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Abstract: Motivated by some questions in the path integral approach to (topological)
gauge theories, we are led to address the following question: given a smooth map
from a manifold M to a compact group G, is it possible to smoothly "diagonalize"
it, i.e. conjugate it into a map to a maximal torus T of G?

We analyze the local and global obstructions and give a complete solution to
the problem for regular maps. We establish that these can always be smoothly
diagonalized locally and that the obstructions to doing this globally are non-trivial
Weyl group and torus bundles on M. We explain the relation of the obstructions
to winding numbers of maps into G/T and restrictions of the structure group of
a principal G bundle to T and examine the behaviour of gauge fields under this
diagonalization. We also discuss the complications that arise in the presence of
non-trivial G-bundles and for non-regular maps.

We use these results to justify a Weyl integral formula for functional integrals
which, as a novel feature not seen in the finite-dimensional case, contains a sum-
mation over all those topological T-sectors which arise as restrictions of a trivial
principal G bundle and which was used previously to solve completely Yang-Mills
theory and the G/G model in two dimensions.

1. Introduction

One of the most useful properties of a compact Lie group G is that its elements
can be "diagonalized" or, more formally, conjugated into a fixed maximal torus
T C G. In this paper we investigate to which extent this property continues to hold
for spaces of (smooth) maps from a manifold M to a compact Lie group G. Thus,
given a smooth map g : M —» G, the first thing one would like to know is if it can
be written as

g(x) = h(x)t(x)h-l(x), (1.1)
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where / : M —» T and h : M —> G are smooth globally defined maps. It is easy to
see (by examples) that this cannot be true in general, not even for loop groups
(M = S1), and we are thus led to ask instead the following questions:

1. Under which conditions can (1.1) be achieved locally on Ml
2. Under which conditions will t(x) be smooth (while possibly relaxing the con-

ditions on h)Ί
3. What are the obstructions to representing g as in (1.1) globally?

We will not be able to answer these questions in full generality. For those
maps, however, which take values in the dense set Gr of regular elements of G we
provide complete answers to 1-3. We establish that conjugation into T can always
be achieved locally and that non-trivial T-bundles on M are the obstructions to
finding smooth functions h which accomplish (1.1) globally. Furthermore we prove
that if either G or M is simply connected the diagonalized map t will be smooth
globally. These results confirm the intuition that (in SU(n) language) obstructions
to diagonalization can arise from the ambiguities in either the phase of h or in the
ordering of the eigenvalues of t.

While these equations seem to be interesting in their own right, they also arise
naturally within the context of gauge fixing in non-Abelian gauge theories. In [7],
't Hooft has argued that a "diagonalizing gauge" may not only be technically use-
ful but also essential for unravelling the physical content of these theories. For
us the motivation for looking at this issue arose originally in the context of low-
dimensional gauge theories. In particular, in [1,2] we used a path integral version
of the Weyl integral formula, which relates the integral of a conjugation invari-
ant function over G to an integral over T, to effectively abelianize non-Abelian
gauge theories like 2d Yang-Mills theory and the G/G gauged Wess-Zumino-
Witten model. The path integrals for the partition function and correlation functions
on arbitrary two-dimensional closed surfaces Σ could then be calculated explicitly
and straightforwardly. Formally this Abelianization was achieved by using the lo-
cal conjugation (gauge) invariance of the action to impose the "gauge condition"
g(x) G T (or its Lie algebra counterpart in the case of Yang-Mills theory). The
correct results emerged when the resulting Abelian theory was summed over all
topological sectors of T-bundles on Σ, even though the original G-bundle was triv-
ial. This method has been reviewed and applied to some other models recently in
[12].

In light of the above, the occurrence of the sum over isomorphism classes
of T-bundles can now be understood as a consequence of the fact that the chosen
gauge condition cannot necessarily be achieved globally on M — Σ by smooth gauge
transformations. But while it is certainly legitimate to use a change of variables in
the path integral which is not a gauge transformation, one needs to exercise more
care when keeping track of the consequences of such a change of variables. Thus
to the above list of questions we add (with hindsight)

4. What happens to G gauge fields A under the possibly non-smooth gauge transfor-
mation A —> Ah — h~lAh + h~ldhl In particular, does this give rise to T gauge
fields on non-trivial T bundles on M?

5. What is the correct version of the path integral analogue of the Weyl integral
formula taking into account the global obstructions to achieving (1.1) globally?
In particular, does this explain the appearance of the sum over all isomorphism
classes of T bundles?
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It turns out that indeed connections on T-bundles appear in that way and that the
Weyl integral formula should include a sum over those topological sectors which
appear as obstructions to diagonalization. When M and G are such that there are
no non-trivial G bundles on M, all isomorphism classes of torus bundles appear as
obstructions (because then all torus bundles are restrictions of the trivial G bundle).
In particular, this takes care of the two- and three-dimensional models considered in
[1,2] (as the contributions from the non-regular maps are suppressed by the zeros
of the Faddeev-Popov determinant).

The situation concerning non-regular maps is quite different and much murkier.
For example, there are maps taking on non-regular values just at isolated points but
which nevertheless cannot be smoothly diagonalized in any open neighbourhood of
one of these points. Consequently, the (differential-topology) methods we use in this
paper to investigate regular maps are inappropriate in the more general situation.
We present some examples illustrating the difficulties and discuss why our present
treatment fails in these cases.

This paper is organized as follows: In Sect. 2 we briefly recall the basic facts
we need from the theory of Lie groups. In Sect. 3 we discuss three prototypical
examples which illustrate the possible ways in which (1.1) can fail either locally or
globally. The first of these, a smooth map from Sl to SU(2), shows that not even
t(x) is necessarily smooth in general. The second, a regular map from S2 to SU(2),
can be smoothly diagonalized locally but not globally. It provides a preliminary
identification of certain obstructions in terms of winding numbers of maps from
M to G/T and also shows quite clearly how and why connections on non-trivial
T-bundles emerge. Finally, the third example (a map into SO(3)) illustrates how
global smoothness of t can fail even for regular g when both M and G are not
simply connected.

Section 4 contains the main mathematical results of this paper. We prove that
regular maps can be smoothly conjugated into the torus over any contractible open
set in M and we identify the obstructions to doing this globally. These results
are summarized in Propositions 1 and 2. Proposition 3 contains the corresponding
statements for Lie algebra valued maps. We also explain how to extend the results
to sections of a non-trivial adjoint bundle AάPc of a principal bundle PG and how
finding a solution to (1.1) is related to restricting the structure group of PG to T.
In particular, we establish a relation between restrictions of PG and regular sections
of AάPG.

Section 5 contains some additional results which are useful for the application
of the previous considerations to gauge theories. We first look at what happens to
gauge fields on PG under restrictions of the structure group. For two-dimensional
theories (and simply-connected G) we explain the appearance of the obstructions
in the form of non-trivial torus bundles by relating their Chern classes to winding
numbers associated with regular maps (the space of which is, in contrast to the space
of all maps, not connected). We also consider *$!/(« )-bundles on four-manifolds to
illustrate the obstruction to restrictions of the structure group. Finally, we address
the issue of genericity of regular maps and make some comments on the problem
of conjugating non-regular maps into the torus.

In Sect. 6, we turn to applications of the above results. We use them to jus-
tify a version of the Weyl integral formula for functional integrals over spaces of
maps into a simply connected group. As a novel feature not present in the finite
dimensional (or quantum mechanical path integral) version this formula includes a
sum over all those topological sectors of T bundles which arise as restrictions of
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a trivial principal G bundle, justifying the method used in [1,2] to solve exactly
some low-dimensional (topological) gauge theories.

While we have used a global coordinate-independent approach to establishing the
above results, in particular those of Sect. 4, they can of course also be obtained in
a more pedestrian manner by working with coordinate patches, local trivializations
and transition functions. At the referee's suggestion we primarily focus on the
global approach in this paper and we refer the reader who likes to see things
in local coordinates to the version of the paper available from the bulletin board
(hep-th/9402097).

After having completed our investigations we came across a 1984 paper by
Grove and Pedersen [5] in which the local obstructions we find in Sect. 4 are
also identified, albeit using quite different techniques, see [5, Theorem 1.4]. The
global issues which are our main concern in the present paper, in particular the
relation between conjugation into the torus and restrictions of the structure group
and the behaviour of gauge fields, are not addressed in [5], the emphasis there
being on characterizing those spaces on which every continuous function taking
values in normal matrices can be continuously diagonalized. These turn out to be
so-called sub-Stonean spaces of dimension ^ 2 satisfying certain additional criteria,
[5, Theorem 5.6].

A final remark on terminology: we will (as above) occasionally find it con-
venient to use SU(n) terminology even when dealing with a general compact Lie
group G. In particular, we might say "diagonalize" when we should properly be
saying "conjugate into the maximal torus" and we may loosely refer to the action
of the Weyl group as "a permutation of the eigenvalues". We denote the space of
maps from a manifold M into a group G by Map(M, G). Unless specified other-
wise, these maps are taken to be smooth, although the topological results of this
paper will of course continue to hold under less stringent requirements.

2. Background from the Theory of Lie Groups

We recall some basic facts from group theory we will need later on (see e.g. [3,6]).
Let G be a compact connected Lie group of rank r and T a maximal torus of G.
We denote by N(Ί) the normalizer of T in G, by W the Weyl group W = N(Ί)/Ί,
and by Gr and Tr = T Π Gr the set of regular elements of G and T respectively, i.e.
those lying in one and only one maximal torus of G. The non-regular elements of G
form a set of codimension three in G and, although this set may not be a manifold,
Gr and G have the same fundamental group, πι(Gr) = π\(G). Any element of G
can be conjugated into T,

\fge'GBheG:h~lgheT. (2.1)

For g G Gr, such an h is unique up to h — * hn, n G N(Ύ), and if h~λgh = t G T then
(hn)~λg(hn) — n~ltn G T is one of the finite number of images w(t) of t under the
action of the Weyl group W. The conjugate map

q : G/T x Tr -» Gr

)^hth~l (2.2)

is a I W I -fold covering onto Gr. If G is simply connected, this JF-bundle is trivial,
and hence the Weyl group acts freely on each connected component Pr of Tr
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and simply transitively on the set of components. Thus we can identify PΓ, the
image of a Weyl alcove under the exponential map, with a fundamental domain
for the action of W on Tr and the restriction of q to Pr provides an isomorphism
between G/T x Pr and Gr. In particular, one has π2(Gr) = TLr', to be contrasted
with π2(G) = 0. In general, if one restricts q to G/T x Pr, it becomes a universal
covering of Gr and the covering (2.2) is neither trivial nor connected. Nevertheless,
the fact that, away from the non-regular points, the above map q is a smooth
fibration (with discrete fibers) will be of utmost importance in our discussion in
Sect. 4.

3. Examples: Obstructions to Globally Conjugating to the Torus

We will now take a look at three examples of maps which illustrate the obstructions
to achieving (1.1) globally or smoothly. The first one, which we will only deal with
briefly, illustrates what can go wrong with maps which pass through non-regular
points of G. We shall from then on (and until the end of Sect. 5) focus exclusively
on regular maps and try to come to terms with them. The second example, a simple
map from S2 to SU(2)9 allows us to detect an obstruction to globally and smoothly
diagonalizing it more or less by inspection. This obstruction turns out to be a
winding number associated with that map. Refining that winding number to include
a gauge field contribution one can moreover read off directly that any attempt to
force the map into the torus by a possibly non-smooth (discontinuous) h will give
rise to non-trivial torus gauge fields. The third example, a map from the circle to
SO(3), highlights another obstruction which can only arise when neither G nor M
is simply connected.

Example 1: A Map from Sl to SU(2). Let / be any smooth R-valued function
on the real line such that f(x + 2π) = -/(*). Then the map g G MapGS1, 5(7(2))
(the loop group of SU(2)) defined by

cos /(*) -ie-W sin f ( χ )
ielx'2 sin f ( χ ) cos /(*)

is single-valued, g(x + 2π) = g(x), and smooth. As / is necessarily zero somewhere,
g passes through the (non-regular) identity element, g can be diagonalized by a map
h, h~lgh — t, but for generic / neither h nor t are smooth. For instance, h can be
chosen to be

- (3'2)

and t turns out to be

. (3.4)

What happens here is that, upon going around the circle, t(x) comes back to itself
only up to the action of the Weyl group, reflecting the ambiguity h — »• hn at the
regular points of g mentioned in Sect. 2. Had g been regular everywhere to start
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off with, this ambiguity could have been consistently eliminated by giving a partic-
ular ordering prescription for the diagonal elements. Such a prescription, however,
becomes ambiguous when two of the diagonal elements coincide (as at the identity
element of the group). The fact that, when dealing with non-regular maps, one is
leaving the realm of smooth or topological fiber bundles like (2.2) is illustrated by
the observation that it is possible to conjugate g to a continuous and periodic map
t', e.g.

0 - ' A * > ' (3'5)

but that there is no differentiable choice of t' , while any map h giving rise to a
continuous t is necessarily discontinuous.

This illustrates clearly one of the difficulties one encounters when trying to diag-
onalize non-regular maps. Nevertheless, this difficulty disappears when one regards
g as a smooth map from the real line to SU(2), both h and ΐ being smooth in that
case. However, as we will see in Sect. 5, the procedure of diagonalization of non-
regular maps is beset with rather more serious difficulties as well, with obstructions
to smooth diagonalization appearing even on open and contractible sets.

Example 2: A Map from S2 to SU(2). A nice example (suggested to us by
E. Witten) giving us a first idea of the possible obstructions in the case of reg-
ular maps and the role of non-trivial torus bundles is afforded by the following map
from the two-sphere into ££7(2),

g(χ)= . (3<6)yv J \-x\+ 1x2 -1x3 )

where x\+x\+x\ = 1. This map can also be written as g(x) = Σkχkσk which
defines our conventions for the Pauli matrices o>. This map is clearly regular (the
only non-regular elements of ££7(2) being plus or minus the identity element). It
is a smooth map from the two-sphere to a two-sphere in SU(2) and is, in fact,
the identity map when one considers SU(2) ~ S3 living inside 1R4 with cartesian
co-ordinates (x \,X29 x?> ,XΛ) subject to x2 -\- x2 -f x2 + x% = 1. We represent elements
of 517(2) as jc4l 4- Σkχkσk so tnat 9 maps the sphere to itself thought of as the
equator of S*(x4 = 0).

To detect a possible obstruction to diagonalizing g we proceed as follows. To
any map / from the two sphere to the two sphere we may assign an integer,
the winding number «(/) of that map. This winding number is invariant under
homotopies of /. Writing (as above) / = Σkfkσk with Σk(fk)2 = 1, an integral
representation of its winding number is

f ] . (3.7)

Clearly for (3.6) we have n(g) = 1, as it should be
Now suppose that one can smoothly conjugate the map g into a map t : S2 — *

£7(1) via some map h. As the space of maps from S2 to SU(2) is connected, g is
homotopic to t and one has n(g) = n(t). But, since g2 = — 1, / is a constant map
so that n(t) = 0, a contradiction.1 More generally, if one has an / : S2 — > S2 C S3

1 1 can be chosen to be either / = σ3 or / = (-σ3). We fix on one of these throughout S2 so that
t is smooth. This is justified in the next section.
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of the above form and one is able to smoothly conjugate this map to a map into
[/(I), then one necessarily has n ( f ) = 0. So what we have learnt is that one may
not, in general, smoothly conjugate into the maximal torus globally. We will see in
the next section that this can be done locally in open neighbourhoods.

There is a disadvantage in simply considering the number (3.7) for it does
not tell us how non-trivial £7(1) bundles will arise if we insist, in any case, on
conjugating into (7(1), regardless of whether we can do so smoothly or not. There is
a slight generalisation of the formula (3.7) which is not only a homotopy invariant,
but for which conjugation (gauge) invariance can be established directly without
any integration by parts. The advantage of such a formula is that it allows one to
conjugate with arbitrary maps, not just smooth ones, and so to relate maps which
are not homo topic.

Let A be a connection on the SU(2) product bundle over the sphere. As the
bundle is trivial such an A can be thought of as a Lie algebra valued one-form on
S2, A e Ω\S2,su(2}). The number we want is

*(f,A) = -̂ - JΎτf[df,df] - ±- f Ύτ[d(fA)] , (3.8)

and obviously coincides with (3.7) when both / and A are smooth. Furthermore
n(f,A) is gauge invariant, i.e. invariant under simultaneous transformation of/ and
A,

n(h~lfh,Ah) = n(f,A), (3.9)

where Ah — h~lAh + h~λdh, even for discontinuous h. This is seen most readily by
rewriting (3.8) in manifestly gauge invariant form,

n(f,A) = -̂ - SΊτf[dλf,dΛf} - ±- J Ίτ[fFA] , (3.10)

with dAf = df + [A,f] and FA=dA + \\A,A\
Let us now choose h so that it conjugates our favourite map g into £7(1), say

g = hσ $h~l. Using (3.9) we find

n(g,A) = 1 = --L /Trσ 3 d(Λ Λ ). (3.11)
zπS2

In particular, if we introduce the Abelian gauge field a = —Ύrσ^Ah, we obtain

n(g,A)=l = ̂ fda. (3.12)
2πs2

We now see the price of conjugating into the torus. The first Chern class of the
[7( 1 ) component of the gauge field Ah is equal to the winding number of the original
map! We have picked up the sought for non-trivial torus bundles. In this case it
is just the pull-back of the [7(1 )-bundle 5ί7(2) -> Sί/(2 )/[/(!) - S2 via g and this
turns out to be more or less what happens in general.

As both g and its diagonalization ±^3 may just as well be regarded as Lie
algebra valued maps, this example establishes that obstructions to diagonalization
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will also arise in the (seemingly topologically trivial) case of Lie algebra valued
maps.

As we will see in Sect. 5, a certain non-regular extension of this map provides
us with an example of a map which cannot be smoothly diagonalized in any open
neighbourhood of a non-regular point.

Example 3: A Map from Sl to SO(3). While we have seen in Example 1 that
non-regularity is one obstruction to finding a globally well-defined smooth diago-
nalization t, even for regular g an obstruction to finding such a t may arise. We
will establish in Sect. 4 that this can only happen when neither G nor M is simply
connected. The raison d'etre of this obstruction is the fact that diagonalization in-
volves lifting a map into Gr to a map into G/TxT r which may not be possible if
the fibration (2.2) is non-trivial. Here we illustrate this obstruction by a map from
Sl into SO(3)r.

Consider first of all the following path in 577(2 )r,

1 / eιx/2 ie~ix/2 \
S(x) = -j= \^ieιχ/2 e-lx/2 J - (3.13)

As g(2π) — -g(O), g will project to a non-contractible loop g = Ad(#) G MapίS1,
SO(3)r). Explicitly, this g, satisfying g~lσkQ = <fc/σ/ and g(2π) = #(0), is given by

g(x) = sinx cos c 0 . (3.14)

There is no obstruction to diagonalizing g, g = hth and there are two solutions
t± differing by a Weyl transformation (exchange of the diagonal entries). It can
be checked that t±(2π) differs from ?±(0) not only by a sign but also by a Weyl
transformation,

Hence t will not project to a closed loop in 5O(3) and the diagonalization t of g
will necessarily be discontinuous (non-periodic), as can also be checked directly.
Choosing the torus SO(2) C SO(3) to consist of elements of the form

(3.16)

with the Weyl group acting as y —* —y, one finds that

/ O -1 O X
/(O) = 1 0 0 , (3.17)

V θ 0 I/

while
/ 0 1 0\

ί(2π)= -1 0 0 . (3.18)
V 0 0 I
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Hence the periodic regular map g cannot be diagonalized to a periodic map t and,
regarded as map from Sl into £0(2),, t will only be smooth locally.

This concludes our visit to the zoo of obstructions, and we will now es-
tablish some general local and global results concerning the diagonalizability of
maps.

4. Local Conjugation to the Maximal Torus and Global Obstructions

In this section we will explore the diagonalizability of regular maps g G Map(M, GΓ)
and g G Map(f7, GΓ), where M is a smooth connected manifold and U C M a
contractible open set. The local considerations will of course apply equally well
to local regular sections of the adjoint bundle AάPc of a non-trivial principal G
bundle PG over M.

Being able to locally conjugate smoothly into the maximal torus is the statement
that we can find smooth maps h\j G Map(£7, G) and ty G Map(t/, T) such that
the restriction QU of g to U can be written as g\j = hutuh^1. In other words,
we are looking for a (local) lift of the map g G Map(M, G, ) to a map (h, t) G
Map(M, G) x Map(M, Tr). We will establish the existence of this lift in a two-step
procedure indicated in diagram (4.1).

G x T r

(h,t)

/ ί/
/

/
/

(f, 0 /
/

/
/

/
/

/

q

M (4.1)

In the first step we lift g along the diagonal, i.e. we construct a pair (/, ί), where
/ G Map(M, G/T), which projects down to g via the projection q introduced in
(2.2). The obstruction to doing this globally is related to the possibility of having
non-trivial W bundles on M (as in Examples 1 and 3 of the previous section) but
only arises if neither G nor M is simply connected.

In the second step, dealing with the upper triangle, we will lift / locally to
Map(M, G), and the obstruction to doing this globally is given by non-trivial T
bundles on M (as in Example 2).

The First Lifting-Problem'. W-Bundles. We begin by recalling that the conjugation
map q : G/T x TΓ —» Gr, given by ([/?], t) ̂  hth~\ is a smooth W -fold covering
of G; so that G/T x TΓ is the total space of a principal fibre bundle over G, with
fibre and structure group W and projection q. Given the map g into Gr, the base
space of this bundle, we would like to lift this to a map into the total space, i.e. we
want to find a pair ( f , t ) € Map(M, G/T x Map(M, TΓ) such that diagram (4.2)
commutes.
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G/T XT,

CΛO

(4.2)

That such a map indeed exists locally is a consequence of the following fundamental
result on the lifting of maps (see e.g. [8] for this and most of the other topological
results used in this paper): If P is a (smooth) principal fiber bundle with base space
B and / is a (smooth) map from a manifold X to B then / can be lifted to a
(smooth) map into P if and only if the pull-back bundle f*P over X is trivial. It
is indeed easy to see that there is a direct correspondence between lifts of / and
trivializing sections of f*P.

The first implication of this result is that locally, i.e. over some contractible
open set U C M, the desired lift can always be found as the pull-back bundle will
certainly be trivializable over U.

However, in certain cases we can sharpen this statement to establish the existence
of a global lift. Consider e.g. the case when G is simply connected. As the principal
W-bundle G/T x Tr —•> Gr is then trivial, so is its pull-back to M via any map
g G Map(MGr). Hence a lift (/, t) making the above diagram commute exists
globally on M. There is an obvious j W\-fold ambiguity in the choice of such a lift.

Even if G is not simply connected but M is, the pull-back bundle is necessarily
trivial over M (otherwise it would be a non-trivial covering of M) and again a lift
(/, t) will exist globally.

Finally, there is a class of maps for which the ^-obstruction does not arise
regardless of what M and G are. This class consists of those maps g which are
conjugate to a constant map t into T. We will have more to say about these maps
and why they are interesting in Sect. 6.

The Second Lifting Problem: T-Bundles. It remains to lift the G/T valued map
/ to G. Thus we are looking for a h G Map(M, G) making the following diagram
commute (with the replacement of M by U if only the local existence of (/, /)
could be established):

G/T
(4.3)

Here p is the projection of the principal fibration p : G —* G/T. By construction
this map will then satisfy g = hth~l. However, by the same result on the lifting
of maps quoted above there will be an obstruction to finding such an h globally.
As G can be regarded as the total space of a principal T-bundle over G/T, the
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same reasoning as above leads us to conclude that such a lift exists iff /*G is a
trivial(izable) T bundle over M. Whether or not this is the case will depend on the
interplay between the homotopy class of / and the classification of torus bundles
on M. We will discuss both this torus bundle and the issue of its triviality in more
detail below (see the discussion following (4.4) and Sect. 5). However, if we restrict
/ to U C M, then a lift hu of / over U will always exist as the pull-back bundle
is certainly trivializable over the contractible set U. The upshot of this is that, for a
regular map g we can always locally find smooth G- valued functions hy such that
hylguhu takes values in Tr.

We summarize the results about the possibility to conjugate a map (or section)
locally into a maximal torus in

Proposition 1. Let G be a compact Lie group, T a maximal torus, M a smooth
manifold, U C. M a contractible open set in M, PQ a principal G bundle over
M and g a section of AdPc If 9\u = 9u is regular, then it can be smoothly
conjugated into T. In other words, under these circumstances there exist smooth
functions tv G Map(t7, Tr) and hu G Map(C7, G) such that gu =

Of course, we already know a little bit more than that, for instance that un-
der certain conditions the diagonalized map t will exist globally. We can also be
more precise about the obstruction occurring in the second lifting problem, as torus
bundles are classified by H2(M, If), where r = dimT is the rank of G. We have
therefore established the following results concerning global obstructions to conju-
gating a map g : M — » Gr into the torus:

Proposition 2. Let g : M —> Gr be a smooth regular map. Then a smooth map t :
M — > Tr satisfying g = hth~l for some (not necessarily smooth) map h : M — > G
exists globally if g*(G/Ύ x Tr) is the total space of a trivial W -bundle over M.
If, furthermore, /*(G) (where f is the G/Ύ-part of the lift of g) is a trivial T
bundle over M, then h can be chosen to be smooth globally.

Corollary 1. If either M or G is simply connected, a smooth dίagonalization
t G Map(M, Tr) of a regular g will exist globally. If, moreover H2(M, Έ) — 0,
then a smooth regular map g can be smoothly conjugated into a maximal torus,
i.e. there exists a smooth function h G Map(M, G) such that g = hth~l.

As loop groups are a particularly interesting and well studied class of spaces
of group valued maps [9], we also mention separately the following immediate
consequence of the above considerations:

Corollary 2. If G is simply connected, every regular element of the group LG oj
smooth loops in G can be smoothly diagonalized.

Examples 1 and 3 of Sect. 3 show that both regularity and simple connectivity
are necessary conditions. What we have shown is that they are also sufficient.

Restriction of the Structure Group and Non-Trivial T Bundles. In order to deal
with the question of diagonalizability of sections of non-trivial bundles as well as
with the question of what happens to gauge fields under diagonalization, it will turn
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out to be convenient to look at the above constructions from a slightly different
point of view, namely in terms of restrictions of the structure group of a principal
G bundle PG (Pc ~ M x G in the above) to T. In the following we will assume for
simplicity that G is simply-connected, so that there are no obstructions to the first
lifting problem.2 Let EG/T be the homogeneous bundle associated to PG (EGIT ~
M x G/T if PG is trivial). There is a bijective correspondence between sections
of EG IT and restrictions of the structure group G of PG to that of a principal T
bundle PT C PG, this correspondence being given by pulling back the T bundle
PG —> PG/T ~ EG/T to M via a section s : M -» EG/τ of EG/τ

If PG is trivial, there are no a priori obstructions to restrictions of the structure
group and such sections correspond to maps from M to G/T. In particular, the
solution of the first lifting problem provides one with such a map, namely /, and
hence with the (possibly non-trivial) torus bundle

PT ~ (Id x f)*(M x G -> M x G/T). (4.4)

The relevance of this bundle lies in the fact (already mentioned above) that its
non-triviality is the obstruction to finding a global diagonalizing map h lifting /.
Moreover, connections on PG will give rise to connections on PT after diagonaliza-
tion. It is therefore important to determine, which isomorphism classes of T bun-
dles can arise in this way. This can readily be done when M is two-dimensional,
since G/T is then a classifying space for T bundles and the isomorphism class of
PT can be identified with the homotopy class of /. We will come back to this
below.

When PG is non-trivial, there may be obstructions to restricting its structure
group to T and one may wonder how much of the above then carries over to
that case. It turns out that this obstruction is also the obstruction to finding regular
sections of the adjoint bundle AdPc so that, as long as we restrict our attention
to regular maps and sections (as we have been doing), the situation concerning
non-trivial bundles is indeed exactly analogous to that for trivial bundles. We will
also have a little bit more to say about this below.

There is a slightly more canonical way of describing the torus bundle PT and
the results obtained in Proposition 2, one which does not depend on the (arbitrary)
choice of a maximal torus T of G. We first observe that over Gr there is a natural
torus bundle PC (the centralizer bundle) with total space

PC = {(fifr, g) G Gr x G : g G C(gr)} , (4.5)

(C(gr) ~ T denoting the centralizer of gr in G) and projection (gr, g) ι—> gr. For any
map g G Map(M, Gr) this bundle can be pulled back to a torus bundle g*Pc over M
and it is the possible non-triviality of this bundle which is the obstruction to finding
a globally smooth h accomplishing the diagonalization. To make contact with the
previous construction, we note that under the isomorphism q : G/T x Pr —> GΓ the
bundle Pc pulls back to the T-bundle G x Pr -> G/T x Pr, while the lift (/, t) in
diagram (4.2) can be written as (/, t) — q~l Q g. This is illustrated in the diagram
below.

2 Similar considerations, however, apply in general, the non-triviality of (the pull-back of) the
JF-bundle being the obstruction to reducing the structure group from N(Ύ) to T.
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GxP,

M- - G / T x P ,
(4.6)

While not canonically a principal T bundle, under the non-canonical identification
C ̂  T the bundle Pc can be identified with the torus bundle PT of (4.4).

Diagonalization of Sections of Non-Trivial Ad-Bundles. We consider now the sit-
uation where the bundle PG is non-trivial. We furthermore assume the existence of
a regular section g of AdPc 3 As, for simply-connected G, the conjugation map
q of (2.2) provides an isomorphism between G, and G/T x Pr, a regular section
of AdPc is the same thing as a section of EG/T x P,. Hence a regular section of
AάPc will exist if and only if PG can be restricted to a principal T bundle PT.
If this is the case, a smooth diagonalization t of g, a section of the trivial adjoint
bundle Ad/Y, will exist globally.

It may be instructive to see how these conclusions can be reached from a patch-
ing argument in terms of local data. Thus we assume that PG is characterized by a
set of transition functions {g%β} with respect to a contractible open covering {£/α}
of the base space M. Since g is a section of the adjoint bundle, its local repre-
sentatives g% are related on overlaps U% Π Uβ by </α = gxβgβg^α - Locally, i.e. over

each contractible open set C/α, the situation is exactly as in the case of Gr-valued
maps, and hence we can use the results of Proposition 1 to deduce the existence of
smooth local diagonalizing functions Λα G Map(ί/α,G) such that h~lg^h^ = ty takes
values in Tr. It then follows that on overlaps the ty_ are related by

As the ty, are regular, (4.7) implies that the (transition) functions h~lgy_βhβ take
values in JV(T) (otherwise ία would be contained in two distinct maximal tori T and
(h^lg^βhβ)Ύ(h~lg^βhβ)~l -a contradiction). Moreover, if G is simply-connected
one can use the ambiguity hx —> /zαftα with τzα : C/α —> N(Ύ) to conjugate all the ία

into the same fundamental domain Pr ~ Ύr/W. Thus the h~lgΛβhβ can actually be
chosen to take values in T,

hΛ

lgΛβhβ : (4.8)

(hence reducing the structure group to T). Then the locally defined diagonalized
maps ία piece together to a globally well defined T,.-valued function t = {ty},

t* = tβ on C/« Π (4.9)

3 As Gr is invariant under conjugation, the notion of a regular section is independent of the choice
of local trivialization and hence well defined.
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The Aα 's, on the other hand, also define the corresponding section of EG/T and local
sections of PG in the trivialization determined by (4.8).

Conjugation of ^-valued Maps into the Car tan Subalgebra. The question of diag-
onalizability of Lie algebra valued maps (the case of interest in e.g. Yang-Mills
or Chern-Simons theory) can be addressed in complete analogy with the analysis
for group valued maps performed above. It will turn out that the only substantial
difference between the two is that the first obstruction (non-trivial Jf-bundles) does
not arise. That the second obstruction, related to non-trivial torus bundles, persists
can already be read off from Example 2 of Sect. 3 as the map g — Σkχkσk and
its diagonalization t — ±σ3 considered there can equally well be regarded as Lie
algebra valued maps.

Let us denote by g and t (a Cartan subalgebra of g) the Lie algebras of G
and T respectively and by gr and tr their regular elements. As in (2.2) there is a
smooth IJFI-fold covering

q' : G/T x tr -> gr ,

<ϊ([h]9τ) = hτh-1 . (4.10)

However, g is a vector space and hence simply connected. As a consequence gr

is simply connected as well. Therefore this W-bundle is necessarily trivial and
the first lifting problem can always be solved globally on M. This establishes the
global existence of a lift (/, τ) of a smooth map φ G Map(M, gr) to G/T x tr. In
particular, a smooth global diagonalization τ G Map(M, tr) of φ always exists.

The second lifting problem depends only on the G/T-part / of the lift and is
identical with that for group valued maps. Therefore the situation concerning Lie
algebra valued maps is the following:

Proposition 3. Let φ G Map(M, gr) be a smooth regular map into the Lie algebra
g of a compact Lie group. Then a smooth diagonalization τ G Map(M, tr) exists
globally. If f*G is the total space of a trivial principal Ύ-bundle over M, then
there exists a smooth functions h G Map(M, G) such that φ — hτh~l globally.

Corollary 3. If H2(M, TL) — 0, any φ G Map(M, gr) can be smoothly diagonalized.

5. Connections, Winding Numbers and Non-Regular Maps

In this section we will briefly discuss a variety of topics related to the issue of
diagonalization of maps and relevant to the application of the above results to the
gauge theories which provided the original motivation for this investigation. In par-
ticular, we will look at what happens to gauge fields under diagonalization and the
accompanying restriction of the structure group. We illustrate these considerations in
the case of two-dimensional manifolds (relating the Chern classes of PT to winding
numbers of g G Map(M, Gr)) and SU(n)-bundles on four-manifolds. We end with
some non-conclusive comments on non-regular maps.

Relation between Connections on G and T Bundles. Let A be a connection one-
form on PG (we use A to distinguish it from the one-form A on the base manifold
M we will use to represent a connection on a trivial G bundle). Then the torus part
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A* of A is a connection on the T bundle PG — » EG IT- Let s be a section of
Pτ the corresponding restricted bundle and s* : PT °-> PG the corresponding bundle
morphism. Then (s*)* A* is a connection on Pj.

If PG is trivial, we represent A as a one-form on M x G as A = g~lAg -f
g~ldg(geG) and

is a connection on Pj. By choosing local lifts /zα G Map(ί/α, G) of / G Map(M,
G/T), one obtains the local representatives

a, = (h-lAh, + h^dh^ (5.1)

on M of this connection on the possibly non-trivial bundle PT. In a slightly cavalier
fashion we will also denote by a — (Ah )* the possibly singular representative of this
connection on M obtained by choosing a possibly discontinuous lift of / to G.
The k-part B — (Ah)k of Ah (where we orthogonally decompose the Lie algebra g
as g = 1 0 k), on the other hand, transforms as a section of the associated bundle
PT x τ k. Mutatis mutandis the same conclusions can be reached in the case of
non-trivial PG

Torus Bundles on Two- Manifolds and Winding Numbers. In this subsection we
consider the case when M — Σ is a two-manifold. The obstruction to finding a
globally defined h accomplishing the diagonalization of some g G Map(T, Gr) is
encoded in the Chern class

c}(Pτ)eH2(Σ, Z r)~r (5.2)

of the corresponding torus bundle Pτ. One may wonder, how this topological infor-
mation is encoded in the original map g as, after all, the space of maps Map(Z, G)
to a simply-connected group G is connected. The point is that, while this is true, the
space of regular maps is not connected. Recalling the isomorphism Gr ~ G/T x Pr

one finds that

π0(Map(2;, GΓ)) - πo(Map(Σ, G/T)) - π2(G/T) - Zr . (5.3)

One thus expects the Chern classes of PT to represent the winding numbers of the
map g G Map(Σ, Gr).

Abstractly this can be seen by noting that, for simply connected G, G/T is a
classifying space for T bundles on Σ, so that T bundles are classified by homotopy
classes of maps from Σ to G/T. Furthermore, regular maps in Map(Γ, G,-) are
regularly homotopic (i.e. homotopic in Map(Γ, Gr)) iff their lifts to Map(Γ, G/T)
are homotopic so that T bundles can alternatively be classified by homotopy classes
of maps into Gr. In particular, this establishes that all isomorphism classes of T
bundles on Σ will arise upon diagonalization of elements of Map(Γ, Gr). This holds
more generally if there are no non-trivial G bundles on M.

Concretely, one can establish a correspondence between the Chern-Weil rep-
resentatives of c\(Pτ) and integral representations of winding numbers of / G
Map(Σ, G/T). Denoting by a — —alλι, the {λ1} a set of fundamental weights of
G, the /th component of the torus connection a, the Chern classes of PT can be
represented by

c\l\a)=±Sda'. (5.4)
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Winding numbers of maps / from Σ to G/T, on the other hand, are also character-
ized by an r-tuple of integers, associated with the pull-back of the r fundamental
Kirillov-Kostant symplectic forms on the regular coadjoint orbit G/T. An integral
representation for these winding numbers is

n(l\f) = — / Ίτλl[h-ldh, h~ldh], (5.5)
4π Σ

where we have identified / with the map hλlh~l. Notice that the integrand is
exact (and hence the winding number is zero) if h is globally defined. The relevant
formula relating these expressions is

c\'\a) = n«\f = hλ'h-1)- -L fdφτfA), (5.6)
Z*lϊ y

where (Ah)i — alu.\ and {α/} are the set of simple roots dual to {//}. The boundary
term is automatically zero in the case of simply-connected groups we have been
considering, as then both A and / are globally defined. The advantage of adding this
boundary term to the winding number is that the resulting expression is invariant
even under discontinuous gauge transformations which would change the ordinary
winding number of /. The reason for this is that, in terms of the fields A and h,
the original gauge symmetry A —> A^, g —» g~lgg reads A —> A®, h —> g~lh. Hence
Ah and the right-hand side of (5.6), which can be thought of as a generalized
winding number n(l\f, A) of /, are manifestly gauge invariant. As such they should
provide integral representations for the magnetic numbers introduced in [4] in a
related context. Using some trace identities it can be checked that in the case G =
SU(2) the various expressions given above for the winding numbers reduce to those
given in Example 2 of Sect. 3.

Returning to our problem of conjugating maps into the torus, we can now read
off directly from the above that a smooth map g G Map(Σ, Gr) can be smoothly
conjugated into the torus iff the (generalized) winding number of / is zero. Fur-
thermore, if one insists on conjugating into the torus nevertheless, albeit by a non-
continuous h, the resulting map / is a constant map (with winding number zero) but
nl(f, A) will remain unchanged, measuring the obstruction to doing this smoothly.

SU(n)-Bundles on Four-Manifolds. We recall the observation made in Sect. 4 that
a principal G bundle PG admits a restriction to T if and only if its adjoint bundle
AdP^ has a regular section. It explains the intimate relationship we found between
diagonalization and restriction of the structure group and highlights the crucial role
played by the assumption of regularity.

In general, the question whether either of these two assertions has an affirmative
answer (Is there a restriction? Is there a regular section?) has to be tackled by the
methods of obstruction theory. In four dimensions, however, necessary and sufficient
conditions for the existence of restrictions of SU(n) bundles can be read off more
or less by inspection and this gives some insight into the nature of this problem.

We recall first that SU(n) bundles P on a compact oriented four-manifold are
completely classified by the second Chern class C2(P) G H4(M, TL} ~ TL. In terms of
the curvature FA of a connection A on P the Chern-Weil representative of c2(P) is

A (5.7)
M
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(with the trace normalized to Ύrτaτb = 2δab, the τa a basis of the Lie algebra
of SU(n)). Torus bundles PΓ,T ~ U(\)n~\ on the other hand are classified by
//2(M, 7Ln~λ). As all T bundles can be regarded as SU(n) bundles, they will all
arise as the restriction of some SU(n) bundle but not necessarily as restrictions of
the trivial SU(n) bundle. Moreover, some SU(n) bundles may have no restrictions at
all while others may admit several inequivalent restrictions. In this four-dimensional
context it is straightforward to find obstructions to such an Abelianization. For a
principal SU(n) bundle which admits a restriction to a T bundle /Y, its second
Chern class is related to the curvature of a connection a on Pγ by

(5.8)

By looking at some concrete examples of four-manifolds we will see that this
relation can impose severe constraints on e2(P).

Let us, for instance, take M to be the four-sphere M — S4. Then there are
no non-trivial T bundles on M as H2(M, TL) — 0, and the right-hand side of
(5.8) is zero as the integrand is then necessarily globally exact. Hence we reach
the conclusion that only the trivial SU(n) bundle on S4 admits a restriction to
a T bundle (the trivial T bundle in this case). This may also be seen in a dif-
ferent way by noting that, on any rc-sphere, the bundle is characterized by the
glueing (transition) function h from the equator ~ Sn~} to the group G. If h
takes values in T, then its winding number is zero (πw_ι(T) = 0 for n > 2) and
hence

8π2c2(P) - fΎr(h~ldhγ = 0 . (5.9)
si

Thus we conclude that the adjoint bundles of non-trivial SU(n) bundles over S4

have no regular sections whatsoever.
This is not to mean that only trivial SU(n) bundles can be reduced to T bundles.

As another example consider M = CIP2 and G= 517(2). In this case, //2(M, TL) ~
H4(M,Z) ~ TL, generated by the Kahler form ω. Thus there are non-trivial torus

and SU(2) bundles on CF2. The curvature of the connection on a £7(1) bundle is

cohomologous to kω for & e Z and, as ω2[C!P2] = 1, a necessary condition for an
517(2) bundle P to be reducible to (7(1) is that c2(P) = k2 for some k G TL. As
any £7(1) bundle with first Chern class k is the reduction of some SU(2) bundle,

this condition is also sufficient and for every non-trivial 5£7(2) bundle on CP2 with
<?2(P) — k2 there are two inequivalent reductions to £7(1), characterized by the first
Chern class ±£.

This situation is more or less the same for all compact four-manifolds. If a torus
bundle, thought of as an SU(n) bundle, has second Chern class c2 — m, then it can
be obtained as the reduction of this 5£7(«) bundle. Conversely, if an integer m does
not arise as the second Chern class of some torus bundle, the corresponding SU(n)
bundle with c2(P) = m cannot be Abelianized. As a consequence of the above result
such bundles have no regular sections whatsoever.

N on-Regular Maps. While we have seen above that non-trivial adjoint bundles may
admit no regular sections at all, which forces us to face the task of diagonalizing
non-regular sections, one may have hoped that at least for trivial bundles regular
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maps are, in some sense, generic. If this were so, then "most" maps could indeed be
conjugated into smooth torus-valued functions by the results of Sect. 4, at least via
locally defined or discontinuous diagonalizing functions h. But, as the set of non-
regular points is of codimension three in g or G, a dimension counting argument
shows that this will not be the case if the dimension of M is larger than two. Worse
than that, in the case of G-valued maps there may be entire connected components
of Map(M,G) not containing a single regular map. To see that, let us consider a
simple example the space of maps from M — S3 to G = SU(2) ~ S3. This space
consists of an infinite number of connected components labelled by the winding
number of the map in π3(517(2)) = TL. As the only non-regular elements of SU(2)
are plus or minus the identity, regular maps are those which avoid the north and
south poles of the target S3. But any map in one of the non-trivial winding number
sectors has, in particular, the property that its image is the entire 5ί/(2), covered
an appropriate number of times. Hence, no map with a non-trivial winding number
can be regular.

The fact that even for trivial bundles there may be too many non-regular maps
for comfort provides an additional impetus for coming to terms with the diagonal-
ization of these maps.

As a simple example, consider the extension of the map of Example 2 of Sect. 3
to the identity map from the three-sphere to SU(2), g(x) = x4l + ΣkXk<?k' This map
takes on non-regular values only at x4 = ±1. There is clearly no smooth diagonal-
ization of the restriction of this map to any open set containing the north-pole
{x4 = 1}. If there were, this would in particular imply the existence of a global
smooth diagonalization of a map from S2 to SU(2) which is regularly homotopic
to that of Example 2 - a contradiction.

There are two conclusions that can be drawn from this example and Example 1
of Sect. 3. The first is that, in general, a non-regular smooth (or continuous) map
cannot be smoothly (or continuously) diagonalized even on open contractible sets.
As a consequence, the second conclusion one can draw is that the framework of
locally trivializable bundles is simply not suitable for addressing the question of
diagonalization of non-regular maps.

The source of the problem is, of course, that the conjugation map from G/TxT
to G is not proper at non-regular points of G. This is reflected in the fact that the
quotient

G/AdG~Ύ/W, (5.10)

unlike its regular counterpart Ύr/W9 is not a smooth manifold (but the closure of
a Weyl alcove or, rather, its image under the exponential map), and that the fiber
of G-^G/AdG above a singular (non-regular) point is strictly smaller than that at
a regular point. Clearly this is a rather singular situation to consider and different
methods are needed to make some headway here.

To end this section on a positive note we mention that there is one rather
special type of non-regular maps to which the considerations of this paper continue
to apply. These are maps g whose degree of non-regularity is constant (meaning
that the centralizers C(g(x)) are isomorphic to some fixed C(g) D T for all jc G M).
All that one needs to do in that case is to replace G/T in the fundamental fibration
(2.2) by the appropriate smaller non-regular coadjoint orbit G/C(g). Typically, it is
this type of non-regular maps that one encounters in topological field theory (see
the remarks at the end of Sect. 6).
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6. Applications: A Weyl Integral Formula for Path Integrals

In the previous sections we have analyzed the problem of diagonalizing maps from
a manifold M into a compact Lie group G or its Lie algebra g. As mentioned in
the Introduction, this problem arose in a field theoretic context when we attempted
to exploit the rather large local gauge symmetry present in certain low-dimensional
non-Abelian gauge theories to abelianize (and hence more or less trivialize) the
theories via diagonalization [1,2,12]. Assuming that the contributions from non-
regular maps can indeed be neglected in these examples (and we have nothing to
add to the arguments put forward in [2] to that effect), the analysis of the present
paper can be regarded as a topological justification for the formal path integral
version of the Weyl integral formula we used to solve these theories.

The Weyl integral formula expresses the integral of a smooth (real or com-
plex valued) function over G in terms of an integral over T and G/T, using the
conjugation map q (2.2) to pull back the Haar measure on G to G/TxT and reads

J d g f ( g ) = f d t A ( t ) / dgf(g-ltg). (6.1)
G T G/T

Here A(t), the Weyl determinant, is the Jacobian of q. Its precise form will not
interest us here and we just note that it vanishes precisely at the non-regular points
of T (this being the mechanism by which contributions from non-regular points
should be suppressed in the functional integral). For an explanation of the standard
proof of (6.1) and for a derivation in the spirit of the Faddeev-Popov trick see
[1,2]. The case of interest to us is when the function / is conjugation invariant (a
class function), i.e. when / satisfies

f(h-*gh) = f ( g ) Vg,h€G. (6.2)

In that case, since any element of G is conjugate to some element of T, both / and
its integral over G are determined by their restriction to T and the Weyl integral
formula reflects this fact,

f d g f ( g ) = f d t Δ ( t ) f ( t ) (6.3)
G T

It is this formula which we would like to generalize to functional integrals, i.e. to
a formula which relates an integral over a space of maps into G to an integral over
a space of maps into T.

For concreteness, consider a local functional S[g; A] (the "action") of maps g e
Map(M, G) and gauge fields A G Ωl(M, g), i.e. of sections of AdPc and connections
on a trivial principal G bundle PG ~ M x G (a dependence on other fields could
be included as well). Assume that expiS[g; A] is gauge invariant,

exp iS[g\ A] = exp iS[h~lgh', Ah] VΛ e Map(M, G), (6.4)

at least for smooth h. If e.g. a partial integration is involved in establishing the
gauge invariance (as in Chern-Simons theory), this may fail for non-smooth A's
and more care has to be exercised when such a gauge transformation is performed.
Then the functional F[g] obtained by integrating exp iS[g\ A] over A,

F [ g ] : = f D [ A ] a i p i S [ g ; A ] , (6.5)
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is conjugation invariant,

F[h~lgh]=F[g]. (6.6)

It is then tempting to use a formal analogue of (6.3) to reduce the remaining integral
over g to an integral over maps taking values in the Abelian group T. In field theory
language this amounts to using the gauge invariance (6.4) to impose the "guage
condition" g(x) G T. The first modification of (6.3) will then be the replacement
of the Weyl determinant Δ(t) by a functional determinant A[t] of the same form
which needs to be regularized appropriately (see the Appendix of [2]).

However, the main point of this paper is that this is of course not the whole
story. We already know that this "gauge condition" cannot necessarily be achieved
smoothly and globally. Insisting on achieving this "gauge" nevertheless, albeit via
non-continuous field transformations, turns the t-component a of the transformed
gauge field Ah into a gauge field on a possibly non-trivial T bundle PT (while the k-
component transforms as a section of an associated bundle). Moreover we know that
all those T bundles will contribute which arise as restrictions of the (trivial) bundle
PG Let us denote the set of isomorphism classes of these T bundles by [Pτ\ PG].
Hence the "correct" (meaning correct modulo the analytical difficulties inherent in
making any field theory functional integral rigorous) version of the Weyl integral
formula, capturing the topological aspects of the situation, is one which includes a
sum over the contributions from the connections on all the isomorphism classes of
bundles in [Pτ; PG].

Let us denote the space of connections on PG and on a principal T bundle
Pl

τ representing an element / G \Pτ\ PG\ by ^ and <£/[/] respectively and the
space of one-forms with values in the sections of Pl

τ X j k by ^[/]. Then,
with

Z\PG\ = fD[A]fD\jg]exp ίS[g; A] , (6.7)
d

the Weyl integral formula for functional integrals reads

Z\Pc\ = Σ / D[ά\ / D[B]fD[t]A[t]expiS[t'9 a, B] (6.8)

(modulo a normalization constant on the right-hand side). The ί-integrals carry
no /-label as the spaces of sections of AdPj are all isomorphic to the space of
maps into T. There is an exactly analogous formula generalizing the Lie algebra
version of the Weyl integral formula. On the basis of the results established in this
paper it is also possible to write down a functional integral version of (6.1), in
which the summation over the topological sectors in (6.8) will have to be replaced
by a sum over integrals of the connected components (winding number sectors)
of Map(M, Gr). This integral formula can then be applied to theories having less
or no gauge symmetry (like the G/H gauged Wess-Zumino-Witten models for
HCG).

In the examples considered in [1,2], Chern-Simons theory on three-manifolds of
the form Σ x S1, 2d Yang-Mills theory and the G/G gauged Wess-Zumino-Witten
model, the fields B entered purely quadratically in the reduced action S[t; a, B]
and could be integrated out directly, leaving behind an effective Abelian theory
depending on the fields t and a with a measure determined by A[t] and the
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(inverse) functional determinant coming from the ^-integration. The general struc-
ture of these terms and the "quantum corrections" coming from the regularization
has been determined in [12].

A further property these models were found to have is that they localize onto
reducible connections and their isotropy groups (in the case of the G/G model)
respectively algebras (for Yang-Mills theory) so that, in practice, the necessity
only ever arose to diagonalize these maps. This is possible globally even if the
group is not simply connected (when, as we recall from Sect. 4, the existence of
a globally smooth diagonalized map t or τ is not guaranteed a priori). The reason
for this is the following (for group valued maps-the Lie algebra case is entirely
analogous).

The reducibίlity condition A9 = A implies that Tr gn is constant for all n. This
allows one to determine that g is conjugate to a t which is constant globally and
(of course) unique up to an overall PF-transformation. This provides the Tr part
of the lift in diagram (4.2). Furthermore, the constancy of the traces implies that
g can itself be regarded as a map into G/T (or G/C(#)) and hence furnishes the
G/T-part / of the lift. At this point the argument can then proceed as in the simply-
connected case. The fact that isotropy groups of connections are indeed conjugate
to subgroups of G (thought of as spaces of constant maps) is well known. What
seems to be less generally appreciated is the fact that the conjugation itself cannot
necessarily be done globally.

We have also applied this formula to several other models like BF theories
in three dimensions (related to 3d gravity) and the supersymmetric Chern-Simons
models of Rozansky and Saleur [10]. The formula can also be used to go some
way towards evaluating the generating functional for Donaldson theory on Kahler
manifolds with the action as in [11]. These results will be presented elsewhere.

Acknowledgements. We are grateful to E. Witten for alerting us to the problem addressed in this
paper, to the referee for pointing out some inaccuracies and for his suggestions aimed at improving
the presentation of the results, and to M.S. Narasimhan for his interest and a careful reading of
the manuscript. We also thank A. d'Adda for discussions.

References

1. Blau, M., Thompson, G.: Derivation of the Verlinde Formula from Chern-Simons Theory and
the G/G model. Nucl. Phys. B408, 345-390 (1993)

2. Blau, M., Thompson, G.: Lectures on 2d Gauge Theories: Topological Aspects and Path
Integral Techniques. ICTP preprint IC/93/356, 70 p., available as hep-th/9310144. To appear
in the Proceedings of the 1993 Trieste Summer School on High Energy Physics and Cosmology

3. Brόcker, T., Tom Dieck, T.: Representations of Compact Lie Groups. Berlin, Heidelberg, New
York: Springer, 1985

4. Goddard, P., Nuyts, J., Olive, D.: Gauge theories and Magnetic charge. Nucl. Phys. B125,
1-28 (1977)

5. Grove, K., Pedersen, G.K.: Diagonalizing Matrices over C(X). J. Funct. Anal. 59, 65-89
(1984)

6. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Orlando, FL: Aca-
demic Press, 1978

7. 't Hooft, G.: The Topology of the Gauge Condition and New Confinement phases in Non-
Abelian Gauge Theories. Nucl. Phys. B190, 455-478 (1981)

8. Husemoller, D.: Fibre Bundles. Berlin, Heidelberg, New York: Springer, 2nd ed. 1975
9. Pressley, A., Segal, G.: Loop Groups. Oxford: Oxford University Press, 1986



660 M. Blau, G. Thompson

10. Rozansky, L., Saleur, H.: Reidemeister Torsion, the Alexander Polynomial and the £/(!,!)
Chern-Simons Theory. J. Geom. Phys. 13, 105-123 (1994)

11. Thompson, G.: Topological Gauge Theory and Yang-Mills Theory. In: Proceedings of the
1992 Trieste Summer School on High Energy Physics and Cosmology (eds. E. Gava et al.),
Singapore: World Scientific, 1993, pp. 1-75

12. Witten, E.: The Verlinde Algebra and the Cohomology of the Grassmannian. IAS preprint
IASSNS-HEP-93/41, 78p., available as hep-th/9312104

Communicated by R.H. Dijkgraaf




