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Abstract: Based on the vanishing of the second Hochschild cohomology group of
the Weyl algebra it is shown that differential algebras coming from quantum groups
do not provide a non-trivial deformation of quantum mechanics. For the case of
a ^-oscillator there exists a deforming map to the classical algebra. It is shown
that the differential calculus on quantum planes with involution, i.e., if one works
in position-momentum realization, can be mapped on a ^-difference calculus on a
commutative real space. Although this calculus leads to an interesting discretization
it is proved that it can be realized by generators of the undeformed algebra and
does not possess a proper group of global transformations.

1. Introduction

It is known that the deformation of an algebra, either of Lie or associative type, is
connected to its (Chevalley or Hochschild) cohomology [15]. More precisely, for
an algebra g the second cohomology group H2(g, g) contains the information if a
non-trivial deformation of it exists or not. In particular, if H2(g,g) — 0, then there
exists no non-trivial deformation of g.

This result can readily be applied to the case of quantum groups [8,17]. Here
one takes for example a finite-dimensional semisimple Lie algebra g and addresses
the question of existence of deformations of its enveloping algebra ^(g) . It is well
known that we have non-trivial deformations denoted by %*(g) as long as one
considers ^ ( g ) as being a Hopf algebra or at least a bialgebra. The non-triviality
of this deformation comes from the fact that //2(^(g),^(g))biaigebra ~Λ 2 (g) + 0
[9,18, Ch.18], where Λ(g) denotes the exterior algebra.

In contrast if one would consider only the algebra part of °tt(g) the classi-
cal Whitehead lemma applies in this case. That lemma states that for a finite-
dimensional semisimple Lie algebra g and a finite-dimensional left-g-module M it
holds that:

l 2 0. (1)

1 We take for the deformation parameter q = eh > 1 throughout this paper.
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After carrying out some steps [18] towards M = ^(g) this result gives rise to the
following:

Theorem 1.1 [9]. There exists an isomorphism

α:*A(g)->*(g)[[Λ]] (2)

of topologίcal algebras, such that oc = id mod h.

Practically speaking this result means that there exist deforming maps in the
sense of [7] which connect the generators of the deformed to the ones of the
undeformed algebra respectively.

It has been shown in the fundamental paper [2] that quantum mechanics itself
can be understood as a deformation of classical mechanics. Already in that work the
question of stability of quantum mechanics with respect to further deformations has
been addressed. This question can be answered affirmatively using a result which
has been obtained some years ago in [10] that states that the second cohomology
group of the Weyl algebra regarded as a bimodule over itself is zero. This means
that (at least in the reasonable sense of star-products) quantum mechanics cannot
be further deformed.

However, in recent years the possibility of ^-deformations of the Heisenberg
algebra has been studied extensively within the context of quantum groups, see
e.g. [1,3,11,14,25,26,27] and references therein. The characteristic relation arising
from these studies is of the type:

px — qxp = —i. (3)

In general one has two possibilities of considering these algebras according to the
inequivalent antilinear involutions one can choose on the algebra (3). The first
choice is to take a Bargmann-Fock type conjugation, i.e., x = —ip. In this case (3)
becomes a ^-oscillator algebra. Here the equivalence with the undeformed case is
known, see e.g. [30].

There exists, however, a second possibility which has been addressed in [27].
In this case one wants to interpret the generators of (3) as being momentum and
position operators respectively.

The aim of this paper is to show that due to the mentioned rigidity theorem for
the Weyl algebra even the second approach (in any dimensions) does not provide
a true deformation of the Heisenberg algebra.

The plan of the paper is as follows. In Sect. 2 Heisenberg and Weyl algebras
are defined and the Hochschild cohomology is calculated. It is shown how the
^-difference calculus arises from a trivial deformation of the Weyl algebra. The
consequences for ^-oscillator algebras in a Fock space representation are explained.
We study the algebra (3) with position and momentum operators in Sect. 3. It
turns out that this algebra does not have a proper group of global transformations
containing the Weyl group of ordinary quantum mechanics as it should in order
to have a quantum mechanical interpretation. In Sect. 4 ^-difference algebras on
almost commutative spaces with involution on both the coordinates and the in-
difference operators will be considered. The existence of this involution is necessary
for having a position-momentum interpretation of the generators. A uniqueness result
for the calculus will be obtained. The more general case of a ^-differential calculus
on the real SOq{N) quantum plane is addressed in Sect. 5. It will be proved that
there exists a deforming map which provides an isomorphism of this ^-differential
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calculus to the ^-difference calculus on a commutative space. Finally we summarize
and comment on prospects in Sect. 6.

2. The Cohomology of the Weyl Algebra

The Weyl algebra An is the associative algebra which is generated by the set of
generators pι,qιl p2,q

2l . . .; pn>qn satisfying the relations with fixed center:

W,pJ] = iδij, and [q\qj] = [pi,Pj] = 0. (4)

We note that by minor changes in the definitions one can also consider the Weyl
algebra An(k) over an arbitrary field k of characteristic zero. It is obvious that ele-
ments of the form (piYι(qι)JHP2)Hf)J'2 ''(Pnjn(qn)jn with iuju...9injn G No

generate An as a vector space. We will refer to the relations (4) as Heisenberg al-
gebra hn.

If we take M := An/An(p\, p2,...,pn) as an ^-module we get the following
realizations of the generators of An by differential operators:

qk~x\ pk^-i—. (5)

Since we will compute and use the cohomology of An(k) we introduce the Hochschild
cohomology of an associative A:-algebra B with values in some ^-module M.

Considering / e Romk(B®n,M) the Hochschild differential d is given by [4]:

df(b\ ®ί>2® •• ®6«+i)

bn) + έ ( - l y / ί i i <8> <8> bφi+1 ® (8) AΛ)
ί= l

«>*„)*„+!. (6)

For example a 2-cocycle p is defined by

= b\p(b2 <g> b3) - ρ(bιb2 ® h) + p(bι <g> b2b3) - ρ{bx ®b2)h ,
(7)

while if p is a 2-coboundary there exists a / e HomA;(5,M) such that

p(fti 0 ft2) = bxf(b2) + /(fti )Z>2 - /(* i f t 2 ) . (8)

We can now state the following theorem on the cohomology H*(An(k),An(k)).

Theorem 2.1 [10]. It holds that:

Hm{An{k\An{k)) = kδm,0 . (9)

Due to the importance of this result we sketch the proof.

Proof. One first proves a more general result. Let a be a finite-dimensional nilpotent
Lie algebra over k and B its enveloping algebra. We denote by b an ideal of a and by
λ a character of b. For ξ G b the set of elements in B of the form ξ — λ(ξ) is denoted
by bχ. Obviously bχ is a sub-vector space of B stable under the adjoint action of a.
Moreover we define Bχ := B/Bbχ. Using the inverse process of homological algebra
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(see e.g. [4]) one can show that for a i^-bimodule X the following statement
is true:

Hm(φ,X) ~ Hm(Bλ9X), Vm ^ 0 . (10)

We can now pass to the special case of the Weyl algebra. In this case a is
the Heisenberg algebra \vn and b = z its center which is of course trivial. Ob-
viously it holds that Bχ = An(k) with 2n + 1 being the dimension of a. In or-
der to prove the theorem we set X = An(k). By (10) we are enabled to take
H*(An(k\An(k)) = H*(\ιnlkτ,An(k)). Using the realization of the generators of hn

in terms of differential operators (5) the problem of calculating H* (hn/kz,An(k))
is mapped to a problem in de Rham cohomology. The observation that all the
derivations in An(k) are interior ones completes the proof of the theorem. D

It will now be shown how this result on the cohomology can be applied to show
the triviality of g-deformed differential calculi. Therefore we have to introduce some
facts about the deformation theory of an associative algebra [15].

Let h be a parameter. A deformation of an associative algebra A over a field
A: is a topological algebra Ah over k[[h]] such that Ah is isomorphic to A[[h]] as a
&[[/?]]-module, i.e., an = «o + <*\h + aih2 -\ , with ah G Ah and ao,#i>#2, £ A.
The product in Ah is given by a family (μ/)/GN0 of bilinear maps from Ax A into
A. We take μo to be the ordinary multiplication in A. We write:

μh(ah ® bh) := ah * bh := aobo + Σ μj(ak®bι)hι. (11)

The sum is restricted to j' -\- k + / = i. Since μh is a k[[h]]-module map its properties
are determined by its values on elements of the algebra A.

If we require that the deformed algebra should still be associative, i.e., (a/* *
bh) * Ch = ah * (bh * Ch\ the multiplication maps μz have to satisfy:

Σ μi(μj(a 0 b) 0 c) = Σ fr(a ® μj(b ® c)), a,b,ceA. (12)

i-\-j=n i+j=n

In particular, for μ\ we get

μι(ab 0 c) + μ\(a 0 b)c = αμi(Z> 0 c) + μi(α 0 be), (13)
which means that in order to preserve associativity μ\ has to be Hochschild
2-cocycle. The conditions on μz with / > 1 impose obstructions for the integra-
bility of the deformation. However, if the third cohomology group vanishes all
obstructions vanish automatically.

Two deformations, Ah and A'h say, are equivalent if there exists an isomorphism
fh : Ah —• A'h over k[[h]] of topological algebras. This isomorphism is of the form

fh — id + f\h + f2h
2 H . The existence of fh implies for the multiplications μ!h =

X 1)' Evaluating this again for μ\ we get:

b) = μι(a®b) + Mab)-aMb)-f(Φ, a,beA. (14)

Using the Hochschild cohomology it can easily be seen using (8) that if μ\ is a
2-coboundary fh can be chosen in a way such that μ[ = 0. This argument can be
extended to all orders in h (e.g. [18]) giving the result that if the second Hochschild
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cohomology group is zero then every deformation of the algebra A within the cat-
egory of associative algebras is trivial which means equivalent to the undeformed
algebra.

Finally we can construct a deformed Lie algebra from the associative algebra
Ah by setting [a,b]* '= Σϊo^'ίM*,*) - MM)) =: Σ ϊ o *%'(*>*) f° r a9beA.
The cohomological considerations from above directly apply to the so defined de-
formed Lie algebra. The Hochschild cohomology obviously gives rise to a Chevalley
cohomology and L\ decides about the triviality of the deformation.

It is now clear that Theorem 2.1 yields the following result:

Corollary 2.2. Within the category of associative algebras there does not exist a
non-trivial deformation of the Weyl algebra.

In particular if one regards the Heisenberg algebra as providing the generating
relations of the Weyl algebra, the corollary states that even the latter algebra does
not possess a non-trivial deformation in this context.

Nevertheless we will now point out how the differential calculus on quantum
planes as introduced in [29] arises from a trivial deformation of the Weyl algebra.
This will be done explicitly only in the one-dimensional case, but it will be pointed
out how this analysis generalizes to higher dimensions.

We first assume that we had a non-trivial deformation of the Weyl algebra, its
generators being D and X. Writing this down we have in mind as above a power
series in the deformation parameter h of the form

D = Do + ADi + h2D2 + , X = Xo + hXx + h2X2 + , (15)

with Do = d and Xo = x being the generators of the undeformed Weyl algebra (4)
with relation [d9x] = 1.

Next we allow a deformed associative product for the new generators:

D*X= Σ tiμk(D,,Xm). (16)

k+m+l=i

To be more accurate let us write down this expression up to order h2:

D*X = dx + h(D}x + dXi + μi(d,x)) + h2 (D2x + DλXλ

ι)) + >•- . (17)

As outlined above this product allows to construct the associated Lie algebra
with deformed Lie brackets Lf.

[D9X]*\=D*X-X*D = Σ tiLk(DhXn). (18)
l+k+m=i

The ^-calculus by which in one dimension we mean a relation of the type (3)
can be obtained by the following requirement. Let the quantities Dt and Xι for
/ > 0 be given by a polynomial of degree i in the reflection element dx times d
and x respectively. This choice seems reasonable since Dt and X[ then possess the
same dimension as d and x. However, this choice is not unique, but for the present
purposes this does not cause any problems.

We now use Theorem 2.1 which states that every 2-cocycle has to be a
2-coboundary which means that μ\ in (17) is of the form (8). If we take the
function / in (8) to be of the form /(α) = (c\dx + C2)OL for α in the undeformed



28 M. Pillin

Weyl algebra and constants c\9 C2, one can easily show that the term of order h in
the deformed Lie bracket (18) vanishes after adjusting some constants.

Since / is a polynomial of order 1 in dx it follows that μ\(d,x) and μi(x,<3)
are polynomials of order 2 in that quantity. Using this, the associativity con-
dition (12), and the 2-coboundary property of μ\, we can see that μi(d9x) is
a polynomial of order / + 1 in dx. It is therefore already clear at this stage
that the (/-calculus can only come from a special closure in the /*-adic topol-
ogy of the undeformed Weyl algebra depending on the reflection
element dx.

Again by adjusting the coefficients properly one can show the terms in any order
in h in (18) do actually vanish. Therefore we are left with the first term and hence:

[D,X]* = dx-xd= 1 . (19)

Now the ̂ -calculus can be shown to arise from the Hochschild 2-coboundary defined
above. The above choices of the parameters lead to the following expansion which
can be summed up:

D*X = dx + -dx(dx - l)λ + -dx (- - -dx + (dx)2 J h2 +

= l l - e x p ( ^ )
x 1 - exp(Λ)

In the same way one can directly show that

X*D = exp(h)xδq. (21)

Combining the previous equations and taking q — eh we arrive at

dqx - qxdq = 1 , (22)

which is exactly the ^-calculus we have been looking for.
In higher dimensions an analogous calculation can be carried out. The only dif-

ference then is that more than one reflection element exists. Therefore the functions
in the 2-coboundaries can depend in various ways on these elements. The result of
this consideration is that even in higher dimensions the ^-calculus can be obtained
formally by a trivial deformation of the classical Weyl algebra.

It is now evident that ^-deformations of Heisenberg algebras are trivial from the
general deformation theory point of view. This could have been guessed for some
time if one considers ^-deformed oscillator algebras in some representation. In one
dimension this algebra takes the form:

acϊ-qcϊa=\. (23)

Studying its representations one finds the same Fock space as in the undeformed
case. The only difference between the classical and the #-case are the norms of the
operators. The undeformed oscillator algebra is given by:

= 1, N:= AU . (24)

If one chooses a certain completion of these algebras in the /z-adic topology it
is possible to introduce an element of the form Qxp(hN) = qN. In the sense of
Theorems 1.1 and 2.1 we then get the following deforming maps valid in the usual
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Fock space representation:

at=q*JψA [ΛΠ:=4^4 (25)
V iv g2 _ q 2

We note that deforming maps are not unique in general.
This deforming map can be applied to higher dimensional g-boson algebras as

well. For instance it has been shown in [20] that the ^-differential calculus on
quantum planes belonging to quantum groups SLq(N) and SOq(N) (see Sect. 5 for
more details) can be mapped into a tensor product of mutually commuting algebras
of the form (23). Related observations have also been made in [19,12,6]. However,
this result applies only to cases without any reality conditions either on the quantum
plane or on the differential operators. This means that the mentioned map in [20]
is not at all compatible with the natural involution (real form) coming from the
quantum group.

3. Remarks on "^-Deformed Quantum Mechanics"

As mentioned in the introduction there exists another approach to the deformation
of Heisenberg algebras which comes from the Wess-Zumino differential calculus
[29]. In this approach one considers the quantum plane which is a certain comodule
of a quantum group and the ^-differential calculus on it. The differential relations
are interpreted as g-Heisenberg relations.

In contrast to the #-boson algebras the involution in this approach is not of
Bargmann-Fock type. As mentioned above it has been shown in [20] that with
an involution of Bargmann-Fock type the full ^-differential algebra in the case of
SLq(N) and SOq(N) can be transformed into a tensor product of mutually commut-
ing algebras similar to (23).

The authors of [27] investigate the following algebra:

px — qxp — —i. (26)

As in ordinary quantum mechanics the generators p and x ought to be interpreted as
momentum and position operators on some Hubert space. Since q is taken to be real,
one cannot find an antilinear involution which allows for taking both generators to
be real under involution. However, one can take p — p and introduce an additional
generator x together with the obvious relations:

px — q~ιxp = —iq~ι, xx = qxx . (27)

For convenience an additional object is introduced by using the usual commutators:

r = i[p,x], r = i[p,x]. (28)

The aim is to get a ^-Heisenberg algebra with real formal objects. If p is interpreted
as real momentum an obvious choice for a real position would be ξ :=x + x. This
definition results in the algebra:

ξp-q-ιpξ = (q-ι + l)ir, ~ξp - qpξ = (q~ι + \)iqr . (29)
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The problem with this algebra is that even though r ^-commutes with p it has rather
involved relations with ζ. To circumvent this problem one uses the observation that
r and r can be decomposed, however non-uniquely, into a formal real and a quasi
unitary object.

Denoting T \— rr one is allowed to write r \— y/quT1^2 and r := ̂ /qT^^ΰ which
of course implies uύ — q~x — ΰu. Applying these decompositions to the algebra (29)
and redefining the position to be

q+l

yields the following algebra:

ξp-q~lpξ = iu, ξp-qpξ = iu~\ up = q~ι pu, uξ = q~ιξu. (31)

Although this algebra suggests to be interpreted as a deformation of the
Heisenberg algebra it turns out that all relations can be entirely realized within
a certain completion of the enveloping algebra of the usual Heisenberg algebra

[xc, Pc] = i-
One has the freedom to interpret the momentum p to be the usual momentum

generator pc. This gives:

u — exp(—ihpcxc\ ΰ — Qxp(ihxcpc) = q~λu~x . (32)

The following realization follows directly from (31):

ξ= Γ Ξx c modL (33)
Pcq-q~x

It is shown in [27,28] that the spectra of p and ξ are discrete. In momentum
representation the Hubert space states are given by vectors \n)πQ, where « G Z and
the continuous parameter πo G [ l ,g) labels the different irreducible representations
of the algebra (31). One then has:

p\n)nQ =πoq
n\n)πQ, ξ\n)πQ = —^±—^(qi\n - \ ) π Q - q~h\n + l ) π o ) .

(34)
By a proper Fourier transformation [28] it is possible to show that one can also
construct irreducible representations in which ξ is diagonal. Its spectrum then is
similar to that of p in (34). Actually the momentum eigenstates \n)πo can be realized
by ordinary functions. Up to normalization we have:

n)πo ~ exp(iqnπoxc). (35)

The operator p = pc then acts on these states by ordinary Schrόdinger representation
although the application of xc does lead out of the irreducible representations of the
algebra (31).

Although it seems quite interesting to interpret the algebra (31) to be a q-
deformation of the Heisenberg algebra which provides a discretization quite similar
to the one arising from ordinary lattice quantum mechanics, we have the following:

Lemma 3.1. The algebra (31) does not allow for a group of global transformations
which contains the Weyl group of usual quantum mechanics consistent with the
irreducible representations of that algebra.
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Proof. We have seen that all generators of the algebra (31) can be realized in
terms of the generators of the classical Heisenberg algebra. Strictly speaking (31)
is not generated by the classical Heisenberg algebra itself which is nilpotent but
by the minimal solvable extension of it. This means that on the algebra level we
have an additional generator equivalent to pcxc. The enveloping algebras of these
algebras are identical since the additional generator lies in the vector space spanned
by elements of the form (pc)

ι(xc)J with i,j £ N.
If we denote the classical nilpotent Heisenberg algebra by H\ the corresponding

group is the Weyl group W\. Obviously H\ is a subalgebra and moreover a Lie
bi-ideal of its minimal solvable extension. The usual uniform lattice discretization
corresponds to considering the Weyl group W\ not over the real numbers but over
the integers Z. The group corresponding to the minimal solvable extension of H\ is
some product of W\ with a group of dilatations generated by pcxc which we will
call D. We denote this fact by WDλ = W\ D.

The spectra of (31) would correspond - by the conformal invariance of the real
line - to fix the group parameters in the pure D part of WD\ to the set KL. For
consistency the space of group parameters for the full group WD\ has to be hZ. It
is evident that the global transformations corresponding to this set is inconsistent
with the spectrum of (31). The only thing one has to do is to apply a translation
of the form exp(ocpc) to the Hubert space of the algebra (31) with a/h £ Z. This
completes our proof. D

This result can be applied to higher dimensional cases. In [16] for example the
case of SOq(N) covariant quantum mechanics has been investigated. It turned out
that the total Hubert space of the theory is a tensor product of two Hubert spaces.
One of them corresponds to °llq{su{2)) and the other is the one coming from (31).
In the sense of Theorem 1.1 and of Lemma 3.1, the models do not provide a true
deformation of quantum mechanics.

4. ^-Derivatives on Almost Commutative Spaces

In this section ^-difference calculi on commutative or almost commutative spaces
with involution are considered. By almost commutative (sometimes also referred to
as ^-commutative) we mean two objects A and B having a commutation relation
of the form AB = qrBA, where r might be any number different from zero. Having
the background of quantum groups we require that for q = 1 we obtain the usual
continuous calculus.

Let us first assume that the configuration space is a finite-dimensional commu-
tative algebra generated by objects xa. We will talk about these generators freely
as coordinates. For the basis we choose the following convention. If the dimension
of the space is odd (dim = 2 « + l ) , then α G Z^+i :={—«,...,—1,0,1,...,«}; if
it is even (dim = 2n) we have that α £ J>2n '-— {~~n,..., —1,1,...,n}. When writing
α £ J it is assumed that α is either in J ^ + i or in </2«

An (anti-linear) involution on this space is introduced by the rule xα := x~a.
This is just the standard involution on an euclidean space in a lightcone-like basis.
We remark that our results are of course basis-independent. Since we later want to
make contact with the quantum group case the chosen basis is convenient.

Let Z)α be ^-partial derivatives acting on xα. For the application we have in
mind and hence in analogy to (31) we require these partial derivatives to have the



32 M. Pillin

standard conjugation property Da — —£>_α. As has been mentioned in the introduc-
tion the existence of an involution of this kind is essential for our considerations
because in the sense of the previous section we have in mind a position-momentum
interpretation of the differential algebra.

For the remainder of this paper no summation over repeated indices is assumed.
By DiffMa)(xa) we denote the algebra generated by xα,£>α,wα and u~λ, where A (α)
is some number not equal to zero belonging to the index α. The ideal of relations
in Diff^(α)(xα) is generated by:

Z)αXα _ q-mjfDΛ = u^\ u«Da = q-ιDaua . (36)

Proposition 4.1. Under the previous assumptions together with k(oc) = — k(—α)
and a G J it holds that: Every linear q-difference calculus on a commuta-
tive space, obeying the formal hermίtίcίty conditions x α =x~ α and iDa — iD-a is
equivalent to

<g> Diff / ( α )(xα). (37)

The tensor product here implies that all the off-diagonal relations are commuta-
tive. Before proving the proposition we state the following

Corollary 4.2. The usual continuous partial derivatives on the coordinates are
given by dαx^ — x^δα = 3%. The formal hermiticίty of the relations (36) restricts
ua to be of the form wα = exp(/z xα<9α) Moreover we have ΰ^ = q~xtC.\.

Proof If we assume that the proposition is true, i.e., relations (36) hold for
all α G / , the corollary is a direct consequence of these relations. Since we re-
quire that for q —» 1 the derivatives D should turn into the continuous deriva-
tives, it must hold for all α may be up to some normalization that D = dmoάh.
Together with the linearity of the calculus and the formal hermiticity of the q-
derivatives this requires that in the realization of Da some linear combination
of the Ua and (ua ) ~ ι must appear. Hence, a realization of any Da is of the
form:

1 Ug ~ (Ug ) / { β )

D 7 nu + i /

The product appearing in this expression is taken over some w's such that the
hermiticity of iD is not spoiled, λ is a number tending to zero as q —> I. I is
a polynomial in x's, D's, and may be classical <9's and is required to have the
dimension of a partial derivative. It is easy to show that the ^-derivative in the
above expression can be shifted and rescaled. This means that according to the
assumptions of the proposition Da has the following realization:

Now it is easy to conclude. The only thing which has to be done is to calculate
the commutation relations of Da realized as in (39) with all other generators. The
relation with xa is just (36) while it commutes with DR and x@ for α φ β . D
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We note that the considerations of Sect. 3 apply to each component of the tensor
product (37).

Remark 1. It can easily be seen that if the coordinate algebra is almost com-
mutative the corresponding ^-difference calculus can be transformed into the form
described in Proposition 4.1. To illustrate this we use a simple three-dimensional
example which, however, is generic. We take commutative coordinates x~ι, x° and
x1 subject to the above mentioned conjugation rule. We can make these coordinates
^-commuting by using the #-shift operators wα. In the simplest case we set:

χ-1 :=χ-\ x°q :=u^(uλ)-ιx0, x\ := xι . (40)

By Corollary 4.2 this unitary transformation preserves the real structure of the co-
ordinates and leads to the commutation relations:

χ - ι χ o _ a χ o χ - ι - o - i _ - l o i - l i - χ ι χ - ι ( 4 i )
<1 <1 ~

 ί
i
x
q
x
q '

 x
q
x
q ~ Ύ

 x
q
x
q
 x

q
 x
q ~

 x
q
x
q V^

L
)

The ^-derivative with respect to x° has to be rescaled as well by Dq

0 := (u-\(u\ ) ~ ι ) ~ ι

Do, while the other ones remain the same. The outcome is a ^-difference calculus
in which the diagonal relations are almost the same as (36) while the off-diagonal
ones are ^-commutative.

Although the Hubert spaces of the commutative and of the almost commutative
case are not identical the algebras can simply be related. These almost commutative
calculi appear for example by reduction of a GLq -quantum group to some lower
dimensional orthogonal quantum group (see e.g. [5]).

Remark 2. It is a well known problem in the study of inhomogeneous quantum
groups (e.g. [22]) that it is difficult to find a coproduct which preserves the formal
antihermiticity of ^-derivatives. It can be read off the algebra (36) that the comulti-
plication of the formal antihermitian ^-difference operator necessarily involves either
the quantity u or u~ι. Due to the conjugation property stated in Corollary 4.2 it
is clear that the comultiplication of a ^-difference operator can hardly preserve the
formal anti-hermiticity.

Remark 3. Another problem with the differential calculus on quantum spaces is
the nonlinear conjugation rule of the derivatives [21]. Although we will treat this
case in the next section in some detail, already at this stage some comments are
necessary. The ^-partial derivatives as they turn out of the Wess-Zumino calculus
[29] are unsymmetric in the sense that they produce ^-shifts in only one direction
in contrast to the case considered in (34). It can be shown that the nonlinear
conjugation rule occurs already in simpler cases.

Let us use the commutative three dimensional space introduced in Remark 1,
and introduce unsymmetric but commuting ^-difference operators by:

u0 l-(u-ι)2 u-ιuι 1 -(up) u0l-(uι)2

x " 1 1 — qz x° 1 - q x1 1 — q2

The action of these derivatives on the coordinates looks almost like the ones com-
ing from the SOq(3) covariant calculus. The diagonal relations are for instance of
the form ΘQX0 = U-\U\ + qx°do. The off diagonal relations are almost commutative.
If one introduces a formal antilinear involution, denoted as above by a bar, on
the derivatives we get e.g. dox° = (u-\U\)~x +q~ιx°do, where <90 := —q~3do. The
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relation between d0 and do is established introducing the quantity A :=U2_XUQU\.
We get:

do ~ Λ-% - / _ 2

+ 1

1

( " - i ; o

i r l ( ( « o Γ 2 - 1) . (43)

Analogous relations hold also for the other ^-partial derivatives. Thus, the
aim of this remark is that the nonlinear conjugation rule is not surprising when
considering unsymmetric ^-difference operators in the sense of (42).

5. ^-Differential Algebras Coming from Orthogonal Quantum Groups

In this section we want to extend the results obtained in the previous section to
the case of differential calculi on quantum planes coming from orthogonal quantum
groups. These quantum planes fit well in our treatment since the compact form
of an orthogonal quantum group SOq(N) naturally induces a real structure on the
corresponding quantum plane. In order to present the main result of this section we
define the ingredients and fix the notation. For further details see [21] and references
therein.

The ^-matrix for the orthogonal quantum group in N dimensions, SOq(N), pos-
sesses a decomposition into the following projection operators: the ^-analogs of
the symmetrizer P+, the antisymmetrizer P~9 and the trace projector P°. The latter
defines the ^-analogue of the metric tensor g^ by Pk\

J = cgij'gki, where c is some
constant. We then have:

R = qP+ - q~xP~ + qι~NP° . (44)

The quantum plane corresponding to SOq(N) is the algebra generated by N genera-
tors xι with i running through the index sets J*2N+\ or J^ which have been defined
at the beginning of the previous section. The ideal of relations in this algebra is
generated by Σkι-^kiJχkχl = ^ The so-defined algebra will be denoted by Vq(N).
By definition Vq(N) is a 5Ό^(iV)-comodule. The metric defines a SO^A^-invariant
object (by the comodule mapping) L := (1 + qN~2)~ι(Σι• j Qίjχiχj) which is central
in the algebra Vq(N).

Due to the real form of the quantum group there exists an antilinear involution
on Vq(N) given by:

* = Σ,gfiχJ' (45)
j

It has been shown in [29] that it is possible to construct an algebra of ^-partial
derivatives on Vq(N). We denote these derivatives by dt with / e J. The set of δ/
spans a 5O^(A^)-comodule algebra (just another quantum plane) with relations dual
to the ones in Vq(N), namely:

ΣV^=0 (46)

The element A := (1 + qN~2)~\YJUj^giJSidj) is central in the algebra of the

^-derivatives and invariant under *S6^(W)-coaction.
The action of the ^-partial derivatives on the generators of Vq{N) is given by:

l Sixldk (47)
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This action is unsymmetric by its definition in the sense of Remark 3 in the previous
section.

The involution on Vq(N) as defined in (45) cannot be extended to the
^-differential algebra. Another copy of partial derivatives has to be introduced. Using
the notation of (45) we have dt := —qNYJkιQikgkιSι. Although the algebra of these
derivatives is generated by relations identical to (46) the action of the conjugated
derivatives is given by:

diχJ = δj

i+q-λΣR~iΐJkxldk. (48)
k,l

For consistency the ^-derivatives have to satisfy the relation dd = q~ιR dd. Both
kinds of ^-derivatives can be connected using an element which is similar to the
one introduced in Remark 3 of the previous section. Using the classical analogue of
Vq(N) with commutative generators xι

c and the usual continuous partial derivatives
d\ (i e J>) we define a classical Euler element Ec := ΣiejX

ι

cd
c

i. This definition
gives rise to introduce:

A := exp(2hEc), A = q~w A~x . (49)

This element can be expressed in terms of the generators of Vq(N) and the partial
derivatives [21]. A straightforward calculation gives the following almost commu-
tative relations:

Λxk

(c) = q2x\c)Λ, Λdf = q~2dfΛ . (50)

The notation (c) means that these commutation relations hold for both the generators
coming from the quantum groups and for their classical analogs. Equation (50)
shows that the element A is well defined in the ^-algebra and in the classical
algebra as well. Its coproduct is grouplike but not consistent with the involution
on the quantum group [22]. Using this element the original and the conjugated
derivatives can be related by the formula:

dk = Λ~\dk + qN~\q - q-l)xkΔ) . (51)

This equation should be compared with (43) in the previous section.

We denote the full algebra generated by {x\duduΛ,Λ~ι\i e J^} together with
their algebraic relations by Diff£o (N).

In the spirit of Sects. 3 and 4 the task is to construct a differential calculus on
Vq(N) consisting of formal anti-hermitian ^-derivatives. The immediate guess for
an object possessing this property is (cf. [13]):

A = di + q-Ndh Di = -D-i . (52)

The relations of these newly introduced objects A are identical to (46). A is a

linear combination of ^-derivatives acting either via R (47) or via R (48) on the
generators of Vq(N). Therefore one has two possibilities for writing the diagonal
actions:

Axz - q2xiDi = ru A*1" - ^ V A = n (53)

This relation is valid for any / G J except for x° in the odd dimensional case due
to the properties of the ^-matrix. x° requires a q rather than a q2 in the diagonal
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relation. This should be noted for all the remaining formulae in this section. The
objects Vi and rz can be calculated without any difficulties using (47) and (48)
respectively. The off-diagonal commutation relations are involved. Moreover the
algebra of rt and rt with all generators of DifΓ£o (iV) is quite complicated but their
explicit form is not needed for our purposes.

Due to the properties of the involution (45) and (51) one finds:

q-2r- = fu VieJ. (54)

We now proceed in analogy to the one-dimensional case in Sect. 3 and split the
objects Ti. For the decomposition we have in mind the quantities ut as they have been
obtained in Corollary 4.2 are required. Of course, the so-defined wz is not supposed
to obey any managable commutation relation with the generators of DifF^ (N).

Introducing for any / G J* elements pi we make the ansatz:

Π : = u~2pi => ft = JZiu2 . (55)

The second expression in (55) is a consequence of (54). It is clear that this de-
composition is not unique. However, its existence is guaranteed. Note that in the
odd dimensional case it holds for the zero component r0 = UQ1 po.

This ansatz can now be inserted in (53) yielding:

uT1 = (A y - tfVAOPΓ1* u2i = / ^ Γ W - q-2*Di). (56)

Now we can apply Proposition 4.1 and Eq. (36). The statement there is that the
quantities uu uj , or any power of them are defined by g-difTerence relations on
commutative spaces. Thus the factors pjλ and ~p~Γx in (56) provide deforming
maps and we have the following

Theorem 5.1. The q-differential algebra Difif^ (N) is ίsomorphίc to the q-dίfference

calculus of the same dimension (Q^jΌifί k(i)(xι) with k(i) = 2 for i > 0, k{i) — —2

for i < 0, and k(0) — 1 as outlined in Proposition 4.1. D

We note that this result is not covered by the treatment in [20]. As mentioned
above, the differential calculus on a commutative space obtained in that paper is not
consistent with an involution on the coordinate algebra. In contrast, that calculus is
only consistent with a Bargmann-Fock type conjugation rule on the full differential
algebra.

We have preferred to show the triviality of the real differential calculus com-
ing from the quantum group SOq(N) in a rather explicit way. However, its triv-
iality can also be proven using a cohomological argument as follows: Apply-
ing the Whitehead lemma and Theorem 1.1 to the present case it is clear that
ύlίq{so(N)) is a trivial deformation. In [13] it was shown that the quantum Lie
algebra (not the bialgebra) of SOq(N), i.e., %q(so(N)), can be realized by the
generators of Diff^ (N). Since we know the triviality of ύlίq{so{N)) it can imme-
diately be shown that every realization of it must be trivial. Hence, Diflf£0 (N) is
trivial.
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6. Conclusions

We have pointed out that coming from the differential calculus on quantum groups
one is led to two a priori non-equivalent approaches towards a ^-deformation of
quantum mechanics. The first one is based on ^-oscillator algebras. The second
approach arises from the ^-differential calculus on involutive quantum planes and
focusses on position-momentum interpretation of the generators of the ^-differential
algebra.

Although both approaches might have interesting applications, e.g. either in
statistical mechanics or in the theory of generalized hypergeometric series, it has
been shown that due to the rigidity Theorem 2.1 for the Heisenberg algebra both
approaches do not yield a true deformation of quantum mechanics. Moreover it has
been shown that it is hardly possible to find a hermiticity preserving comultipli-
cation on the generators of both the ^-difference calculus and of the ^-differential
calculus.

For these reasons one has to think carefully if quantum planes, although they
have interesting features [23,24], provide a reasonable base space for quantum field
theories.
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