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Abstract: We define determinant bundles associated to the following data: (i) a
family of generalized Dirac operators on even dimensional manifolds with bound-
ary, (ii) the choice of a spectral section for the family of Dirac operators induced
on the boundary. Under the assumption that the operators of the boundary family
have null spaces of constant dimension we define, through the notion of b-zeta
function, a Quillen metric. We also introduce the analogue of the Bismut-Freed
connection. We prove that the curvature of a natural perturbation of the Bismut—
Freed connection equals the 2-form piece in the right-hand side of the family index
formula, thus extending to manifolds with boundary results of Quillen, Bismut and
Freed. Given a closed fibration, we investigate the behaviour of the Quillen metric
and of the Bismut-Freed connection under the operation of surgery along a fibering
hypersurface. We prove, in particular, additivity formulae for the curvature and for
the logarithm of the holonomy.

Introduction

Determinants of elliptic operators arise frequently in Quantum Field Theory. In the
evaluation of path integrals over families of Dirac operators § = (8;), z € B, it
is desirable to have a determinant function, DET: B — €, assigning a complex
number to each operator 3§,.

As explained in the fundamental work of Quillen [23] in general it is only
possible to assign a determinant line bundle det(0) and a natural section o €
#>°(B;det(d)) to any such Dirac family. If the determinant line bundle is trivial
then by fixing a trivializing section 7 € ¥°°(B;det(0)) we can define a determinant
function DET, € ¥€°°(B) by comparing the two sections o¢,7 : 6(z) = DET,(z)t(z).
In the physics literature the obstruction to find such a trivializing section is referred
to as an anomaly. Even if the determinant line bundle is trivial there are many
possible choices of 7 and it is natural to try to determine a canonical one.

In the case of d-operators acting on a vector bundle £ over a Riemann surface
M, thus with parameter space B equal to the space .&/ of holomorphic structures
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on E, Quillen solved this problem by introducing a natural metric || - ||, on det ()
and computing the curvature of the unique complex metric-compatible connection
V. The curvature formula allows for the construction of a new metric with flat
associated complex metric-compatible connection. Once such a connection has been
constructed the determinant function is obtained as above by fixing an everywhere
flat (trivializing) section which exists since the space .o/ is contractible.

Bismut and Freed [10, 11] extended the work of Quillen to an arbitrary smooth
family of twisted Dirac operators 0 on even-dimensional manifolds by introducing
the Quillen metric on det(8) together with a natural metric-compatible connection.
Building also on conjectures of Witten [27] they proved formulae for the curvature
and the holonomy of this connection. These formulae represent the obstruction to
trivializing the determinant bundle by parallel transport, as done by Quillen, and they
are often referred to as the local and global anomaly formulae. The global anomaly
formula was also proved, independently, by Cheeger in [13]. See also [14,26]. In
this paper we have two specific goals in mind. First we extend to manifolds with
boundary the results of Bismut and Freed, with the notable exception of the global
anomaly formula which will be the object of a future publication. Second we give
surgery results (or, in a more physical language, sewing rules) for the local and
global anomalies whenever a fibration \ : M — B of closed manifolds defining a
family of generalized Dirac operators 8 is cut along a fibering hypersurface H,
producing two families of generalized Dirac operators on manifolds with boundary.

Let us describe more precisely the contents of this paper. Families of Dirac
operators O on spin manifolds with boundary were first considered in [6]. Much
of the analysis carried out there is done under the assumption that the family of
Dirac operators induced on the boundary, 3y, is invertible; we shall refer to this as
the invertible case. In [18] (see also [19] for the odd-dimensional case) the main
results of [6] are extended to an arbitrary family of Dirac operators, i.e. with no
assumption on the boundary family. Given such a family 0, we can always choose
a spectral section P for the boundary family §p (see Sect. 1 below for the def-
inition) and thus a smooth family of generalized Atiyah—Patodi-Singer boundary
conditions. In [18] an index formula for the Chern character of the index bundle
associated to these generalized Atiyah—Patodi—Singer boundary value problems is
proved. To prove such a formula the b-calculus for elliptic operators on manifolds
with boundary is used in a crucial way. First of all it allows for a deformation
of the family of generalized Atiyah—Patodi—Singer boundary value problems (9, P)
defined by our data to a family of perturbed Dirac operators & + Ap, with 4p a
family of b-pseudodifferential operators of order —oo, with the property that the
boundary family 8¢ + Ap,o is invertible. The ordinary Atiyah—Patodi—Singer bound-
ary condition, suitably interpreted in the framework of b-geometry, can be applied
in this case, giving a continuous family of Fredholm operators. Since the two fam-
ilies of Fredholm operators so defined, viz. (0,P) and 0 4 4p, are homotopic, they
fix the same index class in K° of the base. Thus one is reduced to proving the
family index theorem in the invertible case but for a larger class of operators. The
b-calculus is used again at this point, in the form of a formula for the b-trace of
a supercommutator, to compute explicitly the boundary contribution, a generalized
eta-form, which enters into the final formula for the Chern character. By applying
these results of [18] we are able to give in Sect. 1 the general definition of deter-
minant bundle for families of Dirac operators on manifolds with boundary, together
with an explicit formula for its Chern class. The definition depends on the choice
of the spectral section P, although there is a formula relating the Chern class of
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two determinant bundles associated to different choices of spectral sections. Using
this formula we show that there always exists a spectral section Q for which the
determinant bundle is trivial. We use the notation det,(0,P) for the determinant
line bundle associated to & and the spectral section P.

Next we pass to the study of the Hermitian geometry of such a determinant line
bundle. To do so we need to assume the operators of the boundary family to have
null space of constant dimension in z € B. We refer to this as the constant rank
case. We then choose P to be equal to IT, the spectral projection corresponding to
the non-negative eigenvalues of the boundary family. Although all of our results are
valid under the constant rank assumption we start in Sects. 2, 3 to treat the invertible
case. Using the regularity results for the b-zeta function of an elliptic b-differential
operator ([22,17]) we introduce in Sect.2 the b-Quillen metric on det, (0, 11 ).
We also study the variation of the b-zeta function and of its derivative in 0 € C.
We show in particular that the usual formulae hold. This is not obvious, since
by applying Duhamel’s principle, boundary contributions arise from the formula
for the b-trace of a commutator of two operators; we show that these boundary
contributions are always zero. The validity of these variation formulae shows once
again ([22]) that as far as index theory on manifolds with boundary is concerned,
b-zeta functions play the same role as ordinary zeta functions in index theory on
closed manifolds. In Sect. 3 we use these results to introduce a natural connection
bywdet This is the analogue of the Bismut-Freed connection. We prove that this
connection is compatible with the b-Quillen metric. The point here is again to make
sure that various boundary contributions arising from applications of Duhamel’s
principle are identically zero and that the arguments given in the proof of the
compatibility in the closed case (see for example [2]) can be carried over.

In Sect.4 we investigate the behaviour of the determinant line bundle, the
Quillen metric and the Bismut—Freed connection under surgery. The operation of
surgery is explained at length at the beginning of that section. To describe it in-
formally consider a fibration of (for simplicity spin) closed manifolds y : M — B
defining a family of Dirac operators d as in [10, 11]. Let H be an embedded dis-
connecting codimension one submanifold of M. We assume that H fibres as well,
thus Yy : H — B. M is therefore the union of two fibrations with boundary M°, M
along the fibration H, each fibre y~!(z) = M, being the union along H, of two
manifolds with boundary M?, M : M, = M? |J, M. Let Uy = [—1,1]x H be a
collar neighbourhood of H; by surgery, following [16], we mean the stretching of
the collar neighbourhood Uy to a cylinder of infinite length. If gyyp is the family
of metrics of the spin fibration ¥ : M — B and if x € ¥°°(M) is a defining func-
tion for H, this intuitive idea of stretching is rigorously realized by considering the
family of metrics ,
|

guys(e) = + 9myB

x2 + ¢
and letting ¢ | 0. As ¢ | 0 each manifold M, develops a neck |2loge|-long around
the hypersurface H. For ¢ =0 we obtain M, the disjoint union of two exact

b-fibrations M O,M " of the sort considered in the first three sections of the pa-
per and the idea is to follow what happens to det(d(¢)), its Quillen metric and
Bismut—Freed connection when ¢ | 0. Under the assumption that the Dirac oper-
ators induced on H, are invertible we prove that there exists a natural explicit
isomorphism

det(é(a)) — detb(c’)ﬁo,ﬂ<)®detb(6ﬁl,ﬂg) (1)
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for each ¢ small enough. Here IT> is the spectral projection corresponding to the
non-negative eigenvalues of the boundary operator associated to 6}\7" In particular,

since & and 8(¢) are homotopic, we obtain an isomorphism
det(8) — dety (8570, 1<) ® detp(d51, 1) . 2)

Next we analyze the behaviour of the Quillen metric || - ||, and of the Bismut—
Freed connection V%“¢ showing on the one hand that the pushforward under the
above isomorphism of the Quillen metric || - ||, multiplied by &' (0.57) converges
as ¢ | 0 to the b-Quillen metric on detb(éﬁo,H <)®detb(6M1,H >) whereas the

pushforward of the connection V¢ 4 log ¢ - d{’(0,d%,) converges to the Bismut—
Freed connection *V%0 @ 1d + Id ® ®V%!, These results yield immediately, in
Sect. 5, the (asymptotic) additivity of the curvature and of the logarithm of the
holonomy under surgery : as ¢ | 0,

(vdet,S)Z N (bvdet,O)Z + (bvdet,l )2 ,
hol, (V%) — hol, (* V%) « hol, (*V¥*!) vy € Map(S',B). 3)

These are the sewing rules called for in [25]. They tell us that the two anoma-
lies associated to the fibration M = M, |J, M, can be split into two contributions
coming from My and M,. The results of these two sections are based on the pseu-
dodifferential surgery calculus of [16].

In Sect. 6 we finally prove the local anomaly formula on manifolds with bound-
ary in the invertible case which is at this point a simple application of the trans-
gressed form of the family index formula: if P = IT>, so that the index bundle is
simply realized by a family of b-differential operators acting on unweighted Sobolev
spaces, and if null(0T) @ null(d~) is a smooth bundle, so that Ind(3,/1s) =
Ind (0) = null(0), then

1 1. dAi, _Az
Ch(Ind(0)) = o)} i ( 75 ¢ > ds (4)

as differential forms on B. In this formula A is the rescaled Bismut superconnection
and 7 is the eta form introduced by Bismut and Cheeger (see [6 or 18] for the
definition). The Chern character on the left-hand side is computed with respect
to the compression of the 1-form piece of the Bismut superconnection onto the
null bundle null(3). Using this formula and the results of Sects. 2 and 3, the local
formula for the curvature of the Bismut-Freed connection on det, (8, 1> ),

broydety2 _ 1 S
CVEY = <(2m) M{BA(M/B)Ch (£) 211)[2] (5)

follows easily.

The results on surgery and on the local anomaly formula are extended to the
constant rank case in Sect. 8. After some preliminary results on the analysis of
elliptic families on manifolds with boundary, which are gathered in Sect.3, we
show that for a natural perturbation (°V%') of the Bismut—Freed connection on
dety (0, I > ), the following local anomaly formula holds:

(bviety? = ! [ A(M/B)CN (E) — 1 —1Ch(nu1160,vn““) (6)
(2”) M/B 2 2]
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with V™! denoting the compression of the 1-form piece of the Bismut supercon-
nection onto the bundle null(8y). The precise statement is given in Theorem 2. We
then establish the surgery isomorphism (2) in the constant rank case and prove that
(3), i.e. the additivity of the curvature and of the logarithm of the holonomy under
surgery, holds for the perturbed Bismut-Freed connection. The surgery results are
stated in detail in Theorem 3. It should be mentioned that the constant rank case
is really obtained by reduction to the invertible case, by considering the family &
acting on weighted Sobolev spaces. It is for this reason that we are able to work
with the surgery calculus of [16] throughout and avoid the more delicate logarithmic
surgery calculus of [15].

A final comment on our assumption about the boundary family §,. The lo-
cal anomaly formula can be seen as a consequence of the transgressed form of
the family index theorem which follows in turn from the local family index the-
orem. For an arbitrary spectral section P the index theorem of [18] is not local;
as explained above it is first necessary to homotope the family of boundary value
problems defined by & and P to the family of b-pseudodifferential operators 8 + 4p,
with invertible boundary family, and then apply the b-calculus to the latter. In this
operation locality is lost, the index formula only holds at the cohomological level;
in particular, unless the boundary family is invertible, or unless it has null spaces
of constant dimension in z € B, there is not a transgressed form of the index the-
orem. This explains our assumption at least as far as the local anomaly formula
is concerned. The situation might be slightly better in the case of surgery. First of
all it should be possible to extend the isomorphism (2), which is also valid in the
constant rank case, to an arbitrary spectral section P obtaining

det (8) <> dety(3.0,(1d — P)) ® dety(3.1, P) (7

(see [25] for a special case). Moreover using the results of Miiller [20] it is pos-
sible to_introduce the Bismut-Freed connection on the determinant line bundle
detaps(0, P) defined by the family of generalized Atiyah—Patodi—Singer boundary
value problems fixed by 0 and P. In this context, which is definitely different from
the one considered here, one could at least hope for surgery results of the type
considered in this paper by employing the techniques of [12].

Section 1. Determinant Line Bundles on Manifolds With Boundary

Let ¢ : M — B be a fibration of smooth compact manifolds with fibres diffeomor-
phic to a fixed even-dimensional manifold with boundary X. Let gyyz be a family
of exact b-metrics and let £ be a Hermitian Z,-graded module for the Clifford al-
gebra bundle associated to the vertical b-cotangent bundle ?T*(M/B). For Clifford
algebras we shall use the convention of [17]. Thus for any two covectors o and f,

cl(a) cl(B) + cl(B) cl(a) = 2(a, B) -

Let V£ be a vertical (true) connection on E which is assumed to be unitary and
Clifford. Let & = (0,) € Diff Zl,’ #(M;E) be the family of Dirac operators associated
to these data. We refer the reader to [18 and 19] for some of the notation used in
this paper. Let 89 = (0p,;) € Diff}w(éM ;E1OM) be the family of Dirac opera-
tors induced on the boundary. By Proposition 1 of [18] (and its Corollary) we
can always choose a spectral section P for the boundary family &y. Thus P is
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a smooth family of 0™-order pseudodifferential operators, P € 'J’g¢(6M s ETOM),
P, : LX(OM; E|0M,) — L*(0M,; E |0M,), which are self-adjoint projection and with
the additional property that there exists a positive function R € ¥°°(B) such that
Pu=u if 1 > R(z)
0o, ;u = u = ) (1.1)
Pu=0 if 1 < —R(z).
There are three distinct families of Fredholm operators associated to & and a choice
of a spectral section P for 9.
First of all we can consider the metric-incomplete setting of Atiyah, Patodi and
Singer. For this we need to assume a product metric near the boundary. If M,E
denote the total space and the Clifford module in this case, then the smooth family

(3*,P) : Dom (3", P) — °(M;E~)

with R o N
Dom(8",P) = {u € ¢°(M;E"); P(u| M) =0} (1.2)

is Fredholm, when considered as a family acting on the appropriate Sobolev com-
pletions, with null space consisting of ¥° functions. According to Quillen [23] (see

also [10]) there is a well defined determmant line bundle associated to (81, P). We

shall denote this line bundle by detAps(6+ P).

If we add a cylindrical end (—o0, 0], % 0M to M and we make the usual change
of variable x = exp(v), then we obtain a fibration of »-manifolds which are product
type near the boundary. More generally if the metrics on the fibres are exact we
can define, following [18], two distinct families of Fredholm operators. The first
one is a (local) family of Fredholm operators acting on Hilbert spaces which are
finite dimensional extensions of weighted Sobolev spaces. We denote the associated
determinant line bundle by det,(0,P). The second family, in this complete setting,
is obtained by perturbing 0 by an element 4p € ‘P;g"(M,E ), i.e. a smooth family
of b-pseudodifferential operators of order (—oo), so that the boundary operators
of the perturbed family are all invertible; acting on unweighted Sobolev spaces
the perturbed family 8+ 4p € ‘I’,L 4(M,E) is Fredholm. Thus there exists a well
defined determinant bundle which we will simply denote by det, (3 + A4p). Since, as
explained in Proposition 6 of [18], these two families are homotopic it follows that

det, (0, P) =2 dety, (0 + Ap) .
In the product case we can use Lemma 2 in [18] obtaining a natural isomorphism
detaps (6 P) = det, (8, P) . (1.3)

Directly from the family index theorem proved in [18] we obtain (see [1]) the
following result.

Theorem 1. For the Chern class of the determinant line bundle det,(0,P) the
following formula holds:

- [ A(M/B)Ch'(E) - %np in H*(B) . (1.4)
i M/B 2]

ci(det, (0,P)) =

If the fibre metrics are of product type near the boundary then
c1(detars (8, P)) = e1(dets (3,P)) .
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It should be remarked at this point that if Q is a different spectral section for
Jp, then the relative index theorem of [18] gives a way to relate the Chern classes
of det, (0, P) and det, (0, Q):

ci(det (8, Q)) = ci(dety (8,P)) + Ch([P — QD2 -

It is proved in [19] that the formal differences of spectral sections associated
to a Dirac operator exhaust all of K°(B) (see Proposition 11). Since the Chern
character gives an isomorphism Ch:K%B)® C — H®'(B) we obtain the following
somewhat surprising result:

Proposition 1. There always exists a spectral section Q such that

c1(dety(3,0)) = 0.

Theorem 1 gives a way of measuring the non-triviality of the determinant line
bundle associated to a family of Dirac operators and the choice of a spectral section
P for the induced boundary family. As explained in the iEtroduction it is however
important to investigate the Hermitian geometry of detaps(0, P) and dety(d, P), as in
[23,10]. In order to carry out this program we need to impose some restrictions on
the boundary family 8¢ = (8¢,,) € Diff (lw(aM ;E | OM). The assumption we need to
make is the following:

The null spaces of the boundary family &y ,, z € B, are of constant dimension .

(1.5)
We refer to assumption (1.5) as the constant rank case. Under this assumption we
can and we shall choose the spectral section P to be [T, with ITZ equal to the
spectral projection corresponding to the non-negative eigenvalues of the boundary
operators &g,;.

Section 2. b-Zeta Functions and »-Quillen Metrics

In order to investigate the geometry of the determinant line bundles detaps(d, 1)
and det,(8, 1> ) we first assume the boundary operators to be invertible. Thus we
assume

For each z € B the boundary operator 0 . is invertible . 2.1)

We shall treat the constant rank case in Sect. 8.
Consider the determinant line bundle det(d, IT> ). This is simply the determinant
line bundle associated to the family of Fredholm operators
F t HY(M;ES) — LM E) .

Zs ™~z

Assumption (2.1) implies that 0 ¢ spec(d,,)? for each z € B. Thus the L?-spectrum
of &? is discrete near zero; following [23] and [10] we can then give the following
description of det, (8, I ).

There exists a 6 > 0 such that

spec(85,)N{w e R : |w| <6} =0 (22)

for each z € B. Thus (see [17]) the L}-spectrum of the self-adjoint operator &2 is
discrete with finite multiplicity precisely in the region S(0) = {x e R: 0 < x < §}.
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Let 4 € S(J) and consider the open subset of B,
U,={z€B:)&spec(d’)}.

Since the spectrum is discrete in the region S(J) it is clear that the U,;’s give an
open covering % of the manifold B. We denote by P, = (P?) the family of spectral
projections corresponding to the interval [0, 1) C IR, i.e. the orthogonal projections,
in L}(M;; E), onto the direct sum of the eigenvalue which are less than A. Since 82
is Z,-graded even we see that P is also Z,-graded even. Following the notation
in [2] we consider the Z,-graded complex vector bundle H, on U, defined by the
range of the family P;:

(Hy). = (H ), ® (H; ), = (ran P} ) @ (ran P} 7).

The same arguments given in [18] for the null bundle of the family & show that
H; is a smooth vector bundle on U;. We consider the line bundle over U;,

det(H;) = (A™H" ) @ (A" H,").
If 4 € S() and A < u then on U; N U, we certainly have
H,=H, ®H ),

with Hj; ,) equal to the direct sum of the eigenspaces corresponding to the eigen-
values in the interval [, u). Thus

det(H,) = det(H;) ® det(Hj,, ,)) .

We can define a line bundle by gluing det(H;) and det(H,) on U, N U, through
the non-zero function det(éa #)) induced by the isomorphism
80 = 8" T Hiiu * Hity < Hyyyy -

We denote this line bundle by det;(8). As explained in [10] the two line bun-
dles dety(3,11>) and dety(d) are canonically identified; we shall often think of
dety(0,IT> ) and det,(d) as the same object.

For families of Dirac operators acting on closed manifolds, Quillen has intro-
duced a natural metric on the determinant bundle. This is nowadays referred to as
the Quillen metric; it is defined through the derivative at the origin of the zeta
function of the positive Dirac Laplacians.

Let 4 € Y;(X;E) be a positive elliptic b-pseudodifferential operator acting
between the smooth sections of a vector bundle £ on a manifold with boundary X.
In [22] the complex powers 47°,Res > 0, were studied. These complex powers are
not trace class in general and one must take a regularization of the trace functional,
the b-trace [17], in order to define the b-zeta function of 4. Thus for Res large,

def

bt(4,5) = b-Tr(4™).

The reader is referred to [22,17] for the proofs of the main properties of ?{ that
will be used in the sequel. In our particular case it follows that for each z € U,

b((s,6;0],2) = b-Tr(PZ__ (870)7) (2.3)

(4,00)
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is well defined for Res >> 0. Here 2 < ¢ and P{;’_) = Id — P™. It can be proved,
either by studying the structure of the Schwartz kernel of the complex powers of
A [22] or by using the Mellin transform and the asymptotic of the heat kernel for
small times [17], that the complex function 2{(s, 0,0}, 1) admits a meromorphic
extension to the whole complex plane. The point s = 0, an a priori pole, is regular.
Thus 2((0,8,8;,4) is well defined for each z € U,. Since 8 € Diﬁ"},’(b(M;E) is
a smooth family of operators, we see that, as z varies in U;, 2{'(0, 0,0}, 1) defines
a smooth function on U;. We denote this function by 2¢’(0,8~8, A). It is important
to note that if z € U, N Uy, with A < u < 4, then for Res large,

P0(5,0,0F,2) = "U(s,0678F, 1) = b-Tr(P ,(8707)7) .

Since b-Tr = Tr on trace class operators it follows that

4;7° Res>0

PU(s,6781,2) =0(s, 8,8, 1) +

m
=

—

with0 < A < 4 £+ £ Ay £ u < 6 an enumeration of the eigenvalues of 8, 8
between A and u. This implies directly, by meromorphic continuation, the key

formula
m

P0(0,07°07,2) = "'(0,6;8, 1) — > log 4; . (24)
i=1

To define the Quillen metric we now proceed as in [23]: the Lg-metrics associated
to the family of exact b-metrics gyyp induce a metric on Hip ;) and thus a metric

|+ ]2 on (dety(0)) [ U = det(Hyo,;)). We define the Quillen metric as
|+ llo = e~ ¥ @230, (25)

Formula (2.4) implies that || - || o is globally defined on det;(8, 11> ).
We end this section by computing the variation of the function *{’(0,8; 8}, 2).
We will denote by 0/0z a generic partial derivative in a fixed coordinate patch

contained in Uj.

Lemma 1. Over the set U; the following formula holds
E("C(s,é_é’L,;t)) =—s|b-Tr (P}~ £(6_6+) @;8)~! . (2.6)
Oz z vz (4, 00) Oz z Yz z vz

Proof. For Res large the b-zeta function can be expressed, using the Mellin trans-
form, in terms of the b-trace of the heat kernel:

_ 2 e I % 2 5 _
*{(5,0;07,2) = M[b-Tr (Pl e %Y](s) = o) af b-Tr(P7 e 8y lqy

where M denotes the Mellin transform. The derivative with respect to z of the last
term above is the sum of two terms; one involving the derivative of the projection
and the other involving the derivative of the heat kernel. The first contribution
vanishes and we are left with the task of proving that

b-Tr <Pf;j’oo)%e_’6z_ & ) = —t <b—Tr (Pf;joo) (%6;6;) e 0 >) .@n
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We apply Duhamel’s principle to compute the derivative of the heat kernal obtain-
ing, for the left-hand side, the integral

—b-Tr ( Ofe_(’ 3 62+le+00) <£6;6;> e'56z_6;rds) i

Here we used the fact that [exp(—z0; 0)), P( ; oo)] = 0. We rewrite this term as the
sum of the right-hand side of (2.7) and a term which involves the b-trace of a
commutator:

—b-Tr (Pf;:‘oo)t ((%6;6;) e—ta;&s;)

A T, 0 . _ e
—b-Tr(Of[ = % P o) (562 6z+>e 5 62st).

Applying the b-trace identity [17] to the latter term we obtain

a —at a —
z,+ —10, 0, . p z,+ Y ox— —13; 9]
bTr<P(;Oo)ae )— bTr(P(/oo) <026262+>et )

, )

o (oot (i, (Zozor ) e ) dsaw)
RO

(2.8)

where following the identifications in [18] we have used the identity 7(d, 0, w) =
w? + (8o,,)*. Notice that this also implies that

O v N0 . o
I (Eéz 6Z,W> = 62(60’2) .

Recall that 4 < 6 with J as in (1.2). Thus the same analysis given in [17] for the
projection operator onto the null space of an elliptic b-differential operator shows
that the image under the blow down map of the Schwartz kernel of Pz+ is given
by a continuous section of the external tensor product £ X1 E* over M, x M, which
is smooth in the interior and vanishes over the boundary. Thus /(P?% + ,w)=0 for
each w € € so that

](Pz+

CoopW) =1(1d = P57 ,w) =1d.

Thus we can rewrite the last integral in the right-hand side of (2.8) as

i <f(t —s)Tr <6—6260,z> e‘t(é‘lz)zds) <]£(—2w)e_wz’dw> ,

which is clearly zero. Thus (2.7) holds and the proof of the lemma is complete.

Recall from [17] (see also [18] for the case of families) that 5-Tr(exp(—ud; 8;))
has an asymptotic expansion for small u. It is obvious that an analogous asymptotic
expansion holds for b-Tr(P%' | exp(—ud; 8})):

(4,00)

bTE(PP e %) 0 3 a2yt
(7,00)€ ~ K(2)u

k=—1
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with n equal to the dimension of the fibre M,. Formula (2.7) implies an asymptotic
expansion for b-Tr(Pffoo)(aizéz_ 8 ) exp(—ud; 8))):

b-Tr | PZ" 36—6+ e ) o § iak(z)uk (2.9)

(j_,oo) az z vz kz_g aZ ) .
which in turn gives an asymptotic expansion for b-Tr(Pffoo)(a—azéz‘ 8)(6;78)7!
exp(—t0;0;)), simply obtained by taking the integral from ¢ to oo of formula
(2.9). If we denote by

d ot
_ z,+ Y ox—x+ —a+\—1,—18,8;
LIM b-Tr (P(Loo) (azéz 6z> 3;8)7 e )

the coefficient of % in this asymptotic expansion, then we obtain from Lemma 6,
as in [2], the following important result

Proposition 2. On the open set U; we have

0 by —at ooy 7+ E—Jr —x+\—1,—18; 8}
% {'(0,0;0;,4) = IIJLI\éI (b-Tr <P(,1,oo) 5262 0, (0,8 ) e .
(2.10)

Section 3. The Bismut-Freed Connection in the »-Context

In this section we introduce a natural connection V%! compatible with the b-
Quillen metric. Let A < 6, with J as in (1.2). Observe incidentally that over the set
U;, C B the operator 0(),00) = P(;,00)0 has Hg ;) as its kernel bundle. As in [2] we

consider the superconnection A; = 0(;,oc) + A1) with Apiy the one-form piece of the
Bismut superconnection. Let A, = t%é(z,oo) + A1) be the rescaled superconnection
associated to A;. Define two differential 1-forms a;t(t,/l)[l] € (U, AY) by

b, _&
aE(t, Dy = (b—Tri <a—t’”’e'<“‘f~,r>z>> . (3.1)
[1]
More explicitly
1 . N2
%5 (6 Ay = = 55-Tr (8 o) [, 87 oy Je ™ ko))
1 a2
= —zb-Tri(P%oo)éjF[A[l],6i]e 1@y (32)

It follows from [17] (Proposition (7.27)) and [18] (Proposition 20) that af(t, A
has an asymptotic expansion for ¢ small:

o)
+ +
o (t,i)[l] ~ Z tk/zak .

Thus o
By (1) =2LIM [ (2, )y (33)

is well defined. The 1-form piece of the Bismut superconnection induces, through
the spectral projection Py ;), a Z,-graded connection on Hj ;) which in turn induces
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a connection ®V* on (det, d) | U;. This connection is compatible with the metric
| |1 induced by the LZ-inner product. To define a connection compatible with the
Quillen metric we consider on (det, d) [ U, the connection

PV =V B (34)

One proves as in the boundaryless case that °V* + B (1) and ®V* + BF(u) agree
over the set U, N U, once we identify det(Hj 7)) and det(H, ,)) by multiplying by
the non-vanishing section det(8(; ) of det(Hp; ). Thus bydet is globally defined
on dety(8, I1>). To prove that it is compatible with the Quillen metric we need the
following

Lemma 2. Over the set U,
o, (4, Dy = o (6 Dy
d(°C'(0,670%, 1)) = —(B; (1) + B, (A) - (3.5)

Proof. From the expression (3.2) it follows that o (¢, A)1) is equal to the complex
conjugate of

-8, 8% _
'(b Tr(8(; oy Apye — #o"¢o00(, ))

_ -5 ot _
- b-Tr(A[llé(i’oo)e (00)(£22)8 ) )))

1 - PN 2
+ z(b-Tr[é(}”oo), O, OO)AH (/,00) (/.,oo)]
- -3 ot
= BTHO(; oy A0 epe 4o -] (3.6)

Locally in U C U, we can write Aﬁ] =d + ot with o € 4°(¢~(U,¢p*A'B®
hom(E))). With the identifications explained in [18] we have

103, ooy W) = 1(0%,w) = +iw + 0y weC (3.7)
since, as already remarked, /(P ;), w) = 0. Recall also that
TIOM=w" | M. (3.8)
The last two lines in (3.6) are equal to
w‘é&,w)e_m&m)é&w)] .
39)

0, 0

1
Eb-Tr[é(_;"oo),é(J;”oo)wJ“e (100) (ho0) | — —b Tr[0,,

(4,00)°

Application of the b-trace identity ([17]) gives the equality of (3.9) with

[ (Z;T‘,r;(r'vwréo)(w+ raM)e”(W2+6g)) a
R

-J (—( - aM)(iw+6o)e—“W2+63>) ,
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which is easily seen to be zero. Next we consider the complex conjugate of the first
two lines in (3.6). Since A is compatible with the Lj-metrics defined by gz we
find

P — 1 _
O(;;(t,ﬂ.)[]] = —b—TI‘_( (’ )%, 00)6(+A oo)( Aa])é(l,oo))

_ R
=0y (t /1)[1] + = b Tr[6(; oo)Aﬁ]é(i,oo)’ (/ ) (4 °°)]

— -t 8
(4,00) (; OO)A [p€ (ho0) (h,00)]

the last step being obtained by applying once again the b-trace identity to the terms
involving commutators together with (3.8).
To establish the second formula in (3.6) we write

b Tr[d}

By (1) + B, (A) = LIMb-Tr (P, Oo)[A[I],6_6+](6—6+)—le—t6_6+) .
Using the fact that P( .00) 18 @ projection commuting with 876* we obtain
By (2) + By (A) = LIMb-Try (P, ,(dd™6" N )
CLMDTE P 0707 P o @ 0T e,

The b-trace of the commutator vanishes since the w-derivative of the indicial family
of the first term in the commutator is odd in w whereas the indicial family of the
second term is even. On the other hand by Proposition 2 the first term on the
right-hand side is precisely —d®{’(0,0=8%, 1) proving the lemma.

Proceeding as in [2] we obtain from Lemma 2 the following.

Proposition 3. The connection *V% is compatible with the b-Quillen metric ||+ |50
on dety(0, 113 ).

Section 4. Surgery

Let v : M — B be a fibration of closed Riemannian even dimensional manifolds
with fibre diffeomorphic to a fixed compact closed manifold X and let E be a
vertical Hermitian Clifford module as in [2]. We denote by gyys the metric on the
vertical tangent bundle T'(M/B); thus for each z € B M, = y~!(2) is endowed with
the metric g. = gayp | TM.. Let O be the associated family of Dirac operators. Let
H be a codimension one embedded submanifold of M. We assume that H fibres
over B; thus there exists a codimension one embedded submanifold ¥ of X and a
fibre bundle y : H — B with fibres diffeomorphic to Y.

We assume, for simplicity, that H separates M; thus  : M — B is the union
of two fibrations ¥, : M’ — B, i = 0,1 with common boundary equal to H : M, =
MP |, M, for each z € B.
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Let x € (M) be a defining function for H (thus H = {x =0} and dx+0
on H). It should be remarked that one of the two fibrations with boundary, say
M?°, will have the normal vector field to its boundary, d/0x, oriented in the outward
direction.

We consider the fibration 3 = M° UM obtained by taking the disjoint union of

the compactification M, i = 0, 1 of the fibrations obtained by attaching a cylindrical
end to M;.
Consider the family of Riemannian metrics
dx|?
win®) = 22 4 g (41)
We shall also use the shorter notation g,(¢) for the metric (4.1) restricted to the
fibre M,.

The limit metric gyyp(0) = g(0) endows the fibration ¥ : M = M° UM ' B
with a vertical family of exact b-metrics. Equivalently ¢.(0) defines on M,\H, the
structure of a complete manifold with asymptotically cylindrical ends.

The goal of this section is to make use of the surgery calculus of [16] and study
the uniform behaviour of the Quillen metric and the Bismut-Freed connection when
we pass from the determinant bundle associated to the family of Dirac operators
fixed by the closed Riemannian fibration (yy : M — B, guys(&0)) to the b-determinant
bundle associated to the family of Dirac operators fixed by the exact b-Riemannian
fibration with boundary ( : M — B, g5(0)).

Notice that the Hermitian geometry of det(d),0 being the original family, and
det(0(ep)) are easily related. These line bundles are obviously isomorphic; moreover
they admit Quillen metrics and Bismut-Freed connections with curvatures equal to
the 2-form piece of the right-hand side of the respective local family index formu-
lae. By well known transgression formulae the two curvatures differ by an exact
2-form do € €>°(B; A?). In particular by subtracting the globally defined 1-form
o it is always possible to modify the Bismut-Freed connection V%' on det(d) so
as to define a new connection V%' with curvature precisely equal to the one of
the Bismut—Freed connections of det(0(gy)). Thus there is no loss of generality in
assuming that & = 0(¢).

Let us explain our goal more precisely. If the fibres of Y : M — B have a spin
structure, then, as explained in [16], the metrics (4.1) and the choice of a spin
structure on M,, z € B fix a surgery spin structure: this means that for each z € B
there exists a well defined spinor bundle S on (M;); = [M; x [0,1]; H, x {0}], a
Clifford action cly( - ) of T(M,); on S and an induced Levi-Civita connection V5.
These data endow S — (M;), with the structure of a surgery Hermitian Clifford
module with Hermitian Clifford connection. The associated Dirac operator

3.(¢e) = %clsvs

is an element in Diff ; (M; S) (see [16] for the notation). The latter statement simply
specifies how the e-family of the differential operator 0.(¢) fixed by (4.1) degener-
ates as ¢ | 0; in particular the limit operator 8,(0) is, for each z € B, an element in

Diff ,l,(A_/[z;S). We will also use the notation 0, ;; for the limit operator: notice that
6Z,M = 6Z,MO ® 62 ﬁl .
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It is important to understand precisely the structure of the operators 61170’67
near the respective boundaries. We consider the bundle endomorphisms L} = Id and
L7 = cl(dx/(x® + ¢2)7). Let ¢l,...,¢" n =2k be a g(¢)-orthogonal local basis

Pl
in the vertical cotangent bundle with ¢! = dx/(x? +¢2)2. Finally let I, be the
associated chirality operator. Thus I'> = Id and the positive and negative spinors
are by definition the eigenspaces associated to 1 and —1 respectively. Let LOi and
Iy be the limit endomorphisms. Following [18] and using the grading induced by
I} it is easy to see that near the boundary:

]
L - 6;41 C(LH T = txo + 0y (4.2)

with 0y equal to the Dirac family on y : H — B induced by the boundary Clifford
action

cly(é) =l (i%) cl(¢) with & € T*(H/B) = T*(6M ' /B).

Similarly
0
+ . * . +y—1 = —_— 1 = —
Ly 6A_/[0 L) :tyay +O8—n) with y X. 4.3)

Following [16] we first make the following assumption:
Vz € B the Dirac operator induced by 62,11—/1 on H, is invertible . 4.4)

In Sect. 8 we shall relax assumption (4.4) and only assume that these operators
have null space of constant rank in z.

To each family 8(e) = (8,(€)).ecp, with 0 < & < g, we can associate a deter-
minant bundle with a Quillen metric and a Bismut-Freed connection. Moreover, by
the results of the previous sections, the same can be done for the family of b-Dirac
operators 8(0) € Diff b7 (M,S) and the real interest now is to understand how these
geometric objects degenerate when ¢ | 0. This explains the program of the present
section whenever we are dealing with Dirac operators associated to spin structures
as well as with their twisted versions.

In the general case, i.e. when the original family 8(gp) is made of a generalized
Dirac operator acting on the sections of a vertical Clifford module E(gy), we need
to introduce on E, the pull-back of E(¢) to the surgery space, a surgery Hermitian
Clifford structure together with an Hermitian s-connection. Once a defining function
for H has been fixed there is an isomorphism between *T(M,)s, z € B, and the pull-
back of TM, to (M,);. Thus there certainly exists an action of CI(°T'(M,),) on E
(i.e. a surgery Clifford action cl;( - )) and the problem is to fix on £ an Hermitian
metric and an s-connection V so that cl;(-) is unitary and V is Hermitian and
Clifford with respect to the Levi—Civita s-connection fixed by (4.1). By a partition
of unity argument such a structure can always be fixed. To any such structure we
can associate a generalized surgery Dirac operator 3, (¢) € Diff ; (M;;E). We can let
z vary obtaining e-families of Dirac operators d(¢) and the goal is once again to
investigate the geometry of det(0(¢)) uniformly as ¢ | 0.

Our first result concerns the limiting behaviour of det(d(¢)), the determinant
bundle itself. For each ¢ € (0, &] the two families. 0(gy) are homotopic; thus the
two associated determinant line bundles are isomorphic. We can specify this iso-
morphism and study its behaviour as ¢ | 0.
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Proposition 4. For each fixed ¢ € (0, ] there exists a continuous family of natural
isomorphisms

S(&,2) : det(0(e)) — det(8(2)) (4.5)
with 0 < & < ¢ which extends in a continuous fashion down to € = 0, producing
a natural isomorphism

S(¢) = S(&,0) : det(d(g)) — det, (8(0)) = det,, (8570) @ dety (6171) . (4.6)

Proof. We make heavy use of the results in [16] on the uniform structure of the
resolvent of 8(¢)? as ¢ | 0. Let 6 be smaller than the first eigenvalue of &,y for
each z € B and let % = {U,} the open cover of B defined as in Sect. 2 by the limit
family 6%(0) = 63_4. We first concentrate on an open set W, € % on which

spec(d2(0))N[0,A) =0 VzeW,. (4.7)

Let N* be the dimensions of null(3F(0)32(0)) and let I7(0) be the L2-orthogonal
projection onto these subspaces. According to Sect. 5 in [16] if & > 0 and 4 > 0
are chosen small enough the g, (¢)-orthogonal projector IT%(¢) onto the eigenfunc-
tions associated to the eigenvalues of 8F(¢)d7(¢) contained in the interval [0, 1)
is uniformly of finite rank exactly N* for each ¢ € [0,5] and for each z € W,.
Recall that the eigenvalues of 8F(£)dF(¢) with the above property are, by def-
inition, the small eigenvalues; moreover for each z € W, these projections IT/(e)

belong to ¥ >, T > 0, the boundary terms in the surgery calculus. For the above

choice of A and & we can assume that A ¢ spec(d?(¢)), Ve < & and Vz € W,. Thus
det(d(¢)) | W; = det(Hy,;)) = det(ran IT*(¢)) .

Let {eki(g)}, k=1,2,...,N* be an orthonormal basis of eigenfunctions for 8 (&)
dF(e) associated to the small eigenvalues. Let {#**(¢)} be the dual basis. For each
g € (0,¢) we can define a bundle map

S(e,®) : det(d(¢)) [ W, — det(8(2)) | W,
by associating to an element v(e) € det(ran IT*(¢))
o(e) = an™' () A AntMre) @ el(e) A Ney_(e)
the element
SewE)=an™' @A AT E) @ e(B) A Aey_(B)

in det(ran IT*(¢)). Since IT/(g) € Y. :°, © > 0 for each z € W, it follows that S(e, )

is continuous in £ in the C%-norm of #°°(W;; Hom(det(d(¢)), det(d(8)))). Moreover
S(e,€) extends continuously down to € = 0 giving a bundle map:

S(e) : det(d(e)) | W) — A™*(ran ITT*(0))* ® A™*(ran IT~*(0))
= det(null 857) = (dety (d0) ® dety (3-1)) [ W

Since IT*%(¢) is for & € [0,&] uniformly of rank N*, it follows that these maps
are isomorphisms. Thus the proposition is proved for the restriction of the deter-
minant line bundles to the open set W;. To handle the general case, i.e. without



Determinant Bundles, Manifolds with Boundary and Surgery 613

assuming (4.7), it suffices to show once again that if g is small enough and if
A < & is properly chosen, then Vz € U,, U, € %, the g.(¢)-projector IT/(¢) onto
the eigenfunctions of 8,(¢)? corresponding to eigenvalues less than 1 is uniformly
of finite rank equal to N (in turn equal to the sum of the multiplicities of the
eigenvalues of 8,(0)> which are less than A). The arguments of Sect.5.3 in [16]
certainly prove that rk(IT*(¢)) = N: simply apply the argument there to show that
Vi € spec(d,(0)?), Aj < A, there exists a neighbourhood ¥; C R such that the
spectral projector - (&) corresponding to the eigenvalues of d,(¢)?> contained in
V; is, for ¢ small enough, uniformly of rank equal to N; = multiplicity of ;. To
show that tk(IT/(¢)) = rk(IT/(0)) = N we need to rule out the existence of a family
of eigenvalues u(e) for 3?(e) such that lim u(e) = I < A but & ¢ spec(d%(0)). To
do so we can simply apply Proposition 2 of [16]. Alternatively a direct argument
employing Weyl’s criterion ([24]) can be given. The proposition is proved.

Let us denote by IT> the spectral projection corresponding to the non-negative
eigenvalues of the boundary family of 617“ i.e. the family 8. Using (4.2), (4.3) we
get identifications det, (6H‘) < dety (6M1,H >) and det, (611710) > dety (6M°’ m.).
Thus we have proven the existence of natural isomorphisms

S(e) : det(3(2)) — det (B0, 11 <) ® dety (31,112 ) . (4.8)

On the determinant line bundle det,(3(0)) = dety(3;70) ® det, (d,1) we can

consider two metrics. The b-Quillen metric ||+ ||5,o defined by (2.5) and the push-
forward, through the isomorphism

S(e) : det(8(e)) — dety (8570) @ dety (8571)
of the Quillen metric || - ||y on det(d(e)). We denote by || - ||+, this push-forward

metric. It is somehow surprising that the metrics || - ||, do not converge as ¢ | 0
to ||« ||s,0. Nevertheless the following holds.

Proposition 5. Let v € ¢°°(B; det, (8.70) ® dety (6M‘ ))and let z € B. Then as ¢ | 0,

’ 0,62
& C%m | o(2) e — [[0(2)lb,0 - (4.9)

Proof. By definition
[o2)] e = 1SN v()lloe) -

If we assume, as we can, that for g small enough and 1 < §, 4 ¢ spec(d*(¢)) for
¢ € [0,&], then

[6G) ]|, = €= O3 @ OD2)(S(2)) M o(z) 124, (o - (4.10)
It follows from our definitions that
13?01 |(S(8))_IU(Z)|L2(gZ(£)) = |U(Z)|L§ .

To understand the asymptotic behaviour of the term in (4.10) involving the zeta
function, we use once again the results in [16] and more precisely the heat surgery
calculus. Using the arguments given in Sects. 6 and 7 of [16] we see that as functions
of z € Uy,

£'(0,8; ()31 (¢), 4) = {'(0,8;(0)8(0),4) + loge - 20'(0,82 1, 2)
+75(z,€) - loge+s5(z, €) (4.11)
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with ry,s) € €°°(U,; x [0,&]) and r;(z, 0) = s5,(z,0) = 0 for each z € U;. Notice
that from Lemma 2 of [16] we would get, a priori, an extra term in (4.11) involving
the b-trace of the surgery normal operator of the heat kernel; this term is always
zero because of the R *-invariance. From (4.11) the proposition follows since 4 <
and spec(d? ;) N [0,0) = 0, so that {'(0,8% 4, 4) = (0,82 ).

It should be remarked that although from the odd-dimensionality of H, it follows
that {(0,02 ;) = 0 there is no reason to expect {'(0,8% ) to be zero.

We now pass to the study of the asymptotic behaviour of the (push-forward of
the) Bismut-Freed connection V¢ on det(3(¢)). By the results of the previous
sections we can introduce on det,(8(0)) = det,(057), a Bismut-Freed connection
for which we keep the notation *V%!, We will denote by ®*V%0 and *Vet! the
analogous Bismut—Freed connections on det, (6M° ), dety, (6M‘ ).

For ¢ > 0 let us consider the metric

! 2
I lls,e = &= @O |

*,¢
on dety(8(0)). Let V** the push-forward of the Bismut-Freed connection on
det(0(¢)) through the isomorphism S(¢). This is a connection on det, (8(0)) com-
patible with || - ||« According to Proposition 9.10 in [2] the connection V** +
d{'(0,8%) - loge is compatible with || -+ ||5.. Since by Proposition 5 |« |, —
|- lls,0 as € | 0 we can at once guess the following.
Proposition 6. Let

V5 €% (B, dety (8570) @ dety (5:1)) — (B, dety (3;70) @ dety (8,,1) @ T*B)

be the push-forward of the Bismut-Freed connection V¢ on det(d(e)) through
the isomorphism (4.6). Then as ¢ | 0 we have

Ve 4d{'(0,8%) - loge — PVt . (4.12)

The convergence of two connections is to be understood as the C*-convergence
of the connection one-forms associated to any trivializing neighbourhood.

Proof. To rigorously prove (4.12) recall the definition of the Bismut-Freed con-
nection V¥4¢ on det(8(¢)) | U; = det(H, ;)(¢)), with A chosen as in Proposition 5.
By definition V¢ = V42 4 B+(1) with B (1) defined as in (3.1), (3.3) but with
the trace functional replacing the b-trace functional. Thus

By =2 LII\(;[ [ Tro(F(A,0))dt,
where, by definition,

F(hst) = (—%TrﬂP@,m)@ﬂc)[Am(s)ﬁ*(s)}e"“"“”z ))
(1]
Hence on U; we have V*¢= V*&* 1 BF(1) with V*%* equal to the connec-
tion obtained by pushing forward the connection V¢ on det(H[p, ;)(¢)) through the
isomorphism S(¢). Remark now that V*¢ is induced by the connection obtained
by compressing onto Hjp ;)(¢), the one-form piece of the Bismut superconnection
A(¢) through the orthogonal projection P ;y(¢). From the proof of Proposition 5,
i.e. ultimately from the uniform behaviour of the spectral projections Py ;)(¢), it
follows in a straightforward way that V*%* — ?V* as ¢ | 0. Hence it suffices
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to analyze the asymptotic behaviour, in ¢, of the one-form B, (1) € ¥>°(U,, A'). Ap-
plying the notation and the results of [16] we have as in the proof of Proposition 5,

BEG) = B (1) + 2LIN [ BTN (F, () dr

+loge - 2LIM [ Tr(Ry (F; (A1) dt + vi(e) - logs +wy(e) (4.13)

with v;, w; € (U, x [0,&]; A), v,(z, 0) = w;(z, 0) = 0 Vz € U; and with N, and
Ry denoting the normal homomorphisms of [16]. Once again the term involving
the surgery normal operator of F,"(4,¢), visualizing,

2LIM [ b-Tr(N,(F, (4,1))) dt
s—0

is equal to zero because of the IR *-invariance of N; (3(¢)). Let H be the boundary of
M (i.e. the disjoint union of two copies of H ). Since by definition Ry (3% (¢)) = 0z,
we obtain

2LIM jfoTr(RH (F (A1) dt = —LIM (Tr(3{d, 651(637)—‘{”?7 )

o 1 2 2 —1 —Ségv _ 1 ’ 2
==3 I;Ll\(;l (Tr(déﬁ(éﬁ) e H))= —Ed{ (0, 617) .
From this last formula and (4.13) it follows that
liﬁ}(ﬁi(i) + % loge - dU'(8%,0)) = B (4), (4.14)

and since dC’(é%,O) =2d{'(8%,0), the proposition follows for the C®-conver-

gence. Using Duhamel’s principle the same arguments can be used to prove C-
convergence.

Section 5. Additivity Formulae for Local and Global Anomalies

In this section we will draw two important corollaries from the results of Sect. 4.

Proposition 7. Let Ry(e) € €>°(B; A%) be the curvature of the Bismut—Freed con-
nection on det(3(e)) and let Ry, , Ry, € €°(B; A*) respectively the curvatures of

the Bismut—Freed connections on det, (617") and dety (6171‘ ). Then as ¢ 0
Raet(£) — Rieq, + Rier, - (5.1)

Notice that since we are now comparing curvatures, i.e. elements in €°°(B; A42),
we do not need to take the push-forward of the Bismut-Freed connection on
det(d(¢)) through the isomorphism S(¢). The limit (5.1) holds with respect to any
CF-norm.

Proof. Let ®V%' be the Bismut-Freed connection on det,(d57). For 1 < 6, &
smaller than the first non-zero eigenvalue of 0,y Vz, consider the open set U; =
{z € B; /. & spec(03;)}. For small enough we have U; C {z € B; A ¢ spec(d(¢))V; }.
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We prove convergence on the restriction of the determinant line bundles to Uj,.
On U, the two connections in question will be equal to V4% 4 (1) and *V* +
By (4) respectively. Taking the square of the two connections we obtain respectively
(V52 +dBF(A) and (PV*)? +dp;(1). The results of the previous section, and
more precisely (4.13), (4.14) show that dB (1) — dp}(4) as ¢ | 0. Since from
our set-up it is clear, as in Proposition 6, that (V*?)? — (°V*)?, the proposition is
proved.

Formula (5.1) gives the asymptotic additivity of the curvatures of the Bismut—
Freed connections on det(d(¢)) and det, (éﬁo) ® det, (6M' ). This also follows from
the local anomaly formula proved in the next section. To give a more interesting
application, consider the holonomy of these connections around a loop y C B. Since
the extra term in formula (4.14) is exact, we have, directly from the proof of
Proposition 6,

Proposition 8. The holonomy of the Bismut—Freed connection on det(d(¢)) around
the loop y C B converges as ¢ | 0 to the product of the holonomies of the Bismut—
Freed connections on det (61‘—40 ), dets (6M1 ):

hol, (V%) — hol, (*V*"?) . hol, (°V!) . (52)

Section 6. The Local Anomaly Formula on Manifolds With Boundary

We go back to the setting considered in Sects. 1,2 and 3. Thus we are given a
fibration with boundary ¢ : M — B, a vertical Hermitian Clifford module £ with an
Hermitian Clifford connection and the associated family of generalized Dirac opera-
tor 0 = (0,) € Diff ,17, #(M; E). Under assumption (2.1) which will be made through-
out this section we have defined on the determinant line bundle det, (8) associated to
the induced family of Fredholm operators 8, : Hb1 (M,;E) — L*(M,;E) a b-Quillen
metric || - [|5,0 and the analogue of the Bismut—Freed connection, 2V,

In order to sharpen (1.4) to a local formula for the curvature of V!, recall
the transgression formula (4) for our family of generalized Dirac operators. We
apply this formula to the family 0() o) on the set U;. The null bundle of d; o) is
precisely Hio ;) so that (4) reads

Ch(H[o,z))—( : | AM/B)CY (E)__debSTr (d?;, -2 )ds

)2 M/B
(6.1)
with A, ; = s%é(;,,oo) + A+ s_%#\m. The Chern character on the left-hand side is
computed with respect to the connection Py ) A[11P)o,,). The fact that the boundary
contribution remains unchanged for § and 0, ) is again a consequence of the fact
that /(Ppo, 1), w) = 0. It follows from formula (6.1), as in [2], that

1 _ 1 1.
zd(lﬁ(l) — B (A)) + Ch(Hyo, 7)) = J A(M/B)CK'(E) — 71 :
(27‘51) M/B 2]
) (6.2)
This formula, together with Lemma 6 and the remark Ch(Hjo, 1))p; = (V* )%, implies

as in [2] the following result.
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Proposition 9. Let 8 be a family of Dirac operators as in Sect. 1 and let us make
assumption (2.1). Let *V%' be the connection on the determinant line bundle
dety (0, I1: ) introduced in (3.4). Then

1
bygdety2 — A (M/B)Ch(E) — = ) 6.3
( ) ((an)zM{B (M/B)Ch'(E) 2'1)[2] (6.3)

The asymptotic additivity of the curvature under surgery, as stated in Proposition 7,
can also be proved directly using the local anomaly formula in the closed case
together with Proposition 9. In fact from the structure of the families 6170’6712' near
the boundary, as given in (4.2), (4.3), we see that the two eta-form contributions in
(6.3) have opposite signs, and hence cancel out when we add the two curvatures.
Thus

A(M/B)Ch/(E),
(2 1)2 { (2mi)? le/B (M/B)CH'(E)

Rdetb + Rllietb =
from which the claim follows.

Section 7. The Constant Rank Case: Spectral Cuts and Variation Formulae

Before tackling the constant rank case we need some results on the analysis of
elliptic families on manifolds with boundary.

Let ¢ : M — B be a fibration of exact b-manifolds as in Sect. 1 and let us make
assumption (1.5). If » € R* is chosen small enough then, clearly, —r ¢ spec(8y,,)
for each z € B. The constant function t(z) = r is then a spectral cut for the family
0o in the following sense:

Definition 1. Let D = (D,) be a smooth family of self-adjoint differential operators
on closed compact manifolds. A spectral cut for D is a function t € €°°(B;R)
such that

—r(z) dspec(D;) Vz€B.

As an example assume that there exists a smooth function 6 € #°°(B; R) such
that the dimension of null(D, + 0(z)) is constant. This implies that null(D + 6) is
a smooth vector bundle and that 7(z) = 0(z) + ¢ is a spectral cut for ¢ > 0 small
enough (in fact for ¢ smaller than the minimum over z € B of the distance between
0(z) and spec(D,)\{0(z)}). The case 6 = 0 is particularly important for us; it applies
for example to the boundary operators associated to a family of signature operators.

Let © be a spectral cut for 8. Let P, = ITZ_, be the L?-spectral projection
corresponding to the eigenvalues of 8y, which are greater than —7(z). Then P is a
spectral section; the determinant bundle det, (9, P) is associated to the global family
of Fredholm operators

8 X OHN (M EN) — x"DL2(M; E) (7.1)
with cokernel naturally isomorphic to the null space of

8, 1x T OLAMGE] ) — x " OH (M E,) . (7.2)
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We shall refer to t(z) as a weight for 8. If we consider the conjugated family
3(t) € Diff, ,(M;E) defined as

0 X 5@
8(v): = < X~ 0 ) ’

then the null space of (7.1) and (7.2) are given by the null spaces of d(t)} and
0(t); acting on unweighted Sobolev spaces so that

dety (8, 1> _;) = det, (8(7), 1 » ) < det; (0(7)) . (7.3)
More generally Ind(8, 15 _,) = Ind(8(t), IT> ) in K°(B). Notice that
3(0)F = 8F +xT[dF,xF1]. (7.4)

Recall that the local anomaly formula can be seen as an application of the trans-
gressed form of the family index theorem. Let us thus see how the results of [18]
specialize when we consider Ind(0, IT> —.) = Ind(d(t), T ).

Let A(t) = 0(z) + A + Ap; be the Bismut superconnection associated to d(7).
The family 8(t)? € Diff fw(M ;E) has a well defined heat kernel (since 0,:(3(1)?) =
apr(éz)); using Duhamel’s expansion we can thus consider exp(—A,(t)?) and its
b-supertrace, with values in °°(B, A*B), b-STr(exp(—A,(t)?)) = b-Ch(A,(7)). Re-
calling that for any smooth family of b-pseudodifferential operators P € ¥} s(M;E)
one has

Ix""Px", ) =I(P,A—iw) YweC,

we obtain, following the notation of [17],
I(A(7),A) = yA+ (8o + 7) + By + o1Bp; .

Using the defect formula for the b-supertrace of a supercommutator as in [18] we
get the fundamental formula

d o dAt(T) —A[(‘[)z o l/\
7 b-Ch(A(7)) = —dpb-STr < P 5 n.(1), (7.5)
where the eta forms are defined by
~ _ 1 dIB,(7) By
n.(t) = ﬁSTfa(l) ( T (7.6)

with IB(t) = (8¢ + 1) + Bj; + 0Bpy. Let 6, be the operator on ¥°°(B, A*B) which

acts as multiplication by £~7 on @>°(B; A'B); let us define a differential form K\S(r)
on M by

AS(1)x) = LIM (3i(stre(e " )(x, x))) , (1.7)

o0
and let N, = LIll(}/I J 7(s)ds . (7.8)
! t

Since —1(z) ¢ spec(dp,;) the form 7,(s) is exponentially converging to zero in
any CF-norm as s — oco. Thus the form 7, is well defined. More generally if
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0 € €>°(B; R) is such that null(dy + 0) is a smooth vector bundle then, for s large,
we can give the following C¥-estimate:
< Clk)s™%,

dB,(0) _ 2
’STI‘C]U) <—-‘;; )e B; (6) >
k

see [8,2], and the eta form 7, is again well defined.
The reason to take the regularized limits in (7.7), (7.8) is that the Dirac operators
0(7) and &g + © are not associated to graded Hermitian Clifford connections.
Formula (7.5) can now be used to show that

Ch(Ind(8,I1>_;)) =

v 1. ) .
J AS(z) — 3 ;11} in H*(B) .
M/B
Here the regularized integral of [17] appears; in the sequel we shall use the notation
v —~
AS(t) = [ AS(7).
M/B

Our real interest though is when the null spaces of d(t), form a smooth vector
bundle over B. If null(8(t)) is such a bundle and we denote by V™!! the compression
of Ay onto it, then, by applying formula (7.5), we obtain the following equality
of differential forms:

1.
doy (1) 4+ Ch(null §(7), V™) = AS(7) — 57 (7.9)
with d ()
— Tan ABS(T) (e
(1) LtIll(\)/I tdeb STr ( S e ) ds . (7.10)

To bring this formula to a more useful form we study the variation of the terms
on the right-hand side under a change of spectral cut. The formulae we get, together
with those presented in [18], are of some independent interest.

First notice that h-Ch(A,(t)) and #.(¢) are in fact defined for each 1€
%>°(B;R); it is only when we take the limit as ¢ — oo that the Fredholm properties
of the family 8, and hence the assumption that T be a spectral cut, play a role.

Suppose that 79, 7; € €°°(B;R), with 71(z) > 19(z) for each z € B. Let 7, €
%>°(B;R), r € [0,1], be a smooth homotopy connecting them.

Lemma 3. The b-Chern character of B (t,) depends smoothly on r and

1
d dB(T) _p(c? 12 s Bi(ry?
Eb-Ch(A,(r,)): —dgh-STr <%e Ba(rr) ) -3 ﬁSTrCl(l)(ar,e B:zr)y |
(7.11)

Proof. Recall that [d, f]= cl(df). Writing (8(z,))T as 8% +xT7[6F, xT7] we
obtain, near the boundary of M,

dA,(t,)_t%( 0 itrcl(‘i—)‘)>
dr —it,cl(%) 0

so that, using the identification Ez, < E® @ E° of [17], we obtain

1(#8, ) = dat,.

dr
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Applying the defect formula for the b-supertrace of a supercommutator the propo-
sition follows easily.

Taking the integral in » from O to 1 and considering the regularized limit as in
(7.7) we obtain from this lemma the following result:

1
AS(t1) — AS(19) = —dp [ LIM b-STr (Mﬂ*f“r)z) dr
o tlo dr

1 3
- [ Lim = STro)(ote B Y dr (7.12)
0 t

2Vn

for any 19,71 € €>°(B; R).
Next we analyse the variation of 7;.(s) in r. Directly from Sect. 14 of [18] we
have

Lemma 4. The differential forms 1,,(s) depend smoothly on r and

1
d_. d [ s2 L 2 s2 dBy(t,) _
E;l’h,‘(S) = (,E (ﬁSTI’Cl(l)(O”Cre Bs(zr) ))—dBSTI‘CI(]) (G"Cr\/_ ;E ) Bs(tr )> .
From this lemma we obtain a second useful result:

Proposition 10. Let © be a spectral cut for 8y and let 0 € €°°(B; R) be a smooth
function with the property that null(8¢ + 0) is a smooth vector bundle, 1(z) > 6(z)
and spec(8o,;) N (—1(z), —0(z)) = O for each z € B. Let us choose an homotopy <,
between 0 = 1y and t = 1) such that 0 < v, < tandt, =0 +r forr € [0,7), F< 1
small. Then

e = 1 + Ch(null(dy + 6), V™!') + fI LIM —iSTr (ot,e" B ) gr
T 0 s o 10 ﬁ CI(1) r

1 st dBy(3) g
+0f LtIll(}/[( dbeTrC](l) (01,\/_ 7 ds | dr. (7.13)

Proof. We integrate the formula of Lemma 4, first in s, from ¢ to oo, and then in
r, from ¢ to » = 1. Taking the regularized limits for small time we obtain

1

~ —~ 1 12 L 2
Ne = N0+e) +{ 17111(\)/1 <_%STrCl(l)(GTre Bi(r) )) dr

N

Since from Sect. 16 of [18] it follows that

1 oo B
+f L;Il%/[ (—db f STI‘C](l) (O'Tr s> d (T’) —-]BS(‘[’F) dS) dr. (7.14)
& t

lim To+e) = o = Ch(null(8p + 0), V™), (7.15)

the required formula follows from taking the limit as ¢ — 0 in (7.14). To justify
the existence of the limit in ¢ of the last integral on the right-hand side we need to
use the results of [4], and more precisely, Theorem 12, which gives the (improved)
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large time estimates of the heat kernel of the superconnection (3¢ + 0) + Byy.
(Notice that since the term 1By in the Bismut superconnection is used only for the
small time behaviour, we can assume that for s large we are dealing precisely with

S%O'(éo +1)+ Byyy.)
From (7.9), (7.12) and the above lemma we obtain:

Proposition 11. Let & be a family of Dirac operator on exact b-manifolds as
in Sect. 1 and let us assume that for the boundary family the assumptions of
Proposition 10 hold. Then if the null spaces of 8(t), form a smooth vector bundle
we have the equality of differential forms

dap(t) + dyp(0,7) + Ch(null§(7), V™) = AS(9) — %ﬁg - %Ch(null(éo + ), vl

(7.16)
with op(t) fixed by (7.10) and
52 dBy(t,) _p (72
yp(0,7) = f LIM (f STrCI(l) <0”Cr2\/___ds_ Bs(zr) )d ) dr
1 AR (Tr) iz
+6f Ltlll\o/lb—STr (Te )dr. (7.17)

As a particular case let us assume that the boundary family 8y has null space
of constant dimension. Thus we can choose 6 = 0.

If t=u, u > 0 small and 7, = r, » € [0,u], then under the assumption that the
null spaces of 0(u), are of constant dimension we obtain the fundamental formula

doy(u) + dys(u) + Ch(null((u)), V) = ) ) [ A(M/B)CH (E)

2mi)2 M/B
- %n - —Ch(null(éo) vy (7.18)

with oy(u) and y,(u) fixed by (7.10) and (7.17) respectively.

Section 8. Hermitian Geometry and Surgery in the Constant Rank Case

Let 0 be a family of Dirac operators as in Sect. 1. We now work under assumption

(1.5):

The null spaces of the boundary family & ,, z € B, are of constant dimension.
(8.1)
Let ue R, u > 0 and u < gy, with gy less than the smallest positive eigenvalue
of 8y,, for each z € B. We consider the conjugated family

d(u)t = 8% 4 xFU[oF, xT]. (8.2)

Since the boundary family of d(u), viz. 0¢ + u, is by construction invertible, we
can define as in Sect. 1 a determinant line bundle det,(d(#)). For each z € B and
each u € (0, gg) we have null(0,(x)) = null(d;, IT+ ). Thus there are canonical iso-
morphisms S, : det(d(u)) — dety(8, 113 ).
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Moreover it should be recalled at this point that in the product case there is a
natural isomorphism det(8, I1» ) < detaps(0, 11 > ).

We are now interested to investigate the Hermitian geometry of det,(3, 11 ). In
the invertible case analyzed in Sect. 6 the fundamental result was that there exists a
natural connection with curvature precisely equal to the 2-form piece of the right-
hand side of the family index formula. The family index formula for the index
bundle Ind(d, T3 ) follows from (7.18):

Ch(Ind(3,I15)) = —— : [ A(M/B)CW(E) — —n— —Ch(null(éo) vy (8.3)
(27T) M/B

and we are now looking for a connection on det;(d,I]>) with curvature equal
to the 2-form piece of the right-hand side of (8.3). We solve this problem on
det,(0(u)). According to the results of Sects. 2,3 we can define a »-Quillen metric
|l - ll.. and a Bismut-Freed connection ®V%-* More precisely we can choose the
cover % = {U,;} of Sect.2 uniformly in u, for ¥ > 0 small. Then dety(d(x)) |
U;, = det(Hp, 7y(u)) with Hpp 7y(#) equal to the direct sum of the eigenspaces of
0(u) corresponding to eigenvalues less than 1. We simply define the Quillen metric
and the Bismut—Freed connection on Uj substituting in Definition (2.5) and (3.4)
the family 0(u) to the family d:

” . ”b v = e—bCI(O,é_(u)5+(u),l)l . |)» bvdet,u - bv/i,u + ﬁz— )
with V4%, ﬁ;u(i) defined as in (3.3), (3.2) but with 8(x) instead of 0.
Applying formula (7.9) to 8(u),0) We get:
d(ap(u, 1)) + Ch(Hio, 2)(u)) = AS(u) — —17(14)

with the Chern character computed with respect to the connection obtained by com-
pressing A onto Hig ;)(#). Proceeding as in Sect. 6 we get the equality of differ-
ential forms:

1.
(VL) = AS(u)p) — 5’7(”)[2] . (8.4)

This is the local anomaly formula in the weighted case. Using the variational for-
mulae of Sect. 7 we can improve (8.4) as follows. Formula (7.18) shows that if

1
o o s2 dB (r) _B:(r)
yp(u) = of LtIlIS/I ([f STrCl(l)( N AT ds | dr
u dB(r) _p,op
+ J 17111(\)/1 b-STr< P dr, (8.5)
then on U,

dony(u, 1) + () + Ch(Hig () = —— | A(M/B)CH'(E)
(2 )2 ulm
1

— Eﬁ — 5Ch(nuu(aso), vy (8.6)



Determinant Bundles, Manifolds with Boundary and Surgery 623

as differential forms on Uj;. Thus if we define a perturbed Bismut—Freed connec-
tion as

b%det,u — bvdet,u 4 Vb(u)[l] ,

we finally get
(V) Uy = (VR B (D) A+ dy(u)
= d(ap(u, M)p1y) + Ch(Hyg, 2)(u))p2) + dy(u)m

! [ A(M/B)CH (E)—ln——Ch(nuu(ao) vyl (8.7)
(2mi)? uys 21

Note that the above arguments can be carried over for a negative weight as well. In
this case, using (7.15), we obtain a perturbed Bismut-Freed connection >V(det-—*)
with curvature

[ 4(M/B)CY (E)—1n+ Ch(nuu(éo)vnu“)] . (88)
[2]

(b%(det,—u))Z — [

(2711) M/B

Summarizing, by fixing any u € (0, 09) and considering the canonical iden-

tification dety(9, I1» ) <> dety(d(#)) we can endow the line bundle dety(d,113)

with a h-Quillen metric and a Bismut—Freed connection ®V%!. Moreover we can

perturb ®V4! and define a connection *V%' with curvature equal to the 2-form
piece of (8.6). We have proved the following

Theorem 2. Let 0 be a family of Dirac operators on manifolds with boundary as
in Sect. 1. Let us assume the boundary family 8y to have null space of constant
dimension in z € B. Let us endow the resulting smooth vector bundle null(8¢) with
the connection V™! obtained by compressing onto null(dy) the 1-form piece of the
Bismut superconnection. Let dety(0, 11 ) be the determinant line bundle associated
to 0 and the spectral section Il defined by the spectral projection associated to
the non-negative eigenvalues of 8y. Then

(1) There exists a connection bydet op dety(8, I1 > ), which is a natural pertur-
bation of the Bismut—Freed connection, with curvature

! fA(M/B)Ch’(E)—lr]——Ch(null(éo) vl (8.9)

(b%det )2 _ 5
(2mi M/B 2]

(ii) If the metrics are of product type near the boundary and if (8, I1>) denotes
the Atiyah—Patodi-Singer family in the incomplete setting then there exists a
natural explicit isomorphism

T : detaps(d,ITs ) — dety(8, 1T ) .

Finally let us consider the surgery problem of Sect. 4 when we relax assumption
(4.4) and only assume:
the null spaces of the family 8y are of constant dimension. (8.10)
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On both #7° and M ' we can consider conjugated families of the type considered
in (8.2) with u either positive or negative but in any case chosen in the interval
(—09, g¢) with gy > 0 less than the square root of the smallest positive eigenvalue
of the family &%.

By assumption (8.10) these families are Fredholm on unweighted Sobolev
spaces. Thus there are well defined determinant bundles defined as in Sect. 1.

Let O be the original family associated with the closed fibration ( : M — B,
gmyp) and for ¢ € (0,&] and u > 0 let us consider the family of Dirac operators

0t (g,u) = (X + )T18T(e)(x® + 2)*?2 (8.11)
with 8(¢) as in Sect. 4. Clearly for each z € B the operator 8,(¢,u) is an element
of the surgery calculus of M, : 0,(¢,u) € Diff SI(MZ;E ). Moreover 8,(0, u) is a con-
jugated operator 62’ i7(u) € Diff ,1,(1\7 2, E) of the type considered above.

Using the identifications of Sect. 4 we obtain for the limit operators the analogues
of (4.2), (4.3), namely:

i
LT - (050, u)) - (L5) ' = Ex 0y +u,

Lf - (8% (0, u))ﬁo . (L(;—L)_1 = j:y;; +O8—my—u with y = —x. (8.12)

We shall denote by O0(—u),3,1 () the b-families induced by &y(u) on M- B,

M B respectively. Notice that by considering (8.11) we have again reduced the
constant rank case to the invertible case.

We now concentrate on det(e,u). First observe that we can equip the deter-
minant bundles det(0(e,u)), detb(éﬂo(—u)), detb(6A71(u)) with Quillen metrics and

Bismut-Freed connections Vdet&# bV;_;gt’_“), bV}f_:Tt’”) with curvatures Rge(e,u),

Rgetb(—u), Réetb(u) respectively. By the results of Sect. 4 we have a natural isomor-
phism det(d(e,u)) < dety(8;7) = detb(éﬁo(—u)) ® detb(éﬁl(u)). Let us denote by
IT> the spectral projection associated to the non-negative eigenvalues of dy. Using
(8.12) we easily obtain canonical identifications dety(81(u)) <> dety(8.1,112),

detb(éﬁo(—u)) > detp(8_0, /1<), u > 0. Thus there exist natural isomorphisms

S(e,u) : det(d(e,u)) — detb(éﬂo, n.)® detb(éﬁl, IIs). (8.13)
Moreover as ¢ | 0 we have
Raet(8,u) = Rier, (—u) + Ry, (1) ,

hol,(Vdebat) — holy(bV;;gt’_")) . hol.,(bvjf_;‘ft’“)) Vy € Map(S', B) .

Although these results are interesting in their own right it is clear that these are
not the right connection to consider, the reason being that they are associated to
Dirac families which are not defined by Hermitian Clifford connections. In particular
the small time behaviour of the superconnection heat kernel is not well behaved and
the curvatures Raei(6,u), R, (—1), Rjy, () are not easily computable (they are in
fact given by regularized limits). We remedied this problem for weighted operators
on manifolds with boundary in the first part of this section when we perturbed the
Bismut—Freed connection, obtaining a connection on dety(8(u)) < det(d, II > ) with
curvature as computable as possible (see Theorem 2). We now apply this procedure
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to 8_o(—u) and d_1(u) obtaining connections * V) b7t Gimilarly we can
M M g M() M] y

perturb the connection V& by the one form

u dAt(S, r) __AZ
= [ LIM STr | — 222~ hi@N ) gy
})(8, u)[l] Of AT T ( dr e 0 4

thus defining Vietou — ydetsu | y(&,u)py with curvature equal to Ryei(¢) of Sect. 4.
Applying the heat surgery calculus as in Proposition 6 we obtain

lim (e, u)y; + loge - d&(u) = v, 7wy

with &(u) € €°°(B) given in term of the heat kernel of 6};. Thus as ¢ | 0 we have
the convergence of the push-forward of

%det,z,u +loge - d (%C'(O,(éﬁ + u)z) + ’f(”))

to byyldetu) — b%(_dgt’_“) Qd+1d® b€7(_dft’“) )
M M M

It is clear as in Sect. 4 that the extra-term, being exact, does not contribute to the
computation of the curvature and of the holonomy. We can finally state our main
result about surgery:

Theorem 3. Let (Y : M — B, guys) be a closed Riemannian fibration and let § €
Diff\(M; E) denote a family of Dirac-type operators associated to a Hermitian
Cli/%rd connection. Let H be a disconnecting fibering hypersurface in M with
defining function x € €°(M) as in Sect. 4 and let us make assumption (8.10).
For ¢ € (0,¢] consider the family 8(¢) associated to the family of Riemannian
metrics g(e) = |dx|*/(x* + &) + gmyp. Let u > 0 be less than oy in turn less than
the square root of the smallest positive eigenvalue of 82, for each z € B. Let
O(e, u) be the family (8.11).

(i) The determinant line bundles det(0) and det(0(e,u)) are isomorphic.

(i) Let M =M UM be the b-fibration associated to the b-metric g(0) and
let &7 = 0-0 ® 01 be the limit operator. Then for each fixed ¢ € (0,&)], u €
(0,0¢) there exists a natural isomorphism

S(e,u) : det(d(e,u)) — detb(6M0,H< )® detb(éﬁl, II) (8.14)
and thus an isomorphism S : det(0) — detb(éﬁo,H< )® detb(éﬁl,ng) Fix ue

(0,00). Then we equip the three line bundles appearing in (8.14) with perturbed

Bismut—Freed connections V4t 67840 bGdetl rospoctively in such a way that for
the curvatures and the holonomies the following formulae hold.

lil’l’(l)(%det’s)2 — (b%det,())z 4 (b%det,l)Z , (815)
lim hol,(V%4¢) = hol,(*V%*-) . hol,(*V**') vy € Map(S',B). (8.16)

Once again the additivity of the curvatures can also be proved by making use
of the local anomaly formula in the closed case together with (8.7), (8.8) (see
also (8.12)).
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