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Abstract: We prove that for any finite set of generalized valence bond solid (GVBS)
states of a quantum spin chain there exists a translation invariant finite-range Hamil-
tonian for which this set is the set of ground states. This result implies that there are
GVBS models with arbitrary broken discrete symmetries that are described as com-
binations of lattice translations, lattice reflections, and local unitary or anti-unitary
transformations. We also show that all GVBS models that satisfy some natural con-
ditions have a spectral gap. The existence of a spectral gap is obtained by applying
a simple and quite general strategy for proving lower bounds on the spectral gap
of the generator of a classical or quantum spin dynamics. This general scheme is
interesting in its own right and therefore, although the basic idea is not new, we
present it in a system-independent setting. The results are illustrated with a number
of examples.
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1. Introduction and Statement of the Main Results

Due to recent progress made by various authors it has become clear that the variety
of behaviour found in the ground states of quantum spin models is much larger
than was expected before, even in one dimension. In particular there has been re-
vived interest in models with a discrete symmetry breaking [1-6]. A good strategy
for exploring this variety of phenomena has been, and still is, the study of simple
exactly solvable models in as great detail as is possible. Therefore, various authors
tried to construct models with explicitly known ground states that exhibit some in-
teresting properties as, e.g., a specific kind of discrete symmetry breaking. E.g., in
[7] Affleck, Arovas, Marston, and Rabson construct spin chains with nearest neigh-
bour interactions that have ground states with broken charge conjugation symmetry.
These ground states are given by means of a Generalized (or extended) Valence
Bond Solid construction (GVBS, or XVBS, states).

The first question addressed in this paper is the following. Given a finite group
of symmetry transformations of a quantum spin chain and a local observable (or a fi-
nite set of local observables) that distinguishes ground states with broken symmetry,
can one always find a model with finite range interactions which has the prescribed
symmetries and symmetry breaking ground states? The answer is positive: a model
of the GVBS type with the desired properties can always be constructed (see
Theorem 1 and the remarks following it at the end of this introduction).

It is widely believed that if a one-dimensional quantum spin model has a finite
number of ground states (typically related to one another by a discrete symme-
try) that all have a finite correlation length (i.e. exponential decay of correlations),
then there is a spectral gap above the ground state energy that does not vanish
in the thermodynamic limit. In some cases this is rather well understood in terms
of the two-dimensional quantum field theory that describes the long-distance and
low-energy behaviour of the spin chain [8]. The Lorentz invariance of the quantum
field theory relates the correlation length ξ in space with the gap A in the spectrum
which governs the decay of correlations in (imaginary) time. The only intervening
parameter is the spin-wave velocity v which plays the role of the speed of light in
the relativistic theory [9, 10]:

A=υ/ξ.

This argument is rather heuristic at this point and cannot be given the status of a
mathematical proof. In fact, one should not expect that a unique or a finite number
of ground states with a finite correlation length is always accompanied by a spectral
gap. Certain exceptions to this rule of thumb occur, as we show in an example in
Sect. 7.

To give a proof of the existence of a spectral gap in the GVBS models with
discrete symmetry breaking is the second aim of this work. Theorem 2 states that
under some simple conditions any quantum spin Hamiltonian with finite range in-
teractions that has only a finite number of GVBS states as its ground states, indeed
possesses a spectral gap. We also show in a counterexample (Example 2 in Sect.
7) that the conditions of Theorem 2 are necessary or at least that they cannot be
completely omitted; there are quantum spin chains with nearest neighbour interac-
tions and a finite number of GVBS ground states, that do not have a spectral gap
in the thermodynamic limit.

The first proof (in an isotropic model) of the existence of a spectral gap
was given by Affleck, Kennedy, Lieb, and Tasaki in [11, 12] in a model with



Spectral gap for Spin Chains with Discrete Symmetry Breaking 567

a unique ground state (the AKLT model), and in a model with two groundstates
(the Majumdar-Ghosh model). A different proof, which applies to all GVBS mod-
els with a unique ground state, was given by Fannes, Nachtergaele, and Werner in
[13, 14]. Apart from being more general, this proof has the advantage of providing
reasonable lower bounds on the magnitude of the spectral gap. Good upper bounds,
both for the AKLT chain and for the spin-1 Heisenberg antiferromagnetic chain, are
usually quite easy to obtain due to the variational principle. For the AKLT chain
such upper bounds were obtained in [15] and [16]. For quite some time already,
there is also ample numerical evidence for the Haldane gap (see [17-23]. Knabe
[16] also provides a general argument that, in combination with sufficiently good
numerical estimates on the gap for finite volumes, also proves the existence of a
gap in the thermodynamic limit. By now, very precise numerical estimates of the
spectral gap of the AKLT chain are available [24, 10] due to the numerical algo-
rithm developed by White [25, 26]. Recently Kennedy obtained upper bounds of
comparable precision [27] by a much simpler, variational method. Exact excited
states in GVBS models are constructed only in special cases [28, 29].

The result (Theorem 2) of this paper is very much in the spirit of [14] in that
it also provides, in principle, a reasonable estimate for the gap. It is more general
because it covers the case of multiple (a finite number of) ground states. Part of
the argument (Theorem 3), however, is different from [14] and is an elaboration
of a discussion with H.-T. Yau. In Theorem 3 we present a general strategy for
obtaining lower bounds on the spectral gap, which, we believe, could be of wider
applicability. On a more formal level the basic structure of this argument seems
to be present in all of the proofs of the existence of a spectral gap known to
me, both for quantum spin Hamiltonians and for the generators of stochastic time
evolutions of classical spin systems [30-33]. The work of Martinelli and Olivieri is
reviewed in [37]. In the case of stochastic dynamics of classical spin systems the
logarithmic Sobolev inequality plays an important role. It implies the exponential
decay of correlations (and provides an estimate on the gap) [34]. Proofs of the
logarithmic Sobolev inequality under a Dobrushin-Shlosman mixing condition and
related properties for classical spin systems are given in [38-41, 32]. The connection
with the spectral gap is discussed in [36]. We do not know of a useful analogue
of the logarithmic Sobolev inequality for quantum spin systems. There is, however,
a natural mixing condition (C3 and C37 in Sect. 2) that enters in our proof of the
existence of a gap.

Theorem 3 is formulated in a system-independent setting which does not explic-
itly refer to the one-dimensionality of the system. It also brings the proofs of [12]
and [14] closer together, retaining the best of both and at the same time making
them more transparent. The same theorem can also be used to give lower bounds
on the finite-volume gap in cases where the gap vanishes in the thermodynamic
limit. One then obtains a lower bound on the rate at which the gap vanishes. In
some cases the criterion for a non-vanishing spectral gap in the thermodynamic limit
that is contained in Theorem 3 can be shown to be sharp. We refer the reader to
Sect. 2 for a discussion of this general scheme and some related work.

The existence of a spectral gap in the generator of a classical or quantum spin
dynamics, is an important property with direct relevance for the physical behaviour
of the system. This is true for more general models than just one-dimensional quan-
tum spin systems. It is, e.g., a fundamental ingredient in all theories of the fractional
quantum Hall effect. (See e.g. the pseudopotential model of Haldane [42], and the
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work of Frδhlich and coworkers [43].) From the mathematical point of view there
are very few techniques available to prove the existence of a gap. Also for this
reason we chose to present the general strategy, employed in this work, in the form
of an independent theorem (Sect. 2), hoping that inspiration for a proof of the
spectral gap in other systems might be drawn from it.

In this paper we will be mainly dealing with a generalization of the so-called
Valence-Bond-Solid models [44] that we will call GVBS models. GVBS models are
special and one cannot expect them to reveal all properties that might be found in
more general models. However there are quite a number of aspects in which they
do provide new insight.

GVBS models are special, first of all, because their exact ground states can be
constructed in an explicit way. In general this is not possible for quantum spin mod-
els, not even in one dimension. Moreover they have a very simple structure which
is quite easy to picture and essentially involves only finite-dimensional objects. This
is closely related with another special property that the GVBS models share: the
energy is minimized locally in their ground states. This means that, from a certain
finite length on, the minimum energy per bond in a finite interval is the same as
the minimum energy per bond for the infinite system. On the level of the states
this property is reflected in the fact that the finite volume ground states coincide
with the restrictions to that finite volume of the infinite volume ground states. One
can argue that for a generic (non-GVBS) interaction, the energy is not minimized
locally. This is due to the non-triviality of the state extension problem for quantum
spin chains [45].

Let us now look at what makes the GVBS models and their ground states
interesting objects to study. As mentioned above, the first rigorous proof of the
properties of the Haldane phase [46, 47] (in particular the existence of a spectral
gap) was given by Affleck, Kennedy, Lieb and Tasaki in a particular spin-1 VBS
chain [12, 11], which is by now called the AKLT-model, and it is fair to say that it
served as a paradigm for many of the subsequent studies on massive quantum spin
chains. In that paper the authors also gave a detailed analysis of some other VBS
models [48-54], which had been studied in the literature before, and thus introduced
a new class of quantum spin Hamiltonians for which exact ground states with non-
trivial properties can be constructed. Since then various other VBS models were
introduced [15, 44, 55-57], including some interesting two-dimensional models [58-
64]. A rather detailed analysis of correlation functions in a class of GVBS chains,
including inhomogeneous ones, see [65, 66]. In [14] the authors give a definition of
Generalized Valence Bond Solid states (starting from a proposal for the construction
of Quantum Markov Chains by Accardi [67, 68] and their analysis leads to a wide
variety of VBS-type models. In particular the Generalized VBS models and the
construction of their exact ground states does not rely on invariance under SU(2) or
SU(N) or any other symmetry group, as was the case in all previous constructions.
We will review this construction in a simplified form below. In [69] it is shown that
this construction generates a weakly dense subset of the set of ergodic states. The
paper [14] is strongly concentrated on models with a unique ground,state. Here our
aim is to extend the basic construction of GVBS Hamiltonians to the case where the
ground state degeneracy is arbitrary but finite, and to give a proof for the existence
of a spectral gap in that case. This is probably the most general situation where
there is indeed a gap in one-dimensional GVBS models. One can show that the
degeneracy of the ground states for a GVBS model (as defined in [14]) is either
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finite or grows exponentially fast with the volume, see [13]). We exclude this case
from our discussion here.

In this paper by a Generalized VBS-model (GVBS-model) we mean a one-
dimensional model with a translation invariant or periodic interaction for which
there exists a non-empty finite set of ground states that minimize the energy lo-
cally on some finite length scale and that all the states in this set can be obtained
by the generalized VBS-construction given in [14, 70], where they are called purely
generated C*-finitely correlated states. Here, we prefer to start from scratch and in-
troduce them in a way that is as close as possible to the traditional VBS-construction
as it is known in the literature (see e.g. [11]). In fact this alternative description
was already given in [14]. There exist models that satisfy our working definition of
GVBS-model - for which the main justification is that it defines the class of models
for which our theorems apply - in all respects except for the fact that the number of
their zero-energy ground states is infinite and in particular contains non-translation
invariant states. The general results presented in this paper do not apply to such
models. In some cases they are not expected to have a gap [55], in other cases one
can still show that there is a non-vanishing gap [71, 72].

Before stating the two main theorems of this paper we now review the GVBS-
construction and introduce the necessary definitions and notations.

We label the sites in the chain by integers i £ TL and with each site we asso-
ciate a copy of the finite-dimensional Hubert space (Cd

9 which we denote by 3tf /
whenever its location in the chain is relevant. So, if one is to consider a chain
of spin s variables one has to take d = 2s -f 1. For any finite set A C 2, define
3tfA = ®i£Ajj?i. Let k ^ 1 be an integer and W a linear map: <Ed —> <Ek 0 C*, and
let φ be a unit vector in <Ck 0 <C*. For any finite interval [M,N] C 2 we can define
a state for that finite piece of the spin chain by giving its expectation values for
all observables of the form A = A\ ® ®An, where for all i,M ^ i ^ N, Aj is a
d x d matrix with complex entries (e.g. a spin matrix located at the site ί). In this
paper, states (expectation values) are usually denoted by ω and scalar products by
{ I ). The expectation value of A is now defined by:

(φ®N-M+2\(e* (g) WAMW* <8> ® WANW* ® eβ)φ®N~M+2) f Λ Λ N
a)[M,N]t*,β(A) = — , (1.1)

where Jf is the normalization factor and e% and ββ are two non-negative definite
k x k matrices that play the role of boundary conditions. It is implicitly assumed
that the expression is not identically vanishing (e.g. W should be different from
zero). It can be shown that for any choice of ea and ββ there exists an integer
p ^ 1 such that for all A the limit

ωα,^(v4) = lim oo[pM^pN]Λβ(A)
^ M-+-oo,N-++00 LF ^ J F

exists and results in a well-defined state of the infinite chain. Typically, the state
ω^β is then /^-periodic, i.e. invariant under translations in the chain over distances
that are multiples of p. We will see in Sect. 3 how to determine the possible values
of p and also how the limit points can be described in a simple way. Sometimes it
is convenient to regroup the chain, i.e. to partition the chain into intervals of length
p, and to consider it as a new chain where the elementary sites are now groups
of p consecutive sites in the original chain. This is also a method to construct p-
periodic states. All states of the chain obtained by the construction (1.1), possibly
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after carrying out a regrouping of the chain first, will be called Generalized Valence
Bond Solid states (GVBS states). As an example one can think of the AKLT model.
There d — 3 and k = 2, and W identifies the space C3 with the subspace of (C2 ® (C2

(where the two C2 are carrying a spin |), which corresponds to total spin = 1.
By an interaction of range / for a quantum spin chain we simply mean a self-

adjoint element h G (^ί/)Θ/. In this paper we will always assume that h is non-
negative definite, which, by itself, is no restriction because additive constants only
change the value of the ground state energy but not the ground states of the model.
The Hamiltonian for a finite piece of the chain, say the interval [M,7V], is given by:

N-l+l

H[M,N] = Σ hi •>
ι=M

where ht is a copy of h located at the sites /,/' -f 1,..., /' + / — 1 of the chain.
Here we are interested in situations where there exists at least one state ω of the
infinite chain such that ω(ht ) = 0 for all i G 2, which, as was mentioned before,
really is a rather special property. For a further discussion of models where this
property is satisfied and a general theory about the set of ground states of such
models as well as some non-GVBS examples, see [73]. For a given h, denote the
set of all zero energy states of the chain by J^, and let us call this set the set of
ground states of the model. It is obvious that J^ is a face: if three states of the
chain ω,η\ and 772, satisfy the relation ω = tη\ + (I — i)r\ι for some t G (0, 1), then
ω G ̂ h ̂  n\^2 £ ^h- The different ground states of the model (in the conventional
sense) are the extreme points of J^, and they are pure states.

It can be shown that any GVBS state as defined above is a convex combination
of a finite number of pure states that are necessarily also GVBS states: i.e. for any
GVBS state ω there exist a finite number of pure GVBS states ωα,α — !,...,« and
real numbers ία > 0, Σα fα = 1> such that ω = ]Γα4ωα. For a GVBS state ω we
will denote by ^ω the set of all convex combinations of the states ωα that make up
ω: ^ω — {η = Σαsαωα \ s% ^ 0, Σa

sy = 1} In other words ^ω is the smallest set
of states of the chain which contains ω and has the property: for any three states
η,η\,η2 of the chain, if there exists a t G (0, 1) such that η = tη\ + (1 - f)*?2, then
η G J^ω <£> ηι and η2 G ^ω.

It is also known that for any finite set of GVBS states ωα, any convex com-
bination ω = ̂ α ίαωα is again GVBS. For a proof of these facts we refer to [14]
and [70].

Above we were considering states ω of the infinite chain. They are in one-to-
one correspondence with a family of density matrices, one for each finite piece of
the chain. We will denote by P[M,N] me density matrix in (Jίd)^N~MJr{^ such that
ω(A) = tr p[M,N]A for all observables of the interval [M,N], i.e. linear combinations
of tensor products AM&--&AN. The subspace of (C®(jV~M+1) spanned by the
eigenvectors of p[M,N] belonging to the strictly positive eigenvalues, will be denoted

and will be called the local support spaces of ω. Obviously,

The main body of this paper is devoted to the proof of the following two
theorems.

1. Theorem (Existence of GVBS Hamiltonians). For any GVBS state ω there
exists a finite range interaction h, say of interaction length /, i.e, 0 ^ h G (^ί/)Θ/,
such that J^/7 = 3?ω and for all intervals [M,N] such that N — M ^ /, one has
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keτH[MtN] = &[M,N], where H[M,N] = Σ)i=M+1 A, and the <S\M^\ are the local sup-
port spaces of ω.

In particular we can take for ω a convex combination of any finite set ω\9...9ωn

of pure GVBS states. Theorem 1 then says that there exists a finite range Hamilto-
nian such that the set of infinite volume ground states of the Hamiltonian exactly
coincides with the set of all convex combinations of the pure states ω\,...,ωn. As
the set of all pure translation invariant GVBS states is *-weakly dense in the set
of all translation invariant states [69], Theorem 1 implies that any possible local
behaviour can be approximated arbitrarily well by a GVBS model. In particular we
can construct GVBS models with any possible kind of discrete symmetry breaking
(see the discussion in Sect. 5).

2. Theorem (Existence of a Spectral Gap). Let h be a finite range interaction
such that there exists a GVBS state ω with the property that ^ω = J% and
such that keΐH[M,N] = &[M,N] far all integers M and N such that N — M is large
enough. Then there exists a constant y > 0 such that for all intervals [M,TV] C H
one has that the second lowest eigenvalue of H[M,N] is at least y (the lowest eigen-
value being Q). Moreover for any pure state η 6 ^"ω, and any local observable X
such that r\(X) = 0, one has

lim η(X*[H[M,N],X]) £ γη(X*X).
M,N—>±00

For an explicit value of y, i.e., a lower bound on the gap, see Sect. 6.
It is important to note that the property ̂  = ̂ ω does in general not imply

that ker//[M,#] — ^\M,N\ for all integers M and TV such that TV - M is large enough.
Indeed sometimes the latter property is absent and then there might be no gap
directly above the ground state in the infinite volume model (see Sect. 7, Example 3).

From the technical point of view the crucial new ingredient needed for the proof
of both Theorem 1 and Theorem 2 is Theorem 5, which proves the intersection
property of the local support spaces of GVBS states. In [14] this property was
proved for pure GVBS states. The extension to general GVBS states turns out to
be rather nontrivial. The main element that was missing until now is the strong
disjointness property of distinct pure GVBS states given in Lemma 6.

2. Lower Bounds for the Spectral Gap - A General Strategy

In this section we present in the form of a simple theorem a general strategy to
obtain lower bounds for the gap in the spectrum of the generator of a class of spin
dynamics. The basic argument, or ideas similar to it, has been used for analyzing
irreversible time evolutions of classical spin systems [30-33] as well as in the study
of the gap above the ground state of quantum spin Hamiltonians [12, 14]. Theorem
3 below is essentially an elaboration of a discussion with H.-T. Yau, who explained
to the author his work with S.-L. Lu on the spectral gap in the generator of the
Glauber and Kawasaki dynamics for Ising models.

The importance of having good estimates for the spectral gap is obvious: In the
classical case the gap determines the speed with which the dynamics (see [35] for
a precise statement) drives the system toward equilibrium. For quantum systems the
essential features of the low-temperature physics are determined by the low-lying
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energy spectrum, in particular the gap between the ground state energy and the first
excited state.

The general strategy, as it is described below, works only for models where
the local terms in the generator of the dynamics are minimized individually in
the reference state (see condition C2). For many quantum spin Hamiltonians this
condition is not satisfied. We might hope, however, that once the existence of a
spectral gap has been established for special models, perturbative methods could be
developed (for some first steps in this direction see [74-78], which would enable
one to show the existence of a spectral gap for a much wider class of models.

We have in mind the usual setup where a translation invariant model is de-
fined by a net of local Hamiltonians HΛ indexed by finite volumes A c TLd , acting
on Hubert spaces #C A. As we are interested in the behaviour of the spectrum in
the thermodynamic limit, we introduce an increasing sequence of finite volumes
{Λn}n£w, such that any finite volume is eventually contained in the Λn, and with
the convention that ΛQ = 0. For the one-dimensional GVBS models, which are the
main object of study in this paper, the typical choice for the Λn would be an in-
creasing sequence of intervals of the form [!,/?«] for some fixed integer p. We will
always assume that local Hamiltonians HΛ are defined at least for all volumes of
the form Λn\Λm for all m ^ n. Typically they are given by

HΛ= Σ hx,
x,S+xCΛ

where hx denotes the translate over x e Hd of an self-adjoint interaction operator h
acting on J^S For a one-dimensional model with a nearest neighbour interaction,
S consists of just two sites, say 0 and 1.

For the theorem of this section only three conditions are needed. These conditions
are stated as Cl-3 below. They do not explicitly refer to the one-dimensionality or
even translation invariance of the models. But, as was mentioned before, one should
expect their verification for some suitable sequence Λn, in particular of condition
C3, to be highly non-trivial in general. We will formulate the conditions first and
then discuss their importance. In the case of GVBS models conditions Cl and C2
are automatically satisfied and for GVBS models with a unique ground state the
proof of the C3 is contained in previous work [14].

Each of the assumptions involves some finite length /. We will assume that
C1-C3 hold for one and the same / ^ 1.

Cl There is a constant dι for which the local Hamiltonians satisfy:

0

Often there will be an integer r - which we can interpret as a measure of the
range of the interaction - such that for all / ^ r and N large enough, there is a
constant J/ for which (2.1) holds. For a translation invariant one-dimensional system
with an interaction of range r and Λn = [ l , r i ] , one could simply take <// = / - r -f 1.
Sometimes it is convenient to choose Λn = [l,pn], with p ^ 2. If p ^ r one can
take dι = I.

C2 We assume that there is a non-trivial subspace <&Λn of ̂  An consisting of all
vectors ψ such that HΛ$ — 0. For any finite volume A C AN we denote by GA the
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orthogonal projection onto the space ^ Ά 0 ^f ΛV\Λ The local Hamiltonians have a
non-vanishing spectral gap y/ > 0:

#ΛVin-/ ^ 7/(l ~ GΛ.U,-/) for all n^nl9 (2.2)

where «/ is some appropriate constant. In the case of one-dimensional systems with
interactions of a finite range r one could take «/ = / ^ r.

By convention we put GΛO — G0 — 1, and GΛV +, = 0. Note that GΛ and GA>
commute if either Λf C A (in which case GA> — GA>GA — G^G^1) or A' Γ\ A = 0
(in which case GA*GA = GA\JΛ') It follows that the operators En, n = Q,...,N9

defined by
En = GAtt-GAlHl (2.3)

form a complete family of mutually orthogonal projections, i.e., Y^=QEn = 11 and
p 77 — λ F
^n^m — un,mj-'n

The third condition is the crucial one in the present context. We present two
versions of it, C3 and C3'. The conditions Cl-3 are sufficient for the existence of
a uniform lower bound on the spectral gaps of the local Hamiltonians, but when
C37 holds better explicit estimates for the spectral gap can be obtained. In the latter
case Cl should also be replaced by Cl' stated below.
C3 We assume that there exist ε/ < I/A// and an integer HI such that

l |GΛ + l U f + 1_Λll ^ £/ for all *,/!/ ^ * ^ tf - 1 (2.4)

or equivalently

C3' There exist constants «/, and ηι < l/λ/2 such that

\\GAa+p\Aa+i-,E(np}\\ ^ nι for all 1 ̂  p ^ /, n ^ m and / ̂  /0 , (2.5)

Cl7 There is an integer r - which we can interpret as a measure of the range of the
interaction - and a constant d such that for all / ^ r and Λf = IM large enough,
the local Hamiltonians satisfy:

0 ^ Σ^Λ/i/..-., ^ ̂ , (2.6)

For a translation invariant one-dimensional system with an interaction of range r
one can simply take d = 2.

3. Theorem.

i) Assume that the conditions Cl-3 are satisfied for one and the same integer L
Then, for any N and any ψ E J^AM sucn that GAN^ = 0, i.e., ψ is orthogonal
to the space of ground states of HAN, one has
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ii)// CΓ, C2, and C3' hold, then for all N = IM,

The proof of this theorem is rather elementary. Of course all essential information
is hidden in the conditions Cl— 3.

Condition Cl is a simple assumption on the (quasi-) local structure of the Hamil-
tonians and the structure of the sequence An . It is trivial for one-dimensional systems
and Λn which are intervals increasing in a regular way.

Condition C2 restricts the applicability of the method to models where the energy
is minimized locally. It is a non-frustration condition (see [45, 73] for a discussion).
For quantum spin models this is the case for "purely ferromagnetic" interactions (but
then, as is shown below, C3 is not satisfied uniformly in N because of the breaking
of the continuous rotation symmetry), and the models of the Valence-Bond-Solid
type studied in [12, 14]. It is an interesting open problem to prove the existence of
a gap under weaker versions of C2, e.g. where one controls the corrections to local
energy minimization.

The hard work is to check Condition C3 or C3'. C3 plays the role of a mixing
condition similar to the Dobrushin-Shlosman condition for ergodicity. It is a well-
known fact for the conditional expectations in the Gibbs state of a one-dimensional
classical spin system with finite range interactions, and one would expect it to be
generally true also for the ground states of quantum chains under the assumption
that there is sufficient (exponential) decay of spatial correlations.

The operators En defined in (2) are "conditional expectations" in the ground
state. In a model where the energy is not minimized locally, one could still define
the En using the local restrictions of an infinite volume limit of the local ground
states. But then, generically, C2 cannot be expected to be satisfied. When studying
a stochastic dynamics for a classical spin model, one would define them to be
conditional expectations in the equilibrium state (see e.g. [32]).

Note that GΛπ^\An+l_,En = GΛ^\Λn^_lGΛn - GΛ/ι+]. In the case of pure GVBS
states, norm bounds on this quantity are available from [14], where it is shown that
there exist constants c ^ 0 and 0 rg λ < 1 such that

I _|_ C)J
\GΛGΛΛ__ - GΛ\\ ^ cλl .

Λtt+} _

In this paper the main effort of proving the existence of a spectral gap consists
in showing that (2.5) holds with an ε/ < \l\fl for all large enough n (Sect. 6).

Proof of Theorem 3
i) From the definition of the En (2.3) and the assumption that GANΨ — 0, it imme-
diately follows that

Ψ = ΪW > (2-7)
Λ=0

and the fact that the En are mutually orthogonal projections implies that

= Σ l l 2 (2-8)
Λ=0
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Define Gnj = GΛn+l\Λιι+l_l for n ^ «/ and for convenience put Gn,ι = 0 for n < n/.
Due to (2.7) one has the identity

1 - Gn,/W> 4- <A I ΣEmGnJEnψ . (2.9)
\ m=0 /

Because GA and GΛ/ commute if either Af C A or Λ' Π Λ. = 0, also £m commutes
with Gn,/ if either w ^ w — / o r w ^ w H - 1 . In these cases EmGnjEn = GnjEmEn =
0, because the En form an orthogonal family. Using this observation we obtain the
following estimate from (2.9). For any choice of constants cι,c2 > 0:

/ n \

\\Enψ\\2 = ( ι l / \ ( l - G n j ) E n ψ ) + ( Σ Emψ\GntlEnφ)
\m=n+\-l j

^ l-cλ(ψ I (1 - GnJ)ψ) + γ(</Ί Enψ} + ^-(ψ I EnGn,,Enψ)

(2.10)

where we have applied the inequality

\(φι

for any c > 0, to both terms. The first term in the right side of inequality (2.10)
can be estimated with the Hamiltonian due to condition C2 (2.2). To the third term
we apply condition C3 (2.4). It then follows that

c\yι

We now sum over n, use (2.8), and apply condition Cl (2.1) to obtain

Finally put c\ ~ 1 — ε\\Γl and c2 = ε//V7 and one obtains the estimate i) stated in
the theorem.
ii) In order to obtain the improved estimate under condition C3X (2.5), one just
applies i) of above with / = 2 and with a "rescaled" increasing sequence of finite

volumes Λn, defined by
An = Λin ,

and by using Gnj = G^ Λ A _ \ instead of G W } /, and the obvious relations ήk = ε/#,

yk = yιk. D

For the GVBS models it is easy to show (see the proof of Proposition 10 in
Sect. 6) that a uniform lower bound on the spectral gap of the finite-volume Hamil-
tonians implies the existence of spectral gap - bounded from below by the same
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lower bound - in the thermodynamic limit, i.e., in the spectrum of the Hamiltonian
in the GNS representation of one of the finitely many pure infinite-volume ground
states. The same relation holds for any model with finite range interactions and for
which the infinite volume ground states can be obtained as limits of finite volume
pure ground states. The proof of Theorem 2 is therefore reduced to showing that
the conditions Cl-37 hold for the GVBS models under consideration.

We conclude this section with some remarks on the quality of the lower bounds
for the gap that are obtained in Theorem 2. At the same time we will illustrate with
an example that one can also use these estimates in situations where there is no gap
in the thermodynamic limit. The simplest example of this situation is the spin- 1/2
Heisenberg ferromagnetic chain. In this case Theorem 2 still gives a lower bound
for the finite volume gaps which is the correct order of magnitude as a function of
the size of the finite system.

The Hamiltonian of the spin- 1/2 Heisenberg ferromagnetic chain of length N + 1,
which acts on ((C2)WV-H)? can ^e written as follows:

where ΓM+ι is the permutation operator that interchanges the states at sites / and
i + 1 . From this formula for the Hamiltonian it immediately follows that the ground
state projection for an interval [α, b], G[aj>]9 is the orthogonal projection onto the

space of permutation symmetric states. For M = \9...,N, define ε2 by

—

Theorem 2 i) and the remarks above imply that the gap yN of HN satisfies

JN ^y 2 ( l-ε 2 Λ/2) 2 , (2.11)

where
ε2= sup εf>.

72 is the gap of ^(fl — T^i+\) which is 1. A straightforward spin-wave upper bound

for the gap for large N is yN ^Constant/TV2. The bound (2.11) yields non-trivial

information only if ε2 < l/λ/2. On the other hand any ε2 < l/\/2 uniform in TV
would imply the existence of a spectral gap in the thermodynamic limit. The fol-

lowing lemma shows that, in general, this critical value of ε2 = l/Λ/2 is optimal.

4. Lemma. For the spίn-112 Heisenberg ferromagnetic chain on an interval of
length N -f 1, N ^ 2, we have

Proof. Observe that G[M,M+i]G[i,M] an(^ ^[i,M+i] commute and that

can therefore be computed as

sup
φ
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where the sup is taken over Qή=ψ such that G[\^+\]Ψ = 0. Obviously it is sufficient
to consider ψ satisfying G[\,M]Ψ — Ψ Due to the SU(2) invariance of all operators
we can conclude that the sup must be attained for the vector

where S^y = Dy - Dx and Dz = S~ \ all up), for z = 1, . . . ,M + 1. We then just
have to compute G[M,M+i]Ψ'-

1 M-\
φ = G[M,M+i]Ψ = r(M - l)(DM + DM+l) - Σ Dx .2 x=l

It is then trivial to verify that \\ψ\\2 - M2 +M and \\φ\\2 = (M - l)2/2 + (M - 1).
Hence

As ε^ ) is monotone increasing in M its supremum, ε2» is attained in M = TV. D

Note that the gap estimate (2.11) for finite volumes is of the same order in N
as the upper bound from spin waves. Estimates of the number of low energy states
in the Heisenberg and other models are given in [79]. In Sect. 6 we will compare
the lower bounds on the spectral gap of GVBS models that follow from Theorem 3
with previous work on GVBS models.

3. Some Basic Facts on Pure GVBS States

Here we collect the basic properties of pure GVBS states that we will need in the
sequel. Proofs can be found in [14]. For a review on GVBS states see [80].

Throughout this section ω is a pure, translation invariant state of the infinite
chain. Let Jtf / ^ (Cd denote the Hubert space at a site / G 2, and for any finite
subset A C 2, we define 3tf A = (£)7eyl JΊft. In particular, for M ^ N e 2, J4?[M,N]

denotes the state space of a finite piece of the chain of length N — M + 1. For
convenience we put Jf70 = (C, and for any Hubert space J^, we will identify (C ® ffl
and J^ 0 C with ffl itself. Let M^ denote the complex d x d matrices.

Suppose ω is a state obtained by the GVBS construction as outlined in Sect. 1,
i.e. there is a k ^ 1, a linear map W : €d -+ €k 0 <C*, and a vector φ G <C* 0 C*
such that

ω(A\ ®

(φ®N~M^\PM.N ® W\dW* ® WAλW* \
— lim

yK(M, N)

(3.1)

where 0 rg PM,N,QM,N € ^k are chosen in one of the possible ways to obtain a
well-defined limiting state ω. It is then shown in [14] (Lemma 3.5 combined with
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Propositon 3.7), that without loss of generality we can assume that the following
equations are satisfied:

= lk (3.2a)

and
= ίk , (3.2b)

where Φ is the map Ji^ <8> ̂  — » C defined by Φ(JJf) = (</>Mfy>} and id^A de-
notes the identity map of Jt^ i.e. id///A(JΓ) = Jf. This means that for a given state
ω we can redefine our objects, such that JV = 1 and PM,# = QM,N — $k and such
that moreover the limit in (3.1) becomes redundant: one can take [M,N] — [1,«] to
calculate the correct expectation value of A\ ® ®An in the thermodynamic limit:

It is also useful to define for all A G Jίd the operator E^ : M^ — >• ^^ by:

EX*) = (id!*, ΘΦX^JF* Θ B) , (3.3)

and a state p of ̂  by: ρ(B) — (φ 1̂  ®Bφ). (3.3) then becomes

ω(Λι ® ΘΛ Π ) = p(ΈA, o - . - o EΛOU)) - (3.4)

Instead of (3.3) we can as well write:

Έ,A(B)=V*A®BV (3.5)

with V : <C* — > (Cd 0 C^ another isometry. It is obvious that many choices of k, W
and φ, even under the restrictive conditions (3.2), will lead to the same state ω.
In particular, if ω can be constructed with some W : C^ — » C^ 0 C*, then, by a
trivial extension of the maps, we will also have representations of ω with maps
JF; : (£d — > C '̂ (g) C '̂ with kf > k. A possible way to express that the dimension
k is as small as possible for a given GVBS state, is the following. Consider the
subalgebra Si of M^ generated by the elements of the form IE^, o o E^H(IU),
where n ^ 1, and A\,...,An £ ,/C/. Then let &0 be the smallest integer such that ̂
can be faithfully represented as a subalgebra of Jt\^. The minimality condition we
need is A: = k$. Under this condition it can be shown that the objects that appear
in the GVBS construction are uniquely determined by the state ω up to unitary
equivalence ([14], Theorem 1.3).

The states obtained by (3.1) are not necessarily pure, i.e. they may have non-
trivial decompositions into other states. A very tractable characterization of the purity
of ω, is given in terms of the transition operator P = Ej. IP is a completely positive
transformation of Jίk, and (3.2a) just says that P(1U) = 1*. These two properties
make P a Markov operator (i.e. P is the straightforward generalization of a Markov
operator to the non-abelian context [67]). P governs the ergodic properties of the
state ω. It turns out that under the minimality condition stated above (k = &0), ω is
pure iff F(^Γ) = λX with \λ\ = I => λ = I and X a multiple of fl&: i.e. the peripheral
spectrum of P consists only of the non-degenerate eigenvalue 1 (for a proof of the
if-part see [14], Propositon 5.9; for the only-if part see [70] , Theorem 1.4). So we
have a very simple criterion that tells us exactly when ω is a pure state. For pure
GVBS states very detailed results are obtained in [14]. In particular it follows that
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there always exists a translation invariant finite range interaction such that ω is the
unique ground state of the corresponding model and such that the Hamiltonian has
a spectral gap above the ground state. Let us go step by step and list the essential
properties of pure GVBS states that will be used in the following sections with
the aim to extend essentially these same properties to GVBS states that are not
necessarily pure.

Let again P[M,N] t>e me density matrix describing the pure state ω restricted to
the interval [M,N]. Then there are k real numbers, p\ > 0, . . . , pk > 0, such that the
non- vanishing spectrum of P[M,N] is asymptotically equal to {pipj \ 1 ^ i,j ^ k} in
the limit N - M — > oo. The relevant property which follows from this observation
is that

jnyspec(p[Af,Λπ) \ {0}) > 0 . (3.6)

Define
m0 = mf{m ^ 1 | dim%w] - k2} , (3.7)

then one can show that dim [̂M, TV] = k2 for all M,N such that N — M ^. WQ— I.

For N — M ^ mo — 1, let ι/{7 ' denote a set of normalized eigenvectors of P[M,N],
belonging to the non-zero eigenvalues. For any local observable A we then have:

M\™±Jlft>N\AlftN) = ω(A)δi,kδj,, . (3.8)

One can also show that if ω and η are two different pure GVBS states of the same
chain, and with local support vectors ψ^N and χ^jN respectively, then for any local
observable A:

lim <# Ί4£i">=0. (3.9)
M,N — >±oo J '

We will give a proof of this property in Sect. 4 (Lemma 6). The orthogonal projec-

tion onto the subspace &[M,N] of $f[M,N] spanned by the vectors ψff'N will be de-
noted by G[M,N]> The spaces &[M,N] satisfy a nice intersection property: there exists
an integer /0 ^ 1 such that for all / ^ /0 and all M,N G TL such that N - M ^ /
one has

N-M-l+l

] (3.10)

Here /o can always be taken to be equal to m0 + 1, with m0 defined in (3.7). In some,
but not all cases. (3.10) also holds with / = mo. The following equivalent form of
(3.10) is sometimes useful: for all / ^ 70, all a,b,c £ 2 such that a ^ b,b -f / ̂  c,
one has

Π ^[fl,fc] ® %+l,c] (3.11)

The intersection property is closely related with the existence of finite range inter-
actions for which the state ω is the unique ground state. Let p ^ 1 be a regrouping
parameter and take / such that pi ^ /o — 1 4- p. Let h £ (J^^Y1 be a non-negative
definite observable such that ker/z = ^[i,p/j. Define local Hamiltonians for the re-
grouped chain by:

N-l+l

H[pM,pN]= Σ hpi* (3.12)
i=M
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Then

(3.13)

for all M9N such that N — M ^ /. This we call the ground state property of ω.
Moreover for two such Hamiltonians H and //', obtained by interactions h and
hr of ranges pi and ///', there exist constants C\ > 0 and C2 such that for all
intervals [M,N], N -M large enough and compatible with the periodicity of the
Hamiltonians:

C\H[M,N] ^ H[M,N] = C2ff[M,N] - (3-14)

We will also need the following property of the ground state projections G[M,N]'
there exists a C > 0 and a 0 ^ λ < 1 such that for all / ^ /0, a,b,c G 2, 0 ^ 6,
b + I ^ c, one has

l|G[fl,c] - (c?[fl,*+/] ® ι[6+/+1,c])(i[fl,6] 0 σ[6+lfC])|| ^ α'. (3.ιs)

We call this the commutation property of the ground state projections. Indeed (3.15)
implies that the ground state projections for two intervals that have a large intersec-
tion, almost commute. This property is related with the "good factorization property"
proved in [81] for GVBS states and similar to the factorization property for some
classical partition functions, given in [82].

Finally, for any choice of Λ, the Hamiltonians H[M,N] defined in (3.12) have a
non-vanishing spectral gap: there exists a constant 7 > 0 such that for all intervals
[M,N]:

(H[M,N])2 ^yH[M,N] ^ 0 . (3.16)

For GVBS models, (3.16) implies a gap of at least y in the spectrum of the GNS-
Hamiltonian of the infinite system.

4. The Intersection Property of GVBS States

The aim of this section is to extend the intersection property (3.10), or equivalently
(3.11), to arbitrary GVBS states, i.e. dropping the condition that they are pure. This
property will be essential in the proof of Theorem 1 and Theorem 2. We believe that
under the condition that the dimension of the support spaces of the local restrictions
of the ground states is bounded (or approximately bounded), the intersection property
actually implies the existence of a spectral gap by itself, whether the ground states
are VBS-like or not. In the next section we will prove that for a GVBS state the
intersection property is equivalent with the existence of a finite range interaction
giving rise to (3.13) (the ground state property).

5. Theorem (Intersection Property). Let ω\9..., ωn be n distinct, pure GVBS states
of a quantum spin chain. Then, the support spaces $Ά of any state ω which is
a convex combination of the ω\9...9ωn, have the intersection property, i.e., there
exists a constant m§ such that for all l,m,r satisfying I ^ l,m ^ mo, and r ^ m
we have
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The proof of this theorem follows from the intersection property of pure GVBS
states (3.10), an orthogonality property of pure GVBS states proved in Lemma 6,
and Proposition 7. Proposition 7 itself does not involve the GVBS nature of the
states directly. It is a purely geometric property of the support spaces.

In the considerations that follow the notion of overlap between Hubert spaces
will play a crucial role. For any two subspaces J^o and ffl\ of a Hubert space Jf7,
we define the overlap as follows:

= sup

The overlap is the cosine of the angle between the subspaces. The following pro-
perties of the overlap are elementary:

ii) 0(Jf0,^ι) < 1 if and only if J f Q Γ ί J ^ ι = {0}.
iii) 0(^o, W\ ) = 0 if 2tf o _L $eλ .
iv) If &C C ffl' , then the overlap remains unchanged if #? 0 and Jfi are now con-

sidered as subspaces of ffl ' rather than of ffl .
v) For any Hubert space Jf , consider the subspaces J^o 0 «#* and ^\ ® tf of

JT 0 jf again the overlap is unaffected: 0( Jf 0 Θ «?f , « ι̂ ® «#") = 0(«^o, ̂ i )•
vi)If ^QC^C^ and ̂  C Jf7, then

Using these properties of the overlap and the specific properties of the local
n

support spaces &*M,N] an(* ^[MN] °f two Pure GVBS states of the same chain, say
ωα and ω^, it is easy to show that for all /,m, r ^ 1:

and from the next lemma it follows that

lira sup (P(Srfι ι (B]>^f l ιMj) = 0 i fω.φωyj. (4.3)
m

6. Lemma. L^ί ω\ and 0^2 be two pure GVBS states of the same spin chain with
single-site Hilbert space Jf = <£d. Denote by ψWM and φ(M^ϊ any pair of non-
zero vectors in the range of the local density matrices of ω\ and ω2 respectively
(i.e., vectors in the local supports of ω\ and Cϋ2 on the interval [M9N] as defined
in (3.7)). Then, //ωιΦω 2 ,

for all local observables A.

We believe that this lemma can be proved using general disjointness and or-
thogonality properties of pure translation invariant states, without explicit reference
to GVBS states. The "proof by computation" below has the advantage that it also
shows how to compute the (in general non-vanishing) inner products of finite-volume
support vectors.
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Proof. Before we start developing the argument, we collect the properties of pure
GVBS states that we will need for this proof.

For / = 1,2 let ω/ be given in terms of an isometry Vl : C*' — > Crf 0 <Dkl (see
(3.5) and a kι x ki density matrix p,-, and assume that these generating objects be
minimal in the sense of [70] (see also Sect. 3). Then, it follows from [70] Theorem
1.5 that the maps defined by

(where, as before, Jίk denotes the complex k x k matrices) have trivial peripheral
spectrum, i.e., 1 is their only eigenvalue with modulus = 1 = ||PZ ||, and it is non-
degenerate. The corresponding eigenvector is 1 6 Jtk<> i e>

JPίOl) = 11 . (4.5)

The map Pz leaves the state pl invariant in the sense that

, (4.6)

and pi is the unique density matrix satisfying this equation. The pz are faithful states
([14], Lemma 2.5). In particular, pz is invertible.

The local support spaces of the state ωl (i.e., the ranges of the local density
matrices P[M,N]) are spanned by the vectors of the form

φ^- ^φ, <8>χf ) , (4.7)

n+l n

where n = N — M, χf,χf G (Ckl are arbitrary, φ/ G (Ckl x C^! is defined in terms of
pl (it is the GNS vector of the state pz; see the proof of Proposition 2.7 in [14]).
Wi : <Ckl (g) <Ckl —> C^ is defined in terms of p/ and F/. The crucial relation is

for all A G «/^/ and B G ̂ #7.
As the dimensions of the local support spaces are finite and independent of the

size of the interval (as long as the interval is large enough), we can suffice with

proving (4.4) for the spanning set of vectors of the form φ(M^> = Ω\N~M\χL,χR)

and Φ(M^ - Ω(

2

N~M\χL,χR), as defined in (4.7).
For simplicity let us first consider the case A — \ and put n — N — M. Then

— / Λ/ ̂  f\Λ f f \ . (\?\ . . . (<A ft"\ι\,χf) ΰt?\ύ,χl)} = (

Λ n+l

x #2 ^ ̂ 2 Θ 0 92 <8>*2} . (4.9)

Define a linear transformation Pj2 of Jtk\,k2>
 tne ^i x ^2 matrices, by

BeJ(kltk29 (4.10)
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where V\ and V2 are the isometries satisfying (4.8). The inner product (4.9) can
then be written in the form

(χ\ !Pί2((id®(χf I £))(WtW2)) χL

2).

in general the matix element between local support vectors of a local observable
A is of the following form:

{Ω'Λ/ί, χf ) AΩ^(χ^, χ*)) = Tr C*^"-' o F^ o F,"2(5)

for some C,B £ J/ί^j<^ where / is the length of the interval on which A acts non-

trivially, and ΈA is the linear transformation of .//A,, A, defined by

Έ(

A\B) = FΛ, o o W A l ( β ) , foτA=A{®. . <g>Λ,, Al9...,Aι <Ξ ,Md

and
WA(B) = V\A <g) BV2, A e Jfd,B G -/^A Ί ,A 2

The norms of the vectors Ω"\χL,χR) can be calculated in the same way:

It is straightforward to show from this relation that there are constants C\,Cι > 0
such that

C . I I / I I I I / H ^ |!Ω,('V,/)II ^ C2\\X

L\\\\χR\\ . (4.11)

See [14] for the details. Because of the bounds (4.11) and the considerations above,
the statement of the lemma will follow if we show that, if ω\ φoj2,

lim HPy = 0 , (4.12)
n— >oc

where || || denotes the usual norm of linear transformations IP of M^^ considered
as a Banach space:

We will make a convenient choice for the norm on -//A,,/O below.
When co i = co2 there is always a unitary U : (CA: — > C^ '1 such that

V2 = (*®U*)VιU . (4.13)

In particular k\ = k2. This is part of Theorem 1.5 of [70]. From (4.13) it follows
that, in the case ω\ = ω2, ^u(U) = U and hence ||Pι7

2|| ^ 1.
We now show that in general the spectral radius of Pι2 is ^ 1. More specifically

we show that | | IP i2 | | ^ 1 if we use the norm on ,//AΊ.A- > defined by the state p2

This follows from Schwarz's inequality and the properties of IP] and P2 F°r a^

G - ^ A , . A ^

^ Trp 2C*F,*F]C Tr/>2K2*(1 g B*B)V2

= Ίτρ2C*C Ίr p2B*B . (4.14)
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The last equality is obtained by using (4.5) for the map PI and (4.6) for the map
P2. Putting C = Pi2(£) in (4.14) yields

proving that indeed ||Pi2|| ^ 1.
When the spectral radius of Pι2 is strictly less than 1, we have that ||Pf2||

1/m < 1
for some large enough power m. In this case (4.14) follows and the lemma is proved.

When Pi2 has spectral radius = 1, we complete the proof by showing that one
necessarily has ω\ — ω2. In that case, Pι2 has an eigenvalue λ with \λ\ = 1, i.e.,
there is a Oφ# e Jtk\k sucrι tnat

JP12(B) = VΪ*(®B)V2 = λB . (4.15)

This implies HP2(B*B) — B*B by the following argument:

(4.16)

where for the first equality we used (4.6) for P2, and the second equality follows
from (4.15). Equation (4.16) can be written as

Trp2F2*(ll (8) £*)(!- V? Vι)(l ® B)V2 = 0.

This is the expectation of a positive operator in the faithful state p2, and hence

F2*(l Θ B*B)V2 = Pι2(£)*Pι2(£) - B*B .

The eigenvalue 1 of P2 is non-degenerate and therefore, by (4.5),

B*B = μJίeJΐk2 (4.17)

for some Oφμ G C. By interchanging the roles of ω\ and ω2 and observing that
^2\(B*) = λB*, the previous argument also shows that

BB* = μ'fle^, . (4.18)

Together (4.17) and (4.18) show that μ = μ' > 0 and that U = μ~l/2B is unitary.
In particular it follows that k\ = k2.

For the eigenvector U (or B for that matter) of Pj2 one has equality in the
Schwarz's inequality (4.14) with C = B = U, and therefore

for some complex constant μ" . As p2 is invertible this implies that there is a unitary,
which we again denote by U, which intertwines the isometries V\ and V2 in the
following sense:

It follows immediately that PI and P2 are unitarily equivalent and, by uniqueness
of the invariant state, also that p2 = U*p\U. It is then straightforward to check,
using (3.4), that ω\ = ω2. D

Consider any state ω which is a convex combination of states ω\9...9ωn9 i.e.,
ω = £ 1̂ t^ω^ with ία > 0 for α — !,...,«. Then, the local support spaces *& &
of ω will be given by: ^ Ά = V«=ι ̂ ' w^ere the ̂  are the support spaces of
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the ωα. The following proposition shows that the spaces ^ Ά inherit the intersection
property from the spaces .̂ The only extra property of the ̂  needed to prove
this is a certain estimate on the overlap between them. In particular the states are not
assumed to be GVBS states (it is an open question whether the intersection property
of its support spaces implies that a state is GVBS). The proof of the proposition
follows from two lemmas: Lemma 8 which gives two equivalent formulations of
the intersection property, and Lemma 9 which is an elementary inequality for the
overlap of a span of subspaces in terms of the overlap of the subspaces.

7. Proposition. For n ^ 2, let ω\9...9ωn be n distinct translation invariant states
of a spin chain, whose support spaces satisfy the intersection property (3. 10) for
some πiQ, i.e., for all l,m,r, I g l,m ^ ra0, and r ^ m :

(&[i,r] = #[/,«] ® #Wι,r]) n (^[/,o] ® %π) . (4.19)

Furthermore assume that for α φ /?,

Then the spaces $ Ά — V«=ι ^°Λ satisfy the same intersection property (4.19).

Proof. By Lemma 8 and property ii) of the overlap we only have to prove that for
all α,

α, \J
/?φα

where ̂  = (<S*M Θ Jf[jπ+ι,r]) V (jf[/>0] Θ »f l fΓ]), for α - l, . . . ,/ ι . As Jfα C
C ^^ W o j , and due to property vi) of the overlap, it is sufficient to prove

< 1

for all α = l , . . . ,n . This follows from Lemma 9 and the assumption on the mutual
overlaps of the ^\\^m^ stated in the proposition. D

A family of subspaces {^α} is called independent if for any ψ G Vα ̂  °f tne

form ψ = ΣX ψ* with ι/^α € ^α, one has ι/^ = 0 => ψa = 0 for all α or, equivalently,
if the decomposition ψ — ^αιAα is unique. The property of independence is also
equivalent with

^ Π V ^α = {0} for all j8 .

The following provides us with two equivalent formulations of the intersection
property.

8. Lemma. Let ^L,^M and 3tfR be Hilbert spaces and I an index set, and let
{^1M C^fL^^M\^eI} and {^MR C^M®^R\aeI} be two families of
independent subspaces. Then the following three properties are equivalent:

ii) ((^ ® ̂ ) V (^L 0 ^)) Π VαΦ/K^LM ® ̂ Λ) V (̂  0 ̂ ) - {0} /or all
βei.
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iii) The subspaces (^LM ® J^R) V (JVL ® ̂ MR) of 3tfL <8> <^W ® «#* tf/so form an
independent family.

Proof.
i) =»• ii) Define for all α the space ^W ^Y

^M* = (^M ® *R) n ( Jf i

Take any /? G / and any

Then there exist ι/>/M 6 ^M ® -̂  and ΨMR ^^L® %MR, for all α € /, such that

Ά = </4 + lC = ΣαΦ/5 CM + •/&• P^ I = -C + ΣαΦβ CM = iC - Σα + /J &'

Then obviously

and hence, by i), ξ e Vα^LM/? From me definition of the spaces ^M/? anc^ me

independence of either the ̂ M or tne ^MΛ ^ f°^ows tnat the spaces &1MR also
form a family of independent subspaces of Jf /, 0 Jf Λ/ ® Jf7^. Using this one im-

mediately concludes that in the decompositions ξ = Σα SM = Σα ^LA/Λ = Σα ^MΛ»
with ^M € <§IM ® Jf Λ, ξ^Λ G ^M/? and ξ^ G Jfjr <g> ̂ , one must actually have
ξ*M = ξ*MR = ξ^R for all α G /. Comparing the definition of ξ with the employed

decompositions of ψ we obtain \\ι = ̂ M + \j£R = -ξβ

LM + ξβ

MR = 0.
ii) = >̂ i) Now take

then has the decompositions \j/ = Σα ^M ~ Σα ΨMR->

e^LΘ^Λ for all α G / . For any 0e/, put ξ =
α

M. It is then obvious that

ξ e (̂  ® ̂ ) v (jf L 0 < )̂ n V (^α

and by ii) this implies 1/5̂  = \I$R. As j8 G / is arbitrary, we can conclude that
ψ G Vα^LM^ So, we have shown that

V ^M«
α α α

The opposite inclusion is trivial from the definition of the ^LMR>

ii) Φ> iii) This equivalence follows immediately from the remark preceding the
lemma. D

By property ii) of the overlap independence of a family of subspaces ^α is
equivalent with

\ \J <3Ϊ\ < 1 for all α .
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This inequality will hold when the mutual overlaps of the spaces ^α are sufficiently
small, as is shown in the next lemma.

9. Lemma. Let ^1,...,^ϊ be n subspaces of a Hubert space ffl. Assume

Then, if \\B\\ < 1,

< - (4.20)

where a £ IR/7 l is the vector with components ay_ — εn/I, α = l , . . . , « — 1, andB is
the (n — 1) x (« — 1) matrix with entries

In particular if all εα/? ^ ε ^ \/(n — 1) we have

n-\

(4.21)

α=l

εyn — 1

1 - ε(n - 2)
< 1 .

Proof. The proof is an elementary application of Schwarz's inequality. Let ψ.x e
^α,α,!,...,« be such that

We then have to prove that

As ||ι^Λ|| = 1 we have

<K

Using the definition of the matrix B we derive

n-\ n-\

As

α=l α=l

I I V-^W—1 i n

Λ-l

^ Σ l
αΦ)8,l

^ Σ «
α Φ A l

(4.22)

Combined with (4.22) this proves (4.20).
It is obvious that if all εαβ ^ ε, then \\a\\ ^ \/rΓ^~ϊ, and because 5 is symmetric

and has non-negative matrix elements, we also have

D
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5. Existence of GVBS Interactions: The Proof of Theorem 1

Recall that for a state ω of a quantum spin chain, J^ω denotes the smallest (w*-
closed) set of states of the chain that contains ω and that satisfies: for any three
states η,η\ and 772 of the chain such that η — tη\ -f (1 — t)r\2 f°r some t G (0, 1), one
has η G J^ω <̂ > 7/1 and //2 G JV Let 0 ^ /z be an interaction of range / and denote
by hj, i G 2, a copy of /z acting on the sites i,i + \,...,i + I — I of the chain. As
before, we denote by J^ the set of states η of the chain such that η(ht ) = 0, for
all / G 2. We also use the notation PΛ for the local density matrices of ω and the
spaces <&A

 as defined in Sect. 3.
Let hi denote the translation over i of a finite range interaction h ^ 0. From the

simple observation that

-
ker H[M,N] = Σ */ = Π ^ [M/-i] 0 ker h <, =A/

it follows that the spaces <& & have the intersection property (3.10) iff there exists a
finite range interaction h ^ 0 such that <& & — kerT/Λ for all finite intervals AC.H.
For the infinite volume states we have the following lemma.

10. Lemma. Let ω be a translation invariant state of a chain such that the local
support spaces Ή A of ω have the intersection property (3.10) for a certain ra0.
Assume in addition that there exists a constant δ > 0 such that for all M ^ Λ^ G
2, p[M,N] ^ δ on its support, i.e.

(5.1)

Then there exists a finite range interaction h G (^</)®w° such that J^ = J^ω.

Proof. Let /0 be an integer such that (3.10) holds. Define h as the orthogonal
projection onto ^^/0] Then h ^ 0 and ω(/zz) = 0 for all / G 2. For any η G J^ω

there exists a / G (0, 1) such that we can find a state ηf such that ω = tη + (1 — t)ηr .
It follows that η(ht) = 0 for all η G ̂ ω. Hence J^ω C JV

In order to prove the opposite inclusion, take η G ̂ . Then, by the intersection
property, we must have that for any finite volume A the restriction η^ of η is a
substate of ω^, i.e. there exists a constant C/iO/) > 0 such that

ΆA ^ CΛ(η)ωΛ . (5.2)

The condition (5.1) implies that CΛ(T/) can always be taken to δ~l, i.e. independent
of A and 77. It follows that there exists a t^ G [<5, 1], and a state 77^ such that

ωΛ = tAηΛ + (l-tA)ηΆ (5 3)

Choose a sequence of intervals A^ increasing to 2, such that lim/-^ tAl exists and
equals say /. Then ω = tη + (1 — t)η', where ηf = lim/ 77^ is well-defined because
of (5.3). As / ^ δ > 0 we can conclude that η G 3Fω. D

We now can complete the proof of Theorem 1 .
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Proof of Theorem 1. It follows from the decomposition theory of GVBS states
that any GVBS state can be decomposed into a finite number of ergodic com-
ponents, which are again GVBS states. So, if ω is a GVBS state, there are er-
godic GVBS states ωι,...,ω^ and convex combination coefficients ίi,...,^, such

that ω = ]Γ)f=1 ίzω/. Furthermore any of these ergodic GVBS states ω/ has a de-
composition into pl periodic states ω/^, # = ! , . . . , / ? / , with equal weights: ω / =

p~l J^fLj cθι,q. The states ωltq are invariant under translation over pt lattice spac-

ings: ω^q o τpι = ωz>9, and one also has that ω^q o τ\ — ω/5^+i(mo(iΛ). All the ω^q are
pure GVBS states. For a proof of these properties see [14], or for a more complete
account see [70] .

Let p be the least common multiple of p\,...,p^. Then all states ω^q are τp-
invariant. So, consider a regrouped chain where the sites correspond to intervals of
length p of the original chain. Now we are in a situation where Theorem 5 applies

with n = Σ^i Pi So, at the level of the regrouped chain we have the intersection
property for the ground state spaces ^^ of ω. By Lemma 9 this implies that there

exists the finite range interaction /z(/?) G (Jί®p)®m\ for some constant mo, such that

^ω — {n n(ώp) — 0 for all i G 2}. The condition (5.1) in Lemma 10 is satisfied

for GVBS states because of (3.6). Here h^ acts on the sites pi,pi+ l , . . . , / ? / 4 -
pπiQ 4- 1 of the original chain. This does not immediately yield a translation invariant
Hamiltonian for which the states ωΊ^ are the ground states. But the interaction can
be made translation invariant by defining

Observe that due to the translation invariance of ω we have:

ω(A f )= Σ(ωoτ g)(A^) = 0.
?=o

Hence also ω/^(/z) = 0 for all / = \9...,k and q — ! , . . . , / > / . So we conclude that

^ω C .^Λ. As h ^ h(p} we certainly have ^h c {η \ η(h(^) = 0} = ̂ ω, hence

J^-^ω. D
From the arguments in the proof it is also clear that the interaction h can be

chosen such that the Hamiltonian is invariant under all symmetries of the set of states
{ω/ i = !,...,&}. This holds equally well for broken as for unbroken symmetries.
By a broken symmetry we mean a symmetry transformation that does not leave
invariant at least one of the pure components of the states ω/, but such that states
in the set ̂ ω are transformed into states of ^ω. An interesting consequence of this
observation is that one can construct GVBS models with any kind of prescribed
discrete symmetry, and such that this symmetry is spontaneously broken in the
ground states of the model. The only requirement is that there exist translation
invariant (or periodic) ergodic states of the chain (not necessarily GVBS states)
which break the symmetry, and which belong to a finite orbit of the symmetry
group, i.e., by application of the symmetry transformations one generates a finite
number of different states. The only requirement is that the symmetries preserve
the GVBS nature of the states, i.e., they should transform GVBS states into GVBS
states. This is known to be the case for lattice translations, lattice reflections, and
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local symmetries described by unitary or anti-unitary transformations, which includes
the following examples:

1) symmetries described by a finite group of unitaries U G Jtd, acting on the
observables as A H-» (U*)®NAU®N, for A an observable that lives on an interval of
length N,

2) the translation symmetry of the chain,
3) the reflection symmetry R of the chain given by Z 3 i i— > — i and its natural

lifting to the algebra of observables. A necessary and sufficient condition for a pure
GVBS state ω to be ^-invariant is the following. Let ω be defined in terms of an
isometry V : <C* -> C^ <g> C* by the formulae:

TEA(B) = V*A ® BV , for all A £ Md, B e Mk ,

and for A\, ... ,Af E «//^

where p is a state of ^& satisfying p(Έι(B)) = p(B), and where k is the smallest
integer for which this is possible (see the minimality condition mentioned in Sect.
2). Then ω is ^-invariant iff there exist orthonormal bases {fa} and {eΐ} of C^ and
<Ck respectively, and a unitary U G Ji^ such that for all a =, 1, . . . , rf, 1,7 = 1, . . . , A:,
one has:

If one fixes the vector /α, the action of V is given by a & x k matrix. The above
relation says that there exists a single unitary U which transforms these d matrices
of dimensions k x k into their transposes. This characterization is an application of
the results in [70].

4) symmetries described by anti-unitaries as the charge conjugation and the chiral
symmetry (cfr. Sect. 7 for an example).

Moreover any of the above symmetries can be considered after regrouping the
chain first and, of course, one can also form products of the elementary symmetries
described in 1-4).

6. Existence of the Spectral Gap: The Proof of Theorem 2

In order to prove the existence of a spectral gap for the GVBS models obtained in
the previous section, we need to develop the arguments in the proof of Proposition
5 a little bit further. This is accomplished in Lemma 11 which, together with the
results of [14], proves that condition C3; of Sect. 2 is satisfied. Conditions Cl
and C2 are trivially satisfied in the situation at hand. Theorem 2 is then a direct
consequence of Theorem 3, the properties of pure GVBS states proved in [14], and
a simple argument to pass to the thermodynamic limit.

For convenience we define

A"m = sup ||Gf/>r] - (Gf;ιffl] ® l[m+1>r])(l[/>0] ® Gf1>r])|| .
/ g l , r ^ / n

AM is the best constant in the commutation property (3.15) for the ground state
projections of pure state ωα on arbitrary finite intervals that overlap on m sites.
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Combination of the results in [14] and in [70] proves that the A*m satisfy a bound
of the form

1 -f cλm

Λy < r)m

c

for some constants C > 0 and 0 < / < 1 which depend on the state ωα. C can
be taken to be equal to k2, where k is the dimension of the auxiliary space used
to define the pure GVBS state ωα (see (3.1)). λ can be any number satisfying
λ, < λ < I for all eigenvalues λl φ 1 of the transfer operator F for the state ωα.

We now first derive the commutation property for the GVBS state ω that we
need for the proof of Theorem 2. Define for all m ^ 1 the operator Xm by

. .*]• (6.2)

For all m such that

we define

where ε — (εα/j) is the n x n matrix of the mutual overlaps of the spaces ̂  m^ and
with O's on the diagonal, i.e., we put εyy_ = 0 by definition. Note that if εy_β ^ ε for
all α, one has the simple bound \\ε\\ ^ (n - l)ε, and δm g (n - l)ε/(l — (n — l)ε).
From the properties of the overlap it immediately follows that the εα/j, and hence
also δm, are decreasing functions of m.

As before, GA denotes the orthogonal projection onto the space Vα^i ^Λ

11. Lemma. Let mQ be such that

and let δm be defined as in (6.4) and let Xm be the operators defined in (6.2).
Then

\)for all m ^ mo we have the bound

\\Xm-G^n]\\ £ ~^-. (6.6)
i Om

ii) For all m ^ m$J ^ l,r ^ m one has

\\G[lr] - (G[/>n] ® l[m+1,,])(l[/.o] ® G { l , r ] ) \ \ ί 4 διn + ±^
—
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Proof. We will use the following bound for the proof of both i) and ii). Let φ

and \l/ be two vectors that are of the form φ — Σα=ι ̂  anc^ *A ~ Σα=ι ^α? w^n

φ% £ ^i, and ψx G 3̂  , where ΛI and ^2 are two finite volumes containing the
interval [l,m]. We will show that

(6.7)

As in the proof of Lemma 9, we use Schwarz's inequality to obtain

n n

^ l k l U / Σ l k « l l 2 Σ I W I 2

«=1 α=l

Applying this inequality for φa = t/^ one obtains

and hence

α=l

Combining (6.8) and (6.9) we obtain (6.7).

Proof of ϊ). It is obvious that Xm(\\,m] ~ G\\,m \) = 0, and therefore

\\Xm ~ G[i,m]|| = sup J|(ΛΓM - G[i.m]

G[\,n,]ψ=φ

(6.8)

(6.9)

Then, for G\\tm \φ = φ, we can write φ = Σα Φα, where φα G ̂ [\>m], for α =

!,...,« and we have ||G^ OTjφα|| ̂  εm | |(/>α | | if αφβ. So, we can estimate \\(Xm -

G[i,m])φ|| = H^mΦ - φ\\ by estimating a quantity of the form (6.7):

Xmφ~φ\\ = - φ
α Φ j g

^β I
G[l,m]<P«l

«)l ^ SUP

where i^g = . By (6.7) this implies

As ||G[i>w]|| — 1, this implies i).

Proof of ii). By the triangle inequality it is sufficient to estimate the following sum
of three terms:

- Xr-M II + \\Xr-M -

r]) - (G[7,m]
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The first term is bounded above by ||G[/,r] - Xr-ι+\\\ which we can estimate using
i). The second term is estimated by ]Cα=ι^w The third term can be treated as
follows:

\\Σ,(G[i,m] ® l[w+lfΓ])(ll[/fo] Θ Gt\r]) - (G[/fW] ® l[w+

By adding and subtracting (G[/>m] Θ l[i,r] )(![/, o] ®^G )> the triangle inequality, and
repeated use of i) we find that the first term in the right side of the inequality above
is bounded by

From (6.7) it follows that the second term is bounded by δm/(l — δm)2. Collecting
these estimates we obtain

f /"> ^ n w fi ^ /-> Ml ^ ^Vr — l+l . Or— /+!
- (G[/ίW] 0 U^+

I
fΛ z \1(1 - όmγ

Because of the monotonίcity of δm this implies ii). D

We now prove the existence of a non-vanishing uniform lower bound for
the spectral gap of the finite volume Hamiltonians H\M,N] defined by H[M,N] =

ΣZ=Λ/°+ ^' where h is an interaction of range /o with the properties stated in The-
orem 1 . In fact the proof of this proposition does not rely anymore on the explicit
GVBS structure of the ground states. The gap property is a direct consequence of
the intersection property of the local support spaces &Λ and the commutation prop-
erty of the projections G^ obtained in Lemma 11. It is an interesting open question
whether or not these properties by themselves imply that the state is a GVBS state.

12. Proposition (Proof of Theorem 2). Under the assumptions of Theorem 2 there
exists a constant y > 0 such that for N — M large enough, the gap between the
lowest and the second lowest eigenvalue of H[M,N] exceeds y. y is also a lower
bound for the gap of the infinite system in any of its pure ground states. For m
large enough one has the following non-trivial lower bounds for y:

(6.10)

where yim is the gap of the finite-volume Hamiltonian //[i,2w] and nm satisfies

4(n- l)εw

m 1 - λ\n — 1 )εm

n

where em = maxαφ00(0* l j/W],^[ι jm]), and the A*m satisfy the bound (6.1).
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Proof. From the previous results it is straightforward to check that the conditions
C1-C3/ (see Sect. 2) are satisfied with the constants d = 2 and 72™ as stated in the
proposition. The uniform lower bound for the gap of the finite-volume Hamiltonians
then follows directly from Theorem 3.

In order to complete the proof we still have to show that the finite-volume
estimate also applies to the gap of the GNS Hamiltonian of the infinite system in
one of the ground states. This implication is rather trivial in the case at hand because
any of the pure infinite volume ground states can be obtained as a limit of pure
finite volume ground states of the Hamiltonians HΛ of which we proved that they
have a uniformly bounded gap. Indeed, as the range of the interaction is finite, we
have for any strictly local observable X that is supported on the volume AQ,

ωΛ(X*X) -

Here the states cα^, are of the form (\!/^Λ\ \ *Aα,/ι,} f°r some zero eigenvector
\l/ΛίΛl of HΛl. D

How fast the first term in (6.11) vanishes as m —> oc depends on how different
the states ωα are on intervals of m sites. The A^ also tend to 0 as m —> oo, and
has the same exponential behaviour as the truncated two-point correlation functions
of the states ωα. One should indeed expect two contributions of this kind to the
commutation estimate ii) of Lemma 11. The support projections GA of ω cannot be
expected to have better commutation properties than the projections of the compo-
nents ωα. On the other hand, even if the ωα have perfect commutation properties,
the convex combination ω could fail to have these properties when the ωα are too
close to one another. This happens, e.g., when there is breaking of a continuous
symmetry as in the Heisenberg ferromagnet.

In the case n — 1, i.e., GVBS models with a unique ground state, the first
term in the right side of (6.11) vanishes for all m. The estimate on the infinite
volume gap implied by (6.10) and (6.11), is then a little bit better than the one
previously obtained in [14], which is with (1 — V2ηm)2 replaced by (1 — 2ηm). On
the other hand, our estimate (6.10) suffers from the same overall factor 1/2 that was
also present in [14]. One therefore should expect the bounds to underestimate the
infinite-volume gap by a factor 1/2 at best. Note, however, that the factor 1/2 is not
present when Theorem 3 i) can be applied with / < r, which is the case, e.g., for
the Heisenberg XXX (and also XXZ) ferromagnetic chain discussed in Lemma 4.

7. Examples, Counterexamples, and Open Problems

In this section we want to show how the general results of this paper, in particular
Theorem 2, can be applied to a great variety of 1-D spin Hamiltonians. Although
checking the conditions of Theorem 2 seems very simple, there is a subtle point
that easily could be overlooked. Suppose one has a model defined in terms of a
finite-range interaction h ^ 0 and such that the infinite-volume zero-energy ground
states of the model are all convex combinations of a finite number of GVBS-states.
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The subtlety is that this does not imply that ker//[M,τv] = %V/,ΛΓ| In other words,
the finite-volume Hamiltonians might have ground states that are not found back in
the local support spaces of the infinite volume ground states. The thermodynamic
limits of these additional ground do not go beyond the GVBS ground states we
already had, but for a finite volume they are different. An example of this situation
is given in Example 2. There we show that not only does Theorem 2 not apply, but
that moreover there is no gap above the ground state.

We now briefly discuss five models or families of models, examples and counter-
examples, and also indicate some open problems. It must be clear that our only aim
is illustration and that what is given below definitely does not exhaust the possible
applications of the theorems. We do not discuss any new examples of GVBS models
with a unique ground state, because these are completely covered by the results in
[14]. A recent addition to the family of GVBS models with unique ground states is
e.g. [83].

We start with the well-known Majumdar-Ghosh model. Although it is a special
case of the generalized Majumdar-Ghosh model discussed in example Ibis, we
prefer to discuss it explicitly because it is the simplest GVBS model with more
than one ground state.

Example L The Majumdar-Ghosh Model [49, 48]. Nothing new is to be proved
about this model here, as it was already completely analyzed in [12]. But still it is
a good starter because of its particular simplicity. The Majumdar-Ghosh model is a
spin-1/2 chain with a nnn-interaction given by:

#[o,2] = AO = 4i22) = f (Si S2 + S2 S3 + S! S3) + ±1,

where POU^ *s me orthogonal projection onto the subspace with total spin equal
to 3/2. At T — 0 this model breaks the translation invariance of the chain and has
two pure infinite-volume ground states which are fully dimerized: ω\ is a product
of singlet states on nn pairs of the form {2/, 2i -f 1} and 602 is obtained from ω\
by translation over one lattice spacing. It is quite obvious that ω\ and ω2 are
GVBS states. For a GVBS description of the unique translation invariant ground
state ^(ωi -f ω2) see [14], p. 472, Example 6. In order to check the conditions of
Theorem 2 it is convenient to consider the model on a regrouped chain where the
new sites are now formed by nn pairs of sites of the original chain. For concreteness
put j/z = s$2ι 0 <β/2/+ι and we use ~ to indicate any object related to the regrouped
chain. Any interval of the regrouped chain corresponds to an interval of even length
of the original chain, where it is easy to see that:

where the superscript ^ refers to ω\ and ψ2i,2ι+\ is tne single state on the nn pair
{2/, 2i -f 1}. For ω2 we have

(g) φ2, +ι,2, +2 ® β I «, β e (C2
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Let us end the discussion of the states ωα by computing the various order pa-
rameters and correlation functions that are usually employed to reveal the structure
of quantum spin states, in particular the ones that were investigated in the recent
literature on spin-1 chains [84, 12, 76]. We define as usual J± =Jx±iJy, All
expectation values in ωα, can be calculated using (3.4) and Table 1, which fully
describes the operator E(α).

l)The magnetization vanishes:

ωα(Sg) = 0 for γ =x,y,z.

2) The spin-spin correlation functions are periodic but not necessarily commensurate
with the lattice:

ωα(5J5?)= ωα(5^) - |(-|)rcosm, r ^ 1,

—ω^S^S^) = |(—|)rsinrα, r ^ 1 .

3) The den Nijs-Rommelse string order parameter according to its original definition
in [84] is given by:

and we have

Oz = Ox = Oy = \

4) The helicity of the state can be measured by the correlation function χz(r) =
505^ - SQ Sf. The states ωα have short range helicity but no long range helical
order. From 2) it follows that χ(l) = — | sinrαφO if ocΦ&π, but lim^oo χ(r) = 0.

Example 4. A Model with Charge Conjugation Symmetry Breaking. Finally we
consider a model with spontaneous breaking of the charge conjugation symmetry
that was first presented by Affleck, Arovas, Marston and Rabson in [7] .We will
call it the AAMR-model. As the construction of the model and the analysis of its
properties is based on the structure of the irreducible representations of SU(4), we
have to recall some of the basic facts about these first. For more information see
e.g. [85].

The irreducible representations of SU(4) are labeled by the Young tableaux with
three rows, including the empty tableau (or alternatively the Young tableau consist-
ing of a single column of four boxes) which stands for the trivial representation
or, in physical terms, the singlet. The number of boxes in each row are denoted by
integers Vι,v 2 ,v 3 , satisfying vi ^ v2 ^ v3 ^ 0, and [vι,v2,v3] is an alternative way
to denote a particular irreducible representation. Using Robinson's formula [85] one
easily obtains the following expression for the dimension of an irreducible repre-
sentation:

dim[v1,v2,v3] - ̂ (vi +3)(v2 +2)(v3 + l)(v! - v2 + l)(vι - v3 +2)(v2 - v3 + 1),



Spectral gap for Spin Chains with Discrete Symmetry Breaking 601

(2)Table 1. Values taken by the bilinear operator E^ J(B) on the basis of spin
matrices.

IE

A

A

A

A

(*\B)

= 1

= sz

= s+

= s~

5 = 1

11

ί j z

1^
4
3J

B=JZ

-\JZ

-II

0

0

B

-

0

-

0

=J+
3

2 fry

B

-

0

0

-

= /-

\.p—v*. j-
le J

fe-' «l

e.g. in what follows we will use

dimD = 6, dimDD = 20
D DD

The decomposition of a tensor product of two irreducible representations into a
direct sum of irreducible representations is given by the usual rule for multiplying
Young tableaux with four rows and using the equivalence [ v j , V 2 , V 3 , V 4 ] = [vi — V4,
Vi — V 4 , V 3 — V4]. We will e.g. need:

D D D D DD (ΊΊ.
D D (7 2)
D

SU(4) is a 15 -dimensional Lie group, but it is convenient to represent its Lie algebra
as the traceless subalgebra of the Lie algebra of U(4), i.e. we consider generators
S, 1 ̂  α, β ^ 4 satisfying

with the constraint that Tr S = Σα S* = 0 and the S$ are chosen such that (S$)* =

S«. From any representation of this Lie algebra, say generated by Sβ, we can obtain

another one generated by S'β by putting S'jf = — 5« . This is the conjugate represen-

tation for which we will systematically use primed quantities. Of course there is a
corresponding conjugation operation for the irreducible representations of SU(4) and
hence for the Young tableaux. It is described by [V^VI^B]' — [vι,vι — V 3 , v ι — V2],
e.g. :

DD' - DD
D DD .

D

In general mutually conjugate representations are not equivalent (see e.g. the
above example), but some are:

DD;^DD
D D D D DD DD ,

D D
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and of course

D7 - D
D D
D D
D D

A self-conjugate representation and its conjugate are isomorphic, but not identical
(except of course for the case of the singlet representation) and hence there is
a non-trivial unitary C implementing this isomorphism which is called the charge
conjugation operator. C is a spontaneously broken symmetry in the AAMR-model,
which we will introduce now.

The one-site Hubert space of the AAMR-model is (C6 on which one lets SU(4)
act by its 6-dimensional irreducible representation [1,1,0]. So, for each pair of sites
the irreducible representations that appear are given by the decomposition (6.2). Let
P^ denote the orthogonal projection onto the subspace of C6 0 (C6 supporting the
irreducible representation [2,2,0]. The Hamiltonian of the AAMR-model is then:

ι=M

As all representations in the decomposition (6.2) are self-conjugate and distinct, it
is obvious that the projection operators onto their supports commute with C, and
hence the Hamiltonian (6.3) is charge conjugation symmetric. We now construct
two distinct pure ground states for the model, which are both SU(4)-invariant and
related to each other by charge conjugation. This implies that the model exhibits
spontaneous breaking of the charge conjugation symmetry. These two ground states
are given in [7] in a convenient representation using fermion operators in four
flavors. As our main purpose here is to see how the general results of this paper
apply to this model, we prefer to give a more compact definition of these states as
GVBS-states.

Consider two isometries V and V : C4 —> C6 0 C4 satisfying the intertwining
relations

D 0 ΏV = V D , DΘ DF' = K7D
D D D D

D D

The decomposition

l~ DΘ DD
D D D

D

and the conjugate of this relation, imply that these isometries exist and are unique
up to a phase. For all A £ Jί^ we then define the transformations E^ and E^ of
^4 by

)= V*BV ,

Έ!A(B)= V'*BV'.

Because in this model not only the charge conjugation symmetry but also translation
invariance is spontaneously broken, it is convenient to consider a regrouped chain,
where the new sites consist of pairs of nearest neighbour sites of the original chain.



Spectral gap for Spin Chains with Discrete Symmetry Breaking 603

Quantities referring to the regrouped chain will be denoted by ". Obviously any
state ω of the regrouped chain is a state of the original chain and vice versa. Two
GVBS-states ω and ω' are defined by:

ω(Aλ <g> 0^21,)= I Tr EΛ, o E :̂ o - . o JEA2n_} o E'^l) ,

ω(% <g> . - < g > Λ 2 Λ ) = I Tr E^ o E^ o . . . o E^, o E^(1L) .

It is quite obvious that the trace is invariant under EH and E7

fl, and so ω o τ — ω',
where τ is the translation over one lattice spacing. It is also evident that ω and o/
are related to one another by charge conjugation, as V and V are. The fact that
charge conjugation symmetry is broken can also be expressed by a non-vanishing
order parameter (see [7]). That ω and ω' are ground states of the model follows
from the transformation properties of ω|j/[i,2] and ω'Jj/fi^]. One readily sees that
the support of the density matrices describing the restriction of the state to a pair
of nearest neighbour points transform as

and D'0 D
D ϋ
D D

which decompose as

Π7 0 D ex D' <& D ̂  D® D ̂  D 0 DΠ
D D D D Π
D D D D D '

D

and so the supports do not contain [2,2,0], and hence ω(H} = (//(//) = 0 and ω
and co' are ground states.

We now would like to apply Theorem 2 to get the existence of a spectral gap
in the AAMR-model. The condition one has to check is the following: we have to
verify that for some large enough interval [I,/], all zero energy vectors of //[i,/] are
in the supports of ω and ω1 '. This is claimed in [7] but we do not have a complete
argument for this property. It would nice to have effective techniques to check these
kind of properties for this and more general models.
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