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Abstract: For the Hamiltonian systems of KAM type, it is proved that some lower
dimensional invariant tori always exist in the resonance gaps although those maxi-
mum tori can not survive small perturbations in the generic case.

1. Introduction and Results

In this paper we study perturbed integrable Hamiltonian systems with n degrees of
freedom and investigate what happens to those ^-dimensional invariant tori of the
unperturbed completely integrable systems in the zones of instability [Al].

To be more precise, the Hamiltonian system under consideration

• dH . 3H

is determined by a Hamiltonian of KAM type

H(p,q) = N(p)+P(p,q) (1.2)

which is assumed to be real analytical in D x IP, where D C Rw is an open
set, P is a small Hamiltonian perturbation and N is the main part. As usually, q —
(tf i ? #2 5 ? #« ) £ T" denotes a vector of angular variables and p = (p\ , p2, . . . , pn} €
RΛ is a vector of action variables. Clearly, when the perturbation P vanishes, the
system (1.1) is integrable and D x T" is stratified by a family of ^-dimensional
invariant tori p — const, carrying a quasi-periodic flow q — ωt -f q0 with torus fre-
quency vector ω given by

dN
ω(p) = (ωι,ω2,...,ωπ) = — . (1.3)

dp

If the frequency vector ω(p) is not too well approximated by rationals, in other
words, if it satisfies some Diophantine condition, the famous KAM theory tells us
that the corresponding invariant torus p = p0 survives small perturbations with only
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slight deformations and still carries a quasi-periodic flow with the same frequencies
ω(p0) ([K, A2,Mol]). Suppose N(p) satisfies the Kolmogorov nondegeneracy con-
dition, i.e. the Hessian matrix of N is invertible. It is then clear that there are some
frequency vectors in {ω(p)\p G ID} which do not satisfy Diophantine conditions.
In this paper we suppose that there is a p0 G D such that ω = co(p0) satisfies a
rational resonance condition, which means

(In,ω) = Σlniωi = 0 (1.4)
z=l

holds for some /„ e ZΛ\{0}. Here we assume λln φ Zπ\{0} for any real \λ\ < 1.
By noticing that the map |̂  from the action variable space to the frequency

space is invertible, we know there is a (n - 1 )-dimensional manifold containing
po, where (1.4) is always satisfied. This is the zone of instability. In this case, the
torus p = po is foliated into a family of (n — I )-dimensional submanifolds which
are determined by

(qjn) = const., (1.5)

and invariant under quasi-periodic flow q — > q + ωt if the perturbation P vanishes.
So it is quite natural to ask what happens to such a ^-dimensional invariant torus
of the unperturbed system when a perturbation appears. It seems that such a «-torus
breaks down under perturbations in general. In the case of a monotone twist area-
preserving map of the annulus, which is equivalent to a non-degenerate Hamiltonian
system with two degrees of freedom, these phenomena were already discovered
by Poincare; a modern rigorous account can be found in [Rob]. Here we would
like to investigate whether there is some (n — 1 )-dimensional submanifold in the
unperturbed system surviving small perturbations and still carrying a quasi-periodic
flow, therefore it can be viewed as "trace" or "ghost" of that torus [BK]. These
"ghosts" are expected to have a great influence on the dynamical behaviour of
Arnold diffusion [Ch, L].

To formulate our results, we need to say some words about the flow on those
(n - 1 )-dimensional submanifolds. From the theory of abelian groups we know that
there is a unimodular matrix (i.e. det/ = 1)

in which /„ is specified as above and all Ij ζ Zn for 1 ^ j ^ n. We define an
injection from Έn~l to TF by

Jfξ:(φι9φ29...,Φn-ι)->q = (Φι,φ2,...9φn-ι,ξ)I-l

9 (1.6)

where fixed ξ G T is treated as a parameter. Such a map induces a diffeomor-
phism from TP"1 to one of those (n — 1 )-dimensional submanifolds satisfying (1.5),
depending on ξ. These submanifolds are invariant under the flow Φt(q) = ωt + q,
and we have a pull back flow of Φt on TF"1 denoted by Φ*

^Φ,*(0) = Φt(q)

which is also quasi-periodic; its frequency vector ω* = (ω*,^,...,^*^) is deter-
mined by

(ω*,0) = ω/. (1.7)
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To identify which submanifold ^ maps IP"1 onto, we need to specify the
parameter ξ. When ξ ranges over the whole T all the corresponding images of
TP"1 under Jjfξ covers IP exactly. In this paper, when there is no danger of
confusion we call these manifolds TP-1 tori, and ω* the frequency vector of the
quasi-periodic flow on IT"-1.

Theorem. Let the Hamiltonian be of KAM type ff(p,q) = N(p) + P(p,q) and
real analytic in a complex neighbourhood

Σs,τ : \lmq\ ^ τ, \p- p0\ < s

of a n-torus p — p0, where | jc |=maxigy^n \Xj\, and assume the following conditions:

1. Convexity: the main part N is a convex function, hence the eigenvalues of

its Hessian matrix [•/-$-) satisfy:

ι ,A 2 , . . . ,A n } ^ λ > 0 in Re(ΓJ>τ)

2. Resonance: (ω(p0\In) = 0.
3. Relative Dίophantine condition: the frequency ω* of the unperturbed flow

on (n — I ^-dimensional submanifolds satisfies Diophantίne inequalities

^ D\k\~μ, Vk G Zn~l\{Q} (1.8)
n-l

Σ
j
fy

7=1

for some D > 0 flm/ μ ^ «, /zere |&|ι = ΣyΓ/ l^/l
ΓAeft there is a positive d = d(In,N,n,D,μ,s,τ) such that for \P\ ̂  d in ΣStτ,

the flow induced by (1.1) admits at least one (n — \)-dίmensional submanifold of
the form

p = po+Γ(φι,φ2,...,φn-ι),

with Γ = (Γi, Γ2,..., Γn\ Θ = (<9ι, 02,..., Θn) being real analytical functions of
period 2π in the complex domain \lmφ\ < |. The parametrizatίon is chosen so
that the induced flow on TP-1 is still given by

φ = φ0 + ω*ί.

Moreover, for each ε > 0, a positive d1 — d'(ε,In,N,n,D,μ,s,τ) < d can be found
such that if \P\ ̂  d' in Σs^τ further, then the functions Γ and Θ satisfy

[Γ( + \Θ\ < ε . (1.10)

We impose the convexity of the Hamiltonian to prove our theorem, and we
do not assume any other conditions on P except smallness and analyticity. It can
be seen from the following proof that the surviving TP~~! is of hyperbolic type
generically. With regard to Birkhoff s fixed point theorem, it seems that another
ΊP"1 of elliptic type could survive the perturbation as well, but we failed to prove
its existence without additional conditions on P.
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Given a fixed /„, there is an (n — 1 )-dimensional plane in the frequency space
where the resonance condition (1.4) is satisfied, corresponding to which, there is a
(n — 1 )-dimensional submanifold in action variable space. Clearly, in such a sub-
manifold almost all points satisfy some relative Diophantine condition. So when per-
turbation is small enough there is a set with positive (n — I )-dimensional Lebesque
measure where our result holds. On the other hand, restricted to the case of area-
preserving twist mapping such invariant torus corresponds to hyperbolic fixed point
predicted by Birkhoff fixed point theorem. Therefore we would like to call such
survived submanifolds IF"1 Birkhoff-Kolmogorov-Amold-Moser tori, or BKAM
tori in brief. The theorem shows that in every zone of instability there are some
tori surviving small perturbations.

The analyticity of the Hamiltonian in our theorem is clearly not necessary. We
require it just for simplicity. The same result can be expected in the Cm case if we
exploit Nash-Moser's technique [Mol,Hl,H2, Rusl].

The structural stability of lower dimensional invariant manifolds has been a
very interesting and important subject, which is related to finding quasi-periodic
solutions of nonlinear partial differential equations [W]. For Hamiltonian systems,
remarkable progress has been made when lower dimensional tori are of hyperbolic,
elliptic or mixed type [G,Mo2,E,P,Rϋs2]. These results are not applicable here be-
cause the lower dimensional submanifolds considered here are degenerate, i.e. the
linearized variational equation for normal coordinates has zero eigenvalue. For ex-
ample, we assume that a torus T" is stratified into a family of trivially embedded tori
TΓ-1,

(φι9φ2,...9φn-ι) -> (Φι + q\,φ2 + q2," ,Φn-\ + qn-\,qn)

with fixed q as a parameter. In this case we have ωn = 0 and the normal form of
unperturbed equations reads

qj = ωj9 Pj = 0, 1 ̂  j < n ,

where zn is so-called normal coordinate. Consequently we can not predict which
specific (n — I )-torus is not destroyed by the perturbation if we do not assume
other conditions on the perturbation except smallness.

It should be mentioned that for a 2w-dimensional convex Hamiltonian system of
KAM type, the existence of at least n Birkhoff periodic orbits has been proved in
[BK] via some variational approach invented by Conley and Zehnder [CZ]. Varia-
tional methods have been proved a powerful method for the study of Hamiltonian
systems, the existence of periodic orbits, Aubry-Mather set [Au,Mal] as well as
action minimizing invariant measures for positive definite Lagrangians with multi-
degree of freedom [Ma2]. However it seems always necessary to deal with some
small divisor problems when we manage to prove the existence of mainfolds with
dimension ^ 2.

In Sect. 2 we outline our proof, using a Newtonian iteration scheme to over-
come the small divisor problem, using the variational principle to localize suri-
viving BKAM torus, etc. In Sect. 3, we study in detail one step of iteration
of symplectic transformation, and in Sect. 4 the convergence of the iteration is
proved.
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2. Outline of the Proof

Our problem is proved by basically using the KAM method employing a rapidly
converging iteration scheme. The specific difficulty of our problem is that we can
not prescribe nested domains as is done in the proof of the classical KAM theory,
shrinking to the domain \Imq\ ^ |, p — p0, in every intermediate domain one step
of symplectic transformation is carried out. We need to bound the domain for any
step of the transformation according to a special property of the main part of the
Hamiltonian which is due to the degeneracy as we pointed out in the last section.

To simplify the notation, we introduce the linear symplectic transformation
(p,q)-^(x,y) by

χ = qi> p = yi -
Here / is the unimodular matrix, Γ denotes its transposition. Substituting (x9y) for
(q, p) in the Hamiltonian H(x9 y), clearly, H is analytical in the domain

Σs*,τ* |Im*| ^ τ*, \y - y0\ ^ s* ,

where po = Ily09 τ* ^ τ and s* ^ s,(τ*,s*) depends on (In,τ9s). In this case, we
have

dN
-g-(yo) = (ωi, ω2, . . . , ωπ_ι, 0) = (ω, 0) .

N is also a convex Hamiltonian in y. In the following, we use (ω,0) to denote
(ω*,0) for the abbreviation of notation.

Formally, for any step of iteration, a symplectic coordinate transformation Jl :
( x 9 y ) — > (x+,y+) is introduced taking the form:

x+ = x + W y+

with a generating function W(x, y+). As the first step of that iteration W can be
determined by looking for the solution of the homological equation as was done in
the proof of the classical KAM theory [A2]:

((ω,0)9Wx) = -

where N+(xn,y+') is chosen in this way: we expand P(x9y+) into Fourier series in
(xι,X2,'..9xn-ι) =^5

P(χ,y+)= Σ Pk(χn,y+)e?w9
yteZ"-1

and let N+(xn,y+) = —P0(xn,y+). If we also expand W into Fourier series in x in
the same way then

<(ω, 0), Wx) = Σ {*, ω> Wk(xΛ9

jtez
so we have

If I/XX _y+)| ^ d in ΣStτ Cauchy's estimate leads to

\W(x,y+)\ 5Ξ *"* v
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in {|Imi| ^ τ\ < τ}9c\ is a positive number only depending on n and μ. Through-
out this paper we use cl to denote some positive number depending only on n and
μ if not specified otherwise.

After the change of variables, the Hamiltonian takes the form

H(x+9 y+) = (N + N+) (xn+9

The new perturbation term P+ is much smaller than the original one if d is small
enough, and the main part N + N+ depends not only on action variables but also
on one angular variable, so the n-toή near y0 are no longer invariant tori of (1.1)
when H = N + N+9 which implies the iteration scheme on the whole Tw would
fail. Nevertheless we find that there are some (n — I) dimensional tori embedded in
some /7-torus near pσ which are invariant under the flow governed by (1.1) when
H = N + N+:

Lemma 1. Suppose N(y} is nonsίngular on D, i.e. the eigenvalues λi(y) of its
Hessian matrix are lower bounded in the sense of modulus: \λi(y)\ ^ λ > 0,
and f^(70) = (ωι,ω2,...,ω£,0,...,0)=: ίλ N+ =N+(xk+ι,...9xn,y), defined on

^n-k χ ]£)? satisfies some smallness condition: \N+y\ < λn~l άist{y0,dΊD} and the
spectrum of its Hessian matrix lie in the ball with radius smaller than λ, centered
at the origin. Then Eq. (1.1) with Hamiltonian N + N+ admits at least (n — k + 1)
invariant tori TΓ\

=XjΊ , (k < j ^ n)

with 1 ̂  / ̂  (n - k + 1), | y\ - y0 ^ \ maxD \N+y\.

Proof. The function F = N( y) + N+(xk+\9. . . , xn9 y) — (Ω9 y) is invariant under the
flow x(t) = J + Ωt, y(t) = y, forF is independent of (#i,Jt2,...,*;0. If we find some
critical points of F with respect to (xk+ι9...,xn) and y, which are also invariant
under such flow, we have

A (N + N+ ) = Ω, -j- (N + N+ ) = 0 ,

which implies that starting from these points, the flow governed by (1.1) keeps y
and (xk+\9...9xn) fixed and Xj = ωβ + jc7 (0) (7 ^ k}. Thus we only need to find
critical points of F.

For any fixed (xk+\9. . . ,*„)€ ΊP"^ we consider the map Ny + εΛ^+j; : ̂ r(yo} -^
R", where 0 ^ ε ^ 1 and &r(y0} is a ball of radius r > -λ maxjo \N+y , centered
at y0. By the condition assumed there is such a ball contained in ID. When ε = 0
the degree of the map

εN+y,ar(y0)9Ω) = ±1 ,

and for 0 ^ c ^ 1,

min \Ny(d&r) - Ny(y0)\ - εn max |
(d έ%r) ΊD
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which implies that the equation

has solution for any (xk+\, .. 9xn) G TΓ" k. From the assumed conditions we see that
(TV + N+)y2 is nonsingular, so we obtain a differentiable function y = y(xk+\9. ..9xn)
by the implicit function theorem. The function F(xk+\9...9xn9y(xk+ι9...9xn)) is de-
fined on the torus ΊP~^, it then has at least (n — k -f 1) critical points by Lusternik-
Schnirelman theory.

In this paper we are interested in the critical point of F(xn9y(xn))9 where F
reaches its maximum. Such a critical point corresponds to a hyperbolic (n — 1)-
dimensional torus in general since we have assumed the convexity of N(y).
The existence of such a TF"1 tori, invariant under Hamiltonian flow given by
N(y) + N+(xn,y) suggests the possibility that the iteration scheme for the symplec-
tic transformation may converge on these lower dimensional BKAM tori instead of
on the whole torus TF.

In the following we still use (/?, q) to denote the action and angular variables.
To proceed to the next step of iteration we have to examine whether or not the

critical point has "stronger persistency" for perturbations from an average part of P+

with respect to q = (q\9q2,...,qn-ι)> Here "stronger persistency" is such a condition
which guarantees that the corresponding critical point of TV + TV+ is sufficiently close
to that of TV. Since we assume that N(p) is convex and that the perturbation P
can be set small enough, there is no problem to estimate the displacement in the
direction of p9 it is always as small as the derivative of first order in p of the
perturbation. The problem is that we can not expect the displacement to be also
small enough in the direction of qn. We deal with this problem in two ways.

2a. The Critical Point has Weaker Persistency. By definition, the following relation
holds:

/ r P AΪ n ;£λ/ tf.κr \
** J "Γ=Γ /^ 1 \Ξ C 2 r f i 3 , (2.1)

p=p*,qn=q*

where (α/,-) is the inverse of the Hessian matrix of the main part N(p9qn) with re-
spect to p9 (/?*,q*) is the critical point of N(p,qn)- (ω,/?},(/) = pι,p2,..-9pn-ι).
To see what (2.1) means, we consider the main part TV. By assumption, the main
part of the Hamiltonian N(p9qn) is nonsingular with respect to p in the sense that
the Hessian matrix of TV in p is nonsingular for all qn G L C T, and p(qn) is the
critical point of N(p,qn) — (co9p). As qn ranges over L it actually defines a curve
{p = p(qn)9qn G L} (ρ(qn) is clearly real analytical). Denoting by q* the critical
point of N(p(qn),qn)- (ω,p(qn))9 then (p* = p(q*)9q*) is the critical point of
N(p,qn) — (u>,p) The condition (2.1) actually is the following:

d2

To distinguish whether the critical point has stronger persistency or not there is no
precise criterion, it depends on how we run the KAM machine. There is a range
for the constant C2, where it is neither too large nor too small. When c2 takes its
value in this region we can deal with such a problem in both ways.
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In the case of weaker persistency, the critical point of (N + N+)(p,qn) — (ω, p)
might be far away from that of N(p,qn) — (co,p). So we can not expand the
Hamiltonian in Taylor series of (/?«,#«) as in previous work to study lower
dimensional tori ([G,E,P]), because we do not know how large the domain for
qn is so that the critical point of (N -\-N+)(p,qn) — {ω, p) is still within. However,
since the nonsingularity of the Hessian matrix of N is assumed with respect to
/?, the critical point of N(p,qn) — (ω, p) in p for fixed qn, p(qn) is not far from
the critical point of (N + N+)(p, qn) — {ω, p) in p for the same qn, denoted by
p+(qn) So we only need to study the Hamiltonian in the neighbourhood of the line
{(p(#« )?#«)>#« £ £}• The choice of L is very delicate. On one hand, it has to be
big enough so that the domain for qn is much bigger than that for p and the critical
point of φ+ in the next step of iteration is still in this region; on the other hand, it

4

can not be too big, because we need the estimate \φf(qn)\ ^ O(d^) in the domain

{\lmq\ ^ rfπ, RGqn G L}.
Expanding the perturbation in Taylor series of pn — pn(qn) and retaining the

sum up to order 5,

TP = Σ Pj(P,q)(Pn - Pn(qn))J , (2.2)
7=0

then the remaining part RP = P — TP is much smaller that P in some smaller
domain of pn — pn(qn) We also develop TP into the Fourier series of q and truncate
it up to order K,

^Pj = Σ

the remaining part $K(TP) = TP — 3~K(TP) can also be made much smaller than
the truncated part. We choose the generating function W in the form

) = Σ Wj(P,q)(pn ~ Pn(qn)Y , (2.3)
7=0

where Wj is the solution of the following equation:

d2N
(ω, Wjξ) -j——

c pnoqn

(2.4)

By restricting the domain of qn properly small, e.g. \lmqn\ ^ rfπ, Im(Npnqn(p(qn),
qn)) can be set so small such that

2 1
-jlm(Npnqn(p(qnl qn))\ ^ -|(ω,*>|, Vy ^ 5, V|*| ^ K

if we choose K carefully [MP]. In this way we then find a well defined generating
function if ω satisfies the Diophantine condition (1.8). If a symplectic transformation

q+=q+Wp+ (2.5)

is introduced with the generating function W(p+,q) being determined as above, it
takes the Hamiltonian H(p,q) into the form

(2.6)
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where
ι 2π

P+ = (Mi

= N(p+ + Wq

d2N

M2 = (P- N+)(p9 q)-(P- N+)(p+9 q) ,

M3 = R(P - N+}(p+,

M4 =N+(p,q)-

It is easier to see that M2 and MS as well as MΔ, can be set very small. To see M\
is also small we need to write it in some more transparent way. Let

N(p,qn) = φ(qn) 4- (ω, p) +N(p,qn) , (2.7)

where φ(qn) = N(p(qn\qn) - (ω,β(qn)) = πύnp{N(p,qn) - (ω,p)}9 we have

Npίqn(p, qn ) = NPiqn (P,qn),

NplPj(P,qn) = Npίpj(p,qn} ,

N(p(qn\qn) = Np(p(qn\qn) = Nqn(p(qn\qn) = 0 , (2.8)

since on the real line {(p(qn\qn\<ln £ L} they are identical with zero. Then

MI =Mn +Mi2+M[3 , (2.9)

Mn = Φ(qn+ ~ Wpn+) - φ(qn+) = φf(qn+Wpn+ + Φ"(qn+ + ηWpll+)W2

pn+ ,

Σ Npi
Z 1,7=1

,qn)-N(p+,qn + Wpn+) -f Npnqn(p(qn)9qn)Apn+Wpn+

= ~ Σ Npιqn(p(qn)9qn)ΔPi + ̂ + - Λ^(p+,^ + ̂ Pn+

Σ

where some notations are used as in the following:

£/ ̂ , ) = (ξji Wqι , . . . , ξjn Wqn ), Ap+ = p+- p(qn )
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\ξij\ ^ 1, (i = 1,2,3; j ^ n) and \η\ g 1. If we let \ίmqn\ g

P«(tf«)| ^ O(dΰ) and Pj — Pj(qn}\ ^ 0(^π), (7 < «), and choose the domain
of qn carefully, which will be demonstrated in detail in the next section, we are
able to make P+ and the moduli of its gradient much smaller than the original one
on one hand; on the other hand, the critical point of TV + N+(p,qn) — (ω, p) re-
mains in the prescribed domain, which is one of the key points making the iteration
scheme work.

If the perturbation is small enough, such a transformation can then be repeated.
In every step, a symplectic change of coordinates Jf\ is set up in this way so that

with another main part 7V/+ι and a much smaller error term P/+ι, for instance

|Λ+ι| ^ \PI\K

for some K > 1. Such a procedure might be repeated infinitely many times, if
those critical points always have weaker persistency. It results in a sequence of
transformations Jί$, Jt\ - whose infinite product converges on a set containing at
least one trivially embedded (n — l)-torus (p9qn) = (P,qn) and transforms it to a
set containing at least one (n — 1 )-torus with its tangent map taking constant vector
fields on (p,qn) to the vector field governed by (1.1). Such a procedure also might
be repeated only for a finite number of times, when the critical point gets stronger
persistency we may switch to the other procedure described in the following, which
guarantees that the iteration scheme works successfully.

2b. The Critical Point has Stronger Persistency. Here (2.1) does not hold. In this
case the critical point of N + N+ — (ω, p) remains close to that of N — (ω9p). We
shall show below that once the critical point gets stronger persistency the critical
point in the following steps of iteration shall possess stronger persistency as well.

Therefore, we can restrict (pn,qn) in a smaller domain \pn — p*\ ^ O(d~ΰ )\qn —

q*\ ^ O(dΰ ) and expand P in a Taylor series in (pn,qn),

and use the truncation TP of P to approximate P. TP will be chosen such that these
sums only extend over i + j\ ^ 5. By restricting the domains of (pn,qn} properly
small, P — TP is much smaller than P in the relevant domain. To find a symplectic
transformation (2.5) we introduce the generating function W by

W(p+9q) = Σ Wij(p+,q)(pn+ - /?*)''(?„ - tf*)7' , (2.10)

where Wy are determined by the following equations:

δW/ + A/W / = -P/, ( O g / g 5 ) , (2.11)

where W/ = (WIQ, ^ ( /_i)i, . . . , WQι)'9 P/ = (Λo,Λ/-i)i> >A)/y, 3K^ - (ω, ̂ ),
D_ Γ>. \P 1
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and AO = 0

ί ~NPn1n Np2 \ _ /bu b

1 " ( -(Φ"-Npnqnp
f

n) -NΌ2P'n I '" Ui b22 J 'Pnqn

and other matrices are defined through the entries of AI in the following way:

A/ = (β// )(/+i)X(/+i), 2 ^ / ^ 5 ,

ajj = (l+l-j)bn+(j-l)b22,

All entries in these matrices are evaluated at the critical point.
These equations in (2.11) can be solved in this way. First we expand Wij and

PΪJ into the Fourier series

PIJ = Σ
kez

then

(/(*,ω)I + A/)W/Λ = -P/Λ,

where I is the identity matrix. Since the spectrum of Ay is as follows:

5/KAy) = {(7 - /)σ, + /σ2, / = 0, 1, . . . ,7} ,

σι> 2 = H-(̂ ί- +^2^) ± pn<lΛ+Nnγ-4φ»N}> we find

Wo

, / u
J t" (J- }' ( }

where A* denotes the adjoint matrix of Ay. Because the critical point ofN(p(qn)9qn)

— (ω,β(qn)) is found by looking for its maximum, we have φf/(qn) < 0, which
guarantees that all Λ,/ G Sp(Aj) are real numbers of N i > 0 due to the definite

positivity of the Hamiltonian. So we need not worry about the problem of small
divisor if ω satisfies the Diophantine condition (1.8). Now the generating function
is well defined, and the symplectic map of (2.5) transforms the Hamiltonian H(p,q)
into

(2.13)
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where

i 2π

P+ = (Mi + M~2 + MS + M^)(p+,q+ ) ,

Mi = N(p+ + Wq,qn) - N(P+,qn + Wpn+}- (ω, W4}

* _ *)( Np} Np»i" ^ ^ -̂
I ^ , φ"-Npnqnp'

M3 = (TP - N+)(p,q) - (TP - N+Kp+,q) ,

M4 =N+(p9qn)-N+(p+,qn+),

where the entries of the matrix are evaluated at the critical point. To make
easier to study, we also use the notation of (2.7) and identities in (2.8), then

+MB+MH+MH, (2.14)

where

Mi - </>(<?«) - 0(^Λ + »W) + ^(^X?,, - ̂ *)̂ + ,

Mi2 = N(p+ +

n

=

 i?Λp

+ 2 Σ Npipjpk(P(<ln) + ξ\Δp+ ,qn)Δpi + Δp} + Wqk

1 n

2 .̂ .= ι ΛP; ^' » ^7 '

MB =N(p+,qn)-N(p+,qn + Wpn+) +Npnqn(p(qn\qn)Δpn+}

- 9 Σ
z ί,y =i

M4 =

Ms = -Nw

-Npnqn(P*,

Δp+ = p+ -p(qn).
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By shrinking the domain of the new variables properly, we are able to make P+ and
the moduli of its gradient much smaller than the original ones in a smaller domain.
Since "stronger persistency" has been assumed, in such a smaller domain the new
main part of the Hamiltonian possesses a critical point of the same type in such
a domain. This procedure yields a sequence of transformations Jl^ M\ — whose
infinite product converges on a trivially embedded (n — l)-torus (p,qn) = (p,qn)
and transforms, it to a (n — 1 )-torus with its tangent map taking constant vector
field on (p,qn) to the vector field determined by (1.1).

3. The Inductive Step

We begin the iteration by demonstrating in detail a single step which furnishes
the building blocks. Such iteration is constructed in two ways which depends on
whether the critical point has stronger persistency or not as we have seen in the last
section. In the case of weaker persistency we need to construct the nested domains
for canonical variables in some implicit way so that the critical point for the next
step of iteration is still in the chosed domain.

3 a. Weaker Persistency. We assume the Hamiltonian N(p,qn) + P(p, q) is real
analytical in the domain stt x Σs where

s/t = {\lmqt g t, Re# G T, (ί ^ n - 1)} ,

\Pn - Pn(qn)\ ^ s\ \lmqn\ ^ s2, Re^ G L} ,

and L is either an interval contractable to one point or the whole T. If L c T is
homotopic to a point, then L I) [q* — s2,q* + s2].

Let s+9t+ be positive numbers such that

2s+ ^ s9 s ^ t ^ 1, 4 ^ s5 ,

s+ ^ t+, s+ ^ ~(t-t+), (3.1)

, -
2 \64(n-l)J ' S = \2n-2j \ 32

We assume further in stft x Σs:
(3.al) The smallness of the perturbation P,

\P(p,q)\ ^^
where

(3.3)
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(3.a2) The positivity of TV: the Hessian matrix of TV in p is definitely positive
n and

mm
Σs

ζ

Without losing generality we assume 0 < λ ^ 1.
(3.a3) The critical point (/?*,#*) is determined by looking for the maximum of

the function φ(qn) = N(p(qn),qn) — (co,p(qn)) (qn G //), where p(qn) is determined
by the condition

— (N(p,qn) - (ω, = 0.

On the whole line {(ρ(qn),qn),qn

\Φ"(qn)\ ^ (3.4)

If L is a contractible interval, denoted by [/,r], it is assumed / ^ q* — s2, r ^
q* -\- s2, at each end qn = /, qn = r, the following hypothesis holds:

\Φ'(qn)\ ^2/;

p(qn) is real analytical in {|Im#n| ^ s2, R&qn G L}.
(3.a4) In Σ5

(3.5)

max max

max \φU\qn)\ ^ max \p^\qn)\ g .
7 = -> ΌT J—1,2 Z

Consider the following inequality:

\Φ"(qn)\qn=fn ^ 4

(3.6)

(3.7)

When this relation holds the critical point is referred to as a point with weaker
persistency. We study this case first.

We introduce several intermediate domains which are defined somewhat
implicitly:

C J2/1 C C

where

= {\lmqi

= {\lmqt\ g t+

^ t - -(t - t+\

Σs+ C Σ0 C Σι C Σ2 C Σs,

<i GlΓ, / ^ n- 1},

V GT, / ^ n- 1},

Re^ GT, i ^ n- 1 i ,
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Σ,+ = {\Pt - P+i(qn)\ ^ 4, (z ^ « - 1) ,

Pn ~ P+n(qn)\ ^ 4> \ϊmqn\ ^ 4> Re^« e L+} ,

g 2 ,

( M < 4 / 4 ^ 4 Λ (' * <

1

< j2 (s2 - 24), Re<7« G J
~~ 2 ^

{(p+(qn\qn)^qn ^L+} is the critical point line of N +N+ — (ω, p) determined in
the same way as (p(#«),#«) for N — (ω, /?) (7V+ is defined in (2.6)). L+ is either TΓ1

or some interval [/+,r+] when (3.a3) holds for N + N+. When L = [/jΓjφT 1,^ =
[/ + ^(/i - /), r — \(r — TI)], where L\ = [l\,r\\ and its determination is implicit,

in this case [/+,r+] = [l\ +4'rι ~4]
L\ is defined in the following way. Choosing q* — l\ and r\ — q* as big as

possible so that
\φ'(qn)\ < 44 (3.8)

holds in (l\,r\) and at each end of this interval it becomes an identity. Since (3.7)
is assumed we see L\ D [q* — 3s^,q* + 34l Indeed, for \qn — q*\ ^ 3s2

+,

i < 4 .

When LφT, by virtue of such a choice of LI it is ensured by (3.4) and (3.5),

(3.9)

If L = T, let L2 = ΊΓ, LI may also be determined by (3.8). If L\ φΊΓ, we choose
L+ the same as above. If (3.8) is satisfied on the whole T, let L\ = L+ = T.

To find the upper bound of \φ'(qn)\ in the domain {qn\ |Im^n ^ 2s2

+,
Reqn G LI} we need to formulate a technical lemma first.

Lemma 2. Assume a function f(x)eC2[a,b] is defined, satisfies \f(x)\^A,
\f"(x)\ <; B for all x e [a,b], and at some x0 £ [a,b]\f'(x0)\ ^ ξ then for all
x G [α, b] we have

\ff(x)\ ^
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Proof. Suppose |/'00| reaches its maximum in [a, b] at^i, |/7(^ι)| = M ^ ξ ^ 0.
Without losing generality, we assume f'(x\) = M. By our assumption, there exists
x2 G [a,b], where f'(xi) ^ ζ and ξ ^ /'(*) ^ M for all x G [^1,^2]. Since both
at x\ and X2\f(x)\ ^ Λ

2A //(*)</*
*2 si

which leads to our conclusion.
Applying this lemma to φ'(qn) we find for qn G L\,

\φ"(qn)\ g (3.10)

in view of (3.6) and (3.8), from which combined with (3.8) we get that for any
qn G {qn\\Imqn ^ 2s{9 Re^ G L\}9

\φf(qn)\ ^ |07 +4max \ (3.11)

Now we introduce a symplectic transformation Jί with the form of (2.5), where
W is determined by searching for the solution of Eq. (2.4), which maps the domain
j/i x Σ\ into j/2 x £2- Let us check it. Let

1 ( D
(3.12)

where [α] denotes the largest integer among those smaller than a, and assume s is
so small such that (3.2) is satisfied, then we have a bound for the truncated parts
of perturbation [A2]

272-2V-1 / 32 χ n

t-t4

\9-KP\ ^ 2δ (3.13)

if \lmqi ^ t — \(t - t+) (1 ^ / < n). On the other hand, in view of (3.6), when

\lmqn\ ^ s2,

d2N \ < j_ 2
1 dpndqn

(P(qn^qn}) ~ 2ΪS ' j ~ '

So for | j fc | ^ ̂ , 0 ^ y ^ 5 we have from (3.2),

(3.14)

which leads to the estimate in the domain
defined as follows:

si 2 x £2 on the generating function

Wj(p,q) = - Σ
2«—1 \ f

\k\ZK
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by Cauchy's technique:

\Wqn ^20(^-24)-',

m a x / l ^ I \W I \W \\ < 80fv4 — ^v4 Ί~2 V; / < n Π 1 ̂llld-A.^ r r M £?' ? D tf ' p \ Q'Q \ i "̂  Ov/^ι3 '-''J _ι_ / 5 ^ *Ί J ' ? ^ J. 1J I

where

£>('-'+)"
Since PF(p+,^) is real analytical, R" C C" is mapped into R" by M defined in
(2.5). It follows from (3.1), (3.3) and (3.15) that

\q-q+\ ^ \Wp\ ^ ~(t-t+)~s2

+,

\qn~qn+\ ^\Wpn+\ ίl-s2,

\p - p(qn)\ ^ \(p - p(qn)) - (p+ - p(qn+))\ + \p+ - p(qn+}\

^ W4\ + \p'\\Wpn+\ + 3/+ 5Ξ l-(s4 + 3/+),

\Pn - Pn(qn)\ ^ \(Pn ~ P«(?n)) ~ (Pn+ ~ Pn(9/ι+))| + \Pn+ ~ P«(^n+)|

g^(^3 + 34), (3.16)

which implies M maps s&\ x Σ\ into j/2 x ^2 (notice (3.9) and the definition of
^2). Furthermore it is obvious in stf\ x Σ\9

\M - id I ^ 4Θ(5<4 - 35+)" λ . (3.17)

Finally we figure out the bound for the Jacobian matrix in j/i x Σ\,

-,dl.
The principle difficulty is that Jt is defined implicitly and therefore it is necessary
to invert Jί in an appropriate domain. For this, let us recall some lemmas; their
proof can be found in [A2] and [G].

Lemma 3. Suppose x = y + φ(y) in the k-dimensional strip Σa — {|Im>Ί ^ «},
where φ is real analytic. Then given a positive number ξ satisfying a > 2ξ and
\Φ\/ζ = \, there exist a unique real analytic function f on Σa-2ξ such that y =
x + f(x\ where \f\ ^ 2\φ\,\fx\ ί 4\φ\/ξ in Σa_2ζ.
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Lemma 4. Suppose x = y + φ(y) in the region U containing a ball of radius
5a, where φ is real analytic and satisfies \φ\ ̂  f. Then there exist a unique real
analytic function f on U — 5a such that y = x + f(x) and \f\ ^ \φ\9 \fx\ ^ \φ\/a
for x e U - 5a.

We use U — a to denote the set of those points contained in U whose
^-neighbourhoods are also contained in U.

Due to Lemma 2 and Lemma 3, the equations

q+ =

can be inverted to

m{\lmq\ ^ t+ + s*} x {\lmqn x {\p - β(qn)\ ^ s4 - ±(s4 -

3s+)} x {\pn — Pn(qn)\ ^ s3 — ̂ (s3 — 3^)}, provided δ satisfies (3.3). In that do-
main, by (3.16), we have

\Q\ ^

8Q
dq+

\-lΛ-2

The remaining entries in the Jacobian \ d, ̂
p^. — Id| are easily estimated. In the

sequel, it is assumed (p,q) G j/2 x ^2, (P+,q+) G j/i x Σ\. Plainly,

dq

dp+

\-2

Expression for the partial derivatives of p is obtained formally from the relations

p = p+ + Wq(p+,q).

Each such partial derivatives can be bounded by using the previous estimates; e.g.

dp dq

Therefore

Id \-2 (3.18)
d(p+,q+)

The next step is to figure out the bound for the new error term P+ in the domain
£&t+ x Σ0. Firstly, it is derived from (2.6) and (2.9) that in stf\ x Σ\,

^ \Φ'(qn)\\Wpn+\

4θ2(s3 - 3slΓ2 , (see (3.11))

|M12 ^ n2β(\p+ - p(qn)\\Wξ\ + \pn+ - pn(qn

g n2β(6θsl(s2 - 2s^Γl -

\WΔ2)

- 2s+

2 ~2
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M\3\ = β(6nθs^(s3 — 3s+)~l +^

|M2| ^

15
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|M4 (see (3.13))

In conclusion we have

if we take (3.1), (3.2) and (3.3) into account. Here 04 depends on β. Shrinking
j/i x Σ\ to j/ί+ x Γ0, then

max
dq

max
IΊ +h 1=2

max
| / ι+/ 2 l=3

(3.19)

To complete one step of the iteration, we need to localize a critical point (p+,q*+)
of the function F — (N -\-N+)(p,qn) — (CD, p) by the same minimax principle as
above and find a domain jtft+ x Σs+ centered at (p+,q*+) satisfying conditions
similar to those shown from (3.a2) to (3.a4).

In ΣΊ the estimate

\ρ+(qn) - p(qn)\ ^
4nδ

(3.20)

can be easily drawn from the fact that \N+ ^ 2δ because of |P| ^ δ. The argument
is the following. Choosing r > 0 such that

4nδ

^<which is possible due to (3.3), and defining & is a «-multidisc in C", depending
on qn,

Since in 4δ -, we then have for 0 ^ ε ^ 1,

dist{(Np+εN+p)(dS>),(ω,0)} ^ \\Np(d®)-Np(p(qn))\\-
4nδ

> 0
s* — .
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because of (3.a2), while the degree

dεg{Np + εN+p, ®, (ω, 0)} = 1

when ε = 0. Clearly p+(qn) is also real analytical in {|Im#rt rg s2,Reqn G L}.
By the choice of δ and s, (3.20) implies that Σs+ C Σ0. To make sure the

maximum point of the function (N + N+)(p+(qn\qn) — (ω,p+(qn)} remains in L+

we only need to notice that for l\ ^ q ^ l\ 4- 2s + and ri — 2^^ ^ q ^ r\,

inf |07(ίπ)| ^ %| - max \φ"\2sl ^ s4

+ ,

I^(^)U/1+^, π-ί ^ r " > (3 21)

from which it follows

φ(h +4)

-4) ^ max{ψ(rι),0(r, -25^)} -4 ,

it leads to

On the other hand, from the definition of φ+ we have

φ(qn) -δ ^ φ+(qn) ^ φ(qn) + δ ,

maxφ+(qn) ^ φ+(q*n) ^ φ(q*) - δ ,

from which we finally obtain

maxφ+(qn) ^ max{</>+(/ι +sl),φ+(rι - s^)} + s6

+ - 2δ .

It shows only in the interior of L+ can φ+ reach its maximum. In ( 3.a3) we still
need to verify

\Φ"(qn)\l+*9.*r+ ^2S2

+,

\Φ'+(qn)\qn=ι+,r+ ^ 2s4

+, \Φ'+(qn)\qn€[l+>l++s2W2+_^r+} > 0 .

In fact, it is derived from (3.20) that

Since φ"(qn) has another expression

N n &N ; ' <3 22)
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consequently we obtain

max \φ"(qn) - φ'l(qn)\ ^ s2

+s4 ,
Σι

max \φ'(qn) - Φ'+(qn}\ ^ s^s6 ,
Σ\

which completes the check of all of (3.a3) if we take (3.3), (3.10) and (3.21) into
account.

As for (3.al) for P+ in Σs+ we shall not deal with it here; it is closely connected
to the proof of convergence, so it will be explained in the next section. We also
leave (3.a2) and (3.a4) to be verified in the next section. So far, one step of iteration
in the case of weaker persistency is completed.

3b. Stronger Persistency. In this case

d2N " d2N d2N \

dql ij=\aiJ dpidqn dpjdqn)
/ p=p*,qn=q

(3.23)

Under such conditions, the critical point of (N + N+)(p,qn) — (ω, p) determined
by the same minimax principle remains close to that of N(p,qn) — (ω9p). Indeed
we have

\q:-q*n+ i s 5 , (3.24)

which guarantees that

\P*n - />«*+! < *5 (3-25)

Equation (3.24) follows from the argument:

*n) - φ(qn) ^ \φ"(ql)\\qn - q*n\
2 - maχφ^(qn)\qn - q*n\

3

so fors 5 i\qn-q*n\ ^ 2s^,

φ+(ql) - φ+(qn) > s l - ~\qn ~ ql\ \q« -q*n

2-2δ>0,

it then verifies (3.24) if we take (3.3) into account, which also shows that φ+ can
not reach its maximum in the interval [q* — 2s+,q* — s5] and [q* -\- s5,q* + 2s+].

To go on with the demonstration, we also assume (3.1)(3.3)(3.a2) and (3.a4)
hold. Actually they have been used in deriving (3.24).

The condition of stronger persistency enables us to find nested domains in an
explicit way and a related symplectic transformation of coordinates (2.5) with the
generating function (2.10).

Instead of considering the Hamiltonian N + P in jtft x ΣS9 we only suppose it
is real analytic in the domain jtft x Q)s,

@s+ C Σ0. We deal with it in this way because there is another possibility that in
the last step of the iteration the corresponding critical point has stronger persistency
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already. In order to obtain the corresponding estimate, the Hamiltonian N + P is
only defined in such a domain jtft x S>s rather than in the domain stft x Σs. To
see @s+ C Σ09 we notice that (3.20) makes \p+(qn) — p(qn)\ ^ ^s+ through (3.3),
consequently,

{Pn\\Pn-p*n+ ^ 4> ̂  A I \P ~ ^ (Pn\ \P ~ Pn(qn}\ ^

for any fixed #„ £ {\qn — q*+\ ^ s+} since \p'\ rg ^ (see (3.6)). By noticing the
estimate (3.18) holds in <stft+ x Σ0 we find the switch of iteration from the weaker
persistency case to the stronger one does not break down the convergence.

Several intermediate domains also need to be introduced:

where

= I |

C C C

v e T , i ^ / i - i } ,

2 !>„„. eT) / ^ „_ ι} 5

•-^(/-ί+),Re?I eT, i ^n-\} ,

P+(<ln)\ ^

P(qn)\ ^ 2

> \Pn ~ P*n+\ ^

Supposing |PI ^ ^ in sίt x ̂  and expanding P in a Taylor series in (pn,qn), we
have the Cauchy estimate in {|Im^| ^ ί} x {\p — ρ(qn)\ ^ ̂ 4},

(3.26)max{|P,7(A<7)l} ^

Together with (2. 12), (3.26) shows that in s/2 x ^2,

W4\ g

max { I FΛ,y , Wmj )~2, Vi, j ^ n . (3.27)
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If (3.3) is assumed we then have

\q-q+

551

\qn~qn+\ ύ \Wpn+\ g (5

3-

\p - p(qn)\ ^ \(P - /$(<?«)) - (p - p(qn+))\ + \p+ - β(qn+)\

\Pn~Pn ^

1
(3.28)

which implies Jί maps s0\ x ζ$\ into ##2 x ^2- By the argument similar to that
in the case of weaker persistency, which we omit here because it could be done
by following the footsteps exactly as we do when we deal with the case of weaker
persistency, Jt : (p+9q+) —> (p, q) maps s0\ x Q)\ into s&2 x ^2? and it is obvious
in j/i x ^i,

|̂  - id I ^ 4y(^4 - S^Γ1 - (3.29)

Thanks to Lemma 2 and Lemma 3 we also have

A: - / ^ 80y(s4 - 3^)"2 (3.30)

Now the aim is to show how large the new error term P+ is in the domain
It is induced from (2.13) and (2.14) that

|MH g max

|M12| ^ 6n2

|M13| g 6(/ι -

- 3s3 1 - 3s3 )

9n2βγs6

+(s3 -

g 18(/ι

|M2| ^ c 6 δ -

|M4| ^

Putting these terms together we finally obtain:

- 3s3 Γ1
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CΊ depends on β. Shrinking s$\ x 2\ to <stft+ x @Q then

\P+(p+9q+)\ g δ + ,

max
dP+

dp

ap,
dq+

max
|/1+/2 |=2

max
|/ι+/2 |=3

2δ

(3.31)

The same as in the case of weaker persistency we need to proceed to the next
step of iteration in the neighbourhood of the critical point line p = p+(qn) of
the function (N +N+)(p,qn) - (ω,p). Equations (3.20), (3.24) and (3.25) show
that ^o Q ®\, because of the choice of relevant parameters given by (3.1), (3.3)
and (3.6).

In the demonstration of one cycle of iteration, we take (3.a2) and (3.a4) as
granted. We also leave them unproved until the next section, it will simplify the
notation a lot.

To complete one step of iteration we need to show that once the critical point
gets stronger persistency, the forthcoming critical point shall possess stronger per-
sistency as well. In fact, it is easy to see (3.20) also holds in ^2? consequently,

hence from (3.22)

max \pf+(qn) -

max \Φl(qn}-φ"(qn}\ ^

Setting s++ ^ \s+ we finally have

^ Φ"(q*n) + max |0(3)| \q* - q*n+\ + |0+(^*) - 07/(^*)|

^ -̂  + 2s5 < -s2

++ .

4. Convergence

With the preliminary work done in the last two sections, we are now at the stage to
complete the last part of our proof. As assumed in the first section, the Hamiltonian

is real analytic in the region

Σ0 = {\lmq0\ ^ τ*} x {\p0 - p*\ g
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N0(p0) is convex in Re£0 and

d2N0

553

mm
dp -ξ

sup
δ'Na

dp'

Let τ* = τ0, s* = s0 and assume

max
^ δ0 .

Using the results obtained in the last section, we construct inductively a sequence
of symplectic transformations of coordinates, Mm on domains Σm whose range is
contained in Σm-\\ i.e.,

In Σm the Hamiltonian H0 is transformed into

(4.1)

where N(pm,qnm) is convex in pm for any fixed qnm. The critical point line pm(qnm)
is defined by looking for the minimum of the function Nm(pm,qnm) — (ω, pm) and
relevant critical point is pm(qnm) for any fixed qnm in the real domain. The function
Φm(qnm) = Nm(pm(qnm\qnm) - (ω, /5m(#wm)) attains its maximum at the point q*nm.
Let p*m = Pm(qnm)' The domain Σm is described in two ways. In the case of weaker
persistency,

Σm = {\lmqm\ ^ τm, \pm - ρm(qnm)\ ^

Λ W | ^ S%, Re qnm G Lm} ,\Pnrn ~ Pnm(qnm)\ ^ S^

and in the case of stronger persistency,

Σm = {|Im#m ^ τm, |^m - pm(qnm)\ ^ 4 ,

|^«m ~ P»m\ ^ ̂  \qnm - q*nm

where Lm = [lm,rm] D [̂ *m - s^,q*m + s%\,

(b) sm =s£_l9s0 ^ τ0;

(d) The modification of the main part of the Hamiltonian after each step of
iteration is small:
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(e)

max

max

δPm

Ί p '2*l 'yl=ι (dpΆdq,

{ d2P,

< ^1 3== υm 9

^2tf,

max ^ 6δ£ (inΓm)

(g)

J^H is the Jacobian of «^w. At the beginning of the iteration we have to deal with
the problem in the way of weaker persistency because N0 — N0(p0) is independent
of qno. Such a process may be repeated for finitely or infinitely many times, de-
pending on the fact whether the critical point at each step has weaker persistency
or not. Once it has stronger persistency at some step of the iteration, then it always
possesses stronger persistency at the following steps, which can be seen from the
proof in the last section.

Such a construction is possible if all conditions introduced in the last section
are satisfied for each m which we need to verify.

It follows from (e) in Σm

^ 65j

where Pm is the average part of Pm with respect to

mm
Σm

dp2 -ξ

Since N0 is independent of ^no we also have

&Nmsup
m—\

^ 6

Let λ = λo - 2£)^1 δ
3 and β = β0 + 6^^ δ}3 then there is a dι(N0,n) > 0

such that if δ0 ^ d\ then λ ^ ,̂ β ^ 2β0 and 6Σ™=\ δP ^ (Ίn22^~l. Let the
λ and β appearing in the proof in the last section, take the value defined here
then they satisfy the required conditions. To complete the verification of (3.a4) we
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get in Σm by noticing (3.20)

\Pm(qn) ~ Pm+\(qn)\ ^ C*S9

m >

\Pm(qn) ~ Pm+l(qn)\ ^ ̂  ,

and

depends on λ. Since

^ Σ \PvJ} - Pv-l\> \ΦmΛ ^ Σ \ΦvjΊ - Φv-l\ '
v=l v=l

because of p^ = φ^ = 0, we can find d2(N0,n) > 0, if δ ^ d2 further then

max (qn) ^ max
Σm,j^3 04 Σm,j=l,2

Up to now we have verified (3.a2) and (3.a4).
Let

2~169

1 4- — —

since δm ^ δ0

 13, it can be seen that if δ0 ^ d^ s0 = δ™, then

= 3

C , < T , C , < (T T . ^Λm+l = ί-m+l? Λm+l = ~I\lm ~ lm+\) •>

and
I £\^ι Ί~}τ^ f\^ 7~^6 .6jW i~ I Ό 3 L J \ , f ) f. Ό3J-S Tf) f. A i π T

^ < mjn / ° ty
6 ° ^P 51 .S1

which verifies (3.1) and (3.3). Clearly 3ί/4 > 0, if 50 ^ J4, 50 log^0

 μ g 1. Let

"2 V64(/ι-l); " ' \ V 2 n - 2 ; V32

(3.2) is also satisfied if δ0 ^ d$.
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The most important thing we need to show is \Pm\ ^ δm in Σm. When the case
of weaker persistency is dealt with, we have from (3.18),

when the case of stronger persistency is dealt with, we have from (3.32),

By noticing that s^ decreases to zero faster than exponentially, we see that there is
a positive number d6(N0,D,μ,τ0,s0) > 0, such that if δ0 ^ dβ then

The remaining two estimates in (e) follow directly from (3.19) and (3.31). From
(3.17), (3.18) we have

similarly from (3.29) and (3.30) we have

-idl <- -^s2

mδ£
τlμ

which results in (f) and (g) by the choice of 00. So far we have shown how to
construct the sequence of transformations Jim inductively and therefore assertions
(a)^(g) are valid for all m ^ 0 if δ0 ^ min{J7, j ^ 6}. As m — > oo the domain
Σm shrink to a set containing the submanifold

^ ^ y} x {tfnoo =^Poc =Pcχ)(^oo)}Zoo D

and the transformations

with their derivatives

^l = Jίf

loJS(/

2θ"'θ M'm :Σm-^Σ0

converge uniformly to an embedding

(y - Σ —> Σ
^ OO *~ΌC "O '

The uniform convergence of έΓm and ̂  follows from the assertions (f) and (g)
and the rapid convergence of the sequence {δm} to zero. Clearly the embedding
^o is real analytic in Σ^ since it is the uniform limit of real analytic functions.
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The next step is to show that
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(4 2)

where Φ1

0 is the flow determined by the vector field V0 afforded by Hamiltonian
HO, POQ = lim,w_+oo Pm, ((3.20) implies this limit exists). If at any step of itera-
tion, the related critical point always has weaker persistency, let Zoo = Π^Li^w?
the facts that Lm O Lm+\ and Lm is closed for all m ^ 0 guarantee that Zoo Φ{0}
In this case we let q*^ be any point in Zoo- If after some steps of iteration the re-
lated critical point has stronger persistency, due to (3.24), q*^ = limm^oo<ώr The
proof is essentially the same as those for classical KAM theory (cf. [A2, G]). For
completeness, we demonstrate the proof briefly by invoking some lemma developed
in[G].

To abbreviate the notation, let us write the canonical equations with the
Hamiltonian Hm in the form

Wm = Ψm(Wm)9 Wm = (Xm,ym,Um,Vm) G Σm .

Since the transformation 2Γm : Σm —> Σ0 is symplectic, if wm(t) is a solution of the
last equation, wQ(t) = ym(wm(t)) satisfies w0 = ΨO(WQ). By letting ^(w^) =
(ω, 0, 0, 0) and observing from (d) and (e) ((e')) we readily verify:

^ distance (Σm+ι,dΣm) = ηm+\

fiψvim
< const.

0(^00) ^s a solution of WQ =It is derived from Lemma 5 that ^Όo(ωt + q^q
ΨQ(WQ), which exactly is what (4.2) means.

Lemma 5 [G]. Let Ψ0(w) be a smooth vector field on Σ0 determining a flow

Suppose there exist ίnvertible transformations Jίm : Σm -* Σ0 such that \ Π^=ι
Jί'm\ < oo, where Jί'm denotes the Jacobίan matrix of Jtm. The transformations

naturally induce flows

Φt = y^Φ^m ^ m ^o

with corresponding vector field Ψm on Σm,

VmW=£&mdt
Assume

( 1 ) Ψm converges to ΪΌo on Σ^ as m — » cχo and \ Ψm — Ψoo \ ̂  Cηm on Σ^
with some constant C independent of m and ηm — > 0 as m — » 0;

(2) the segment w = w0 + σt, 0 ^ t ^ ^̂  belongs to Σ^ and on this segment
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(3) dw g B on Σm, where B is independent of m\ and

(4) &Όo = limm_+oo ym exists and is continuous.

Then forO^t^^c, Φ£(^o(wo)) = ̂ ooO0 + σt) C Σ0.

The last step is to check that the surviving invariant (n — 1 )-torus remains in a
ε-neighbourhood of some (n — l)-torus (p09<ίno) trivially embedded in the w-torus
p0. In fact, if we let

Po = Poo(^oo)

then from the estimate (f) we have

if δ0 ^ min{ί/7, 7 ^ 6}. Given any s\ > 0, dη — dj(ε\) > 0 can be found such
that if δzd*(8ι,N,D,μ,s9τ) = min{J7 , j g 7}

Recalling a linear symplectic transformation is introduced through the unimodular
matrix / at the beginning of Sect. 2 and taking the inverse of such transformation we
then obtain (1.9) plus the estimate (1.10) if we let δi = \λM(I)~l\£, where ΛwCO
is the largest eigenvalue of the matrix / in terms of the absolute value.
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