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Abstract: Bethe and Salpeter introduced a relativistic equation - different from the
Bethe-Salpeter equation - which describes relativistic multi-particle systems. Here
we will begin some basic work concerning its mathematical structure. In particular
we show self-adjointness of the one-particle operator which will be a consequence
of a sharp Sobolev type inequality yielding semi-boundedness of the corresponding
sesquilinear form. Moreover we locate the essential spectrum of the operator and
show the absence of singular continuous spectrum.

1. Introduction

It is well known that the extension of the Dirac equation to multi-particle systems
in analogy with the multi-particle Schrόdinger equation is problematic. Already the
operator describing two non-interacting electrons in the electric field of a nucleus
can be easily seen to have the whole real line as spectrum. The situation does
not improve when the interaction between the electrons is taken into account. This
trivial but important remark was seemingly made rather late (Brown and Ravenhall
[2]) and is known in the physics literature as continuum dissolution.

Bethe and Salpeter [1] proposed an equation that overcomes this difficulty by
projecting to the electron subspace only. Note that the Dirac equation really de-
scribes two different particles, namely electrons and positrons. Although their inten-
tion is clearly to treat the multi-particle problem, it is mathematically interesting to
discuss the one-particle operator first, since its properties are basic for the vV-body
situation. The Hamiltonian B of Bethe and Salpeter - we will henceforth use the
term Bethe-Salpeter operator - for an electron of charge —em the magnetic vector
potential $1 and the electric potential φ is

B = Λ+ ί cα ( -rgrad + e% J + mc2β - eφ ) Λ+ , (1)
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where Λ+ := X(o,oo)(cx fgrad -h mc2β) is the projection onto the positive spectral
subspace of the free Dirac operator, and α := (ai,ot2?#3)? and β are the four Dirac
matrices, explicitly

Ό σ
\ σ 0

σ denoting the three Pauli matrices

(o Λ ίo -Λ (\ o
\

and

o > σ 2 = [ i o

1 0 0 0
0 1 0 0
0 0 - 1 0

,0 0 0 - 1 ,

We note that αi, α2, α3, and β anti-commute and yield the unit matrix upon squaring.
Furthermore m, the rest mass of the electron, and c, the velocity of light, are positive
constants. The underlying Hubert space is

We wish to emphasize that this operator is not to be confused with the operator
occurring in the Bethe-Salpeter equation also put forward by Bethe and Salpeter
[1], which is intended to describe a similar physical setting.

The operator B and its multi-particle analogue have been rediscovered and
discussed under various aspects in the recent physics literature (see, e.g., Sucher
[14,15]); a mathematical discussion, however, has not yet been given. In this paper
we take a first step in this direction in the case without magnetic field, i.e., from
now on we will assume 91 = 0.

It is obvious that B may be self-adjointly realized in this space, when the
electric potential is relatively compact with respect to (—A + 1)1 / 2 with domain
Λ+iH^WL3)®^). Note that Λ+(c& fgrad + mc2β)A+ = y/-(hc)2A + m2c4A+

holds. We are, however, interested in the critical potentials φ(x) = Ze/\x |. In partic-
ular we are interested in finding the largest nuclear charge Z such that the sesquilin-
ear form (φ,Bψ) for ψ e 6 ® (C4, i.e., the expectation of B in the state ψ, where
ψ is a smooth rapidly decaying Dirac spinor, is bounded from below. This will be
done in Sect. 2. In Sect. 3 we will locate the essential spectrum of B and show that
there is no singular continuous spectrum for Coulomb potentials.

2. The Semi-Boundedness of the Bethe-Salpeter Operator

2.1. Reduction to Pauli Spίnors. The eigenvalue equation for the Bethe-Salpeter
operator may be reduced from a four-component (Dirac spinor) to a two-component
one (Pauli spinor). Although this can be essentially extracted already from [1] we
will make it explicit here again for the sake of establishing some notation and the
convenience of the reader.

To fix the notation, we denote by
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the - appropriately normalized - Fourier transform. Since the free Dirac operator
becomes the 4 x 4 matrix multiplication operator

Do = COL p + mc2β

after conjugating with the Fourier transform #", the projection Λ+ - known as
the Casimir projection operator - is easiest expressed in momentum space. It also
becomes a matrix multiplication operator for which we write - with slight abuse
of notation - Λ+(p). Note that we normalize the Fourier transform such that it is
unitary.

To proceed, we find the positive eigenvalues of Do and the corresponding
eigenvectors. For fixed p two orthonormal eigenvectors with eigenvalue E(p) =
(c 2p 2 +m2c4)ι/2 are

N(p)
and

N(p)

(E0+E(p)) 0 \ \

cp

(2)

where Eo := E(0) and N(p) = [2E(p)(E(p)+E0)]i/2. Any spinor φ in the positive
spectral subspace of £>o can be written as

/(E0+E(p))u(p)

N(p) V cp σu(p)
(3)

with u G L 2 (R 3 ) 0 C 2, i.e., a Pauli spinor. Conversely, any Dirac spinor of the
form (3) is in the image of § under the Fourier transform. We note that two
Dirac spinors are orthonormal, if and only if the corresponding Pauli spinors u are
orthonormal.

The projection in Fourier space is given as

1 cα p + mc2β

2 + 2E{p)
(4)

which follows from the fact that /t+(p) is Hermitian, idempotent, reproduces the
vectors (2), and annihilates any vector orthogonal to (2).

Eventually we will need the Fourier transform of the Coulomb potential, namely

1 /2ft 1

Using these facts we obtain for any φ in the positive spectral subspace, on
writing ( , ) for the inner product in L2(IR3) (g) C 4 or L 2 (R 3 ) (g) (C2 as appropriate,
that

-occ^ f u{ (5)

where * denotes the Hermitian conjugate, |w(p)|2 = w(p)*w(p), α := e2/(hc) is
Sommerfeld's fine structure constant which is about 1/137.037 and the kernel K
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σ)(p • σ)

N(p')\p'-p\2N(p)
(6)

The right-hand side of (5) defines a self-adjoint operator b, if we can show that the
form (u,bu) is bounded from below. We also call this operator the Bethe-Salpeter
operator. This is justified, since the sesquilinear form (ψ,Bψ) is bounded from
below if and only if (u,bu) is bounded from below, and the operators B, and b,
defined as the corresponding Friedrichs extensions, are unitarily equivalent because
of (3).

2.2. Partial Wave Decomposition. To obtain a sharp estimate for the potential
energy we decompose the operator on invariant subspaces. Because of the rotational
symmetry of the problem one might suspect that the angular momenta are con-
served quantities. Indeed, as a somewhat lengthy calculation shows, the total angular
momentum 3 = | ( r x p + σ) commutes with b. In fact this has been partially car-
ried through earlier by Hardenkopf and Sucher [5].

We begin by observing that those of the spherical spinors

iι±^±iγ {ωy

(ω)

(7)

with / = 0,1,2,... and m = —I — | , . . . , / + ^, that do not vanish, form an orthonor-
mal basis of L2(S2) 0 (C2. Here 7/5# are normalized spherical harmonics on the unit
sphere S2 (see, e.g., [11], p. 421) with the convention that YUk = 0, if \k\ > L We
denote the corresponding index set by /, i.e., / := {(l,m,s)\l e N 0 ,m = — / - \,...,

\, s = . Thus any u e L2(1R3) 0 <C2 can be written as

"(P)= Σ
V,m,s)el

where p = |p |, ω = p/p, and

oo

Σ I \ahm,s(p)\2dp = / \u(v)\2dV .
(l,m,s)el 0 IR3

Inserting this expansion into (5) yields

(u,bu)= Σ (aι,m,s,bι,saι,m,s J e{p)\aUmAp)\2dp

y oo oo_

-oic-ff'c
71 0 0

?',p)aιimfS(p)dpdp'\ (8)
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with n(p) := N(p),e(p) := E(p), and

(9)
The functions Qι are Legendre functions of the second kind, i.e.,

, (10)
Z —

where the Pi are Legendre polynomials. [See Stegun [13] for the notation and
some properties of these special functions. The Legendre functions of the second
kind appear here for exactly the same reasons as in the treatment of the Schrodinger
equation for the hydrogen atom in momentum space (Flϋgge [3], Problem 77).] To
obtain (8), we also use that (p σ)Ω/ jm>ί(ω) = — pΩι+2s,m,s(ω) (see, e.g., Greiner
[4], p. 171, (12)). The operators b^s defined by the sesquilinear form (8) are the
reduced Bethe-Salpeter operators on the corresponding angular momentum sub-
spaces.

We close this subsection with the following useful result:

Lemma 1.

inf{(u,bu)\(l + Pl/2)\u\ e L2(R3), ||u|| = 1}

= inf{(/Λ5i/)|(i + y/2)|/| ezW), 11/11 = 1}. (li)

Proof. To see which of the angular momentum channels is yielding the lowest
energy, we first note that for any given a e L2(R+,dp) the inequality

(a,bιiSa) = J e(p)\a(p)\2dp - otc- J J a{p')ku(p\ p)a(p)dpdp'
0 π 0 0

^ / e(p)\a(p)\2dp -occ-JJ \a{p')\khs(p\ p)\a(p)\dpdp'
0 π 0 0

= (\a\,bltS\a\)

holds, since all the Legendre functions of the second kind Qι{t) are positive for
t > 1, which is an immediate consequence of the integral representation [13], For-
mula 8.8.2. Thus we may and shall restrict ourselves to positive functions when
minimizing (a,bιiSa).

Next we observe the following chain of inequalities:

" ^ 0 (12)

for all t > 1 which follows from the integral representation

oo -/-1Λ

(Whittaker and Watson [16], p. 334, Chapter XV, Sect. 32).
We now resume our main argument by inferring from (12) that we may as-

sume that coefficients fl/,m,5 are zero unless (l,m,s) = (0,1/2,1/2) or (/,m,5) =
(1,1/2, —1/2) when minimizing. Finally we show that we can pick «i,1/2,-1/2 = 0 as
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well: we have

p + jnp

= (e(p') + E0)(e(p) + E0)Q0 + c2 p'pQλ

+ [(e(p') + E0)(e(p)+E0) - c2pp'](Q: - Qo)

where we used (12). This shows that we gain by putting all the weight into the
channel / = 0,s = \ and picking alm_ι =0. D

From now on we will drop the indices in α/j/w>iS and write merely a.

2.3. Critical Coupling Constant. Our main result is

Theorem 1. Set Zc := 2/[(f + | )α] . If Z ^ ZC9 then

(u,bu) ^ -oίZi - - -}mc2

\4 πj

on [L2(R3,(1 + |p | 2 ) 1 / 2 ί/p)] 2 ; if however, Z > Zc, then (u,bu) is unbounded from
below. Moreover, if Z < Zc then the operator v^s defined by the kernel —™kιtS is
relatively form bounded with respect to cp on L 2 (R + , pdp) with form bound less
than one.

We remark the following:

• The claim of this theorem was predicted by Hardenkopf and Sucher [6] based
on the asymptotic behavior of the eigenfunctions of bi^ and on numerical
evidence. Hardenkopf and Sucher assume that Zc is given when the lowest
eigenvalue reaches zero from above. In particular all eigenvalues are non neg-
ative according to this assumption. In general, we have to leave this question
open except for two cases:

- If m = 0 our bound shows positivity directly.
- If Z ^ 2/(πα), B is positive. This follows from the identity

-- (φ,(\/-(hc)2A + m2c4 - Ze2/\ •

The right-hand side is positive by Kato's inequality (see below) regardless
of whether φ is in the positive spectral subspace or not.

The numerical value of Zc is roughly 124.2, i.e., bigger than 111, the heaviest
element known today (Hofmann et al. [8]), as opposed to the critical value
2/(πα) of the operator {-{ch)2Δ + m 2 c 4 ) 1 / 2 - Ze2/\x | which is about 87.2
and thus covers not even all natural elements.
A lower bound on the critical coupling constant Zc can be directly extracted
from the inequality (-A)ι/2 ^ \y\ (Kato [9], p. 307) by simply omitting the
projections Λ+. However, this gives Zc ^ 2/(πα), i.e., is not optimal.
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• One might also think of using a similar estimate as Lieb and Yau [10] di-
rectly for the kernel K in (6). This, however, is also problematic, since the
second summand contains terms that change their sign according to the mutual
orientation of p and p'.

Proof. We begin by showing that (u,bu) is bounded from below by some constant,
if Z rg Zc. According to Lemma 1 we need to look at the / = 0, s = 1/2-channel
only. Set h(p) = l/p, split the kernel &o,i/2 : ~ k^ + k^ into two parts and use the
Schwarz inequality:

0

Similarly

p , p'

with h(p) := p~x. Note that h(p) = p~ι is the optimal power function in (13) and
(14). Evaluating the pr integral gives

f o r / = 1

Putting all together thus gives

£ O

αc- / dp J dpra{pf)k^x,2(p\ p)a(p)
71 0 0
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i.e., we have the following lower bound on the Bethe operator

provided Z ^ 2/[(π/2 + 2/π)α], thus giving the desired lower bound on Zc, and we
have proven the claimed form boundedness as well.

To show that (u,bu) is unbounded from below when Z > Zc, we will just do a
variational calculation. We pick the trial function

[o peu+\(c,d)

where c,d, and y := djc are positive numbers which we will choose later sufficiently
large, and evaluate. Firstly, we note that for t > 1,

and β l ( O = ^ k > g ( L ± J . ) - l (16)

(Stegun [13]). Secondly, we evaluate three integrals

for v = 0, ±1. By symmetry we have /(v) = /(—v). To estimate these integrals we
distinguish the regions where p > p1 and p' > p. The results are as c,d, and y
tend to infinity:

/ ( 0 ) = y l o g y + O(l) , (17)

/(±1) = (logy)2 + 21ogy + 0(1) . (18)

Next we observe that for p,p' £ supp(α),

k< 2\p',p) ^ l-Qλ Q ( ^ + ~ ) ) ( 1 " c o n s t / c Ί ( 2 0 )

Thus using the definition of £1,-1/2, (19), (20), and (16),

OO OO

- / j a{p')kι^λ

0 0

2
§: c log y(l — const/c) . (21)
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Moreover we get for the kinetic energy

oo

/ e(p)a(pf dp = clog7 + 0(1). (22)
0

Thus subtracting (21) from (22) shows that

(a,botι/2a) ^ 1 - —(1 - const/c) clogγ + const -> -oo ,
V ^c J

if we pick c so small - but positive - that the term in brackets is negative, which is
possible, since Z > Zc, and tend y to infinity. Since | |β | | 2 = i — i ^ 1 for c ^ 1
the assertion follows. D

3. The Essential Spectrum

Our result is

Theorem 2. Assume that Z < Zc. Then σess(B) = [me2, oo) and σsc(B) = 0.

Proof. Let ξ> = Λ+(L 2(R 3) 0 <C4), and let

#o = Λ+(c<x p + mc2β)A+ ,

W(x) = Ze2/\x\,

and
C = -A+WA+ .

For Z < Zc, the operator B = BQ + C, defined in Sect. 2 using the Friedrichs ex-
tension, may also be defined via quadratic forms since C is #o-form bounded with
relative bound less than one for such C. The resulting self-adjoint extensions are
equal and in what follows we will therefore regard B as a form sum. By Theorem 1,
the estimate

holds for all φ in Q(Bo), the form domain of BQ, SO long as

y > aZ ( ) me2 + 1 .

V4 πJ
To prove the first claim, we will show that (B + y)~ι — (Bo + y)~ι is compact

as an operator on Z 2 ( R 3 ) (8) (C4, and hence as an operator on § . It will then follow
from Theorem XIII. 14 of Reed-Simon [12] that σQSS(B) = σess(^o) = [mc2,oo). To
this end we factor (in L2(IR3) 0 C 4 )

B + y)-1] . (23)

The first factor in (23) may be written

(Bo + y)-xA+Wx'2 = A+(B00 + y)" 1 W1'2 ,
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where

£00 = \/p 2 c 2 + m2c4 .

By Lemma 2.6 of [7], the operator (BQQ + l)~ιW1^2 is compact, so the first fac-
tor in (23) is compact. To show that the second factor in (23) is bounded, we
write

W]/2Λ+(B + y)- 1 = [Wι'2Λ+(B0 + yΓ 1 / 2 ] [(5 0 + l)"\B + y ) " 1 ] . (24)

The second factor in (24) is bounded by the closed graph theorem since B is a form-
bounded perturbation of So and (B + γ)~ι maps into 3>(B) c Q(B0). To show that
the first factor in (24) is bounded, we write

WmΛ+(B0 + γy]/2 = W]/2(B00 + γ)~iΛ+

= [PF1/2(|p|1/2 + I Γ ' Π I P Γ + lX5oo + y)~ιΛ+] . (25)

The second right-hand factor is trivially bounded; to bound the first we appeal
to Kato's inequality which bounds r~ 1 / 2 ( |p | 1 / 2 + I ) " 1 . This shows that WX/2A+

(BQ + y)~1 is a bounded operator so that the first factor in (24) is also bounded.
Thus (B + y)~ι — (Bo + γ)~ι is the product of a compact operator and a bounded
operator, proving the required compactness.

To prove the second claim we will use the complex scaling methods of Aguilar,
Balslev, and Combes (see [12] for discussion and references). Let ύU(Θ)f(x ) =
e3θ/2f(eθx) be the usual dilation group on L 2 (R 3 ) (trivially extended to the spinor
space L2(IR3) 0 C 2 ). This group of dilations projects under partial wave decomposi-
tion and Fourier transformation to the group of dilations U(θ)f(p) = e~θ/2f(e~θp)
on L2(JSt+,dp). We will write bιtS = bo + vιiS9 where (boφ)(p) = e(p)φ(p) is the
"free" Hamiltonian, and show that each b^s has empty singular spectrum. Let D be
the disc {θ G C : |0| < θo} for a ΘQ > 0 to be chosen. The operator

bo(θ) = U(θ)b0U(θyι = y/e~2θc2p2+rn2c4

(choosing the branch of the square root with branch cut on (—oo,0] and — π <
arg(z) < π) is an unbounded normal operator with domain equal to the domain of
bo and with essential spectrum on the parametric complex curve

gθ(t) = \/m2cA + t cos(2φ) - it si

where φ = $s(θ) and t G IR+. For φ > 0, this curve intersects the real axis at t = 0;
for t > 0 we have aτggo(t) < 0.

We want to study the spectra of the operators Z?/?5 by studying the associated
family b^s(θ) = U(θ)bιsU(θ)~λ. In order to apply the complex scaling method, we
need to show that

(1) for all θ e D, vls(θ) = U(θ)vhsU(θ)-λ is 60-form bounded with relative
bound less than one, so that b\ s(θ) may be defined as a form sum of bo(θ) and
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(2) for suitable γ > 0, the operators (6/,5(0) + y)" 1 - (bo(θ) + y)" 1 are com-
pact, and

(3) the family of operators (b0 + 1 ) 1 / 2 Ϊ ^ ( 0 ) ( 6 O + 1)~1 / 2, initially denned for
0 G D (Ί IR, extends to an analytic operator-valued function in D.

Note that (2) differs slightly from the usual definition of dilation-analytic
potentials in [12] (see Sect. XIII.10, p. 184) since υ^s is too singular to be
Z?o-form compact. However this weaker compactness condition suffices to prove
that the essential spectra of bιίS(θ) and bo(θ) coincide, as may be seen as follows
(cf. Herbst [7]). By (1) and the fact that bo(θ) defines a sectorial form, there is
a y > 0 (uniform in θ e D) so that $t(φ,b\θ)φ) ^ -(y - 1) | |0 | | 2, where b% is
bo or bιiS. Let D = (bo(θ) + y)" 1 and let E = (biiS(θ) + y)~\ The operator D is a
bounded normal operator whose essential spectrum is a bounded arc in the com-
plex plane. Thus σ(D) has empty interior as a subset of (C, and its complement
consists of a single connected component. Since the difference D — E is compact
and E has a nonempty resolvent set containing points of (C\σ(D), we can apply
Lemma 3 of [12], Sect. XIII.4 to conclude that σ e s s φ ) = σQ^{E). We now use the
strong spectral mapping theorem (Lemma 2 in [12], Sect. XIII.4) to conclude that
&ess(bιίS(θ)) = cess(^o(0)) O u r application of complex scaling also differs from the
Schrόdinger case in that we assume analyticity in a disc rather than a strip, but this
causes no essential difficulty so long as θ can have a small positive imaginary part.
With these slight modifications, we can then mimic the arguments used to prove
Theorem XIΠ.36(a)-(d) of [12] to conclude that the discrete spectrum of b^s con-
sists of (i) sub-continuum eigenvalues of b^s, (ii) eigenvalues of bιs embedded in
the continuous spectrum, and (iii) resonances. By WeyΓs theorem applied to b^s(θ),
eigenvalues of type (ii) can accumulate only at me1. Finally, using the existence of
a dense set of analytic vectors for the dilation group U(θ) acting on L2(R+,<ip),
we can mimic the proof of Theorem XIII.36(e) in [12] to conclude that singular
continuous spectrum is absent.

We now prove claims (1)—(3). To prove the relative boundedness statement we
recall the explicit integral kernel for vιiS, namely

kltS(p,q) -
n(p)n(q)

so that the kernel for Vι>s(θ) is

nθ(p)nθ(q)

where

and
nβ(p) = y/2eθ(p)(eθ(p) + Eo) .

This kernel is holomorphic in θ for \ζsθ\ < π/4. Moreover, for any δ > 0 there is
a θo(δ) > 0 so that for θ G D,

(l-δ)e(p) £ \eθ(p)\ ^(l+δ
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It is not difficult to see that for θ G D, the estimate

\ks,θ(p>q)\ ̂  -Λ—j hs(p>q) ( 2 6 )

holds, so that choosing δ so small that

z / 1 - ' < i
zc \\-δ

guarantees that vιfS(θ) is bo form-bounded with relative bound less than one. By
choosing θo smaller if necessary we can insure that v/?iS(#) is &o(#)-form bounded
with relative bound less than one, so that bιs(θ) is well-defined as a form sum and
gives rise to a sectorial form with

$t(φ,bUΘ)φ) ^ -(y - \)\\φ\\2

for a suitable y > 0 and all φ belonging to the form domain of bo.
To prove (ii), we will show that (b0 + l)~ιvιiS(θ)(bo + I)""1/2 is compact. Sup-

posing this to be true for the moment, we then write

1 = (bo(θ) + γ)-ιv

+γΓι/2]

The first factor in square brackets is bounded by explicit computation (each factor
is a multiplication operator), the second factor is presumed compact, and the
third factor is bounded by the closed graph theorem since bιfS(θ) is a form-bounded
perturbation of bo(θ) and the form domains of bo(θ) and bo coincide.

To prove that the second factor is compact, we note that for θ real, the op-
erators (bo + y)~ιvιs(θ)(bo H-y)"1^2 result from the partial wave decomposition in
Z 2 ( R 3 ) 0 C 2 applied to the operators

where XQ is an operator with integral kernel

and

N(e~θp') | p - p ; | 2

y σ 1 p σ

Both J^,(1) and Jf^(2) consist of bounded Fourier multipliers pre- and post-multiplying

the operator with singular kernel l/|p / — p | 2 . Up to constant factors, this kernel



Spectrum of Relativistic One-Electron Atoms 745

a c t s i n x - s p a c e a s m u l t i p l i c a t i o n b y \x\~ι. T h u s , t o s h o w t h a t (Boo + y ) ι

y ) ~ 1 / / 2 , i s c o m p a c t , i t s u f f i c e s t o s h o w t h a t t h e o p e r a t o r

is compact. This follows from previous arguments since

(£00 + I ) " 1 W(B00 + 1)" 1 / 2 = [(Boo + iyιWι/2][Wι/2(BOo + 1)~1/2]

and the first and second right-hand factors have already been shown to be, respec-
tively, compact and bounded. This proves (2).

Claim (3) follows from the explicit expressions for the integral kernel of ι>/,5(0)
together with the form bound proven above.

Putting claims ( l )-(3) and the remarks following them together, we conclude
that the singular continuous spectrum of bιiS is empty. D

We conclude with

Theorem 3. If m = 0 and Z ^ Zc, then B has no eigenvalues.

Proof. Let dβ be the unitary dilation operator by a factor 1/0, i.e., for any Pauli
spinor u in the domain of b and θ G 1R+ let

(dθu)(p) := «β(p) = Θ~3'

which again is in the domain of b. Moreover we have

bθ:=d-ιbdθ = b/θ. (27)

Equation (27) is easily verified in the quadratic form sense on S ( R 3 ) ® <C4 which
implies the operator identity for the Friedrichs extensions. If u were an eigen-
function of b with eigenvalue E, then u\/e would be an eigenfunction of bo with
eigenvalue E and therefore U\/Q is an eigenfunction of b with eigenvalue ΘE, i.e.,
any nonzero eigenvalue would imply the existence of a continuum of eigenvalues
which contradicts the separability of § . This leaves the possibility of E = 0. Sup-
pose there existed an eigenfunction u with eigenvalue zero. According to our partial
wave analysis we may assume that u = αΩo,/w,i/2/P with nonnegative a fulfilling the
equation &o,i/2<z = 0. But the ao defined by ae(p) = θι/2a(θp) would be another
linearly independent eigenfunction of &o,i/2> since the dilation operator has no
eigenfunctions.

On the other hand we know from the proof of Lemma 1 that all ground states
of any bιfS are non-negative. As the following argument shows, all ground states
are in fact positive. Given this fact for the moment we see that the assumption that
E is an eigenvalue is absurd.

Assume a to be a ground state, which is non-negative, that vanishes on a set
M with non-zero measure. Let τv be the characteristic function of ( v , v + l ) Π M .
Then

oo 7 0 0 0 0 /' 1 / Ό Ό \ \

S J τv(p)a(p)pdp - ac- J dp' j dpQ, - ^ + £- τv(p')a(p),
0 π o o \ ι \P P J /
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and thus

occ- J dp' JdpQi I-(•£ + £-)) τΛp'Mp) S / τv(p)a(p)pdp .
71 0 0 \ Z \P P J J 0

Summation over v gives a positive value for the left-hand side, implying that M
has zero measure. D
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Note added in Proof: On February 21, 1996 the Gesellschaft fur Schwerionenforschung, Darm-
stadt, announced the discovery of element Z — 112.
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