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Abstract: We give a simple proof of ergodicity of eigenfunctions of the Laplacian
with Dirichlet boundary conditions on compact Riemannian manifolds with piece-
wise smooth boundaries and ergodic billiards. Examples include the "Bunimovich
stadium", the "Sinai billiard" and the generic polygonal billiard tables of Kerckhoff,
Masur and Smillie.

1. Introduction and Statement of Results

The purpose of this note is to give a simple proof of ergodicity of eigen-
functions on manifolds with piecewise smooth boundaries and ergodic billiard
flows. For the boundaryless case this is now well known and was established
in [14,17,3]. If the manifold is a convex region in R" with W2>0° boundary,
the same result was proved much more recently by Gerard and Leichtnam [6]
who needed, among other things, a quantitative version of the results of Melrose
and Sjόstrand on propagation of singularities for mixed problems (see [12 and
9, Chap. 24]). Our argument uses an aspect of an abstract approach to quantum
ergodicity developed by the first author in [18] and some basic microlocal analy-
sis on manifolds with boundary. It applies to a class of (not necessarily convex)
regions with measure theoretically negligible sets of singular points. That class
includes the much studied example of the "Bunimovich stadium" and other ex-
amples of non-dispersive billiard tables [1], the "Sinai billiard" [15] as well as
the ergodic polygonal billiard tables of Kerckhoff, Masur and Smillie [11] - see
Fig. 1.

Referring to Sect. 2 for precise definitions of intuitively clear notions of man-
ifolds with piecewise smooth boundaries and of billiard flows, we can state our
result as

Theorem. Let (M,g) be a compact °̂° Rίemann manifold with piecewise smooth
boundary. Let {φj}j^^Q be an orthonormal set of eigenfunctions of the Laplacian,
Δg, on M. If the billiard flow defined on a set of full measure in S*M is
ergodic then there exists a subsequence {jk} of density \,%{jk '• jk ^ N}/N -> 1
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Fig. 1. Examples of nonconvex ergodic billiards: (a) generic polygon, (b) Sinai billiard, (c) non-
dispersive billiard table.

such that

(Aφjk,φjk) —+ / σQ(A)dμ (1.1)
k-^oo S*M

for any A G Ψ^ (M) with Schwartz kernel compactly supported in M° x M°.

Here, σo(A) denotes the principal symbol of A.

By applying standard heat equation methods, one could extend this to a less
restrictive class of operators as in [6], removing the compact support condition on
the kernel. To keep the presentation simple we will carry this out for multiplication
operators only:

Corollary. With the notation and assumptions of the theorem above

\φjk\
2 —> 1 weakly in Ll(M,dvo\g) . (1.2)

2. Preliminaries

The billiard tables we consider are compact °̂° Riemann manifolds (M, g) with
piecewise smooth boundaries in the sense of Cornfeld-Fomin-Sinai, [4], Chapter
6. Thus we will assume that M is a compact subset of a °̂° compact manifold

M of the same dimension and that there exist r functions /ι,...,/r G ̂ °°(M),
such that

\ ) Jι \f-\o) '

(ii) dft and dfj are independent on f~l(0) Π f~l(0),

(iii) M = {x G M : f,(x) ^ 0, 1 ̂  i ^ r} . (2.1)

Condition (ii) which is taken directly from [4] can be replaced by a weaker
condition allowing an inclusion of Bunimovich's stadium in our class of billiard
tables:

(ii)7 /;"1(0)n/y.~
1(0) is an embedded submanifold of M

and M has a Lipschitz boundary,
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where a boundary is Lipschίtz if it is given locally by a graph of a Lipschitz
function (we need that assumption to easily quote the facts about the Dirichlet
problem). We assume that the metric g extends to a smooth Riemann metric on

M,g.

The boundary dM is the union \J'i=λdMl with dM, = /^(O) ΠM. The regular

components are given by dMt = dMi\{_\k^ldMk and we obtain the regular part of
the boundary: 3Mreg; its elements are called regular points. The set S = δM\3Mreg

is said to consist of singular points.

The billiard flow Φt is a (discontinuous) flow on a subset S*M\E of full measure
in the unit cotangent bundle or tangent bundle - in what follows we will freely iden-
tify vectors and co-vectors using the metric. The flow Φl is very closely connected
to the generalized bicharacteristic flow of p — τ2 - g on {p = 0} C Γ*(IR x M)\0
defined for dM smooth in [12] - see also [9], Sect. 24.3. However, the two are not
the same as regards the billiard trajectories which touch 5Mreg tangentially. Since
the generalized bicharacteristic flow, rather than Φl', arises naturally in the study of
eigenfunctions we will have to introduce a common subsystem of the two.

Let us first recall, following [4] closely, the definitions of the billiard flow Φt

and of its phase space. For (x,v) E S*M° the trajectory of Φ*(x,v) is the geodesic

of (M,g) through (x,v) until it intersects the boundary in the base, at a point y,
say. If y E Mreg5 then the tangent vector on the geodesic, (y,w) will lie in the set
3S*M~ = {(x,v) : x G δMreg, gx(v,nx) ^ 0} of outgoing vectors, where nx is the
unit normal vector to dM at x. It is then reflected into the set dS*M+ = {(x,v) :
x G 5Mreg, gx(v,nx) ^ 0} by the reflection ^(_y,w) = (y,w — 2gy(w,ny)nv), and
the flow then follows the geodesic through &(y,w).

From the dynamical point of view there are three bad sets in S*M° : (i)
the set N\ of (jc, v) G S*M° whose trajectories hit S at some time; (ii) the set

o

N2 of (x, v) £ S* M whose trajectories reflect infinitely often in finite time;
(iii) the set / of (x, v) G *S*M° whose forward or backward trajectories do
not intersect the boundary. From the microlocal point of view there is
an additional bad set for which the standard Egorov's theorem fails to hold:
(iv) the set ^Γ of (x,v) G S*M° whose trajectories touch 3Mreg tangentially at some
time.

Fig. 2. Deleted rays: (a) grazing, (b) gliding along the boundary, (c) singular, (d) non-unique.
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It is proved in [4], Sect. 6.2, that μ(N\) = μ(N2) — 0, where μ is the Liouville
measure on S*M. (Strictly speaking we assume (i)-(iii) of (2.1); the argument
of the proof applies however under the weaker assumption (ii)7 or in fact just the
first part of it.) It is also assumed that the billiards are proper in the sense that
μ(/) = 0. This is a natural assumption in the study of ergodic billiards since / is
an invariant set. The phase space of Φt is then defined as S*M\(N\ U N2 U/) in
[4]. The phase space we will adopt here is

9 d= S*M\(Nι (JN2UI(J^). (2.2)

Since ^Γ is also invariant it is natural to assume that μ(&~) — 0 in the study of
ergodic billiards. However, this is no additional assumption since we have

Lemma 1. The set

y = {meS*M° : 3f eR|z*Φ'(/H)eS*(dAf r e g)}, i :<3M-+M, (2.3)

satisfies μ(&~) = 0.

Proof. We follow closely the argument of [4], Sect. 6.2 and refer there for unex-
plained notation and background. Thus, let dμ\ be the surface measure on S?MΪ M

defined on S*~M by
dMl dμι(x,v) = dpidωx(v)\gx(nx,υ)\ ,

where dpl is the volume density of the metric #/ induced by g on dMl and where dωx

is the usual Euclidean surface measure on S*(dMi). Also, let Jt C IR x δS*M+ —
{(t,x,v) : 0 < t ^ f(x, v)}, where f(x,v) is the length of the geodesic segment
determined by the incoming vector (x,υ), that is the time at which the geodesic
first intersects the boundary again. Since μ(7) = 0, f(x, v} < oc except on a set
of measure zero. Let us define the map Φ : (t,x,v) ι— > Φl(x,v\ Φ : Jt — > S*M. The
map is clearly onto S*M°\I. Moreover, we have an equality of volume forms:
Φ*(φ) = dt 0 φi -see [4]. Hence if E C S*M\I,

μ(E) ^ / / Φ*χ£ φ! . (2.4)
dS*M+

To show that μ(&~) — 0 we first decompose 2Γ as follows: 2Γ — UneN ^«5 where

3~n is the set of (jc, v) whose billiard flow trajectory first intersects (5Mreg tangentially

at the ftth time of intersection with it. We also define

y*nm = {(jc-,ϋ_) G dS*M+ : f(x-,v-) ^ m

and 30 < t < /(jc_,ϋ_), Φ'(Λ;_,U_) G yn} ,

and Fd

n - UW6N^"πm» so that we have &~n+ι =Bn(&Ί\ where B is the billiard
ball map defined almost everywhere on dS*M+ - [4,8]. Using (2.4) we have

μ(P)£ Σ Σ ^ι(^l).
/?GN mGN

Since μi degenerates on £Γ\ and since B*μ\ = μ\ (see [4,8]) we have μ\{^d

nm) ^

) = 0. Hence μ(^) = 0. D
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The lemma shows that the phase space (2.2) has full measure. To apply analytic
techniques we need a larger set which will depend on a parameter T. Thus we define

XT = {(x,v) G 5*Mreg : 3ε(jt,t;) > O V | f | ^ Tdg(S,πo Φ'(χ9v)) > ε(x,v)

and ι*(&(x, υ) Π ^|MregM) Π S* dMreg - 0} , (2.5)

where dg is the Riemannian distance with respect to g, π : S*M —•» M is the natural
projection and i : dM H-» M. It is clear that there is no problem in defining Φt,
|ί g Γ on AT.

Lemma 2. 77ze 5eί JΓ^ zs open and has full measure in S*M.

Proof. Let (jt,ι;)G^τ We start by observing that there exists at most finitely
many t's : t\,..., tk such that Φ*(x, v) G S$M M and |f | ^ Γ. Otherwise for the limit

point t of infinitely many such ί's we would either have lim/; _>/-π o Φ^jc, f) G S or

/*#'"(*, ι;) G 5*(3Afreg): For if Φ'(jc,ι;) G S%MngM\F (that is if the boundary were

intersected transversally at a regular point) then Φt+s(x,v) G S*M° for 0 < |s| < εi .
We then claim that for (x',υr)^ U, U a small neighbourhood of (x,v)9 the

intersections are transversal (that is, the second condition in the definition of Xτ is
open) and the times of intersections of Φl(x', υ'\ with the boundary, /,(%',?/) vary
continuously with (jc',1/). By induction it is enough to verify this for t\. Let us in-
troduce normal geodesic coordinates (or any product decomposition near the bound-
ary): z^(yλ(z\y'(z)\ yl(z) = dg(dMκg9z)9 y'(z) G δMreg, near πo^i^t;). If

Φs denotes the geodesic flow on S*M then the transversality of the intersection
is equivalent to dtyι(Φt(x,v)) \t=tl φO which is clearly an open condition. It also
implies that the times of intersection with the boundary are smooth functions of
(xf,vf) G U by the implicit function theorem.

To see that the first condition in the definition of XT holds for (xf,vf) in a

neighbourhood of (x,v)£Xτ, we note that (x\v') *-> πo Φ'^* >v'\x',v') £ dM is
continuous and hence the image of a small neighbourhood of (x,v) will avoid the
closed set S. Π

We will now move to analytic considerations. Since the boundary of M is
Lipschitz1, the Laplace Beltrami operator, Ag, with Dirichlet boundary conditions is
self-adjoint on L2(M,dvo\g) with the usual domain H2(M) ΠH^M). The spectrum
is discrete:

Δφj = λfφj, φj \8M= 0, 0 = /o < ΛI ^ /2 ^ > 00 . (2.6)

We assume that the eigenfunctions are mutually orthogonal and of unit norm. We
put N(λ) = %{j : λj ^ λ} and have

Lemma 3. For an orthonormal basis of eigenfunctions of Δ^

T^ Σ \Φj 2 —> 1 weakly in L\M,dvo\g). (2.7)

A much weaker assumption would suffice - for this case we refer to [10] for references.
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Proof. Let A be the Laplacian on M and let k(t,x,y) and k(t,x,y) be the heat

kernels for the Dirichlet Laplacian on M and the Laplacian on M respectively. A
maximum principle argument of Weyl2 shows that for x,y G M°,

0 ^ k(t,x,y)-k(t,x,y)

( (4πtΓn/2 exp(-dg(y, dMf/4t) 0 < t < dg(y, dM)2/C
= \ (4πtΓn/2 exp(-C/4) dg(y, 8M)2/C ^t

see [5] for a nice exposition. Proceeding as in that paper we then obtain

/M/(x)^(^,xyvol,(x)-(4πO-π/VM/^Xvol^^) + ̂ ί~Π/2+1/2)' for any f t
<g°°(M). Representing k(t,x,x) = f™e~tλdN(λ9x) with N(λ,x) = Σλ.^λ\φj(x)\2,

and applying Karamata's Tauberian theorem complete the proof. D

We will now generalize Lemma 3 to pseudodifferential operators with kernels
supported away from the boundary. That assumption could be eliminated by heat
equation techniques (see [6]) but we avoid that for the sake of simplicity.

Lemma 4. Let A G ΨP^(M) have the Schwartz kernel of A compactly supported
in M° x M°. Then with the notation of Lemma 3 and denoting by σ$(A) the
principal symbol of A,

(2.9)
S*M°

Proof. Since A is supported away from the boundary the lemma follows from
small time asymptotics of trAexp(itV^) ([9], Proposition 29.1.2) which are ob-
tained as in the boundaryless case-see [9], proof of Theorem 29.3.3 for a similar
argument. Then (2.9) follows by applying Hormander's Tauberian Lemma (see [9],
Lemma 17.5.6), precisely as in Theorem 29.1.5 of [9]. D

As a final preliminary fact we need a replacement of Egorov's Theorem for our
setting. As usual we use WF(A) to denote the invariantly defined essential support
of the full symbol of A.

Lemma 5. Let A G *Fphg(M) have the Schwartz kernel of A compactly supported in
M° x M° and in addition WF(A] Π S*M° (ς Xτ. Ifψe «£°(M°), then for \t\ < T,

Af ά= \l/ exp(zϊV^) oAo exp(-zYV^) ψ G ̂ phg(M° ) ,

and
σQ(A*) = (π»2σ0G4) o Φt . (2.10)

Proof. By the assumption, \t\ < T implies that

and

ι*(&(WF(A) Π S*M°)) Π SdMn

For which continuity of the boundary is a sufficient requirement.
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that is the billiard flow-out of WF(A) is microlocally away from the singular and
glancing sets. The lemma then follows from the "easy" (that is, non-diffractive) part
of F arris's extension of Egorov's theorem to manifolds with diffractive boundaries
[7], which in fact is already present in [2]3. We refer to those papers for the now
standard details. D

3. Proof of the Theorem

We will prove that for all A G Ψ^g(M°) with Schwartz kernels compactly supported
inM° xM°,

T Σ {(Aφj.φj)-^(A}\2 —^ 0, (3.1)

where σQ(A) = fs*MOσo(A)dμ, where we normalize the Liouville measure so that
μ(S*M° ) = 1 . The existence of the subsequence satisfying ( 1 . 1 ) for all A will then
follow by the diagonal argument used in [17, 18,3].

To establish (3.1), we fix T > 0 to be chosen arbitrarily large later, and let
Uε C X2τ\SρM be a nested family of open sets such that Uε C Uεt for ε' < ε and

Uε>0ί/ε =X2T Then there exist operators Eε e ^phg(^°) with Schwartz kernels
compactly supported in M° x M° such that

WF(Eε) Π S*M° C C/2e, WF(Eε - /) Γ) S*M° C S*M°\Uε,

0 g σQ(Ee) ^ 1 . (3.2)

We then define Aε = EεA and study the left-hand side of (3.1) with A replaced

b y Λ .
Following [18] we introduce the notation

pj(B) = (Bφj,φj), (B)τ = — / exp(-itVΔ)oBo&φ(itVA)Λ9LL _τ

and recall the simple observations

\Pj(B)\2 ^ Pj(B*B), p j ( ( B ) Γ ) = Pj(B) . (3.3)

Hence for A replaced by Aε, the expression in (3.1) can be rewritten and estimated
as follows:

(3.4)

We now introduce ψ? e ̂ (M°; [0,1]), / = 1,2,3, such that dg(supp(ψf - l

< δ and ψ? = 1 on supp^+1, i = 1,2. Writing BεJ = (Aε - σQ(Aε))*τ(Aε-

We gratefully owe this reference to Melrose.
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σo(Aε))τ, we obtain

p,((\ - (3.5)

By the theorem on propagation of singularities along bicharacteristics intersecting the
boundary transversally (that is, in the hyperbolic region - see [2] or Theorem 24.2.1
of [9]), the operators (1 - \l/f)BEtT\l/$ and \l/$Be,T(l - ^f) have kernels in ̂ °°(M x
M). Hence multiplying by 7 = (Δ + I)~m(Δ -f 7)m and pulling the first factor on
φj in the inner product defining PJ gives

PJ((\ - il/fyβ^), Pj(ΨlBκ,τ(\ - $)) = <9TΛ6,

The boundedness of B^τ on L2(M,dvo\g) implies that

<#)*«, r(l - $)) g Cr,ε((l -

for any N .

To the remaining term in (3.5) we apply Lemma 5 which combined with Lemmas
3 and 4 gives the following estimate for (3.4):

/
S*M

1
2Γ

/ π*\l4(σQ(Ac)o&-σ0(Aε))Λ dμ

CT,,f(l-
M

+ 0ε,r,<$(l), as Λ ~* °°> (3.6)

and hence

1
^ /(σo(A)oΦ'-σo(Λ))^ dμ

l - r - S f r . ε W , (3.7)

where /Y,£,<$(/) —» 0 as / —> 0 and gτ,ε(δ) -̂  0 as ^ -̂  0.
By Lemma 2, A^r has full measure for all T > 0 and since σo(E£) — 1 on U7ε, we

have lim^otfoC^) = 1 almost everywhere. Hence limε_>oσoG4ε) = ^0(v4) almost ev-
erywhere and hence by dominated convergence (σo(A£) are uniformly bounded in ε)

!
S*M

f (σv(Aε)o&-σv(Aε))dt
1

2T
/ (σo(A)o&-σQ(A))dt \dμ

Λr(e)—1<).
ε—>0

On the other hand, the ergodicity of Φl on a full measure subset of S*M implies
that the second term on the left-hand side above is equal to e(T), where e(T) —^ 0
as T — » oo. Going back to (3.4), we obtain

1
\pj(AB) - (3.8)

which is the needed analogue of (3.1) for Aε. Note however that Aε depends on T.
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We now claim that

:>(A-
(3.9)

where limε_>0 /5τ(ε) = 0, and lim^oo fτ^(λ) = 0. In fact, putting Rκ = I — Eε we
can rewrite the left-hand side as

Σ |p/(Λe + Λ*4) - σ0(Λ + RΛW = T77TT Σ |P,(Λ - σo

yv(/j ^ ̂
P,((R,Λ-σo(RεA)Γ(RsA-σ0(RfAm,

where we have used the first part of (3.3) and the Schwartz inequality. Lemma
4 and the uniform boundedness of σv(Aε) now give (3.9) since σ$(RκA) — > 0 as
ε -> 0.

We now combine (3.9) with (3.8) to conclude that the left-hand side of
(3.1) is bounded by β(Γ) + /z£(ε) + gτ,ε(δ) + f^ε j < 5(A), where limr_00β(Γ) - 0,

lim£-_^o^r(ε) = '̂ limό-^o 9τ,ε(δ) — 0 and lim;v_*oo/* f ^(/) = 0. Hence by succes-
sively choosing Γ, ε, (5 and /I we can make it arbitrarily small and that completes the
proof of (3.1). To complete the proof of Theorem 1, we recall that (3.1) implies
the existence of a subsequence 5^ C N of density one such that

lim (AφJ9φj)=σQ(A), (3.10)
/->cxD,ye^

(see [16], Theorem 1.20). To extract a subsequence of density one independent of
A, we first choose a countable set {A^} C Ψ°, with \\Ak\\ ^ 1 and with dense span
in Ψ°/Ψ~{. For instance, we could take AI — ak(x,D) with {α^(jc, ξ)} a smooth
orthonormal basis of L2(5*M). For each k, we have then a subsequence ̂  C N
such that (3.10) is satisfied for A=A^. We may assume ,9^ C <%+ι and choose
Nk such that for N ^ Nk,

^ l - 2-A

The subsequence tf Όo defined by

^oo n [Mt,Mfe+ι] - ̂  n

is then of density one and satisfies

lim (Aφj,φj) = σQ(A) (3.11)
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for all A G Ψ°. Indeed, (3.11) holds for all the A^s and hence for the closure of
their linear combinations relative to the operator norm in Ψ°.

Proof of the Corollary. This is immediate if we write / G ̂ ^(M) as ι//f -f
(1 — i/')/ with ψ £ ^°(M°) - we apply the theorem to the first term and Lemma
3 to the second. We then take a sequence of ^'s so that JM(1 - ι//)dvolg — » 0.
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