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Abstract: Let U be a basis representation of an irreducible unitary representation of

a nilpotent Lie group G in Ly(R") and let dU denote the representation of the Lie
algebra g obtained by differentiation. If by,...,b, is a basis of g and B, = dU(b;)
we consider the operators

d d
H:—E C,'JB,‘B]'—FEC,'B,‘,
i=1

1, =1

where C = (c,)) is a real symmetric strictly positive matrix and ¢; € C. Then A
generates a continuous semigroup S, holomorphic in the open right half-plane, with
a reduced kernel k defined by

(S:0)(x) = fk dy Kk:(x; ¥) p(y) -
R

We prove Gaussian off-diagonal bounds and “exponential” on-diagonal bounds for
k. For example, if ¢, = 0 we establish that

5 ) A—1
|K;(X;y)| < a(l A Sﬂt)_k/ze‘_/'l’e_d(x’y) (4(14¢))

for all + > 0 and ¢ € (0,1], where u is the smallest eigenvalue of C, 4; is the
smallest eigenvalue of H and d is a natural distance associated with the coefficients
C and the representation U. Bounds are also obtained for ¢;+0 and complex ¢.
Alternatively, if H is self-adjoint then

o (x; )| < ae 1 Reze bR+

for all z € C with Rez = 1, for some « € (0,2].
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1. Introduction

The theory of strongly elliptic and subelliptic operators extends naturally from the
Euclidean space R? t0 a general Lie group G (see, for example, [Rob, VSC]). In
particular every strongly elliptic operator has a representative affiliated with each
continuous Banach space representation U of the group. This representative is a
closable operator whose closure generates a continuous, holomorphic, semigroup S
with an action determined by an integral kernel K,

S, = [dgKi(g)U(g),
G

where dg denotes left-invariant Haar measure. The kernel K is a universal,
representation-independent, function whose smoothness and boundedness properties
have been examined in detail. The kernel satisfies Gaussian upper bounds and for
second-order operators with real coefficients it is positive and satisfies complemen-
tary Gaussian lower bounds. The derivation of good asymptotic estimates is, how-
ever, a more difficult and more specialized problem. The most detailed results have
been derived for Laplacians and sublaplacians on unimodular Lie groups whose
volume grows polynomially. In particular this includes all the nilpotent Lie groups.
But in this latter context there are many new, interesting, representation-dependent,
questions concerning the kernel.

The irreducible unitary representations of a d-dimensional, connected, sim-
ply connected, nilpotent Lie group G are described by Kirillov theory [Kir]. If
[ € g, the dual of the Lie algebra g of G, and if m C g is a polarizing subalge-
bra of / then y(expa) = exp(2mil(a)) defines a one-dimensional representation of
M = expm from which one can induce a unitary representation of G (see, for ex-
ample, [CoG]). Moreover, there is a one-to-one correspondence between the orbits
in g* under the coadjoint action of the group and the unitary dual of G. The induced
representations corresponding to the pair / and m can be explicitly constructed on
the space Ly(R*), where k is the codimension of m in g, and other elements of g*
on the orbit of / and other polarizing subalgebras of / induce unitarily equivalent
representations of the group on Ly(R¥). We assume throughout that k& > 1 since the
one-dimensional representations corresponding to the case £ = 0 offer no problem.

Now if § is the semigroup generated by the closure of a strongly elliptic or
subelliptic operator in a unitary representation corresponding to / and m then the
action of § is given by an integral kernel x on R¥ x R,

(Si)(x) = fk dy k(x; y) p(p)
R

for all ¢ € L2(Rk ). We refer to x as the reduced kernel. It is the central object of
study in the sequel. The description reduced kernel is used because x is obtained
from the universal kernel K by first identifying it with a function over RY x RY
by use of the exponential map and then “integrating out” the surplus variables (see
[CoG] pp. 134-135). A key feature of this reduction process is that X is multiplied
by a complex-valued function prior to the integration. Therefore the reality and
positivity properties of K and x can be quite distinct. As an illustration let us
consider the connected simply connected three-dimensional Heisenberg group.

Let aj, az, a3 be a basis of the Lie algebra g of the Heisenberg group G
satisfying [a|, a;] = a3 with the other commutators zero. Then the standard ir-
reducible representation U of G on Ly(R) is determined by exponentiation of
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the representation dU(a;) = —iP, dU(ay) = iQ, dU(a3) = il of the Lie algebra g,
where (Pf)(x) = if'(x) and (Qf)(x) = xf(x) for all f € C(R) and x € R. The
Laplacian corresponding to the standard basis a;, a,, a3 is represented by

3 d?
H = —ZdU(ai)z =P2+Q2+[: _ﬁ —l—x2+1.
i=1 x
It is a positive self-adjoint operator and in addition is real, i.c., it leaves the real sub-
space of L,(R) invariant. If, however, one considers the Laplacians corresponding
to the one-parameter family of bases b = a; + vay, by = az, b3 = a3, with v € R,
then

3 2
H,=->dU(b) =P —vQ)P + 0" +1 =~ (-j— +z'vx) +xt+1
1=1 X

and H,,v=0, is not real although it is still positive and Hy = H. In fact one has
H, = e " PHe

Now the reduced kernel k corresponding to H is pointwise positive and is given
by Mehler’s formula;

K y) = (a1 — e—4t))—1/2e—(x+y)2(tanh1)/46—(,r~y)2(cotht)/4e—2l
for all £ > 0 and x, y € R (see [Dav1] Theorem 7.13). But then the kernel "
corresponding to H, is given by

—n(? = %)

K y)=e KX ),

and for v=0 this is complex-valued. This is somewhat surprising as the H, are all
Laplacians, albeit defined with different bases, and hence the corresponding universal
kernels K" are strictly positive and satisfy Gaussian lower bounds (see, for example,
[Rob] Sect. II1.5). These observations clearly indicate that the analysis of the reduced
kernels is quite different from that of the universal kernels.

The Heisenberg group also indicates the possible asymptotic properties of re-
duced kernels. For example,

e s )| ~ ()2

for all small + > 0 but

—1/2e—x2 —2u

[i5; (x;x)| ~ 7 e

for large ¢. Thus the kernel is fast decreasing on the diagonal and for large ¢ the
decrease is of the form exp(—4,¢), where 4, = 2 is the smallest eigenvalue of H,.
Alternatively,

(x4 y/25x — ~ (4mt)~ P /800
lic} (x + y/2;x — p/2)| ~ (4nt)~ e
for all small # > 0 but

i+ p/25x — p/2)] ~ 1RV e e

for large ¢. Note that the Gaussian which dictates the off-diagonal decay for small ¢
has an exponent 1/4 which is identical to that of the universal kernel (see [KuS]).
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Our aim is to establish broadly similar asymptotic estimates for reduced ker-
nels for a general nilpotent group. The most precise results are for pure second-
order strongly elliptic operators with real symmetric coefficients but we also obtain
estimates for more general second-order operators and higher-order operators with
complex coefficients. There are two types of result which follow from two different
approaches.

The first approach concentrates on the small ¢ behaviour and the off-diagonal
decay of the reduced kernel. It consists of extending the Nash inequality methods
of [Rob] and this involves tailoring the Nash inequalities to particular unitary repre-
sentations. This enables us to establish that the kernels of m™ order strongly elliptic
operators have the expected singularity =¥ for small ¢ > 0. Moreover, in the
case of second-order operators H with real principal coefficients one obtains Gaus-
sian bounds a,t %2 exp(—d(x; y)>(4(1 + ¢)t)~") for all &, € (0,1]. (The distance d
appearing in the estimates is the natural distance in R* determined by the operator
H in the particular representation.) If the operator also has real first-order coeffi-
cients these estimates can be extended to all # > 0 and one has an additional factor
exp(—A4t), where 1, is the smallest eigenvalue of H. Thus one obtains bounds
which closely approximate the optimal off-diagonal decay and incorporate the opti-
mal large ¢ behaviour. Nevertheless, this approach gives no information about the
on-diagonal decrease properties of the kernel.

The second approach concentrates on the large ¢ behaviour and the on-diagonal
properties. It consists of a blend of spectral theory and Sobolev inequalities and
applies to self-adjoint strongly elliptic or subelliptic operators of all orders. One
derives bounds on the reduced kernel with the optimal decay exp(—4,¢) for large
¢t which are “exponentially” decreasing along the diagonal. Estimates of this type
have been previously obtained for Markov semigroups (see, for example, [Dav 2],
Chapter 4) but the proofs depend heavily upon positivity arguments and hence are
not applicable in the current context.

2. Preliminaries

As a preliminary to the estimation of semigroup kernels we first recall some fur-
ther elements of Kirillov’s theory of unitary representations and derive some useful
results on particular representations and equivalences. Secondly, we give a pre-
cise definition of the reduced kernels and derive some of their simplest properties.
Thirdly, we recall the definition of strongly elliptic operators and the associated
semigroup kernels. For the Kirillov theory we mostly adopt the notation and termi-
nology of Corwin and Greenleaf [CoG].

Let G be a connected, simply connected, d-dimensional, nilpotent Lie group
with Lie algebra g and fix / € g*. Let m denote a polarizing subalgebra for /
of dimension d,, and let M = exp(m) denote the corresponding subgroup of G.
Further let ay,...,aq4,,...,a4,,+«+ be a weak Malcev basis of g passing through
m, i.e., span{a,...,qa;} is a subalgebra of g for all j < d =d,,+k and m =
span{aj,...,aq, }. One can then define a one-dimensional representation of the sub-
group M by setting y (expa) = exp(27il(a)) for each a € m and this representation
induces an irreducible unitary representation 7 = ind(M T G, y) on the Hilbert space
#, (see [CoG], Chapter 2). Explicitly, introduce a map y : R* — G by

P(x) = y(X15. ., X)) = €XP(X1ady+1) - EXP(Xk Atk ) -
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The homogeneous space M\G of right cosets of the subgroup M has a unique,
up to a positive constant, right invariant measure dg given by the image of the
Lebesgue measure of R* under the analytic diffeomorphism x — My(x). Next, let
H; be the Hilbert space of (equivalence classes) of Borel measurable functions
¢ : G — C such that

p(mg) = x(m) ¢ (g)

for all m € M and g € G and

[ dglo(g))* < oo
M\G

Then (n(g)@)(h) = @(hg) defines a unitary representation of G in #;, which is
irreducible.

The map (m,x) — m - y(x) is a diffeomorphism from M x R¥ onto G and allows
one to define a unitary map J :L2(Rk) — H, by

(Jo)my(x)) = x(m) o(x)

for all m € M and x € RF. One can then transfer the action = of G on #, to a
unitary action U on Ly(R) by use of J. This is the basis realization of 7 in [CoG],
p- 125. The resulting representation depends on the choice of Malcev basis but each
choice leads to a unitarily equivalent representation. An explicit description of the

representation U is as follows. Let £ = (E}, E;) : G — M X R¥ be the inverse of
the map (m, x) — m - y(x). Then

(U(@)e)x) = 1(E1(y(x)g)) p(E2(y(x)g)) (D

for all g€ G, ¢ €L2(Rk) and almost all x € R". Moreover, E| and E, are
polynomial maps. Note that U depends on the weak Malcev basis only through
span{ai,...,aq, } and ag, 1. -->Qdy k-

We begin by observing that the basis realization gives a simple result for the
action of the representation on the L,-spaces associated with the representation
space.

Lemma 2.1. Let U be a basis realization on Ly(R") of the induced representation
n. Then U extends to a continuous isometric representation on each of the spaces
Ly(R"), p € [1,c0].

Proof. For each g € G there is a polynomial g, : R' — R and a polynomial diffeo-
morphism 0, : R¥ — R¥ such that

(U(9)p)x) = €7 p(0,(x)) (2)

for all ¢ € Ly(R¥). This is just a restatement of (1). It is important that the Jacobian
of the transformation 0, has modulus one, since U is unitary. Therefore

U)ol = [dx|pOy(x)] = [dx|px)] = [l
R¥ RF

for all ¢ € Li(RY) N Ly(RY). Similarly, |U(9)¢]ls = ||¢]loc for all ¢ € Ly(RF)N
Loo(R%). Hence U extends to a group of isometries on each of the L,-spaces. Now
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continuity follows for ¢ € C°(G) because

I/p
U@ - oll, = (fk dx |p(0,(x)) — w(x)l")
R

RK

I/p
+ (f dox ') — ll"lw(x)l"> :

The continuity is verified using the properties of ¢ and 6 together with the Lebesgue
dominated convergence theorem. Strong continuity on L,,(R/c ), p € [1, 0o), follows
by a density argument and weak* continuity on L..(R¥) follows by duality. [

In the subsequent proofs of kernel bounds some weak Malcev bases are more
suitable than others in the basis realizations. We initially establish Nash inequalities
for a basis realization of the representation associated with a weak Malcev basis
with the following ideal property:

[a,a4,+,] €span{ay,..., ag,+j—1} forall acg and je{l,...,k}. (3)

These inequalities are then instrumental in the derivation of bounds on the reduced
kernel in this particular realization of the unitary representation. Separate arguments
are necessary to extend the bounds to other realizations.

Lemma 2.2. There exists a weak Malcev basis passing through the polarizing
subalgebra w with the ideal property (3).

Proof. One can easily construct a weak Malcev basis of m (see [CoG], Theorem
1.1.13(a)) and one has to extend this basis to a basis of g with the property (3).

Therefore, given a proper subalgebra by of g, one has to construct an element
a € g\b such that [g,a] Ch. Then b; = span(h, a) is a subalgebra of g with
dimb; = 1 +dimb and the lemma follows by induction. Let g"),n € N, be the
decreasing central series of g, i.e., g/') =g and g"*!D =[g, g]. There exists
n € N such that g"*) C b but g(”) Zbh. Let a € g"\b. Then [g,a] C [g, "] =
g(n-H) C b 0

Thus for the given polarizing subalgebra m one can always find a weak Mal-
cev basis passing through m which has the ideal property (3). We next examine
the equivalence of two basis realizations corresponding to two weak Malcev bases
passing through the same polarizing subalgebra.

Lemma 2.3. Let ay,...,aq4,,...,a4 and a,,...,4q,,,...,44 be two weak Malcev
bases passing through w and U, U, the corresponding basis realizations of the
induced representation in Ly(RY). Then there exist a polynomial o :R* - R, a
polynomial diffeomorphism 0 : R* — R* and a constant ¢ > 0 such that the mod-
ulus of the Jacobian satisfies |det 0/(x)| = ¢* for all x € R* and

U=vov*,
where V is the unitary map on Ly(RY) defined by

(Vo) (x) = ce”p(0(x)) -
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Proof. Define the maps y : RS G E:G—>ME,:G—R andJ:Lz(lsk) — A
as above with respect to the basis ay,...,a; and the analogous maps 7,E; and E,
with respect to the basis dj,...,d,. For the definition of J one has to be careful
since one can fix only once the measure on M\G. This we did via the bijection
x — My(x). Therefore the image of Lebesgue measure under the map x — M7y(x)
equals a positive constant times the measure dg on M\G. Hence there exists a
¢ > 0 such that

(J@)(mi(x)) = cx(m) p(x)

defines a unitary map from Ly(R) onto Hr. N
One now easily verifies that ¥ = J~!J intertwines the representations U and U
and ¥ is unitary. Moreover,

(Vo)(x) = (Jo)(9(x)) = cx(E17(x)) @(E2y(x)) = ce”Pp(0(x))

where 0 = E, 0y is a ploynomial from R* into RY and o(x) = 2nl(exp'E19(x))
is a second ploynomial. It remains to show that 6 is a polynomial diffeomorphism
with a Jacobian whose modulus is equal to 2.

Define 0 : R* — R¥ by 0=E,o 7. Then for all x € R* one has

0(0(x)) = E2yExi(x) = E2((E\(7(x))) ™" 7(x)) = Ea(3(x)) = x

and similarly 00(x) = x, so 0 is a polynomial diffeomorphism. Then x — det 0'(x)
~/ ~/ ~

and x — det 6 (6(x)) are polynomials and det 6 (6(x)) - det 6'(x) = det(60)'(x) = 1.

So det @ is constant and non-zero. Since V is unitary the absolute value of this

constant must be equal to 2. [J

Next we give a more precise definition of the reduced kernels. Let 7 = ind(M
G, x) be the induced irreducible unitary representation on J; described above. If
1 € S(G) then the operator

n(t) = gdg 1(g) n(g)

is of trace class on J#; (see [CoG], Sect. 4.2). Moreover, in the basis realization U

of m on Lz(Rk) corresponding to /,m and a weak Malcev basis ay,...,a, passing
through m, the action of U(7) is determined by an integral kernel x.,

(U(D)e)(x) = fkdy KX 3) () 5
R

where «, € #(RF x R"). Finally, «, is given in terms of 7 by the reduction formula

K (x5 ) =A£dm 2(m) T(y(x) " my(y)) 4

where y and y are the maps introduced earlier. This relation is of fundamental
importance in the sequel.

There are some simple relationships between the kernels corresponding to uni-
tarily equivalent representations. First we consider the relationship for kernels
corresponding to different basis realizations.

Lemma 2.4. Let U and U be two basis realizations on Ly(RY) of the induced
representation w, as in Lemma 2.3, and k. and R, the kernels corresponding to
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the two representations and © € S (G). Then
Ke(x; y) = 2 TOTTONR(0(x); 0(y))

for all x, y € RF, where @, 0, ¢ are defined by Lemma 2.3.
Proof. One has

[ dx [ dy Ex) k(5 )W) = (EUW) = (VE TV Y)

RF  RK

= [dx [ dy(V=E)(x) Relx; ) (VY)(»)
R RK

for all £,y € Ly(R¥), where

(FE)r) = el V07 ().

Therefore, since ¢? is the absolute value of the Jacobian of the transformation

x — 0(x) one immediately finds the desired relation between the two kernels. [J

Secondly, we compare the kernels corresponding to shifts under the group. If
7 is a unitary representation of G on #; then for each 2 € G one has a unitarily
equivalent representation 7, given by my(g) = m(hgh™") = n(h)n(g)n(h~"). More-
over, if n is the induced representation corresponding to / and m then m, is the
induced representation corresponding to the images /, and my of / and m under the
coadjoint and adjoint action of the group, respectively. Furthermore, if U denotes
the basis realization of 7 on L,(R") corresponding to a weak Malcev basis passing
through m then there is a realization U, corresponding to the images of /, m and
the basis. But for each 4 € G there is a polynomial g, : R* — R and a polynomial
diffeomorphism 0 : R* — R* such that

(Uh)p)(x) = € p(04(x))

for all ¢ € Ly(RY). This is again a rephrasing of (1) and again the Jacobian of
the transformation 6, has modulus one. Therefore, if x, and Kﬁ' are the kernels
corresponding to U and U, and t € ¥(G) then

ks y) = DTN e (0,(x); 00(1)) (5)

for all x, y € RX. This is the direct analogue of the conclusion of Lemma 2.4 for
the kernels corresponding to representations arising from different Malcev bases
passing through the same polarizing subalgebra. Nevertheless, unitary equivalence
of representations does not always imply that the kernels are related in the manner
of (5). There is a third form of unitary equivalence of induced representations for
which the relationship between the kernels is quite different.

If /€g* and m;, my are two different polarizing subalgebras then the in-
duced representations 7; and m, corresponding to (/, nmy) and (/, my) are uni-
tarily equivalent. But the connection between the reduced kernels k" and x?
associated with a t € ¥(G) and two weak Malcev bases is not generally of
the above form. For example, consider the case that m; and m; have codimen-
sion one in g but ntyy Nm, has codimension two. Then one can choose ele-
ments ay,...,ay € g such that ay,...,a4-2,a4—1,a4 is a weak Malcev basis passing
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through my, ay,...,a4-2, aq, ag—; is a weak Malcev basis passing through m,, and
[([ag—1, ag]) = 1. The corresponding unitarily equivalent representations U; and U,
on L,(R) can then be expressed as

)
dUi(aqz) = e +2nil(ag), dU(ag—1) = —2mix + 2nil(as—y),

0
dUy(ag) = 2mix + 2nil(ag), dUs(ag—y) = e +2mil(ag—1),
and

dUi(a) = dU,(a) = 2mil(a)

for all a € span{a,...,as—2}. Now, however, the unitary equivalence of the rep-
resentations is given by Fourier transformation and the kernels are linked by the
relation

KD y) = (FP)(—x;y),

where # denotes the Fourier transform with respect to both variables.

Next we recall some basic properties of strongly elliptic operators on Lie groups
and the corresponding semigroups. We mostly follow the notation and terminology
of [Rob].

Each strongly elliptic operator on the d-dimensional Lie group G is defined in
terms of a basis by,..., b, of the Lie algebra g and a form C, i.e., a family ¢, € C of
complex-valued coefficients indexed by a multi-index o = (ay,...,0y) with o, € Ny
and |0 = o; + -+ - + ag. The form C is called an m™ order strongly elliptic form if
¢y, =0 for |o| > m and the ellipticity constant

e = inf {Re > oelil) e Rd,|f| = 1}

oz|o|=m

is strictly positive. Given the basis and the strongly elliptic form one can define a
strongly elliptic element of the complex universal enveloping algebra ® of g by

hm = Z Ca(ba )

wlo| <m

where b* = b}' .- b}, There is a unique anti-automorphism a — a’ on ® such

that xT = —x for all x € g and the image %, of 4, under this mapping is called the
formal adjoint of A4,. It is a strongly elliptic element,

W= b,

o] <m

with coefficients cl uniquely determined by the ¢, and with cl =7, if |o| = m.
Next let (2, U, G) be a continuous representation of G on the Banach space &

and let B; =dU(b,) denote the generator of the one-parameter subgroup

t — U(exp(—tb;)). Then there is a densely defined, closable, operator H, on ¥
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such that
H,=dU(C)= 3 cB*

ala| Sm

with B* = B{'--- B} and D(H,) is the common domain %, of all the B* with
|| = m. The formal adjoint H,| of H, is defined in an analogous manner from A,.
These operators are called m™ order strongly elliptic operators and the coefficients
¢y With |o| = m are called the principal coefficients.

Second-order operators can be reexpressed in the form

H, = Zc,jAA +ZC,A +col ,
1, j=1

where the matrix C = (¢,;) of principal coefficients is strictly positive and symmet-
ric. The ellipticity constant is then identified as the smallest eigenvalue of C. In the
sequel we will consider second-order operators for which the principal coefficients
c;; are real.

The basic results we need are the following.

The closure H, of the strongly elliptic operator H, generates a continuous
semigroup S on % with a universal kernel K; € #(G) which depends only on
the basis by,...,bs and the form C, i.e., S, = U(K;) with K, independent of the
particular representation. The kernel satisfies Gaussian bounds of order m,

K(g)] < ar—dimgote=bllsl" =D

where a, b > 0, w =2 0 and g — |g| is a modulus on the group. The kernel is
positive if and only if the operator is of second-order with real coefficients. Finally,
the kernel K corresponding to the formal adjoint satisfies

Kl (9) = 49)'Ki(g™D),

where 4 is the modular function on G.

In fact there exists 0 € (0, 7/2] such that for any g € G the function ¢ — K,(g)
extends to a function which is holomorphic in the subsector {z € C : |argz| < 6}
of the right half plane and S; = U(K;) extends to a holomorphlc semigroup on the
sector {z € C: |argz| < 0}. Note that this subsector is representation independent.
Moreover, 6 = /2 if the principal coefficients are real. The Gaussian bounds extend
to this universal subsector but the relation with the formal adjoint becomes

Kl(g) = 4(g) 'K=(g7 ).

If the Lie group G is nilpotent then there are a number of properties of the semi-
group generated by the strongly elliptic operator in the irreducible representations
which follow from the general theory.

Let U be a basis realization on Ly(R¥) of the induced representatlon 7 of the
nilpotent group and K, the kernel corresponding to the strongly elliptic element 4,
of ®. Since K, € #(G) there is a reduced kemel x, € #(R* x R") defined by the
analogue of (4),

K06 ) = [ dm x(m) K(y(x) ' my(p)) - (6)
M
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Then the semigroup S corresponding to 4, in the representation U on L,(RY) is
given by

(Sip)x) = (U(K)@)x) = [ dyri(x;y) o(p) -
RK

Note that as a consequence of Lemma 2.1 and the general theory of strongly elliptic
operators the semigroup S extends from L,(R%) to a continuous semigroup on each
of the spaces L p(Rk ), p € [1, co]. Moreover,

ISilli—r S Kells ISilloomoo = 1K = 1Ky

and, by interpolation,
1Sillp—p < Kl -

Since K is universal these bounds are representation independent.
Similar properties are true for complex # in the universal sector of holomorphy.
The reduced kernel is defined by (6),

1. (x; ) =A{dm 2(MK(y(x) " 'my(y)),

and z — K,(x; y) remains holomorphic in the subsector. This follows from the Gaus-
sian bounds on K and the estimates of Lemma 4.2.3 in [CoG]. Combination of these
estimates with the Gaussian bounds guarantees that the integral relating K and
is convergent uniformly on compact subsets of RF x R¥. The action of S, is deter-
mined by x, within the universal subsector of holomorphy as a consequence of the
general theory. Now, however, one has

IS: i1 < 1Kzl 1Selloso—oo = KT = 1Kz

and interpolation gives
1 1-1
18l < K 1K

Again these bounds are representation independent.
We next establish that the S;, > 0, are compact operators on the L ,-spaces
and the semigroup generator has a compact resolvent on each of these spaces.

Theorem 2.5. Let [ €g*, ai,...,aq4,,-..,04,+k a weak Malcev basis passing
through a polarizing subalgebra w of | and U the corresponding basis realiza-
tion on Ly(RY). Next, let C be a strongly elliptic form of order m, p € [1,0]
and H, = dU(C) the corresponding strongly elliptic operator on Lp(Rk). Then
the spectrum of the closure of H, is a countable discrete set with accumulation
point at infinity and each point in the spectrum corresponds to an eigenvalue
of finite multiplicity. Moreover, the spectrum and the eigenspaces are independent

of p.

Proof. If t > 0 and p,q € [1,00], then S; is a continuous operator from L,,(Rk)
into L,(R¥) since x, € #(R* x R¥). So for all p e [l,00] the operator S; =
Sp3oSpoSyiLy— Ly — Ly — L, is compact since Sy3 = U(Ky3) 1 Ly — Ly is
compact (see [CoG], Theorem 4.2.1).
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Next, if p € [1,00) and 4 > 0 is large enough then the integral
—_ S -
(M +Hy) "= [dte™s,
0

is norm convergent in #(L,), so (Al + H,)~' is compact from L, into L,. By

duality, the resolvent operator (Al + H,,)~' = ((AI + H}})~')* is also compact from
Lo into L. The spectrum of H,, must have an accumulation point at infinity since
the representation space is infinite dimensional.

Finally, let ¢ € L, be an eigenvector for the operator H,, on L, with eigenvalue
4. Then ¢ € D®(H,) = y(Rk ), by [CoG] Theorem 4.1.1(i) and the Sobolev em-
bedding theorem. Hence ¢ € L,, for all ¢ € [1,00] and Hp = A¢ in L,. Thus the
spectra and eigenspaces are independent of p. [

In Sect. 5 we will derive some crude estimates on the growth behaviour of the
eigenvalues in order to establish bounds on the reduced kernel for large time.

3. Young and Nash Inequalities

Our aim is to derive bounds on the reduced semigroup kernel x, defined by (6)
in an arbitrary irreducible unitary representation of the group. We accomplish this
in two steps. First, we derive bounds with the correct singular structure for small
values of ¢. Secondly, by a separate argument, we establish bounds with the correct
asymptotic decrease for large ¢. The derivation of small ¢ bounds on the universal
kernel K in [Rob], Chapter 1V, via Nash inequalities extends to give the small
¢t bounds, but this extension requires a form of the Nash inequalities tailored to
the particular unitary representation. We begin by considering a particular basis
realization of the representation.

Let U be the basis realization of the nilpotent Lie group G corresponding to
a weak Malcev basis a,...,a4,,...,aq4,+, passing through a polarizing subalgebra
m for an / € g*. If ¢ € Ly(R") and € L(G;dg) one can define a convolution
product  *y ¢ by introducing

uy) = gdglﬂ(g)U(g),

and then setting
Yruo=UW)g.

The aim of this section is to establish a version of Young’s inequality for this
product whenever the weak Malcev basis has the ideal property (3). Therefore
we introduce the space £, with g € [1,00] as the set of (equivalence classes of)

measurable functions ¥ over R’ x R¥ for which the norm ||||||, is finite where

/g
Hlllg = | dw (deIl//(ﬁ(w)v(x))lq>
R

RYm

for g € [1,00),

¥llleo = [ dwess sup [Y(B(w)y(x))],

Rém xERK
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and f: R — M is the map

Blwi,...,wg,) =exp(wia;)---exp(Wy,ad, ) -

Note that the product *;; and the spaces £,, g=+1 all depend on the choice of
basis. Only the space &, is independent of the basis since ¥ = Li(G).

Proposition 3.1. Let ay,... s Qdys - - > Qd,+k e a weak Malcev basis passing through
m which has the ideal property (3). If p,q,r € [1,00] and 1+ 1/r=1/p+1/q
then  xy @ € L.(R") and

I ol = lloll, vl

for all ¢ € Lp(Rk) N Ly(RY) and y € L, N Li(G). Hence the map (Y, @) — ¥ +y @
Jrom (£LyN L) x (Lp(Rk) ﬂLz(Rk)) into Lr(Rk) can be extended to a map from
Ly % Lp(Rk) into L,(Rk), which we will still denote by xy, and

I =voll < el v,
for all ¢ € L,,(Rk) and Y € &,

Remark 3.2. The inequalities of the proposition correspond to the classical Young
inequalities when G = R and U is the action by translation.

The proof of the proposition relies on a combinatorial result for products of
exponentials, an interpolation property of the spaces &, and adaptation of the
interpolation proof of the classical Young inequalities.

Lemma 3.3. Let ay,...,aq4,,...,044,+k be a weak Malcev basis passing through m
which has the ideal property (3). If w € R and x,y € R* then there exist an
m(=my, ) €M and a z(= 2y, ,) € R* such that

P(x) Bw) y(y) = my(z).
Moreover, there exist polynomials pi,..., px— such that
Zk = Yk + Xk,

Zk—1 = Yk—1 + X1 + Pk—1(W, Vi, Xk )
Zk—2 = Yi—2 + Xp—2 + Pr—2(W, Yk, Xks YVk—1,Xk—1) »

zy = Y1 +x1 + pi(W, Yis Xk, -5 Y2, X2)
where the p, only depend on the indicated variables.

Proof. By using the Baker—Campbell-Hausdorff formula one can reexpress the prod-
uct p(x) f(w)y(y) as a single exponential and then separate the terms starting with
Zk,Zk—1,... . It follows from this process and the ideal property (3) of the Malcev
basis that the product can be expressed in the desired form. [

The most important implication of the lemma for the subsequent calculations is
summarized in the following corollary.
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Corollary 3.4. If z,x , is defined by Lemma 3.3, then the maps x — z,,x , and
Y= Zy .y from RY into R* are bijections and have Jacobian one.

Proof. The Jacobi matrices are triangular and the diagonal elements are all equal
to one. Therefore the determinants have value one. O

Lemma 3.5. Let pi, p2,q1,q2 € [1,00]. If T is a linear operator from the space
L, N &L, to the space Ly (R) N L, (R") and

IT¥llg, = MillWlllp s 1TV, = Mo, »

then T extends to a bounded linear operator from ¥, to Lq,l,(R" ) with norm less
than or equal to M| "M, where

= =np s g == g
and vy € [0,1].

This is just a variant of the Riesz—Thorin interpolation theorem which is established
by a slight modification of the arguments used to prove the classical version.
Now we are prepared to prove the proposition.

Proof of Proposition 3.1. First, consider the case p=q=r=1.Let ¢ € Li(R"N
Lz(Rk) and Y € Li(G). Since U extends to an isometric continuous representation
on L (R") one has

W xvelh = llUWell = Whille]: - (7)

Since £ = Li(G) and |||¥|||i = ||¥||: this establishes the special case of the desired
result.

Secondly, we consider the case p =1 and g =r =00. Let ¢ € Ll(Rk )N Ly(RF)
and Y € ¥ N L. Then it follows from (1) that

UWe)x) = [ dw [dyy(Bw)p(»)) (UBw)y(»))e)(x)

Rdm  RK
= [ dw [dy (B x(Mx 1) @2,y ) s
RYm Rk

where we have used the notation of Lemma 3.3 in the last step. Therefore

(W *ue)x) = ! dWIkdy Y(BW)YI)) 1Mo, ) @2 x, ) »
R4m R
and hence

(W v @)X <= [ dw [dy (B - @zl - ®)

Rd m Rk
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Therefore

IV *uolle < sup [ dw [dyY(BOW)y(2))] + |@(z0x,y)]
xR RIm  RK

< sup [ dw[dy sup By )|+ |0(zux )|
x€ERKRIm Rk y/eRK

= [dw/[dz sup [Y(Bw)y(¥'))| - |e(z)|

Rim Rk y'eRF
= [|[¥llloollellr )

where the third step uses a change of variables y + z, , , and Corollary 3.4.
Thirdly, we interpolate between the estimates (7) and (9).
The estimate (7) states that for ¢ € L;(R*)N Ly(R¥) the linear operator T,
defined by

T(p'// =y *y@
is bounded from %, to L;(R") and
1Tl = lloll 1l

Similarly, (9) states that the operator T, is bounded from ¥} N L to Loo(RY)
and

ITo¥lloo = llelli [[¥llloo -

Therefore it follows from Lemma 3.5 that T, extends to a bounded operator from
£, to Lq(Rk) for each q € [1,00] and

v elly = 1To¥lly = llelh Wl - (10)
Fourthly, the Holder inequality gives
”‘/J *UQDHOO = sup f dWIdyllb(ﬂ(w)y(y))l * |(P(Zw,x,y)l

xERK R4m R

IIA

1/q 1/r
sup [ dw (fdylw(ﬁ(W)y(y))l"> (fdyltp(zw,x,y)l’>

xERFRAm RK RK

for all ¢ € L,(R")NLy(R¥) and € £, N L whenever 1/g+ 1/r = 1. Then by a
change of variables one obtains the bounds

¥ xv ol < ol 111, - (11)
Therefore if Uy is defined as an operator from L,(R¥) N Ly(R*) to Loo(R¥) by

Uyp =¥ xu o
for Y € £, then (10), together with (11), gives bounds

1Upelly = Wl 1Uselloe = I IHlglel--
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Hence U, extends to a bounded linear operator from L pl,(Rk) to Lq.l,(Rk) where

py =yt +(1=9), ¢;' = (1 —y)g~" and y € [0, 1]. Moreover,

W v olly, = 1Us0llg, = Ml¥lllaliel .

1

by the usual Riesz—Thorin theorem. But 1 + g, l=g 1 4 p; and hence one ob-

tains the desired result. O

The version of Young’s inequalities given in Proposition 3.1 can be used to
derive Nash inequalities by the arguments of [Rob], Chapter III, Sect. 3.

Let by,...,by be an algebraic basis of g, B, = dU(b;) the representatives on
Lz(Rk) and Lé; n(Rk) the corresponding C”-subspaces (see [Rob], Sect. IV.4). So

L,RYy= (N  DB,-B,).
1y in€{ 1ymnd’ }

Next let p denote the subelliptic distance associated with the basis and | - |’ the
corresponding modulus, i.e., |g|" = p(g;e) (see [Rob], Sect. IV.4). If o : [0,1] —» G
is an absolutely continuous path from the identity e to g with tangents in the space
spanned by by,...,by then there are o, € L.([0, 1]) such that

D) _ S~ ooy (B )(o0))

dt =

for all Y € C*°(G), where B; is the left invariant vector field on G corresponding
to the direction b;. We define

, 12

1 d

lg|" = inf [dt (Za.(t)2> ,
%0 =1
where the infimum is over all possible paths. Therefore
1 d
(= U(@)o)x) = fdtzloci(t)(U(a(t))Bmo)(X)
0 i=

for all ¢ € C(?O(Rk) and consequently

| y 12 1/2
|](1—U(9))€0”2§{dl (Z}lai(tf) (;HBMH%) :

Optimizing this last estimate over the possible paths a one deduces that

J 1/2
17 = U)ol = gl (ZIIIIBwII%) :
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Therefore if ¥ € L;(G) is a positive function with |||, = 1 one has

p 12
I =U@Nell = gdgt//(g)lgll (;HB,(PI]%) : (12)

This bound together with Young’s inequality now gives the Nash inequality.

Proposition 3.6. Let ay,...,aq,,...,a4,+k be a weak Malcev basis passing through
m which has the ideal property (3). For each positive Wy € Li(G) with ||| =1
and each algebraic basis by,...,by of g,

p 12
ol = gdi(g)igl' (;HB,#)II%) + Y1112l el (13)

for all ¢ € L’Z;I(Rk) N Li(RY). In particular

P 12
ol = ¢ (;IIB#H%) + Ul D el s (14)

for each ¢ > 0 where . denotes a non-zero, positive, integrable, function with
support in the ball B, = {g € G : |g|' < ¢}.

Proof. First, one has the obvious identity

ol = I —=U@Nol2 + U@,

and since U(y)p = xy ¢ the initial statement of the proposition follows from
Proposition 3.1 and (12). The second statement is an immediate consequence of

choosing Y = /||| .|],. O

The Nash inequalities (13) can in principle be optimized by minimizing the
right-hand side with respect to the choice of y. The most practical way of tack-
ling this problem appears to be through optimization of (14) with respect to ¢
and with W, a characteristic function. But this requires an efficient bound on
e xelll2/Wxellli, where y, is the characteristic function of the ball B,. The L-
norm |||y.|||; can be easily estimated because

el = llzell = 1B;]

The main problem is to estimate |||y.|||,. This is straightforward if by,...,b, is a
vector space basis of g. Then the corresponding modulus |g|’ equals the full modulus
lg| and the image of g — |g| under the exponential map is locally equivalent to the
Euclidean norm on RY. Hence one has bounds

OC_lad'"+k/2 < |“Xél”2 < (xgd’”+k/2

for some « > 0 and all ¢ € {0,1]. Since one also has estimates |||y.|||} = o’e? for
small ¢, with d = dy, + k the dimension of the group, this gives bounds

xelll2/ eIl < ae™? (15)

on the ratio which are valid for all ¢ € (0, 1].
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For an algebraic basis by,...,b, the |||x:||]| estimates are clear since one has
estimates

a'e? < B <
for ¢ € (0,1] and
a'eP < Bl £ el

for ¢ = 1, for appropriate o,o; > 0. The two dimensions D’ and D are usually
distinct and D’ = D if and only if G is stratified and b),...,b; spans the first
subspace in its grading (see [VSC], Remark 1V.5.9). The estimation of the L,-norm
is more difficult.

It is possible to make a crude estimate of |||z.|||> for small ¢ by remarking
that there is a compact subset of R? which contains the support of the images of
7e € € (0,1] under the exponential map. Therefore

0" < el < o0e””
for all ¢ € (0,1] and a suitable o, = 0. But a more precise estimate requires more
detailed information on the relationship between the Malcev basis ay,...,a,; and the
algebraic basis by,...,by . For example, if G is stratified, by,...,b, is a basis for
the first subspace of its grading and each a; is a commutator in the b;, then one
can find good bounds on |||x.|||2.

Our inability to establish good estimates on |||;|||2 limits the usefulness of the
Nash inequalities for subelliptic operators. Nevertheless, the small ¢ estimates (15)
yield inequalities which can be usefully applied to the analysis of strongly elliptic
operators.

Let by,...,bs be a vector space basis of g. Then combination of (14) and (15)
gives bounds

4 12
lolls < o (zlnB,gou%) gl

for all ¢ € Lz;l(Rk) NL(R") and all ¢ € (0, 1]. But if one introduces the norms

d 1/2
Isi(9) = (;ua«»u% i vzllq)ll%)

on LZ;I(RI‘) with y € (0, 1] one then has bounds

loll < el(e) + ae |0l

valid for all ¢ € (0,1] and for ¢ = 1/y. But these bounds can be simply modified
to hold for all ¢ > 0 and then optimized over e.

Corollary 3.7. Let ay,...,aq,,-..,04,+k be a weak Malcev basis passing through
m with the ideal property (3) and let by,...,bg a vector space basis for g. Then
there is an o > 0 such that

ol < elai(e) + alye) “2|lo|;
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forall o € Lyy NLy, all e > 0 and all y € (0,1]. Consequently, there is an oy > 0
such that

ol < (21 (@)/Ollel N4 2ol
Sfor all ¢ € Ly N Ly and all y € (0,1].

Remark 3.8. The above Nash inequalities are expressed, or are expressable, in terms
of the C'-seminorms N, j, or the C'-norms || - ||, used in [Rob]. Similar results
can, however, be formulated with the C"-seminorms and C"-norms by the use of
embedding properties. In particular for each n € {2,3,...} there is an o, > 0 such
that

NMu(e) = Sn_lNZ;n((P) + ‘xns_l ”(p”2
for all ¢ € L,,, and all ¢ € (0,1] (see [Rob], Lemma 111.3.3). Similarly,
lolln = & Mollan + e ol

for all ¢ € L, , and all ¢ > 0.

In the sequel we need a variation of the above results which is formulated in
terms of a second representation U° of G associated with U. The action of U is
given by (1) which can be reformulated with the notation of (2) as

(U(@)p)x) = €N p(0y(x))
and then the action of U° is defined by
(U°(9)p)(x) = @(04(x)) .

It then follows as for U that U° is an isometric continuous representation on L p(Rk )
for p € [1,00]. Note that if b € g and B = dU(b) then

k op .
(Bo)(x) = ; X”(x)aT(x) + 1Y (x)p(x)

with X, and Y real polynomials. Hence if B® = dU®(b) one has
0 £ ¢
(B o)(x) = ZXn(X)a—(X),
n=1 Xn

i.e., B® is the principal part of the first-order partial differential operator B.
Now if one defines a convolution product ¥ * 0@ by setting

Yryop =U(Y)e,
then the generalized Young inequality is again valid.

Proposition 3.9. Let ay,...,aq4,,...,a4, 1k be a weak Malcev basis passing through
m which has the ideal property (3). If p,q,r € [l,00] and 1+ 1/r =1/p+1/q
then (Y, @) — W xyo@ from (L4 N L1) x (L(R¥) N Ly(RY)) into L(R¥) extends
to a map from Ly x L p(Rk) into L(R¥) which satisfies

1 +uooll- = llollp 11l

for all ¢ € Lp(Rk) and € &,
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Proof. The proof is very similar to that for the representation U but the starting
point is now the identity

U W)e)x) = [ dw [dy y(Bw)Y(») 9(2w,x,y) s

RYm RK
which then gives

(U W) )| = [ dw [dy[y(Bw)y(»)I « 92w, )]

R4m RF

in direct analogy with (8). The point is that the phase which distinguishes between
the action of U and U°® plays no role in this estimate or in the subsequent estimates
that are essential in the proof. [J

One can now derive a version of the Nash inequalities suited to the seminorms
associated with the operators By = dU°(b;). One has

g 12
I - Ul = Jda woll (;uwn%)

in direct analogy with (12). Therefore if

4 12
I3.(0) = (z:lancpu% " yzucpn%)
i=

with y € (0, 1] one obtains the following version of Corollary 3.7.

Corollary 3.10. Let ay,...,a4,,...,a4,+k be a weak Malcev basis passing through
m with the ideal property (3) and let b,,...,by a vector space basis for g. Then
there is an o > 0 such that

lolla £ el5(9) + a(ve) (ol

forall ¢ € Lyy "Ly, all ¢ > 0 and all y € (0,1]. Consequently, there is an o; > 0
such that

ol < a (51 (@)/ Gl 42 ol

for all ¢ € L,y "Ly and all y € (0,1].

The proof is a repetition of the previous arguments but with Proposition 3.1
replaced by Proposition 3.9.

4. Kernel Bounds: Small ¢

In this section we use the Nash inequalities to obtain bounds on the reduced kernel
K, associated with the strongly elliptic semigroup S;. Since the Nash inequalities are
established for weak Malcev bases with the ideal property (3) we first derive kernel
bounds in a representation realized with respect to such a basis. Subsequently we
remove the ideal property by making a unitary transformation.

Our arguments are based on the Davies perturbation method as described in
[Rob] Sect.IV.2. A complication occurs, however, since the present operators are
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in general not real. Therefore we have to work on the complex L ,,(Rk) spaces. One
cannot restrict attention to the subspaces spanned by the real-valued functions as
in [Rob].

Let U be a basis realization on Lz(Rk ) of the induced representation m and
bi,...,bqs a (vector space) basis of the Lie algebra g. If B, =dU(b,) for j €
{1,...,d}, then

(Bjo)(x) = szn(x) (X)+ZY(x)<P(X)

with X, and Y; real polynomials. Moreover, if U° is the representation of G defined
at the end of Sect. 3, then B} = dU°(b;) is the principal part of B, i.e.,

o ; ¢
(B o)(x) = Z)(jn(x)é—‘(x) .
n=1 Xn
Next, if C = (¢;;) is a real, symmetric, strictly positive-definite matrix we define
De = { € C(R") : ¢ real valued and z ¢y (BAY)(x) (BSY)(x) <

Ij—

for all x € Rf},

and then the distance dy ¢ : R x RF — [0,00) is introduced by

dy,c(x; y) = sup [Y(x) —y(y)| .

yeDe
The first theorem of this section gives kernel bounds for second-order operators
Z ¢,jBiB; + z ciB
1,j=1

with the matrix C as principal coefficients and with real first-order coefficients c;.
The large time behaviour of the bounds is governed by the smallest eigenvalue 4,
of the self-adjoint principal part

d
HO = — Z C’UB,‘B]
i,j=1

of H acting on Lz(Rk), ie.,
Ay = min{(p, Hop) : ¢ € #(R*) and [p|, = 1}
= min{(p,Hp) : ¢ € (R*) and ||p, = 1} .

Note that 4, > 0 since £ = 1. Indeed if 4| = 0 then the corresponding normalized
eigenfunction ¢; would satisfy

d
Z cij(th)l,Bj(Pl) =0
i,j=1
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and, since C is strictly positive, B;p; = 0 for all i € {1,...,d}. But this implies
that U(g)p; = ¢, for all g € G which is impossible since U is irreducible and
non-trivial. Further note that A, is a unitary invariant, i.e., if U and U are unitarily
equivalent representations, with H,H the corresponding strongly elliptic operators

and 21,11 the lowest eigenvalues then A; = 1. This invariance will play a minor
role in the following proof.

Theorem 4.1. Let [ € g%, ay,...,a4,,--.,%4,+k be a weak Malcev basis passing
through a polarizing subalgebra mi of | and U the corresponding basis realization
in Ly(R*). Let H be a second-order operator associated with the real, symmetric,
strictly positive-definite matrix C = (c;;), the first-order coefficients ¢, € R and
the basis by,...,by of g. Further let k, denote the corresponding reduced kernel.
Then there exists an a > 0, independent of the coefficients (C,c), such that

i )] < a1 A epr)™ e inf exp (p*(1+ &)t — pldyc(x; ) = 1)
pz

uniformly for all t > 0, x,y € R* and ¢ € (0,1], where u is the lowest eigenvalue
of C,
2 = min{(¢.Hp) : ¢ € S(RY) and ||g] = 1}
and v = |c|u='? with |c| the l,-norm of the first-order coefficients.
Therefore if dy c(x;y) < vt then

06 v)| < a(l A gur)H2e1
and if dy,c(x; y) Z vt then

(s )| < a1 A ept) ™ 2e™ 1" exp(—(dy,c(x; ) — vt (4(1 +&)t) ™)
for all ¢ € {0,1].

This result is the direct analogue of Theorem IV.2.2 for the universal kernel
given in [Rob]. The proof is very similar although the complex structure introduces
added complications.

These bounds on the reduced kernel give the optimal #-singularity for small ¢
and the correct asymptotic behaviour for large ¢. In particular

lim —¢~'log |, (x; y)| = 4, .
1—00 .
In addition the bounds give
llin(l)—tlog 1, (x; Y)| = du,c(x; y)*/4,

which is the optimal bound in the relative variable. (It is likely that both these
bounds are identities. )

The principal weakness of the kernel bounds is that they fail to reflect the
expected exponential decrease of the kernel on the diagonal. This will be established
in the next section by an alternative set of bounds.

Proof. We begin by assuming that the weak Malcev basis has the ideal property (3).
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Let Y € Dc. For p € R define the operator U, on Lz(Rk) by (U,p)(x) =
e P p(x) and the semigroup S” by S/ = U,S,;U,"". Then the infinitesimal gener-
ator of S” is the operator H” = U,HU, . Note that U,B;U, ' ¢ = Bi¢ + ;¢ for
all ¢ € Ly(R*), where /; = B°y.

Let peR,p € Lg(Rk) and set ¢, = S’ ¢ for all + > 0. Then for all > 0 one
has

d
ol = ~2Re(o, H 1)

d

d
=-2 ReAZlcij((Bi = pU)os (B + pY;)en) — 2 ReZlct(cor,(B, + pYi)er)
Lj= 1=

d d
= —2(¢;, Hoop,) + 2/02‘2 Ci/(l//i(Pt, Wjﬁ”t) - 2.02 (@ ¥.0r)

i,y=1 1=1

< 20" = 2+ lplo)llel3 -
(Here we have used the estimate

d d
lelnlwllﬁ <p! 2 ey(bio.,0) < 1 Hlellz
i= L,j=
which is valid for all ¢ € L,(R).) Hence by integration one finds

||S'P||2__>2 < e(p2—2|+lplv)t (16)

for all + > 0.
Next we estimate [|S/[l>—.oo. Let p € R and ¢ € (\}2,L,. Then ¢, =S¢ €

FRY ¢ ﬂ;o:le. Thus if p > 2 is an even integer,

d —
EII%IIZ = —2pRe(o, 0! 'H ;)

d d
= —2pRe Y c,(Bi(@!®:" "), B;p/) + 2ppRe Y Cij(‘//i(/)f@pﬁlsBj@l)
1,)=1 1,j=1

d d
—2ppRe Y ¢, (B! @? ) io0) +2pp* Re S (ol i~ W00)
i,j=1 1,7=1
d 1 d 1
—2pRe} (@ D" " Bipy) — 2ppRe Y- ci( @l i) . (17)

i=1 1=1

We estimate the six terms separately. Using the identity B;(¢y) = yB°p +
@B, together with the fact that By is a derivation, one obtains for the first term

Be! D", B,¢) = (Bi((l0:))" " 0:). Bjp1)
=(p— 1)(|‘Ptlzp_4(l)t Bf’|(p,|2,B,~(p,)+([(p,|2p—23,(p,,B,~(p,)
=(p— DU P* B o % 1))

+ i p— DB o2 Yo+ (0P 7 Bigws (0[P 7' By
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where x = (¢BY¢:,...,P:B;¢,). The key point is that the second term is purely
imaginary since BY is a real differential operator. Moreover, |¢,|*~* B?|¢,|? is real.
Hence using the identity y; +¥; = B}’](p,l2 one deduces that

d
—2pRe Y ¢, (B(@!®:" "), B,p)

i, j=1

d
=—pp— 13 cillo**B o2 1 + 7))
1,j=1

d
—2p Y cij(lod|”™" B, 9|7~ Bj 1)

1,j=1

d
=-p(p— 1)_Zlcfj(|<pt|2p_4B?l<pf|2,B§’|<ptlz)
i,j=

d
~2p Y c(lo]? " Boos, || "~ Biopy)
ij=1

d d
=4 (p =D X B loul?. B} o)) = 2p 3 cii|@u "~ B |oi|P " By

i,)=1 i,j=1

IIA

d d
=23 cy(BY ol ? B} 19u|”) = 20 3 ey (|oul ™" Bigys @i P B pr)
1j=1 1j=1
because p = 2.

Next we consider the second order terms on the right-hand side of (17) which
are proportional to p. One has

d d
2p|pRe Y o, (Vi0f D" Bjo)| = 2plp| [Re Y ¢y (Wil ou|?~ i, |0:| "' Bjoy)
i,j=1 ,j=1

d
< eplpl - el "' Biows |@:|~ ' B; 1)

i,j=1
i 4 1 -1
+e PIPlAZlCiJ‘(With'p_ @Y ilod” or) -
ij=
Therefore choosing & = (2|p|)~! one finds
d 1 & 1 1
2p|pRe X cj(Wiol e " Bio)| <27 'p > cii(lo:|P 7 Bigs, || P Bigy)

ij=1 ij=1

+2pp’llof |13 -
Alternatively,

(Bi(ﬁotp@p_l )a‘/&'q’t) =(p— 1)(“Pt|2p_4<Pt B?I(Pt|2,l/ﬁ(/)t) + (I(Pt|2p~2Bi(Pt,l/§(Pt)

=2p~'(p = DB/ 19" hlodl P) + (0u P~ Bipis [ou| P~ ety
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Hence estimating as before

d d
2p |pRe Y ci(Bio! @™ )o0)| < 2e(p — 1lp] Zlcfj(Bflqotl”,Bflcozl”)

i,j=1 b=

d
+2¢7(p—1)|p| Elcij(lﬂi|¢z|p,Wj|¢z|p)

Lj=

d
+0plol X cii(lod”™" Bigw, |odf? ™' Bigy)

=1
d
+ 87 plpl X cii(bilod o slod P o) -
ij=1

Therefore choosing § = (2|p|)~! and ¢ = (2(p — 1)|p|)~" one concludes that

d
2p |pRe Z]cij(Bi(wf’W’“ ), 01)
L]=

d
< 3 ey (Blod?, B lo?) + 4(p — 1P|l |13

1,7=1
o —1 —1 20, P2
+27'p > ey(|od?7 Bign |97 B, o) + 2pp*llof |5 -
1,7=1

The fourth term on the right-hand side of (17) is straightforwardly estimated,

d
2pp* Re 3. cii(Wipl @ Wi00)| < 2p 0%l 113 -

i,j=1

For the fifth term we use the skew-adjointness of B, and Bf to deduce that
¢ —p—1 4 2p—2

—2pRe Y- @D, Big)) = —2pRe Y- ci|@] > 01, Bipr)

1=1 i=1

d
=2pRe Zl Ci (Bi(|€01|2p—2(/)t), )
i=

d d
=2pRe Y- (|97 7*Bipy, 9) +2(2p — 2)Re 3 ci(oul "2 0uB] | @il 1)

1= 1=

d d
=2pRe ; e(|@d? B, ¢ ;) +2(2p — 2)Re ;chf’ml", lo:|7)
= =

d
=2pRe Y ci(lo/*Bigs, 01) -

1=1

Therefore one concludes that

d
—2pRe Y o/ @ Bipr) = 0.
i=1
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Finally,

d
2p |pRe> (@D Wigr)

i=1

d
_ zplpzlc,uqo,v,w,-kp,lf’) < 2plplollo?I2

Adding all these terms one derives the differential inequality

d 2p £ o1 o |P RO |P d p—1 p—1

E”‘Pt”zp s - ZICU’(B:‘ || ij|¢t| )— P Zlcz‘j(|€0t| Bipu || Bigr)
1,]= 1,j=

+ (4p* p* + 2plpI0)l ! 13
d
< —u§ I1B? 19?115 + (4p% p* + 2 |plo) ]| @f |5 - (18)

Now using ||@/||? = H(p,llgi one obtains

d _ 4o
g lodlz = —u2p) e, 2”ZIHB, lod?115 + 2o + o)l @l - (19)
1=

Finally, in terms of the norm I’ introduced in Sect. 3,

d B oo _
Sl = =)Mo, 2r35,(0d?Y + 2pp* + lplo+ 5 1(2p) Dl -

This differential inequality is the same as inequality (IV.2.12) in [Rob], if one
takes ||C]| = 1 in [Rob]. The important feature of the remaining part of the proof is
the use of the Nash inequalities of Corollary 3.10 to estimate the terms in the sum.
These estimates are in terms of L, , and L, , norms of |¢,|?. But |||¢|?|l1 = |l¢:||5

and |||o.|?]13 = ||§Dt||§§. Therefore one can use the induction proof on pp. 262-264

in [Rob], starting from the L,-estimate (16), to deduce bounds on ||S?||,— 0. These
bounds are the direct analogue of the bounds on p. 264 of [Rob],

A P 2.
HStpHZ—)oo g ak(byzsyt/k)*k/“e“""ep (1+t.)t+|p|vte, et ,

and are valid for all + > 0,p € R,y € (0,1] and ¢ € (0,1] with the values of a
and b dependent only on the group, the basis b),...,b; and the constant o in
the Nash inequality Corollary 3.10. Now if eut < 1 set y =1 and if eut = 1 set
y = (eut)” 2. Then, with redefined values of a and ¢, one obtains bounds

s 2
187 200 < a(l A gur)~H4e=hter Ot Ipl (20)

for all > 0,p € R and ¢ € (0, 1]. But by duality
”Stp||1—>oo < “sz”1~—>2”552”2—>00 = ”S,—zp”2—>oo||S;]2”2—>oo .
/ / /
Hence one obtains bounds
151l oo < a(l A epit) K2t (ol

for all # > 0,p € R and ¢ € (0,1] and again a redefined value of a. Consequently

(03 )| < a1 A eput)~H2e= 1t ep (O lplortpb)—d()
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for all ¢ > 0 and x, y € R¥. The value of @ now depends on the group, the dimension
k, the basis bj,...,bs and the constant o in the Nash inequality Corollary 3.10, but
is independent of the coefficients of H and of ¢ € (0, 1]. Minimizing over Y € D¢
one deduces that

5 2 .
JKl(X; y)l < a(l A 8/”)—k/26—/.ltep (I+e)—|pldy, c(x:y)+|plot )

This proves the first part of the theorem if the weak Malcev basis has the ideal
property (3). We next remove this condition. By Lemma 2.2 there exists a weak
Malcev basis ai,...,dq,+x passing through m which has the ideal property. Let ¢
and o be as in Lemma 2.3 and let x;, and &, be the two associated reduced kernels.
Then it follows from the Gaussian bounds for K, and Lemma 2.4 that

|k (x; )| = |€*e DT NR (O(x); 0(y)))

é cza(l A gut)_k/ze_;'ltepz(H—B)t—Ip|dU,C(6(X)’()(y))+|pll7t .

Hence it remains to prove that dy -(0(x); 0(y)) = dy,c(x; y).

Now let 7 be the unitary map as in Lemma 2.3. Further let € CL‘?"(Rk) and
set ¥ =y o0. Then (V*¥)(x) = c e My (x). So

BEYO ' (x) = VBV YO (x)) = ce™ (B V*¥)(x)
= (B )(x) — i(BY o) (x)¥(x)

for all x € R*. Hence (B; ¥)(0~'(x)) = (B°Y)(x) and B, ¥ = (B2} o 0. From this
identity one easily derives the transformation formula for the distances and the proof
of the first part of the theorem is complete. The second part follows by minimizing
over p. U

There is another description of the distance dy, ¢ which allows one to reformulate
the statement of the theorem in a more geometric manner.

Each B? is a vector field on R¥. But the algebra generated by the B, consists
of all differential operators with polynomial coefficients, ([CoG] Theorem 4.1.1(i)),
and the differential operator 0/0x; has no constant term. It follows that the vector

fields BY,...,B generate the tangent space at any point of R*. We now define

a geometric distance on R* as in [NSW]. For § > 0 let C(5) be the set of all
absolutely continuous functions y : [0,1] — G which satisfy the differential equation

d
W) =2 n®)B|
1=1 ()
almost everywhere, with
d 1 2
'Zl(c_ )ij vi(1) y,(1) <6
1,j=

for all ¢ € [0, 1], where C denotes the matrix of coefficients. Then define the distance
df o(x; y) between two elements x, y € R* by

df, c(x;y) = inf {0 > 0: Jyecs[(0) = x and y(1) = y1}.
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The distance df; - induces the Euclidean topology on R¥.

Lemma 4.2. The distances dy,c and dj, . are equal.

Proof. Let x,y € R¥, W € Dc,6 > 0 and y € C(8) with p(0) =x and (1) = y.
Write

d
0= OB | »
with .,
_Z](C-l)lj ?1(1)7)](’) < 52
ij=
for almost every ¢ € [0, 1].

Now denote the inner product on R? by (., -), the norm by |- |, set

[(BY)()] = (BY)E),,(Bgw)(z)) € RY for all z € R and [5(1)] = (5 (1),.
ya(t)). Then

ey

Lod
W) = Yo)] = 'f di V(1)
0

1 d

Of dt; y(OBY)((1))
1

< Ofdr|<C“/2w(t)],c"z[(B"w)(y(r))m

1 1
= 0fa’th_”z[V'(t)]l IC2B Y] £ Ofdt5 “1=0.

Therefore dy,c(x; y) < df o(x; y).

Alternatively, fix xo, yo € R* and let n = dlg]’ c(x0; y0) + 1. Define ¢, : R — R
by

|x| if x| <n,
on(x) = ¢ 2n — x| if n < |x| <2n,
0 if [x| > 2n.

Then ¢, € C.(R) and |@u(x) — @n(y)| < |x — y| for all x,y € R. Define y,:
RY — R by 7a(x) = @a(df c(x; 30)). Then g, € C.(R¥) and [1,(x1) — xn(x2)| <
dﬁc(xl;xz) for all x;,x, € RX.

Next we regularize y,. Fix a positive 7 € C;’O(Rk) with integral equal to one.
For m € N define 7, € CfO(Rk) by Tw(x) = m*t(m~'x) and ¥, : R¥ — R by

lpnm:'rm"‘)(n-

Here * is the convolution on the commutative group R¥. Then v, € Cf"(Rk).
Moreover one has

Tim Yrm(x0) = @u(dg c(x0; Y0)) = dfj c(x0; Y0) -
For all i € {1,...,d}, x € R¥ and ¢ > 0 one has

|1 a(exp(—tB; )(x)) — xa(x)| S df o(exp(—tB))(x);x) < ((C™ "))t
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Since the representation ¥ on Loo(R¥) defined by (V,w)(x) = a(exp(—1B;)(x)) is
weakly* continuous it follows that y, is in the domain of the operator B}, viewed

as an operator on Loo(Rk ). Next we argue that Zf{j:] i (BY xn )X)(BF xn)(x) = 1
for all x € R¥. One has for all x € R¥:

d 1/2
( > ¢y (B?xn)(X)(B‘fxn)(X)> = |C[(B° 1))

1,j=1

= sup (& C2[(B°xx)(x)]) = sup C'%& - [(B°yn)(X)] -
o i

Now for all ¢ > 0 the path y(s) = exp(stC'/?& - B°)(x) is a C™-path from x to
exp(tC'2¢ « B°)(x) and [}(s)] = tC'/2¢ for all 5. So

()], CT )]y = (tC'PE, c11C ey = ¢,

and hence y € C(1). Therefore df o(exp(tC'?¢ - B°)(x);x) < ¢ and C'?¢ -
[(B°xn) (x)] < 1 by an estimate as we used above for the proof that y, is differ-
entiable.

Next, note that the representation V' leaves Cfo(R") invariant. For all f &€

Li(R") and w € C=(R*) define
F={y €D@B):(f,(Bjw)*y)=(dx f,B)},
where @(x) = w(—x). Then CC°°(RI‘ ) C F and F is weakly* closed in D(B?), so
F = D(B?). Therefore
Bl (w*y) = (Biw)*y = w* By
for all € D(BY). In particular:
B = T * B Yn »

and for all x € R" one obtains

J 12
( > e (B,"w,,m)(x)(B;wnm)(x)> = [C"P[(B° W)

ij=1

= Ssup <éacl/2[(80¢nm)(x)]> = S:up(rm * <é7 CI/Z[BOXmD)(x)

[<]=1 l¢l=1

< sup [l EIC 2B mlllle < 1.

[¢]=1
Hence Yum € Dc and df; o(xo; yo) < dy,c(xo; o). O

It follows from the general theory of strongly elliptic operators that the semi-
group generated by a closed strongly elliptic operator with real principal coefficients
is holomorphic in the open right half-plane. Then, by the discussion in Sect. 3, the
corresponding reduced kernel extends to a function which is analytic in the half-
plane. Therefore it is of interest to examine bounds on the kernel for complex ¢.
This is particularly simple if there are no first-order terms, i.e., if ¢; = 0. In this
case the bounds of Theorem 4.1 give

i )| < a1 A o)™ e exp (—dy,c(x; Y (401 +2))7")
for all ¢ > 0 and ¢ € (0, 1]. These bounds have the following analogue.
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Corollary 4.3. Let | € g%, ai,...,a4,,--.,04,,+k be a weak Malcev basis passing
through a polarizing subalgebra m of | and U the corresponding basis realiza-
tion in Ly(R*). Let H be a pure second-order operator associated with the real,
symmetric, strictly positive-definite matrix C = (c;j), and the basis by,...,bs of
g. Further let x denote the corresponding reduced kernel. Then there exists an
a > 0, independent of the coefficients C, such that

lie2(x; v)| < a(e cos 0)F2(1 A guRez) H2e=%1 Rez
x exp (—dy,c(x; ) Re(4(1 + €)z) ")
for all z € C with Rez > 0 and all ¢ € (0,1}, where 0 = argz.
Proof. We adapt the general reasoning of Davies [Dav2], Lemma 3.4.6 and Theorem

3.4.8.
First remark that if z = ¢ + is then

[S:ll1—2 = [1Sill1-2 = ISill2—00 = ISzll200

because H is self-adjoint on Ly(R¥). Therefore
I ll1—00 < S22l 1-2l1S22 01200 = (ISy2ll2—00) -

Hence, by (20) with p =0 and ¢ = 1, one has bounds

(s ) S 1800 S (1A p) e,
with a redefined value of a, for all z € C with t = Rez > 0. Then since (1 At) =
(1 —e™") this gives ﬁ

li2(x; )| < a(l — e ) HPeht
Alternatively, one can rephrase the bounds of Theorem 4.1 as
th(x;y)l < a(l _ e—sut)——k/ze—~/i[te~dU‘C(x;y)2(4(l+s)t)‘l ,

uniformly for all # > 0 and ¢ € (0,1].

Next for fixed x,y € R*,¢ € (0,1] and ¢ € (0,7/2) define the analytic function
F in the open right half-plane by

F(z) = 1,105 )€ (1 — et ) H2ghod Ty cts
where b, = (4(1 + ¢)sin¢)~'. Then
|F(H)] < a
for all + > 0. Now it follows from a Duhamel estimate that

—1

1 1
ll _ e—se—“ﬂl § Ise—z(p]fd/;V Ie—/ise l — Sfd/i e—/Lycosq)
0 0

= (cos ) (1 — e %) = (cos @)~ '(1 — e Re% ")

for all s > 0. Hence

—l—i e
IF(teup)I < a(l _ o HRetT e "’)—k/le ot e ‘PIk/Z
< a(l - e—a/lRet"le"“’)—kﬂ“ . e-—s;zt_le‘iwlk/2

< a(cos p) M.
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Moreover, if 0 € [0, @] then
]F(te“’)l < a(cos 0)—k/2eb(pdu‘c(x;y)21sin(qJ—U) < a(cos (p)—k/zeb¢du_(~(x;y)2tsinq).
Therefore the Phragmén—Lindelof theorem implies that
IF(2)] = c(cos ¢)™

for all z with argz € [0, @], for a suitable ¢ > 0, depending only on a. Similar
reasoning leads to an identical bound for z with argz € [—¢,0]. But since

. sy _po—lm2—g) 2
K p) = F(z™ 1) (1 — e ) H2mhzgmbys 1 Vit
one concludes that
X i Res 2 1 _
le(x;y)l < C(COS (p)—k/Z'l _ e—auz]—k/Ze 2 Rc“e beody, c(x,y)t™ sm(op—|0])

for all z = te'’ € C with |argz| < ¢. Now, however, 1 — e R¢? < |1 — e~ for all
ze€ C with Rez >0, by the triangle inequality. In addition 1Az <
(1 —e )71 —e™?) for all + > 0. Therefore
re2(x; )| < e(cos @) ¥2(1 A gp Rez)_k/ze"l‘keZe_b“’dU’C(x"’)z’_15”‘("’_‘”“

for all z = te'’ € C with |argz| < o.

Next for z € C with Rez > 0 and Imz=+0 choose ¢ € (0,7/2) such that
ctan@ = tan |f]. Then sin(¢ — |0])(sin@)™! = (1 —¢)cos® and cos @ = &(e? +
tan® 0)~'2 = ccos#, so

IKZ(x; y)l < C(S cos 9)—/(/2(1 A e Rez)—k/ze—}.]Rc ze—(l—l:)dU’C(X;y)zReM(H—L')Z)_] )

Finally, set 6 = 2&(1 — &)™™' so that (1 +e&)(1—¢&)~! = (1+0). Then ¢ =62 +
8)~! = §/3 for & € (0,1] and

N L2 —1
!Kz(x;y)l é C3k(5COS 9)—k/2(1 A 5/1 Rez)—k/26—~/.lReze—a'U_C(x,y) Re(4(149)z)

for all z € C with Rez > 0 and 6 = argz and for all 6 € (0, 1]. Thus the statement
of the corollary is established by a change of notation. [J

The estimates of Theorem 4.1 depend critically on the reality of the principal
coefficients (c,,) but less critically on the reality of the first-order coefficients c,.
One can adapt the foregoing arguments to bound the reduced kernels associated
with second-order operators with complex-valued ¢; at the cost of forfeiting control
over the large ¢ behaviour.

Corollary 4.4. Let | € g%,ay,...,04,,---,04,+k be a weak Malcev basis passing
through a polarizing subalgebra m of 1 and U the corresponding basis realization
in Ly(RY). Let H be a second-order operator associated with the real symmetric
matrix of principal coefficients C = (c,;), the first-order coefficients ¢, € C and
the basis by,...,by of g. Further let k, denote the corresponding reduced kernel.
Then for all ¢ € (0,1] there exists an a, > 0 and w, = 0 such that

.2 a1
th(X; y)l é a, t~k/28w;te—dug(x,,v) (4(1+e))

uniformly for all t > 0 and x, y € R*.
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Proof. The proof is an elaboration of the proof of Theorem 4.1. We briefly comment
on the extra features.

First, in the calculation of d||¢,||3/d¢ one has additional terms

d
X1 =2Re Z ci(pn, (B, + Plﬂz)%)-

i=1

But these can be handled by (¢,¢~!)-estimates. For example, one readily finds that

lIA

d
il = e 1Bipell3 + e~ 0 ll@ull3 + 2lplolli]I2
1=

< e(@uHop,) + (c7'v* + 2|plv)|| |13 -

2 and using the previous estimates one finds that

Therefore choosing ¢
d 2 2 2
ez = 20el +0/2) oz

and then, by integration,
IS/ [l2z < ellolHo2)

for all t > 0 and p € R.
Similar modifications are necessary for the estimation of d ||<p,||§p /dt. Now one

has additional terms

d
Wi ==2pRe Y ci(p/ "', (B, + pY)o,)

i=1

d
=2pRe Y cl|od” @i |0 Bip) — 2ppRe 3 cl|il P il ] -
1=1

1=

Hence
d -1 —1 —1 2 P2
[Wi| < epo Z c,_,-(|(p,]p B, |oi|? Bip) +e PU”%p”z +2plplvllof |I3

1,7=1

d
=p Y cii(|olP 7 Bigs, |77 Bgy) + (pv* + 2plplv)llef |13

ij=1
if one chooses ¢ = v~'. Finally, one obtains a differential inequality which differs

from the earlier one for pure second-order operators only in the terms proportional
to ||@;|l2p. Now one deduces that

d a oo
Tl < —1 2 11B; lod 7113 + (4p7 0 + 2plplo + poP)llodl3
1=

instead of the inequality (18) and

< —u2p) e,

d do
Tl < 73BT loid 15 + 2po” + ol -+ 0"/l il



Reduced Heat Kernels on Nilpotent Lie Groups 507

which is the direct analogue of (19). The coefficient 2pp? is replaced by 2pp? +
|p|v + v?/2. Hence the bounds on the reduced kernel become

2 i~ N N
aé:t—k/ze(l) +po)(1+e)t deYC(x,))ez; A(1re)

AN

|1 (x5 y)|

_ 2 N N R DR
§ at k/Zep (142¢)t de’C(x,))ew (14e™ " (14e) ) ,

uniformly for all p,t,¢ > 0 where w = v/2. Hence minimizing over p, replacing 2¢
by & and redefining a, gives the desired bounds. [

There is also an analogue of Corollary 4.5 for operators with real principal
coefficients and purely imaginary first-order coeflicients. The resulting H is still

self-adjoint on Ly(R") and hence one has bounds

1Sl =0 < I1So2lli—2l1Se2 200 = (I1Sy2 11200 )

for all z € C with t = Rez > 0. Thus it follows from Corollary 4.4 that one has
bounds

e (x; )| £ at™ e
for all z € C with ¢t = Rez > 0 uniformly for x, y € R*. Now the arguments of
Davies [Dav2], Sect. 3.4, apply directly to give the analogue of Corollary 4.3.

Corollary 4.5. Let [ € g%, ay,...,aq4,,....04,+ be a weak Malcev basis passing
through a polarizing subalgebra m of | and U the corresponding basis realization
in Ly(R*). Let H be a second-order operator associated with the real, symmetric,
strictly positive-definite matrix C = (c,;), the imaginary first-order coefficients c;
and the basis by, ...,by of §. Further let x, denote the corresponding reduced ker-
nel. Then for all ¢ € (0,11, there exists an a, > 0, independent of the coefficients
C, and an w, = 0 such that

o2 A1
le(x; y)l é as(cos 0)*k/2(ReZ)—k/Zew,; Re zede’C(x,y) Re(4(1+¢)z)
for all z € C with Rez > 0, where 0 = argz.

Finally we note that for strongly elliptic operators of order m > 2 the method
of this section does not work. The first problem is that there is no description of
higher order strongly elliptic operators in terms of positivity of a matrix of principal
coefficients. This can be bypassed by using the method of Sect. IIl.4 in [Rob]. But
then one encounters m™ order derivatives on the functions i used in the perturbation
argument. One could define inductively Dy = Dy ¢ and

Dy, ={Yy €Dy :BWYyeD,_y foral ie{l,....d}}

for all » = 2 and

du(x; y) = sup |Y(x) —y(p)|.

YeD,

Then it is readily verified that d, is non-degenerate and is a distance on R*. One can
then obtain Gaussian type bounds for the reduced kernel of the semigroup generated
by an m™ order operator with the distance on R* equal to d,,. In the situation of
Sect. II1.4 of [Rob] the corresponding distances d,,d,,... are all equivalent (see
pp. 200-203), but in the present setting with the irreducible unitary representations
the distance d, is not equivalent to d; = dy,c = dlg/) ¢ if m is large, in general.
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One can prove bounds on the reduced kernels corresponding to m™ order oper-
ators by exploiting the Nash inequalities Corollary 3.7 as in [Rob] Chapter III and
one obtains that

HKt”oo = HS,”]_,OO < at"k/mewt

for some a > 0 and w € R, valid for all z > 0. If the strongly elliptic operator is
self-adjoint, with smallest eigenvalue 1; then ||S;|.—2 < e~ "' by spectral theory.
So using the decomposition S, =Sy 08,_,08; : Ly — Ly — L, — Ly one deduces
that

[Killoo = [1Sifl1m00 < a(l A ) Hme=h!

for some a > 0, valid for all # > 0.

The same situation occurs if one attempts to derive Gaussian bounds for the
higher order derivatives of the reduced kernel, even for second order operators. We
are only able to derive Gaussian bounds in terms of the distance dy, ¢ for the first-
order derivatives of the reduced kernels of semigroups generated by second-order
operators:

21
I(BiKt)(x; y)l é at~—(k+l)/2e~bdy‘c(x,y) t

uniformly for all i € {1,...,k},t € (0,1] and x,y € R*. Since we are not able to
prove higher order kernel bounds with the distance dy,¢ we omit the proof.

5. Kernel Bounds: Large ¢

In this section we use spectral theory in combination with embedding arguments to
establish bounds on the reduced kernel k; associated with the semigroup S generated
by an m™ order, formally self-adjoint operator. The arguments apply equally well to
strongly elliptic operators or subelliptic operators. Self-adjointness is the important
characteristic. There are two main features of these bounds. First, they still give
the optimal decrease, exp(—4;¢), as a function of 7. Secondly, they establish that
the kernel is “exponentially” decreasing on the diagonal. The earlier bounds did not
give any estimate on the decrease of the kernel along the diagonal.

Let U be the basis realization of the nilpotent Lie group G corresponding to a
weak Malcev basis ay,...,a4,,...,d4,+k passing through a polarizing subalgebra m
for an / € g* and let C be a strongly elliptic, formally self-adjoint, m™ order form.
Set H =dU(C) and let x be the corresponding reduced kernel. It follows from
the general theory of elliptic operators that H is self-adjoint on L,(R%). Moreover,
it follows from Kirillov theory that the kernel x, belongs to the Schwartz space
F(R* x R*). Therefore the self-adjoint semigroup S generated by H is trace class
and H has compact resolvent (see Theorem 2.5). Now we exploit these spectral
properties to derive bounds on ;.

Since k; belongs to the Schwartz space V(Rk x RF ) it is polynomial decreasing,
together with all its derivatives. But more is true, the kernel is “exponentially”
decreasing.

Theorem 5.1. Let U be the basis realization in L,(R¥) of the nilpotent Lie group
corresponding to | € g* and a weak Malcev basis passing through a polarizing
subalgebra m of 1. Further, let k be the reduced semigroup kernel corresponding to
a self-adjoint, m™ order, strongly elliptic operator H. Then there exist o € [2,00)
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and b > 0 such that for all z € C with t = Rez > 0 and all multi-indices  and
y there exists cg., > 0 such that

B 1y . —i _ l/z__b 1/2
((DED7 i, )63 y)| < epyee e P00

uniformly for all x,y € R, where 4, denotes the smallest eigenvalue of the oper-
ator H. Moreover, the constants cg,, can be chosen such that

supcp .y, < 00
=

for all § and y.

Proof. Let 4y < A < ... denote the eigenvalues of the operator H, repeated ac-
cording to multiplicity and let ¢, ¢,,... be a corresponding orthonormal basis of
eigenfunctions. Then ¢, € D*°(H) = ,9’(Rk) for all j. We obtain bounds on x;, by
examining the spectral decomposition

1 (x; y) = ie_"’z%(ij(y) (21)
=

of the semigroup S, generated by H. This series converges in the L,-sense, by
general theory, but we will establish that the convergence is uniform. The estimates
we obtain will even demonstrate that it converges in the L,-sense for all p € [1,00].

Let P and Qj, j € {1,...,k}, be the self-adjoint operators on Ly(R¥) such that
(Pf)x) =id f(x) and (Q;f)(x) = x;f(x) for all f € #(R") and x € R*. There
exists, by [CoG] Theorem 4.1.1, an n € N such that each P; and Q; is a linear
combination of monomials of order at most » in the B; on the Schwartz space.
Hence, by [Rob] Corollary 1.6.7, there exists ¢ = 1 such that D(H") C D(H,) and

IHoollz < c(1H"@ll3 + llo]3)
for all ¢ € D(H"), where

k
Hy = ZP,-2+Q,2~
=

So H} < c(H* +1). Let N(4) and No(4) denote the number of eigenvalues of H
and Hy which are less than or equal to A, counted according to their multiplicity.
Then it follows from the minimax theorem that

N(2) £ No((c(Z”" + 1)) < No(2ci")
for all 4 = max(]4;|,1). One can easily estimate Ny and one has Ny(4) = ((4 —
1)/2)¢ for all 2 = 1. So N(Z) < k% if 2 = max(|4;],1). Then j < N(4,) <
¥k and hence
2y z (eThj) (22)
for all j € N with A; = max(|4],1).

Alternatively, there exists ¢ > 0 such that c||Ho| = ||H{"¢|| for all ¢ €
D(H{"™), where r is the rank of the Lie algebra g. Then

N(/l) > NO(CI/(mr);tl/(mr)) > 2—1(01/(rnl‘)/11/(m;') _ k) > C/ll/(mr)
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for all 4 sufficiently large. Hence
14,1 < bj™

for some b > 0, first for all sufficiently large j, but then by increasing b, if
necessary, for all j € N.
Next we consider bounds on the eigenfunctions ¢;. If Ti,...,T; are operators

in L2(Rk) and 4 > 0 then we define the Gevrey space G;(Ti,...,T,) by
GZ(T]?""TI]) = U G)L;S(Tla‘°'aTq)9

>0

,,,,,

T;,) such that

sup  sup  (sp!)Ty Tl < 0.
PENp 1] ,ip€{l,0q}

Using the eigenvalue estimates one deduces

”Hpéojnz — M}IP < (bjmr)p — bp(Ul/(an))p)kanr
g bp(ell/(zkn)p!)2kmnr _ ezkmnr]-l/(an)bpp!kanr
uniformly for all p € Ny and j € N, so @; € Gopmar,s(H ), with norm bounded by
M 1t then follows from [EIR], Theorem 6.1, that

e2kmnrj
G2kmnr(H) = G2knr(Bl> e 5Bd) g sznzr(Pla e 9Pk’ Qla ey Qk) = S:”Z 5

.....

where o = 2kn*r and S%-% denotes the Gel’fand—Shilov space on RF (see [GeS]

,,,,,

Chapter IV). Now each function ¢ € S*% is infinitely differentiable and there exists

that o
|(DPp)(x)| < /e ¥ W™

uniformly for all x € R, So

_ 1/
(DPo)(x)| < cp, et

for some constants b,,c, > 0. But if one traces the various constants then it
follows that b; depends only on b since each ¢; € G,.,(H ) and cg, ; can be estimated
by a function which depends linearly on the norm of ¢; in the space G,.,(H). So

2kmnr j1/(Zkn)

cp, < cpe for some cp, independent of j. Thus

-1/(2kn) 1/
e

(D/j’ x)| £ ¢ ekanrj —by x|
@, B

for some constant by > 0, uniformly for all multi-indices f3, all j € N and x € R*.
It now easily follows that for all multi-indices f3, y the series

(DL ¥) = 3 e 4D ) DT ))

Jj=1
converges by the estimates (22) and that

, ) _ 1o __ 1/
I(DEDY i, )(x; y)| < cpype ™17 boll =0l
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with ¢+ = Rez and

S} P 1/(2kn)
. — (=i )t 2kmnrj’/(
Choyt = CpCy E ) e\ e <

i
Note that sup,,cp, < co. U

The foregoing estimates establish that the spectral decomposition (21) of the
semigroup generated by H is uniformly convergent. But as the estimates also give
an exponentially decreasing bound it follows that the series is L ,-convergent for all
p. This is a direct consequence of the Lebesgue dominated convergence theorem.
Note that uniform convergence can also be deduced from cross-norm estimates on
the semigroup by arguments similar to those on p. 247 of [Rob].
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