI 1 a1 (3.11)

where y € A; N0,y € Ay N0, f is an arbitrary function on [J, and we can take
By = ISﬁLa 70 = ;L 72. This bound implies the convergence of the correspond-
ing expansion (2.8) in the L?-norms. This expansion yields an expansion of the

second term in the representation (3.9). It can be written in the form
Z a%Ak,X < XA( ° )a hZ() Gk,x(DZ()a (XO )hZOK)C(hZ] )Gk,x(Dzl > aO )hzl
z

MEEE Kx(hz,, )Gk,x(Dz,,a 0o )hz,, XA+ )Ak,X5 (312)
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where the sum is over all walks z = (2¢,zy,...,2,), and the operator K,(f) is given
by the formula,

2 L~2
Kf)=2Vf-V+4f~ (af’jfx[Q:Qk,ﬂ Y T e 1T
X[Q;+1Qk+1,f]) law —ak [OF Ok f] Tog,, (3.13)

if suppf intersects Q.. If it does not, then it is given by the second formula in
(2.6), but with 4, replaced by f. Instead of the bound (2.10) we use now the bound

LINP 140)Kx ()G x (T 00 Y sy /1| S 4dM ™ Boe ™03 12 ) S|
(3.14)

following from (3.10), (3.11) and (3.13). It implies the convergence of (3.12) in
exactly the same way as in Sect. 2, in particular the bounds (5.11) hold without
any changes. We would like to construct a similar expansion for the third term on
the right-hand side of (3.9). It is slightly more complicated because of the inverse
operator in the middle of the expression. We have analyzed this operator in [3], so
we summarize necessary results obtained there in the equalities below

-1
[% + ¢ - Gk,x(do)cbo]
k

l —1
= [A_kG’Z"I(aO)+ Gy (0)(bo - Gk,x(fxo)¢o)] Gz (20)

—1
= [l_l'G];xl(o) + 1 — Ki(do) + Grx(20)do + <¢(2) -1+ ?)]
k k

X Gy 1 (a0) = [1 — MG x(A)K( o) - Gx(20)Po + Ak G x ()

o

~1
(% -1+ TZ)J M Grx(A)Gy (%).
The operator A;Gy ,(4x) has the Hilbert space norm <1, the operator K,(¢o)-
Gi.x(00)¢o has a small norm of the order O(Jy), and |¢3 — 1 + 2 < 200 by (32),
hence the operator in the last square brackets above is a small perturbation of the
identity operator, and its inverse can be represented by a convergent Neumann se-
ries, for dy sufficiently small. Thus the third term in (3.9) is given by the following
series:

(e

At Akx < ey Grx(%0) o ® (/Ika,x(/lk)Kx(Qbo) » Grx(0) o
n=0

— G x(Ak) <¢§ -1+ %)) (A G x (i )K(P0) G, x (200)

~ G x (A )bo)xaey > Ak x. (3.15)
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It is a convergent series, whose n™ term is a product of at least n small factors,
so we can obtain easily various uniform bounds for its sum. Now we construct
a random walk expansion of the sum by substituting in place of all the operators
Gy x(%), Gr,x(A) their random walk expansions. We obtain an expansion of the
general form (3.12), but in which the operators K, (%, )Gy, x(C;, % )k, may be replaced
by other possible operators. We describe this by introducing generalized random
walks, with points z replaced by pairs (z,7), where the natural number i indicates
which operator we take. We combine this expansion with (3.12), and we obtain the
following expansion of the sum of the second and third terms on the right-hand side
of (3.9), without the operators azAy x

Joo]
Dk,x(y’ y,) = Z <XA(y)a H() Gw,,.(hzm, Dzm )hszA(y’)>’ (316)
w m=
where the sum is over random walks w = (wq, w1,...,®,), |®| = n, On = Zm,in),

and an operator G, (%;,[],) is one of the operators

hZGk,X(DZ> %] )’ thk,x(Dza o(())(130, Kx(hz)Gk,x(Dz, O‘O),
Kx(hz)Gk,x(Dza 0(0)450, Akthk,x(Dza lk )a Kx(hz)Gk,x(Dza Ak )9
Kx((.bO )thk,x(Dz, %), Kx(¢0) . thk,x(Dz, 0‘0)(1)0,

“;Lkthk,x(Dza lk) ((]5(2) -1 + ?)a _Kx(hz)Gk,x(DZa }'k) ((i)% -1 + %C_(')')»
k ‘k

—Ki(h2)Grx (T, Ao, —Aich: G (T, A ) o - (3.17)

Thus the indices #,, change from 1 to 12, but obviously they do not change indepen-
dently; there is a set of restrictions following from the structure of the expressions
in (3.12), and in the series (3.15). They should be quite clear, so we do not need
to formulate them explicitly here, but let us mention a few which will be used next
in bounds. The first two operators in (3.17) appear only at the beginning of the
product in (3.16), i.e. for m =0, and iy =1 or 2. The last operator may appear
only at the end of the product. After the fifth operator there is in some place in the
product (3.16) either the seventh, eighth, or tenth operator, except when the fifth
operator appears the last time in the product. From the inequalities (3.10), (3.11),
(3.14) we obtain the following bounds:

3

5,4dM“,6dM“‘,1,4dM“‘,

”XA(y)Gw(hz’Dz)thA(y’)f“ = {1,
3 -1 -1 3 —90d(3,y")
(2d + 1)dy, E(Zd + 1)d0,260, 8dM ™" 69, 6dM ", 3 Boe 704

& s sl s (3.18)

where the order of constants corresponds to the order of operators in (3.17), and
we have to include the factors (L/5)? in the norms for the operators involving K.
The bound of the fifth operator is not small, but we can use the fact that it is
followed by one of the operators described above, whose norms are of the order

0(d9), and assign the factor 6} to it. Now we can estimate the expansion (3.16)
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in the same way as the expansion (2.8), and we get the inequalities (2.11) with
minor changes only, more precisely the numerical factor on the right-hand side of
the third inequality is replaced by

n—1
9B2¢? d,—l—yo (2L + 1)? ( 48dByc, d,lyo (2L + 1)? max M-l,%a% .
0 4 4 370
(3.19)

The remaining considerations are the same as in Sect.2, we assume that the
expression in the parentheses above is =1, and this yields the convergence of
the expansion (3.16), and various bounds for the sum and certain partial sums. In
particular the whole sum, hence the operator Dy, satisfies the bound

1 1 1 Lo
D <9B2? | d, =~ 2L + 1) S o hnd(e)
< B4|f|, where B4 =9 - 2971832 <d, %yo) (2L + 1)°. (3.20)

In the above bounds we have used the fact that any w,, in a generalized random
walk w can be followed by an w,; with at most 4 different indices i,,+1, and this
is the reason for the number 48 in (3.19), and 317 in (3.20).

Using the bound (3.20), which is uniform in x = 0, and the equality

Cix = Akx + a3Aix Dy xAi (3.21)

following from the definition of Dy, we can simplify the formula (3.5). At first
notice that the first integral on the right-hand side of (3.5) converges to 0 as Ry —
+00, because the under-integral expression is of the order O( é). The operator A4y
is a very simple operator given by the formula (3.8), and it is of the order 0(%) for
large x, so the second integral in (3.5) of the second term on the right-hand side
of (3.21) is convergent as Ry — +oo. This integral of the first term on the right-
hand side can be calculated explicitly, and the result combined with the term log R
in (3.5) is convergent to loga;( — Q*Q) + log(ay + aL™2)Q*Q as Ry — +o0. We
can do a similar calculation for (3.4), and we obtain the following final formulas
for the operators in (3.4), (3.5):

2 oo 4
f 'iAk,ka,xAk,xa

1 a
— 00+ £
Vag +al? Ty VX

log(aL™>Q*Q + 4%®)) = log ax(I — 0*Q) + log(ax + aL™*)0*0 -

COl= 1 -0'0)+

2+oo
—a} [ dxAg Dy xAx- (3.22)
0

The expansion (3.16) yields random walk expansions of these operators. We can use
them now either to introduce the localization parameters s into the operators, or to
construct their localization expansions directly. The introduction of the localization
parameters has been discussed thoroughly in Sect.2. We use the expansion (3.16)
and construct an analytically extended operator Dy «(s) by the formula (2.16). Using
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the bounds (3.20) and the basic inequality (2.21) we obtain
|Dix(5)f] £ Baexp((TLY )|/ - (323)

The extension of Dy, defines an extension C%*)z(s) through the formula (3.22). It
satisfies the bound

2 2 +too g 1 L~
C®i(s)f| < ( =t x(a:; )wap((n)"m)) /1= Bslf|

(3.24)

following from (3.22),(3.23). Notice that the bounds (3.23), (3,24) can be improved
by omitting the factor exp((7L)?x;), as in (2.23), if we restrict the supremum norms
on the left-hand sides to the domain Xj. Let us recall that the extensions in s are
defined for a given pair of localization domains Xp, X; satisfying (2.14). The above
results form an important part of the whole localization problem, and we summarize
them in the proposition below.

Proposition 3.1. The operator C®)z given by the formulas (3.4),(3.9),(3.6),(3.22),
(3.16), has the localization extension constructed above, which is an analytic func-
tion of (¢o,00) on the domain (3.2) with é9 small enough, and of the localiza-
tion parameters s in {s : |s| < e }. This localization extension satisfies the bound
(3.24), and the bound corresponding to (2.60) with K46 replaced by Bs|f|. It satis-
fies also the crucial localization property, which can be formulated in the following
form: if s =0 on a family € of cubes, and if Yy is the connected component of
(UF)° containing Xy, then yy,C®i(po,a0,5)f depends on ¢o,a,s, [ restricted to
the domain Y.

Obviously similar conclusions can be formulated for the second operator in
(3.22). Actually we will not need this operator, only its trace which appears as
a leading term in contributions to the effective action coming from the fluctuation
integral. We will discuss these conclusions later, together with the remaining local-
ization expansion.

4. A Construction of the Localization Expansion (1.4)

In this section we construct the expansion (1.4), and prove complete analyticity
statements, using the results of the two preceding sections. Let us recall the following
identities for the background configurations occurring in (1.1):

Y(Bj, By; (1By, By 15 0)) = Y(Bj, Bry1;60), or simply
U WE0)) = Y (0), where YB(0) = Y, (0) = Y(By, Byy1; 0),

YDWRO) + B CORy) = YD (0) + Sy (B, LBy, 1)

where the last function on the right-hand side above is determined by the background
configurations @y4+1(84), 4x+1(8), and for simplicity of notations we have omitted the
dependence on A. These identities are special cases of the identities (4.21),(3.49)
[3]. It seems that the last identity and the results of the two previous sections



68 T. Balaban

provide a natural way to construct the expansion; we could introduce properly the
localization parameters s into the functions on the right-hand side, and to interpolate
in s between 0 and 1 in a well known way. This is formally correct and yields a
localized expansion, but unfortunately the functions 1//,;{)1 (s), 5!#,5’ )(s) do not have all
necessary properties needed in our method, for example, their values do not generally
belong to the space ¥{(X; CoL/n,er), which we need for the bounds obtained in
[1]. This is so because the introduction of the localization parameters destroys their
structure, their algebraic properties and the equations satisfied by them. To overcome
these difficulties we have to use a more elaborate representation than the one above.
This will be done in several steps.

Let us start with geometric definitions. We have the localization domain X € Z;,
and we would like to assign to it a “smallest” in some sense localization domain
X, € D441 containing it. Let us recall that in the considered scale, in which the
basic lattice T' is in the #-scale, ie., it is T, a domain from &; is a connected
union of LML/n-cubes from the cover 7}, which are unions of L¢ cubes of the size

ML/n from the partition 7;. We define the domain X; € Py, in the following way:
Xi = a union of all L?M-cubes from the cover 7, which contain a
LML’y — cube from the cover n} contained in X. (4.2)

We define also a domain X’ as a union of all large cubes from the partition
7;+1 which have non-empty intersections with X. For these domains we have the

inclusions
X, c x'~EL Xy > X'~ (4.3)

for example for L =3 we have X; C X’~2,X; D X'~. We would like to keep the
possibility of having this small value of L, and we would like also to define a
domain X, containing X and satisfying the condition (2.14). This is possible if we
introduce two scales of large cubes, one smaller for the constructions and results
of this paper, and another larger for the main renormalization group procedure. We
take the smaller scale in such a way that all conditions related to constructions and
properties of all the minimizing functions in this paper are satisfied. There are several
conditions involving the size M of the large cubes, for example the conditions
8dBoci(d, §70) - (2L + 1Y'M ™3 < 1,M 2 4(7L)'x:=- used in the proofs of Sect. 2
and we assume that M) is a number of the form L™ satisfying all these conditions.
Thus all the statements proven until now hold for the number M;. The size M of
large cubes used in the renormalization group procedure, i.e. in the paper [1], is
greater than M;, and we will obtain some conditions on it. From now on we have
to be particularly careful with the meaning of the operation “~.” In this paper it
generally means that the size M| of large cubes is used, except in the cases where
we have domains arising in the renormalization group procedure and the size M is
used, like in (4.2),(4.3).

Let us consider again the localization domain X. We would like to construct
a minimal in some sense sequence {Q},...,Q;} of localization domains defined in
terms of M;, satisfying (1.1) [3] and such that X C ©;. We define € in the same
way as X; was defined, with M; replacing M, we take

Q}, = a union of LM,-cubes from the cover 7, which contain

a LM,L/y-cube from the cover 7} contained in X. (4.4)
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Notice that the conditions (1.1) [3] are satisfied if Q. C €,, where Q,,; is con-
sidered as a domain in 2,,, and the operation “~” is defined in terms of cubes of the
partition 7,. Until now we have only very mild restrictions on R, the strongest one
we may impose is connected with the conditions (2.14), and may be formulated as
Q;{‘]’L C ,, where we may even take o = 5. Thus a next domain in the sequence
must satisfy this condition only, so we consider Q} as a localization domain in Z;_,
and we define

Q, = QL where we add layers of ML~y = ML~ !-cubes. (4.5)

Generally, having defined Q,,, we consider it as a localization domain in 2, and
we define
Q) = Q3. where we add layers of M;L/n-cubes. (4.6)

n+1 »

This way we construct the whole sequence {Q{,€,...,Q;} and the correspond-
ing generating set. They are determined by the domain X, so we denote them
by {Q1(X), 2(X),...,2(X)} and B(X). Notice that they depend on k also, the
domains €;(X) vary with k, according to the above definition. We define also a
domain X" in the same way as the domain X’ before, namely as a union of M;-cubes
from 7, which have non-empty intersections with X. Obviously we have

X X' cXx ™2 coux)cx T o xi
where the operation “~” is determined by the M;-cubes. We define

Xo = X'™*, hence Q,(X) C X,, because
(L — DMy +SLML™" -+ SLML=%D < (L — 1)M,

1
+75M1 <4LM,. (4.7)

The domain Xj is a localization domain from the corresponding family & defined in
terms of M, and we consider X; also as a domain from this family. We require that
the two domains Xj,X; satisfy the condition (2.14), i.e., X; ™ C X;, the operation
“~” is determined by the partition into M;-cubes. By the definition of X; and
(4.3) this condition is satisfied if 4LM, + roM; < LM. For ry = 5 we may estimate
4LM, + roM; < 6LM;, and the condition is satisfied if 6LM; < LM, or 6M; < M.
Assuming this, and assuming also that X; is contained in £, we obtain

XCQX)C - CQX)CTXo, Xy CX1 C %, Xo,Xi € Dy (4.8)

The idea how to construct a localization expansion of the function (1.1) which

we follow here is to replace at first the function !ﬁ,ﬁj ) by a local function with a
generating set contained in some neighborhood of X, and then to introduce the
parameters s into the function which is composed with this local one. We use the
generating set IB;(X) and the corresponding local function ¢(IB,(X)). We have

d(By; ¥) = (B (X); y(Bi(X ), By; ),
d(Byr1;0) = d(Be(X); Y(By(X), Bey1; 6)). (4.9)
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We take the generating set corresponding to the sequence

{Q,..., Q,Q1(X),..., %X)}
and we denote it by B; U Ichj )(X ). We have
Y(Bj, By ¥) = Y(B;,B; U B (X ); y(B; UBY(X), By ). (4.10)
Consider the function y(IB;,B; U ]chj XX 9. By (4.21) [3] we have

¥(B;,B; UBY(X); ") = 0,¢(B; UBY (X); y") + %(wa Y
]

xQ0s_ (Y — Qpd(B; UBY(X);9")) on BP (A (X)), p > J,

W(B,,B; UBY(X);y") = y" on LjoAnu(Q,\Qj+,(X))<f>. (4.11)

The function ¢(IB; U ]Bfrj (X ); ") can be written in the form

¢(B; UBY (X);¢") = p(B(X ); y(Bx(X), B; UBY (X );y")), (4.12)
and we have

. k
Y(Be(X),B; UB (X );¢") =y on (J 4,(X). (4.13)
p=j

From the above formulas we get
Y(B;, B, UB (X );y")

— O, (BL(X); Y(B(X), B; UBY (0 §")) + ZL(LIL™P)20; (W(Br(X),
J

B, UBY (X );y") — Q,¢(Bi(X); Y(Bi(X),B; U B (X); ¥")))
= Y(IB;(X), Br(X ); Y(Bi(X),B; UBY(X); ¥ ))on BP/(A,(X)),
J = A (4.14)
again using the formula (4.21) [3]. Combining (4.10), (4.14) we obtain
W(B;, By; )
= Y(B;(X), By(X ); Y(Bx(X ), B; U BY (X ); y(B; U BY(X), By; )))
= Y(B;(X), Be(X); y(Bx(X ), Bi; ¥)) on ;(X)Y, hence on X N TH).  (4.15)
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This yields finally the identity

Y(1B;, By; Y(IBy, By 15 0) + ¥')
= Y(B;(X), Br(X); Y(Bi(X ), By; (B, By150) + ¥'))
= Y(B;(X), Bi(X); Y(Br(X ), Bry1; 0) + Sy(Bi(X), Bi; ¥'))
on Q;(X)Y), hence on X N T . (4.16)

In the three identities above we have taken B;(X) defined by (4.4)—(4.6) with
j instead of k. We obtain a sequence of different, smaller domains, in particular

=Q;(X)=X by (44). The external function Y(IB;(X),1B;(X)) on the right-
hand side of (4.16), restricted to X N T, is localized in a small neighborhood
of Q;(X) (we add one layer of points to this domain), hence in the domain Xj.
Furthermore, regularity properties of this function on X N 7(/) are basically the same
as of the function y(IB;,IB;). This will be analyzed in detail in the future.

Because of these properties we use the representation (4.16) as a basis of our
expansion method. We need to introduce the localization parameters only into the
internal functions on the right-hand side of (4.16). We discuss it now. We take the
localization parameters determined by the generating set BBy, or by the sequence
of domains {€),%,,...,9}, which are considered as localization domains with
large cubes determined by M;. We do not take into account the domain 4;. The
parameters s are introduced into the function Y(Bx(X),Biii;0) in the way dis-
cussed before. This function is represented by the formula (4.21) [3] in terms of
the function ¢(By,;;60), and we extend the last one to the function ¢(IBy;;0,s)
determined by the geometric setting constructed for 1B, although on cubes inter-
secting Q,,1 we take operators corresponding to & + 1% renormalization step. Thus
we obtain the extension Y(IBy(X), Bxy1; 6,5) whose properties are summarized par-
tially in Proposition 2.3. Similarly the function dy/(IBx(X),IBs; ') is defined by the
formula

Y(Br(X), Bi;¥') = O(Br(X))SP(By; ') + ————= 0" (B, B (X ))a(By)

a(1By (X )
X' — O(Br)od(By; ¥")), (4.17)

where 6¢(IBy; y') is the solution of the system of Egs. (3.20) [3] with oy = ¥/, ¢o =
¢(Byy1;0), 00 = a(Byy150), f1 = 0,00 = 0. This solution is an analytic function
of ¥/, o, %9 on any domain (3.21) [3] satisfying the assumptions of Proposition
3.1 [3] and it satisfies the bounds (3.47) [3] of this proposition. We denote the
solution by d¢(IBy; ¥, o, %9). We introduce the parameters s into this function as
in Proposition 2.1, and we define

3p(By; ¥, 5) = 6p(By; W', ¢(Bii1;0,5), 0(Bryy; 0,5),s) . (4.18)

Let us make a few remarks on domains and analyticity properties of the above
function. By Proposition 2.1 the function d¢(By; ¥/, do, %, s) is analytic on domains
(3.21) [3] with d;,0¢ satisfying the assumptions of this proposition, in particular
Bydg £ % The constant d; occurs in the restriction || < J; only, and we may
assume that it is sufficiently small. We have to check when ¢g = ¢(Bgy1; 6,5),00 =

o(BBy41; 0,5) belong to a domain (3.21) [3], or (3. 2) with Jy satisfying the above

condition. We consider these functions on a space P (By41; 0, ¢) with 0, ¢ satisfying
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the assumptions of Proposition 2.2. Then they satisfy the bounds (1.15) [3] with K4
instead of Kj, and these yield immediately the last three bounds in (3.2) with dy =
K46. To bound ¢3 — 1 we write ¢3 — 1 = (¢ — 0)* + 2(¢po — 0) - 0 + (6> — 1), and
from the first bound in (1.15) [3] and the definition of the space ’f’c(]BkH; 0,€8) we
get

|5 — 1] < o — 0] + 2| — 6]]6] + |6° — 1] <KF6* + 2K46% + 20 < 4K,
for ¢ sufficiently small. Similarly we get
1
ol = 1] < Igo — 0] +110] — 1] < Kad+2+20 < 5

for ,¢ sufficiently small. Thus the two configurations belong to (3.2) with dy =
4K,46, and we assume that 0 is so small that 4B K40 < %. With these assumptions
the function (4.18) is an analytic function of (6,%),y/,s defined on corresponding
domains .

P (Bies1; 8,8) x {W': Y| < 61} x {s:]s] < e} (4.19)
It satisfies the bounds (2.54) of Proposition 2.1. Substituting it into the expression
on the right-hand side of (4.17) we obtain an analytic extension oy(B(X), By;¥/',s)

of the function (4.17) defined on the same domains (4.19). From the representation
(4.17) and the first bound in (2.54) we obtain the bound

[oY (B (X ), By; ', 5)| < (2K3 + 1)d1. (4.20)

The function Y(By(X),Bs;1;60,s) has properties described in Proposition 2.3, in
particular it is defined on the domains (4.19) and it has values in the space
lI~’c(]Bk(X ); 2(d + 2)K40,¢). From all the above statements it follows that we have
constructed an analytic extension

Y(B(X), Byy1; 0,5) + SY(Be(X ), By; ¥/, ) (4.21)

of the internal function on the right-hand side of (4.16), defined on the domains
(4.19) and having values in the space 'i’c(]Bk(X ); 2(d + 2)K46 + 4(2K5 + 1)d1, ¢).
The last condition follows from (4.20) by considering the second term in (4.21)
as a part of the complex configuration in the definition (1.12) [3] of this space.
Assuming again that ,¢,d; are sufficiently small, so that 2(d + 2)K40 + 4(2K;3 +
1)d1,¢ satisfy the assumptions of Proposition 4.1 [3], we substitute the function
(4.21) into the external function on the right-hand side of (4.16), and we obtain
an analytic extension of the function (4.16) in the localization parameters s. By

Proposition 4.1 [3] it belongs to the space lI~’c(]Bj(X ); 62, ¢€), where
0y =2(d + 2)K; - (2(d + 2)K4d + 4(2K3 + 1)01).

1
Let us recall now that in the function (1.1) we have Y’ = f, 2C®)1y, and we
have to localize this expression also. We have constructed the analytic extension

C®1 (o, m0; ) in Proposition 3.1, and similarly to (4.18) we define

CW3(s) = €O (Prra(s), ae41(); ). (4.22)
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It is an analytic function on the part of the domain (4.19) without the second
factor, and it satisfies the bound (3.24). The variable Y, which is a “fluctuation”
variable connected with the k& + 1% renormalization transformation, and which will be
discussed in the next paper, satisfies the bound || < p1(fi) = 41(log i)', where
p1 is an even integer smaller than py, hence

W'| < By “Bspi(Bi) < BsCu B 2" =41 (4.23)

Obviously d; can be arbitrarily small if § is large enough. In the remaining formulas
and estimates we will use for simplicity the variable i/, remembering that

W =By W (). (4.24)

We will come back to a discussion of (4.23) in another paper, where we will
construct and discuss all remaining localization expansions.

Thus the extended in s function inside (1.1) is analytic on quite large domains
determined by some absolute constants. Unfortunately these analyticity properties
do not fit well to the inductive hypotheses, as was explained already in [1], and
as should be clear from the above discussion. In particular the domains used do
not behave well under the compositions of various minimizing functions. Because
of this we have to use spaces of the type Z{(0,¢) introduced in [1], but localized
properly. Nevertheless we need also almost all results of the above analysis done
for the domains (4.19).

We formulate now definitions of such generalized spaces. They are simple mod-
ifications of the definitions (2.15),(2.16) and (2.20),(2.21) in [1], but because of
their importance we write here their complete formulations. Take a generating set
B;, and a function o(IB;) defined on £, having positive values in the interval 10, 1],
and satisfying the condition that it is constant on corresponding blocks determined
by points of B;, i.e., constant on n-blocks 4,(y) for y € A,,n < j. We take € as
some “small” neighbourhood of Q;, for example 2y = 7", or even a smaller neigh-
bourhood obtained by adding a layer of 1-blocks to 2. We introduce the following
spaces of configurations ¢ defined on €, and having values in RY, and vectors
heRN

®(Bj; 0(B)), & 4,v) = {(¢, 1) : [0°¢p(x)| < o(Bj;x)(L"E)7 e,
|48 p(x), |(x)] < o?(Bjsx)(L"E) 26, |p(x) — h| < v™3a(Bj;x)(L"E) e
on 4,(y),y € Ay, or Simply on B,(A,) = Qn\Qn-H,n =7/

2_ =1 nf 2B x WL EY 262
Ik | <v n,xeg:\QnHO- (B0 e,

o= %(qzﬂ -1, (4.25)

where ¢,A,v are positive numbers. We extend these spaces to complex spaces of
configurations (¢ + ¢’,h + k), where (P,%) is as above, ¢’ is defined on Qy and
has values in CV, 4’ is defined on B ; and has values in CN. We take

@°(Bj; 0(B;), & A,v) = {(¢p + ¢, h + ') : (¢, h) € B(Bj; 6(B)), &5 4, v),
¢/ <&]0°¢'(x)] < o(B;x)L"E) e, | 4%/ (%)), [Sou(x))]
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< (B x)(L"E) e |H' ()] < v7'a*(Bj; y)L"E) e,
|p(x) « H(»)| < v 'e*(Bj;x)(L"E) 2% on Au(y),y € Apyn < it

l }. ’
du=((¢+ ¢V — ¢ = 729"+ %). (4.26)

The above spaces are quite natural in many constructions, in particular Propositions
1.1 [3], 3.1 [3], 2.1, 2.2 can be formulated in terms of these spaces, with o(IB;) = 1.
Of fundamental importance are spaces of configurations defined on B;. For such
configurations ¥ with values in RY, and vectors # € R", we introduce spaces

Ej(Bj;a(B;),e) = {(¥,h) : (¢;(Bj; ¥, h),h) € ®(Bj; 6(B)), &5 4),v)),
W(y) — (O(B)$;(B;; ¥, h)(»)| < 6*(Bj; y)e for y € Apon < j}, (4.27)

where ¢;(IB;) is the minimizing function determined by IB; and by coefficients
aj, Aj,v;j. Finally, for complex configurations (Y + y',h + #'),(y, k) as above, ¥/, k'
defined on B; and having values in CV, we define

Ej(Bj; 0(B)),e) = {(Y + ¥, h+ 1) : (Y, h) € Ei(B; 0(B)),e),
(;Biy+ Y A+ W), h+h) = (¢;(By; ., h) + 6¢;(By Y/, i), h+ 1)

€ O°(By; 0(B)), & 45, v;), [¥'(») — (O(B;)d¢;(Bs ', ))(»)]

<d*(Bj;y)e for y € Ay,n < j}. (4.28)

One of the most important facts relating these spaces to functions y(IB;,IB}) is
formulated in the following lemma, a generalization of Lemma 2.1 [1].

Lemma 4.1. For ¢ positive and small enough, and B; < 1B, (see the definition
(4.1) [3]) we have

Y(1B;, B, ): Z(By; o(1By ), €) — E5(IBj; o(B, By )a(By), ¢), (4.29)
where o(IB;,B}) is a function defined on Qy by the formula
o(B;,B};x) = L"L™7  for x € (2,\Qn41) N (2,\2),11)- (4.30)

Notice that the intersection in (4.30) is empty if » > p, by the assumption
B; < B;, hence n < p and o(B;,1B;) < 1. The above lemma follows immediately
from the composition formula (4.21) [3] by inspecting the definitions of the spaces
involved, in particular corresponding weights on the intersections in (4.30). We
could introduce also generalizations of other spaces considered in [1], but in this
paper we will use only spaces ¥§(X;0,¢), which are defined by the conditions
(3.13), (3.14) [1] restricted to a localization domain X, e.g. X € &.

We modify also slightly the inductive assumption (H.5) on the analyticity
domains of the localized functions in the expansion (H.5). For a localization do-
main X € Z; we construct the minimal generating set IB;(X) (described in (4.4)—
(4.6)), and we assume that the function &)(y,X;V;,v;h) has an analytic extension
onto the space E{(IB;(X);1,¢;) satisfying the bound and the invariance property
in (H.5). This space is larger than the space Z¢(1,¢;), so the above assumption
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is stronger than the inductive assumption (H.5) in [1]. It implies that a localized
function of the expansion (3.127) in [1], corresponding to a domain X € %, has
an analytic extension onto one of the two spaces: Z7(IB;(X); 1,¢;), or the subspace
of Wi(X; Col/n, ;) given by the configurations satisfying the additional condition
(3.107) [1], and it satisfies the bound (3.128) [1]. We write it more generally as

16X ¥ < Eexp(—(x — 1)d;(X)), (4.31)

where E is a positive constant, which in applications will be one of the constants
in various assumptions and bounds in [1].
Let us consider now the function

EX; (B (X ), Br(X ); Y(Bi(X ), Byr1; 6, 5) + SY(Be(X), By; ¥',5))) . (4.32)

For s = 1 and Y/ given by (4.24) it is equal to the function (1.1). We would like
to prove that it can be analytically extended onto a space

B 1 (Begr; Le) x {y - Y] <61} x {s:]s] <€} (4.33)

for ¢’ < g, e.g. & = g1, and for §; sufficiently small. Actually we are interested in
a situation where the function depends on the variables restricted to some domain Y
containing X;, and then we can take B;,; as equal to By, (YY), so BBxy; in (4.33)
has a more general meaning. We will discuss it again later on. To prove the above
statement we have to prove that the function inside (4.32) transforms the space
(4.33) into the two spaces written above as the two possible analyticity domains.
At first we write

Y(Bi(X), Brs1; 0,5) + oY (Br(X), Bi; Y/, 5)
= Y(By(X ), Bir1; 0) + [AY(Bi(X ), Bi15 6,5) + 0Y(Be(X ), Bis ', 5)] -
(4.34)

The idea is that for the first configuration on the right-hand side we know quite
precisely spaces to which it belongs, and the configuration in the square bracket
should be sufficiently small. We use (4.29) for the first configuration, and we get

Y(B(X ), Bir1;0) € ZR(Be(X ); 6(Br(X), Byy1),6') C Zx(Be(X); 1,€') . (4.35)

To estimate the configuration in the square bracket we notice that the proofs of
Lemmas 4.3, 4.4 [3] can be easily interpreted as yielding

55 (Brar; 1,€") C W (Biyr; 2(d +2),2(d +2)¢') . (4.36)

By Proposition 2.3 the first term in the square bracket is an analytic function
on the space (4.33), if 2(d +2)¢’ < ¢7, and it satisfies the bound (2.60) with
6 = 2(d + 2)¢'. By the analysis between (4.17) and (4.20) the second term is an-
alytic on this space also, if ¢ is sufficiently small to satisfy the conditions listed
there, and it satisfies the bound (4.20). Thus the expression in the square bracket
on the right-hand side of (4.34) is an analytic function on the space (4.33) and
it can be bounded by 03 = 2(d +2) Kyexp(—yoM1)e' + 2Kz + 1)d,, if ¢/,6; are
small enough. Let us take the value of the function ¢(IB;(X)) on the configuration
(4.34). It can be written as the sum

(B (X ); Y(Bi(X ), Bys1; 0)) + 6p(Br(X s [...])
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where the function d@(IBx(X)) is defined by the configurations ¢ = ¢(Biy1;0),
og = o(Bgy1;6), f1 =0,0; =0. It satisfies the bounds (3.47) [3] with J3 instead
of 6;. From this and the definition of the spaces Z;(IBt; 0,¢) we conclude that the
configuration (4.34) belongs to the space Z§(B(X); 1,&' + (K2 + 1)d3), or that the
function (4.34) is analytic on the space (4.33) and transforms it into the above one.
From this and Lemma 5.1 we obtain the following statement: the function inside
(4.32) is defined and analytic on the space (4.33) with ¢,d; sufficiently small, and
it transforms this space into the space

E{(Bj(X); o(Bj(X), Be(X)), &), if g+ K+ 1)53 £ & (4.37)

Let us analyze the last condition in more detail for & = g1, where we take
g; given by the formula ¢; = £ &%, oo,k = (1 + Z::,f niz), o= ‘% -5,0<y<
yo = min{1, ‘%} The positive constant o is sufficiently small, in particular it can
be chosen in such a way that all the previous conditions on ¢’ are satisfied. The last
condition is satisfied if 2(d + 2)(K; + 1)K4 exp(—yoM1)er + (K2 + 1)(2K;3 + 1) <
L %0g;, because L%, < & — &1 We assume now that M satisfies the additional
condition 2(d + 2)(K; + 1)Ksexp(—yoM1) < 1L, or 8dL*KrKsl < expyoMi.

Then the last condition is satisfied if (K; + 1)(2K3 + 1)d; = %L‘“ocek, or if

o
SL KKt < P
o~ 0

If we take d; given by (4.23), and use the asymptotic properties of Sy, then we
obtain the bound J; <235Ca1ﬁ_%+“'11d‘?‘2_“1(d_2), and the first condition above is
satisfied if 2= > 16L°‘B5Ca1K2K3a—}«;117"“'("‘2). Taking a; such that a)(d —2) <
y we obtain that the last condition is satisfied if f is large enough, more precisely
if ﬁ%‘“' > 16L°‘B5C41K2K3a%“0. We will come back to these conditions in one of
the following papers, where other localization expansions will be discussed. Now
we assume that they are satisfied.
For the space in (4.37) we have the inclusions

1
8dL°‘K2K4& < expyoM; . (4.38)

ES(B(X ); o(B;(X ), Be(X)), &) C ES(B(X); 1,¢)),
ES(B,(X); 0(B;(X), Bi(X)), &) [ x C WS(X; 3L/, &), (4.39)

where the last one follows from the generalization of Lemma 3.1 in [1] discussed
before in connection with Lemmas 4.3, 4.4 [3]. Actually we have to be more precise
now, because the representation (3.127) [1] with the bounds (3.128) [1] hold on the
subspace of the space !I’j.(CoLf 7, & ) defined by the additional condition (3.107) [1],

that is the condition |0%y| < K;C,, (I/n)* % &, where 0 <oy <1 and C,, is an
absolute constant depending on o; only. Thus instead of the last inclusion above we
have to prove that
Y(B(X ), Be(X)) [x: E°(Bie(X ); 1, &)

— {(, h): (b, h) € W(X;3L7n,6), |0°W| < K1Co (/)" ™ &r}. (4.40)
The function ¥(IB;(X),Bx(X )) has the representation (4.21) [3] in terms of the func-
tion ¢(Bx(X)). We use again the inclusion Z°(IBx(X);1,&) C lI~/C(]Bk(X );2(d +
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2)ex, 2(d + 2)e), and from Proposition 1.1 [3] we obtain that ¢(IB,(X)) satisfies
the third inequality in (1.15) [3] with J replaced by 2(d + 2)g;. In particular on
the domain X we have the inequality with the constant K;C,2(d + 2)e; on the
right-hand side. Notice that other inequalities in (1.15) [3] hold with K;d replaced
by &, by the definition of the space Z¢(Bx(X);1,é&;). From these inequalities and
(4.21) [3] we obtain easily that on the domain X

|0%W(B;(X), Bi(X))| < K1 Ca, (L)~ 2(d + 2)ex + 4(L'n) e,

which implies (4.40) with a properly chosen absolute constant C,, depending on
oy,d only. From the inclusions (4.39), (4.40), the statement before (4.37) and the
assumptions on the function &(X,y;) we conclude the following lemma.

Lemma 4.2. The function (4.32) is defined and analytic on the space (4.33) with
¢ < gy1 and 61 satisfying the condition (4.38). On this space it satisfies the bound
(4.31).

After the above preparatory analysis we can finally construct a localization ex-
pansion for the function (1.1). We start with the following simple interpolation
identity used many times for similar purposes:

EX U W00 + ')
= E(X; (B (X ), By(X ); W(B(X ), Bys1; 6, 1) + SY(Br (X), By; ¥/, 1)))

1
=>1II fdsgi@“’(X; Y(B;(X), Bi(X ); Y(Bi(X), Biy1; 0,5)
¢ 0% 0 o5

+0Y(Bx(X ), By; ¥, 5))) . (4.41)
S(6°)=0

The summation above is over all subfamilies % of the family of large cubes (in the
scale M) determined by the generating set IB; and contained in Xf, the complement
%° is with respect to this family. From now on let us assume for simplicity that
X CX; C Qiy1. Let us consider the domain

n=xu\ya, (4.42)
Oe¥

by which we mean, as usual, the domain obtained by adding proper lower dimen-
sional walls (i.e. the walls such that all cubes containing them in their boundaries
belong to ). This domain is generally a union of several components. By the
localization property discussed above the function (4.32) for s such that s =0 on
-, i.e. s(4°) =0, depends on (0,4),Y/,s, restricted to the component of ¥; con-
taining the domain X, or X;. If there are other non-empty components of Y7, then
the corresponding term on the right-hand side of (4.41) vanishes, because of the
derivatives % for OJ contained in those other components. Thus we can write the
sum as a sum over connected domains Y7 of the form (4.42), and the product over
O € % can be replaced by a product over 00 C ¥; N X{. We obtain an expansion of
the form '

EXY RO +Y) = Y S04, (4.43)

Yi: Xicn
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A term of this expansion is equal to the corresponding term in (4.41) with € related
to Y by (4.42). It is almost a desired localization expansion, in particular it satisfies
the most important localization property: the function &’(X,Y;;6,y’) depends on
0,y restricted to the domain Y;. Unfortunately one feature is still missing, the
domains Y; in the sum are not localization domains. We correct it by doing partial
resummations in the above sum.

At first we assign to each domain Y; in (4.43) a localization domain
Y € 2(B;,1) containing Y;, and in some sense minimal. For a cube (J; € 4,[0; C
Q;\Qj41 (hence a cube of the size ML/n) we take the cube 0 € 7; (hence the
cube of the size ML/n) containing [;, and we take the domain J{T:(7 € #,00 D
00 € 2\Q);1}. This family of cubes is non-empty because each component of
Q;\Q;;, belongs to Z;. We obtain a domain from & containing [J, hence [J;, and
contained in (™" (which is the cube of the size (2L + 1)ML/y with O in its center).
Strictly speaking this construction is described for j < k, for j = k + 1 we still have
cubes [J; of the size M;, but we take the corresponding cubes [J € my ), i.e., of the
size ML, the rest of the construction is the same. We take a union of these do-
mains over all (J; € €, and we obtain a domain, which is a union of connected
components denoted YV, ..., Y™  Each component Y®) € 9(IB;,,), and contains
at least one component of |J%, hence a cube (J; € € touching X; along some
d — 1-dimensional wall. Take one of those cubes and denote the corresponding
cube 00 by (0P, Each component Y® is a union of large cubes in the scale M,
more precisely Y@ N (2;\Q;41) is a union of cubes from ;. Denote this family of
large cubes by ¥, hence | J€® = Y. We define

n .
Y=Xxur?, (4.44)

i=1
Obviously Y € 2(IB;,1), and there may be many domains ¥, determining the same
domain Y. We do a partial resummation of the terms in (4.43) over the domains
Y, determining a fixed Y, and we define

EXY;0,y") = > &'(X,Y1;0,y"). (4.45)
Y::v,determines v

Each term in the above sum depends on 6,v/, or rather 0, y, restricted to ¥; C Y, so
the sum depends on these variables restricted to Y. In order to formulate analyticity
properties of the above function we have to define the generating set By (Y). It
has been defined by (4.4)—(4.6) if ¥ C Q41, but generally we have ¥ € (By,)
and Y may intersect the domains Q;\Q;,; for j < k, so we have to modify this
definition properly. Such a modification is rather obvious, we take Q| = ¥ N Q,4,

Q= QF U (Y N QN Q. ), where we add layers of Mj-cubes, ..., Q, = Q13EU
(Y N, N Qs ), where we add layers of M;L"n-cubes, ..., and so on. Obviously we
have Q; C Q;. The sequence {Q1,9Q,...,2;,2,} is determined by the localization
domain Y, and we denote it as before by {Q21(Y), 2(Y),..., %(Y), 2+1(Y)}. The
corresponding generating set is denoted by By;1(Y), and we have By 1(Y) < Byyg.
Consider a term in the sum (4.45) corresponding to a domain Y. It is defined by
the formula in (4.41) in terms of the function (4.32), in which we take s = 0 on %°.
This function is localized completely in Yj, as it follows from the constructions of
the two previous sections, from the way the localization parameters s have been
introduced. This means that if we take a different generating set B, but such
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that Y1 N 1B, = Y1 N By, then the function (4.32) is equal to the corresponding
function with B}, 1 instead of IB;,;, assuming that the parameters s’ connected
with 1B +1 are equal to 0 outside Y7, and are equal to s inside Y;. Obviously we
have Y} N By (Y) = Y; N B4y by the definition of ¥ and B;.;(Y), so we may
replace By by Bii1(Y) in the definitions of all the terms of the sum (4.45).
Applying Lemma 4.2 we conclude that the functions (4.32) determining these terms
are analytic on the space (4.33) with B, ;(Y) instead of IB;,;. The terms are defined
by the expressions in (4.41) involving integrals of derivatives with respect to sp for
0O € ¥. We replace the derivatives by the Cauchy formulas for the circles |sg| = ",
or arbitrarily close circles, and we obtain formulas for functions &’(X,Y;;6,y"),
which imply that they are analytic functions defined on the spaces

Ef (B (V) Le") x {y': [y'|<d1} (4.46)

with ¢',8, as discussed previously in connection with Lemma 4.2. On the above
spaces they satisfy the bounds

|6'(X, Y15 0,y") < Ee=® 17D exp(—(x — 1)d;(X)) (4.47)

for x; = log(1 + %1—_—1), or simply for x; = 2. From this and (4.45) we obtain that
E(X,Y;0,Y) is also defined and analytic on the spaces (4.46). We would like to
estimate this function in terms of exponential factors involving linear sizes of X, Y.
The relevant linear size of X is d;(X), and for ¥ we take c?k“(Y ) defined by (1.3).

In order to find a relation between |%| (which is a number of cubes in the family
%), dj(X) and d;1(Y), we construct a proper tree graph for the domain Y. For
a domain Y® we take a tree graph I’ éi) starting at the center of (1) and built of
segments connecting centers of nearest neighbor cubes, if they are of the same size.
If they have different sizes, then we take a shortest path connecting their centers
and contained in their union. We can take this tree graph in such a way that to each
cube in %, except the cube (1), we can assign one segment, or one path. The
scaled length |-|p,,, of each segment is equal to 1, and the scaled length of a path
can be estimated by 1+ %(d -1 = %(d + 1). From this we obtain the following
simple bound

Tl < 5@+ D60~ 1) S 5@+ DEL+ e ¥0],

where in the second inequality we have used the fact that a cube in % may generate
(2L 4 1) cubes in ). Now take a tree graph I'g C X satisfying the conditions of
the definition of d;(X), and such that m‘,—nll" o] < d;(X)+ ¢, where ¢ is an arbitrary
positive number, and the length |I'y| is taken in the n-scale. This tree graph intersects
every cube from the cover m; contained in X, so it intersects every cube from the
cover m},, contained in Xj. The cube O touches a cube from 7., contained in
X; along a d — 1-dimensional wall, and the last one intersects I'y, so we connect
I'y with the center, of 0O by a shortest path, and we combine this path with the
tree graph I'{’ obtaining this way a tree graph I'D. The scaled length of the path
can be estimated by dL + %, so we get

: 1 , 1 .
\rg,,, < @+ DL+ DN YD +dL + 5 <dCL+ g ny?
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We combine now all the graphs and we take the graph ' = [, U TV uU...ur®,
It is a tree graph, if the paths connecting I'y with the centers of the cubes (1) are
disjoint, which is always possible to achieve, and it is contained in Y. It is also
clear that it intersects every cube from the cover 7, contained in ¥ N Q;,,, and

every cube from one of the covers 7 contained in ¥ N (2;\Q;41). Thus we have
IT'|B,,, = di1(Y). On the other hand I'y C X C @441, hence |Iy|p,,, = 3L,

and

a1 G 1y
\llBe,, = L IA—,[|F0|+§|F(’)|1BH1 <L™'Ln(dy(X) +e)

+i dQL+ 1Y 1NYD| =L 'In(d(X) + &) + d(2L + 1)*|%).

i=1
Combining the two bounds and taking the limit ¢ — 0 we obtain the inequality
di(Y) < L7'nd;(X) + d(2L + 1)%|%)|, (4.48)

which yields the desired relation between the three quantities involved.

Now we would like to estimate the function given by the formula (4.45). A
term in the sum is bounded in (4.47). For the exponent of the exponential functions
on the right-hand side of this bound we have

(k1 — DI|E| + (x — 1)d;(X)

(L. _ L\, ko d
_(le 1)[‘6|+<3k 1>dj(X)+2d(2L+l)dd(2L+l)|(€|

2L . . -
+?(LJ’1)_1KL_1L]'1dj(X) = K2|€| + Kod;(X) + 2Kdi1(Y), (4.49)

where we have assumed that %x —1 = Ky, ﬁ(z—?w > 2k, or k; = 4d(2L + 1)%k,
and we have denoted x; = %Kl — 1. To estimate the sum in (4.45) we use the
exponential factor e *l%l We start with the following simple inequality:

I

/ k+1
Z e 2l%l < H Z e BNERN\R 1) ,
b4 J=0 "iN(Q\Qj+1)

where the “primes” mean that the sums are restricted to the admissible domains
determining a fixed domain Y. Using again the fact that a cube in % N (2;\Q1)
may generate (2L + 1)? cubes from m; in Y N X7 N(2;\Q;11) we obtain the bound

1
QL+ D€ N (@)\210)] 2 35 |Y N XN (Q\)e >

where the volume is taken in the &-scale, ¢ = L™/. We take half of the exponent in
the exponential function on the right-hand side of the previous inequality and we ap-

ply the above bound. The remaining half yields the product HD] cnn an(Q,\Q,-H)e_%Kz

We can estimate the primed sum on the right-hand side by a sum over all subdo-
mains of ¥ NX{ N (2;\Q)41) which are unions of large cubes in the scale M, and
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i |YﬂX]£m(Q}\Qj+l)|§'

my
J

The expression in the parenthesis is equal to a value of the function f(x)=x —
e ¥4 at x = %K?z, where 4 = (2L + l)d%—;. This is an increasing function, because
flx)=1+e*4 >0, and f(logd) =logd — 1 > 0, hence if %Kz = log A4, then
f (%xz) > 0. With this assumption on k, the above exponential can be bounded
by 1, and we obtain that

the last sum of the above products is equal to (1 + e~ 2%2) hus

we can bound the whole primed sum on the right-hand side by

d
exp [— (%xz — e_%KZ(ZL + l)dﬂi> !

Y N X, N2\
M?) 2L+ 1YIM4 1O (@A)

el < 1. (4.50)
n:v, determines v

The assumption on k, translates into an assumption on k; of the form xk; =
4d log((2L + 1)%)—1— 2. Let us analyze this assumption in more detail. We have

only two conditions on the quotient %: that it is a power L™, where my is a
natural number, and that it is = 14d. We can replace the above assumption on
by the slightly stronger one x; = 8dmqlog(2L + 1), and taking the smallest num-
ber my we still obtain a weaker condition than the one introduced previously, i.e.,
k1 = 4d(2L + 1)?x. We fix k; satisfying both conditions.

The expansion (4.43), the definition (4.45) and the bounds (4.47), (4.48), (4.49),
(4.50) yield the expansion

ECGYLWR0) + ) = > EX,Y;0,4"), (4.51)

YEeD(By1): X1 CY

whose terms are analytic functions on the domains (4.46), satisfying the bounds
|EQLY;0,y")| < Eexp(—kodj(X) — 2icdi1 (Y)). (4.52)

Let us formulate the most important results on the localization expansion constructed
in this section in the following proposition.

Proposition 4.3. Let us consider the function (1.1), where (X, ;) is analytic on a
complex space containing one of the two spaces E;(B;(X); 1,¢;), P5(X; Col/n, )
with the condition (3.107) [1] and it satisfies the bound (4.31). The function (1.1)
has a localization expansion of the form (4.51), whose terms are analytic functions
on the spaces (4.46) with ¢',0, satisfying the conditions ¢ =< &4y, (4.38). They
depend on 0,y or 0,y, restricted to Y, and they satisfy the bounds (4.52).

The construction of the localization expansion above is quite universal and we
will apply it in several other situations. Notice that until now we have obtained only
one condition on x, namely -31-K —1 = kg, or kK = 3Ky + 3. Notice also that we have
formulated and proved it under the simplifying assumption X C X; C €44;. Later
we will have to discuss also some simple variations, like X7 C ;. We have also
considered the two versions of 1/, one as an independent complex variable, and the
other given by the formula (4.24). This will be also used in the future for some
simple generalizations.
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