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Abstract: Applying Kontsevich’s iterated integral for tangles, we get an isotopy
invariant of tangles. We give a method to compute the integral of a tangle combi-
natorially from modified integrals of some simple tangles. We localize the integral
by moving the end points of the tangle to an extreme configuration, and modify
the integral so that it is convergent. By using a similar technique, we generalize
Kontsevich’s invariant to a framed tangle.

Introduction

After the Jones polynomial was discovered, many invariants of links are constructed.
Almost all of them are coming from solutions of the quantum Yang-Baxter equa-
tion. On the other hand, Vassiliev [25] constructed a wide family of knot invariants.
Let y; be a knot invariant coming from a solution R(4) of the Yang-Baxter equa-
tion with a parameter 4 such that R(0) is the trivial solution. Then, d*y,/dh* |, is
contained in Vassiliev’s family of invariants. Hence, Vassiliev’s invariants include
many invariants, e.g. the Alexander, Jones, Homfly, Kauffman polynomials and their
generalizations in [1, 17, 20, 22], etc. Kontsevich gives a universal construction of
Vassiliev’s invariant by using an “algebra of chord diagrams” and “iterated inte-
grals.” Let V; denote the space of Vassilev’s invariants of degree less than & + 1.
By studying combinatorial properties of invariants in Vj, he constructs a module
szgk) spanned by chord diagrams on a circle with relations in Fig. 1 which cor-
respond to the combinatorial relations for Vassiliev’s invariants given in [7]. He
shows that V/Vi_, = (£%))*, the dual space of %", Let o) = @;>, 4. Then
o/ has a graded algebra structure with a product coming from the connected sum
of chord diagrams. The 4-term relation assures the well-definedness of the above
product, i.e. the product does not depend on the positions of the strings we cut
to produce the connected sum. Let .o/ denote the formal completion of .7 with
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Fig. 1. 4-term relation and framing independence relation

respect to the grading. For every knot K, we can define an invariant z(K )e Ay
by using an iterated integral. Let Z®(K) € &igk) be the degree k part of Z(K).
For f € ®]_y(Z\))*, f(Z®(K)) € V. On the other hand, for any g € V}, there is
some f € @f_y(/Y)* such that g(K) = (X 4_s Z®(K)) and Z®) is universal in
this sense.

Now we define o7, a linear span of chord diagrams with 4-term relations, but
without the framing independence relation. There is a natural projection from &7 to
y. We extend 7 to a framed knot invariant Z 2

The main purpose of this paper is to give a combinatorial description of Kontse-
vich’s integral of knots, links and tangles. We will consider R? as the product of R
x C with a fixed orientation. A point of R has coordinates (£,z), let z = x +iy. A
plane {t}x C C Rx C is called horizontal. A tangle T is a 1-dimensional compact
oriented piece-wise smooth submanifold of R? lying between two horizontal planes,
called the top plane and the bottom plane of T, such that every boundary point of
T is lying in the top and bottom plane. Two tangles 7 and 7' are called equivalent
if there is an isotopy of R® sending 7 to T’ and the top (resp. bottom) plane of
T to the top (resp. bottom) plane of 7. Kontsevich’s integral is generalized to an
invariant of equivalence classes of tangles. We assume that a tangle 7 is contained
in R x R C R x C except a neighborhood of each double point with respect to
the projection R x C — R x R. Especially the boundary points of 7 are con-
tained in R x R. Let r = (r,r2,..., 7 )(r; = £1) and s = (51,52,...,5,)(s; = £1)
such that #{r,|r; = 1} —#{r,)|r, = =1} —#{s; |s; = 1} + #{s;|s; = =1} = 0. Let
T %) be a set of tangles such that the string ending at the j point at the top is
oriented upward (resp. downward) in the neighborhood of the end point if », =1
(resp. —1) and the j® point at the bottom is oriented upward (resp. downward)
if s; =1 (resp. —1). We generalize the integral Z for tangles in the above sense.
For a one-manifold X, let /(X)) denote the space spanned by chord diagrams
on X with the 4-term relation. Every chord expressed by dashed lines in figures
just means a pair of points on X and nothing more. For T € 7", we define
an isotopy invariant 2(T ) € &/(T) depending on the positions of the end points
of T.

We introduce g-tangles, which is a generalization of tangles with non-associative
words of two numbers 1 and —1. A word w with brackets is called a non-associative
word of 1 and —1 if w is equal to 1, —1 or (w;w,), where w; and w, are non-
associative words of 1 and —1. A support of w is the sequence of 1 and —1 obtained
from w by removing all brackets. For example, there are two non-associative words
((11)1) and (1(11)) with support (1,1,1). Let # and v be non-associative words
with support » and s respectively. The triple (7,u,v) is called a g-tangle. As for
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Fig. 2. Generator tangles

usual tangles, we can consider a category of g-tangles. For T € " and T’ € I s,
the product of two g-tangles (7, u, v) and (7’, u’, v") is defined by

(T’ ua U)(T,, u/a UI) = (T T/! u’ U/) > (02)

if s=r and v=14/, and T T’ is the tangle obtained by putting T above T’. We
show the following in Sect. 2.

Proposition 0.3. Every q-tangle is a product of tangles of the following types. The
first type is a positive crossing (R;,u,u), where u contains (r,rj11). The second
type is a negative crossing (R j“l,u,u), where u contains (rjrjy1). The next type is
(E;,u,v), where v contains (r;r,+1) and u is obtained from v by removing (r,r,11)
and its dual type (E},u,v), where u contains (rjr;y1) and v is obtained from
u by removing (rjrjy1). The last types are (I,u,v) and (I,v,u), where u is any
non-associative word and v is obtained from u by replacing a subword of u of
the form (uy(uaus)) by ((uyup)us). In the above, R,,R/»_I,E,,Ej* are tangles as in
Fig. 2, and I is a trivial tangle.

By this proposition, we can compute the integral for any g-tangle from the modi-
fied integrals of the g-tangles in the above proposition. Let 2, denote the horizontal
chord connecting the p™ and ¢ strings of the trivial tangle, and Q) ... Q1) denote
the chord diagram with chords ), ..., Q()) from top to bottom in turns. We use e*
for the formal power series Y, X*/k!. Let P,,;; denote the diagram presenting
the permutation at i™ and j + 1™ strings as in Fig. 3.

Theorem 0.4. We define Z r for generator tangles as follows:

5 Q2
Z(Rj u,u) = €17+t 412 Py

> —1 —r 1R 2
Zf(Rj. ,u,u)y =e 7l )t/ P/J+1 ,

Zi(E},u,v) = E

2](E]',U,U) = ‘Vf~1 E} 5

Zr(Lu,v) = ¢ X Terpg X0 rpre@pq |
Jo=p=/—I1 NnErpsn—l
15951 2431

Zr(Lv,u)=¢ DD 3 10 TR S 5 270 N (0.5)
J1SpEp—1 jpsps/—!
EYEY J12q9=)—1
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where yr = Z(U) is given by (5.7) for a diagram U in Fig. 5, and the action
of yr is induced by the connected sum at the distinguished strings. For the last
two formulas, ¢ is given in (3.7) and (3.21), v is obtained from u by replacing a
subword for u of the form (uy(uaus3)) by ((uuz),u3), the support of uy,up and uz
are (Fjg, ..., 75, —1),(Fjys--os¥jy—1), and (vj,,...,rj,_1) respectively. In the right-hand
sides of the above, E; and E; represent the chord diagrams without any chords
on E} and E; respectively.

Then Z ¢ defines a representation of g-framed-tangles. Especially, for a knot
K, the image Z(K) of Z #(K) by the projection o/ — <y in [5] is equal to Kont-
sevich’s integral invariant.

Remark. 0.6. For a sequence r, let w, = (((...(r172)...)r),|=1)r)). Then, for a

tangle T € f(”s),f((T, wy, wg)) and Z((T, w,,wy)) are invariants of a tangle and
a framed tangle respectively. They also give representations of the categories of
tangles and framed tangles respectively.

Knots can be expressed as a product of g-tangles in Proposition 0.3 as in the
following example.

Py k
(il) I'j rj+l

=0 2K

Fig.4. e @ml2p,

Fig.5. Diagram U
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Fig. 6. The second degree part of 2,~(zrefoil)

Example 0.7. Let K be the trefoil knot and U be the trivial knot diagram as in
Fig. 4. Then they are (0, 0)-tangles

(Er, uo, ur M Ea, wr, w2 )1, u, w3 YRy, us, u3 Y (I, us, up )(E3, ua, wy ET, uy, o)
and
(E1, vo, 1 )(E2, v1, v2)(1, va, v3)(ET, v3, v1)(ET, v1, vo) ,

where uy = vg =the null-word, u; =v; =1 —-1), up =11 =1))—=1), uz =
Iy =1 —1), vp=(1(—-11))—1) and v3 = (((1 — 1)1) — 1). Hence

2f(K) = Vf_l . Eﬂ’f_l « Ex(Q12, —Q03)E M2 2Py p(— o3, Q12)EZ E}
_ yf~2 cEy - Exp(Q12, —23)e 2 Py p(— 03, Q12)ES EF

where (212, 23) = 1+ $3 (212 — Q3Qp) + -+ as in (3.10), y, =E\E,
¢(Q23,Q]2)E*E* =14 24E1E2(Q12923 Qz}le)E;(Eik + - by (57) and so
yf'z =1- —E1E2(912923 — Q23Q12)ETE} + - - -. For example, the degree two part
of Z,(K) is E1E2(§3Q122 + 10,2 ) PaESE;.

Let Ki#K; be the connected sum of two knots K; and K. Then, from the
definition (5.8) of Z,, we have

Zp(Ki#Ky) =y - Z(Ky) - Zy(Ka) . (0.8)

For a framed link L with a component Z, let 2,(L) be the framed link obtained
from L whose component ¢ is doubled. Then

Zi(2.(L)) = 4/Z/(L)) € A (Dy(L)), 0.9)

where 4,(2) for a chord diagram & € /(L) is defined as follows. To get 4,(2),
we replace each chord Q,, with end points p and g by E,z j=12p, q,» Where py, p
(resp. q1,92) are points on the doubled string corresponding to p (resp. ¢) if p and
g are on the component ¢, 212:1 Q, 4 or Z?:] Qpq, if porgisont, or Qp if
neither p nor g is on 7.

The modified integral for trivial g-tangles is not necessarily trivial as in (0.5).
However, this integral satisfies the properties of the associator in the theory of quasi-
Hopf algebras in [8, 9]. Moreover, the above 4 corresponds to the coproduct. With
our ¢ in (0.5) and 4, we can impose a structure like a quasitriangular quasi-Hopf
algebra on the modules of chord diagrams, as explained in Sect. 6.

In Sect. 1, we define Kontsevich’s integral for tangles. In Sects. 2 and 3, we
introduce pre-g-tangles and modified integrals for them. In Sect. 4, we show that
the category of g-tangles is a quotient of the category of pre-q-tangles and the
modified integral is factored by this quotient. We prove Theorem 0.4 from this fact.
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In Sect. 5, Kontsevich’s integral is generalized for framed tangles. In Sect. 6, we
introduce the quasi-Hopf algebra structure to our modified integrals.

After finishing our preparation of this paper, we got papers [6] and [3], which
treat a similar subject from other points of view.

1. Kontsevich’s Integral for Tangles

Let X be a compact 1-dimensional oriented piece-wise smooth manifold with or
without boundary. The components of X are circles or segment lines. A chord dia-
gram with support X is a set of dashed chords with end points lying in the interior
of X, regarded up to a diffeomorphism which preserves each component and the
orientation of X. Connected components of X are called strings, Wilson lines or
Wilson loops. Let «7(X) be the space spanned by chord diagrams with support in X
subject to the 4-term relations. Let «7((X) be the space spanned by chord diagrams
with support in X subject to the 4-term relation and framing independence relation.
The framing independence relation means that every chord diagram containing a part
like Fig. 1 (b) is equal to zero. If f : X — X' is a homeomorphism then there is an
associate isomorphism between o/(X) and /(X'). If X is a circle then we denote
/(X)) by . Let 2, and &, be two chord diagrams in .27, each with a noted string.
Remove an arc on each noted string which does not contain any vertex and then
using two lines to combine the two strings into one single string. We get a chord di-
agram called the product (or connected sum) of & and 2, along the noted strings.
It is proved in [5] that this operation does not depend on the location of the arcs re-
moved. &/ has an algebra structure with this product. We denote by <7 the factored
algebra of of by the framing independence relation. Using a connected sum and an
evident isomorphism we can define an action of .« on /(X)) if the string to be acted
on is indicated. The action is the connected sum with the indicated string. As in
[5], it is easily proved that this action is well-defined. Similarly </, acts on .o7((X).

Let 7 be a set of tangles as in the Introduction. Let |#| and |s| denote the
numbers of elements in » and s respectively. For T € 7", let .o/(T) denote the
chord diagram algebra on T, i.e. the space spanned by chord diagrams with support
in the 1-dimensional manifold corresponding to T subject to the 4-term relation
Fig. 1 (a), and let o7((T) denote the quotient of .27(T") by the framing independence
relation Fig. 1 (b).

We generalize Kontsevich’s iterated integral for knots to tangles. For a tangle
T, we define an integral Z(T') € o/¢(T) as follows.

Definition 1.1. Let Z(T) be the element of AS(T) defined by

< ] n dzi(t;) — dzi(¢;)
(M =S —— —1)*1 Al Ak N o
() ,,};0 Qmiy % <( ) H <t J~~<t,,j/=\l zj(t) — Zj/'(tj) >
In this equation, P runs over all horizontal chord diagrams on 7', where a horizontal
chord diagram on T means a chord diagram on 7 with chords parallel to {0}x C
and two horizontal chord diagrams &, and 2, are regarded to be equivalent if 2,
can be obtained by moving the chords of &, along with T by keeping their order
with respect to the level. The parameters ¢1,..., ¢, represent levels of the chords of P
and the integral is taken over all possible ranges #,...,, to represent all horizontal
chord diagrams equivalent to P. The complex numbers z;(¢;) and zj(t;) represent
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T T

Fig.7. T and T are identical except within a ball, in which they are as above

the horizontal coordinates of the end points of the j™ chord. Note that the form
does not depend on the choice of z; and zj. #P; is the number of points z; and
z; at which L is oriented upwards, Tp is the image of the chord diagram in /(T
naturally associated with 7 and P.

Proposition 1.2. ([5, 16]) a) Z(T') remains unchanged under isotopy which preserves
every point of the bottom and the top planes and does not change the number of
the maximal and minimal points of each string.

b) If T’ differ from T only in a neighborhood of a ball in which T and T’
look as Fig. 7, then

Z(T) =y - UT), (1.3)

where vy is the Kontsevich integral of the tangle U in Fig. 5, y belongs to ./ and
the right side of this equality should be understood as the action of y on the string
containing the part in Fig. 7.

Let T be a tangle with £ numbered components. For j =1,..., k let m; be the
number of the maximal points of the j string. Let

Z(My=@™ - --@y™) - ZT), (1.4)

here in the right-hand side, 7™ acts on the j™ string.
Theorem 1.5 f(T) is an isotopy invariant of oriented tangles.

Proof. Using Proposition 1.2, one easily checks that Z(T) is invariant under all the

moves listed in Theorem 3.2 of [24]. Hence Z(T ) is an ambient isotopy invariant.
O

2. Modified Integral for a Tangle

Let T € 7% and let ¢, ¢,,... be positive real numbers. Let S, denote the permu-
tation group of n letters and let o (resp. ) be an element of S}, _; (resp. Sj5—1).
Let T, . be a tangle isotopic to 7 such that the distance of the j® point and the
(j + 1™ point at the top is equal to ¢,-1(;) and the distance of the i™ point and the

(j + 1™ point at the bottom is equal to &—1(; as in Fig. 8. We use notation lim

e—0

for limo lim0 limo.... The limit of the integral lim,0Z(7;, ) is not convergent.
1=V —VeE3—
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However, with some modification, we can get a part of this limit. For a positive
real number ¢, let ¢¥ be a formal power series exp(X loge). Let

¥l 2pq

Irj=1
tor = 11 62770, and Q(o,rk) = . @D
k=1

(1 <pEokyotk)HiZgse, 2T

where 7, and ¢/, satisfy the following: o~ '(p) > k for all /; = p <k and
oW1 —1) < kifty > Lo (q) > kforallk+1 < g < /yand o™ (/2 +1) <
k if Z, < |r|. All the terms 8k9(6"’k) in (2.1) are mutually commutative and so &,

is well-defined. We consider a limit of Z(7,, ;) modified by &5, and & ;.

Theorem 2.2. lim e, Z (T 1 )er s IS finite.
£— ’

Proof of this theorem is given later.

Definition 2.3. For T € 7 and 0 € %)p—1, T € F|5-1, we call the triple
(T,0,7) a pre-g-tangle. A category C of pre-q-tangles is a category with objects
(r,0) with o € S, and morphisms (T,0,7) from (r,0) to (s,t). A product of
two morphisms (Ty,01,62) and (T, 02,03) with T\ € T gnd Ty, € T027) s
(T1 Ty, 01,03), where T'T) € T r113) s the product defined by joining two tangles
as usual.

Like (1.4), let

AT,0,0)=(™ @ ...0y ") - <1irr(1) ea,,—‘Z(TG,T,E)eT,S) . (24)
£—>

From the definition of Z of pre-g-tangles, we get the following immediately from
Theorem 1.5.

Theorem 2.5. For a pre-q-tangle (T,0,7), Z(T, 0,7) Iis an isotopy invariant of
(T,0,7), ie. Z(T,a,7) only depend on o,t and the isotopy type of T. Moreover, Z
gives a representation of the category of isotopy types of pre-q-tangles, in other
words, Z is compatible with the product of pre-q-tangles.

We call 2(T \a,7) a modified integral invariant of the pre-q-tangle (7,0, 7).

To prove Theorem 2.2, we first show an analogy of Proposition 0.3, which
says that every pre-q-tangle (7, o, 7) is a product of some simple pre-q-tangles. We
give the integral of each simple pre-q-tangle exactly. We can compute the modified
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integral invariant Z(T ) from Z of these simple pre-q-tangles as in Theorem 0.4. We
show that the category of g-tangles is a quotient category of pre-q-tangles in Sect.
4. We generalize Z to a invariant of framed tangles Z '+ in Sect. 5. From those, we
get our main result Theorem 0.4.

Proposition 2.6. Every pre-g-tangle is a product of tangles of the following
types. The first type is a positive crossing (Ry, o, ) with o(n—1)=k. The
second type is a negative crossing (Rk“l,o,o) with o(n—1)=k. The next
type is (Ex,0,7), where t(n— 1) =k,a(i) = t(i) if 7(i) < k and o(i) = (i) — 2
if ©(i) > k+ 1, and its dual type (E},0,7),7(n —1) =k,1(i) = o(i) if o(i) < k
and ©(i)=o0(i)—=2 if o(i) > k+ 1. The last type is (I,0,7) with ¢ =i+
1)t. In the above, Rk,Rk_l,Ek,E,f are tangles as in Fig. 2, and I is a trivial
tangle.

In the following, we prove Proposition 2.6 and Theorem 2.2. Kontsevich’s in-
tegral for a tangle T depends on the isotopy type and the positions of the end
points of it. Therefore, the limit of the integral depends on the isotopy type of
T and the elements o,7. We can decompose 7T into a product of several simple
tangles Rk,Rk_l,Ek and E} given in Fig. 2, which we call generator tangles. It
is enough to show Theorem 2.2 for these generator tangles for all the possible o
and 7.

Let 7 =R, € 7% and « be a permutation such that «a~'(k) = |#| — 1. Then
we have

Ta,r,s = Id,a,CTO(,(X,SIOt,‘(,E . (27)

Lemma 2.8 In the above situation, 1im,_oe,Z( Ty )6, " = Py pyres k1% kt1/2)
where Py 1 denote the permutation diagram corresponding to (kk + 1) and Q x4,
denote the chord connecting the two strings.

Proof. We first compute

—Tk k41 2k k+|/(2m)Z(T Sk Sk418% g +1/(2m) (2.9)
o, . .

lim_ e, o Jéjr) -1

—0
Cp=1

The strings of T are parallel except the two strings forming the crossing. Hence,
the integral for a configuration with a chord connecting these parallel strings is
equal to 0. The limit of the integral for a configuration with a chord connecting
one of the parallel strings to one of the strings forming the crossing is equal to
zero, because this integral has order O(e),—i(log ¢)’) for some /. The remaining
case is a integral for configurations with chords connecting the two strings forming
the crossing. We can assume that the levels of the bottom and top of T are t =0
and 7 =1 respectively. Let us parametrize the two strings forming the crossing
by ¢+ ¢ —1€'" and ¢ — ¢_1e'’, where c is a real constant. The iterated integral
for the configuration with # chords connecting the two strings is 1/(27/!). Hence
we get

—rkrh 182 “'/(M)Z(Ta, SkSk+1 @k kot /Qm) P’ 1 k1/2

lim Elpi—1

“’B)El |—1
g '
r|—1

(2.10)
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Due to the 4-term relation, at,g(“’r’/) commute with Q. and 8/9(“”’[)Pk k4l =

3(9(“’S’K)Pk w41 if £ < |r| — 1. Therefore,

. —1
lim ¢, , = Z(T, 0,6 )0,s
e—0 7

e1—0 g 2—0 |\ g2y

Ir|=2 [r|—2
lim ... lim < H SK—Q(a,r,t’)) Pkk+lerk+1/2 < H 8ZQ(a,r,/)>
/=1

lim ... lm Piipe®in/? = P2 O
£ —0 8]r|—2—’0

Similarly, for T = Rk“l, we have

Lemma 2.11. With the notations in Lemma 2.8, we have limg_»oea_lZ(Ta,a,a)aa =
Ppirre” %ke1/2

Let T =E; € 79 and « be a permutation such that a(|r| — 1) =k and o(|r| —
D=k+1ifk=|r|—2o0ork—1ifk =|r|—1 and |r| = 3. Let B be a per-
mutation of degree |r| —3 such that = (¢) =a~!(¢) if £ £ < k and B7(¢) =
a~'(¢ +2) if £ = k. Then we have

Ta,r,s = a,a,aTa,ﬂ,elﬂ,r,e . (212)
Lemma 2.13. In the above situation, lim,_o¢, ,~ ' Z(T,,p,s)ep,s = Ef € (T).

Proof. We first compute limalrI_lqoelrl_lr"r"“g"“‘/(m)Z(Ta,p,e). In this case,

rere+1 = —1 for any given orientations of the strings. We split 7 to a product of 7
and T,, where 7} is the tangle isotopic to 7 and has distances ¢ 5-1(¢) between the ¢t
and (¢ + 1) points at the bottom if /+k — 1 and €g-1(zy + €r|—2 + €)1 between
the (k — 1)™ and k™ points. The strings of T} are parallel except the string with both
end points at the top. Hence, the integral for a configuration with a chord connecting
these parallel strings is equal to 0. The limit of the integral for a configuration with
a chord connecting one of the parallel strings to the string connecting two points
at the top is equal to zero, because this integral has order O(¢),|—1). The remaining
case is a integral for configurations with chords connecting the string connecting
two points at the top. However, this configuration is mapped to 0 due to the framing
independence relation. Hence the only non-trivial integral is the integral for the con-
figuration without any chords, and we get limglrl_l_,oZ(Tl) =E}. Mqre precisely,
Z(Ty) = Ef + O(g}p|—1). From this fact, we get lim, ﬁoclrl_lg" /M 7oy = E;
[rl=1

since Ef Qi r+1 = 0 and the coefficient of ‘°'|r|—1gk k1 /Cm) o configurations with p
cords have order O((log¢},j—1)"). We also have

—Q(a,r, |7 -—2)8

lim lim e, ez )y

—0 —0
=2 Fp

= lim_ g, %" M=2(Eg 4 O(ejy-2))

¥rj—2

7]

. — -2
= lim . Qa,r, || )E;: =Elt .

Elr—2
Fr)—2
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The last equality comes from the relation QuE; = Q41,E;, since both configura-
tions are the same cord diagrams. Now we have
EIQ(a,r,l).

lim ... lim

Qarr, [r|=3) g Q(B,s,r|-3) Qb5 1) _ g
Jim, Ekslr— S =E;,

o B
fr]=3

since slrl_f(“’r’lrl_3)E;£|rl_39(ﬂ’s’|r|_3) =E;. O

Let T € 7% be one of the generator tangles with a maximal point. Assume
that the ™ and (k + 1) points at the bottom of T are connected by the string
having the maximal point. Let o be a permutation such that o]s| — 1) =k and
a(ls|] =2)=k+1ifk <|s|]—2ork—1ifk = |r|—1and |r| = 3. Let f be a
permutation of degree |s| — 3 such that f~'(¢) =, 0~ (/) if £ < < k and B~1(¢) =
a~Y(¢ 42) if £ = k. Then we have

TG',T,E = 1g,B,¢ Tﬁ,a,s Ia,t,s . (214)
As in the previous case, we get the following lemma.
Lemma 2.15. In the above situation, lim,_,q &g r_lZ(Toc,ﬁ,s)Sot,s =F e€AT).

Now we discuss about the convergence of the modified integral for the trivial
tangle /, ... Note that the integral Z(/, . .) may not be trivial. Since the symmetric
group is generated by transpositions (k& + 1), we have

Lemma 2.16. /; . . is a product of tangles of the form Ly ky1y,ne, where n € Sj,
and 1 £k S |r|—1

Proof of Theorem 0.3. First, note that usual tangle is expressed as a product of
several tangles of forms as in Fig. 2. Hence (2.12), (2.14) and Lemma 2.16 imply
Proposition 0.3. [J

Lemma 2.17. For a trivial tangle 1€ 7", n€ Sy,—y and 1 <k < |r| -1,
lims__,oé‘n(k k+l)—1 Z(I,7 (k k+l),n,5)€7/ is ﬁnite.
A proof for Lemma 2.17 is given in the next section.

Proof of Theorem 2.2. We showed that the modified integral of a tangle is a product
of the modified integrals of the simple tangles of several types. We also proved the
finiteness of the modified integral for these tangles. Hence we get the finiteness of
the modified integral of any tangle. OO

3. Modified Integral of Trivial Tangles

The aim of this section is to prove Lemma 2.17, and give the actual form of
lim. 0 & k+1),,”‘ Z(Lyk k+1),n,¢ ) €n,r- We prepare several lemmas.

Lemma 3.1. Let r = (1,1, 1) and I(a,b;e,a+b —e) € T be a trivial tangle
such that the distances of points at the top are a and b, and those at the bottom
are € and a + b — € as in Fig. 9. Then lim,_ Z(I(g)) 212/®™) s finite, where Q,
denote the cord connecting the first (left-most) and the second (middle) strings.

Proof. We place I(a,b;e,a+ b —¢) so that the level of the bottom is equal to
¢ and that of the top is equal to a. Let t € R be the parameter for the vertical
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€ a+b-¢

Fig. 9. Tangle I(¢)

(k)

Fig. 10. Configuration Q = Q) .. Q20D

coordinate and y € C be the parameter for the horizontal coordinate. The first string
is presented by y = 0, the second string is presented by y = ¢ and the third string is
presented by y = a + b. Let Q;; denote the chord connecting the i and j™ strings.
The distance of the first and the third strings are constant and so the integral is
equal to 0.

We show the finiteness of the integral for any configurations with Q), and ;3.
Let Q be a configuration of Qj, and 2,3 as in Fig. 10. We denote this configuration
by Q=00 .. QPQMW  where Q) = Q3 and QY = Q5 or Qy3 for i = 2. Let
fi(x)=1)x if QO = Qy, and 1/(x — a — b) if QY = Qy3. Let C[[¢]][log ¢] be the
set of polynomials in log ¢ whose coefficients are series in ¢.

We compute the integral for the configuration Q€Q,,”. Let f[fzk;] Se(si)ds, =

fabfask...f:3f:2fk(sk)fk—1(3k—1)--.fl(Sl)dslfz(Sz)dsz .dsx_odsg_1dsi and fab]

Sfe(se)dsy = fabfask S22 f () fr—1 (Sk=1) - g (st f1(s1)ds1 f2(s2)dsy . dsg—a
dsy_1dsi. Then the coefficient of QQu" in Z(I(g)) is

0 W) gs,

5 g LI

[e.a][e,)] S+

Fo(t:)dt.QQ,,F . (3.2)

On the other hand,

Q)2/(2m) _ log &)*
€ 22()(2713 )kk'( 0g ) 912 . (33)

Hence the coefficient of 2Q,” in Z(I(g))e?2/®™ is given by

1 @ w0 gs,

I

Cri)PY T e e S

Falte)dt, %(mg ey QQ,”. (3.4)
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ds, 1 1 ,
We have f[(ekt)]] o = H(log t, —loge), and D kii=p m(log e) (logt — log e)

1 . 1
= Siejremp g (089 (log 1) (~1Y (log &) = X1, 7 (log & — log e

(log 11) = %(log t1)?. Therefore,

1
A= —— [ —fu(t)(log )P dt. QQ,,7 . :
()= Gryere S i+t (log 1) 2 (3.5)
The limit £ — 0 of the above integral is finite because fj(x) = 1/(x —a — b) and
a+b>0 0O
We get a similar lemma for the vertically and horizontally flipped tangles of
I(¢), and combining these results, we get the following.

Lemma 3.6. For the tangle I(a — ¢, €; €, a — ¢), lim. ¢ e~/ 7([(a — €, e; ¢,
a —¢€)) e/ s finite,

We can compute the integral for every configuration. Let J = (p1, q1, ..., Py, 44)
for positive integers pi, g1 ..., pg, 4g» PU)= 4y Pk 4 =S1_, qis|J| = p(J)
+q(J), g(J) =g, Q = Q," Q" ..., Q,,7', and

G=CA,..,Lqag+1L 1, .., Lgp+1,...,1,...,1,g,+ 1),
—— —— N——
pi—1 =1 py—1
where .
C(s15ees 8k) = — s
my<my<--<mp€N My My~ ..M,
{(s1,...,8¢) is called Zagier’'s multiple zeta values. Let c¢;;, be the numbers
given by
(=1)P) .
= —— s ./a
€400 = "5 NI & (3.7a)
C‘],(),( = (‘—])(Zm‘/"/l CJ’,O,O N (37b)
Jl

where J' = (pi, q|, ..., Py, q,/) and @ runs over all substitution of / copies of
Q1 to Q; except to the right of it, and m; ; is the number of ways to get J’ from
J as above,
_ k
Clkt = (-—-1) ZmJ,J/ Cjl 0,0 » (370)
J

where Q;/ Qn/’ runs over all substitution of £ copies of (23 to Q; 912/ except
to the left of it, and m, ;s is the number of ways to get J' from J as above. For
example, c(1,1),0,1 = —2¢1,2),00 = —£(3), and ¢(1,1),1,1 = —2¢2,1),0,1 = 2€(1,1,1,1),0,0
+ 4C(2,2),0,0 = 2&(2’ 2) + 4C(17 3)

Proposition 3.8. For I(1 —¢,e;e,1 —¢),

) Q, Q oo [m/2]
lim e~ 7 ZU(1 —g,556, 1 —e)etmn =3 5 S0 cne D3t 2, 9,7,
e—0 m=0g=0  4/20
4(J)=y
k+{+|J|=m
(3.9)

where we put c;o,0 = 1 for empty sequence J.
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We denote the right-hand side of (3.9) by ¢(212, 2,3). Reformulating (3.9) by
using (3.7), we get

oo [m/2]

D(Qu2, Q)= > > Y €00 » ™

m=0g=0 g(J)=g 1! / 29(J)
ket t-+ 1| =m TPy 0

J'<J (component wise)

9(J) . .
I1 (” i) (q’,> Q3 Q2. (3.10)
=1\ Pi) \4

Proof of Theorem 3.8. Let Q; = QD . Q@ Q) where Q®) = Qy, or 2,3, and
let fi(x)=1/x if QO =Qy; and 1/(x — 1) if 2V = Q,3. First we prove for the
case k =¢ = 0. The coeflicient for the configuration @, in the integral lim._,
™/ Z(J(1 — ¢, &5 ¢, 1 — €))e912/™) is equal to that in lim._o Z(I(1 — ¢, €; &,
1 —¢€)), and it is equal to the iterated integral

h
[ fe(sa)ds. . (3.11)

[0,1]
Note that f(x) =1/(x — 1) and

X "k dt X"k
of 2 w5 ok 2 TS sl

S
my<--<mp€N My .My my<---<mp €N m‘s, ceomy
X "™k dt xM+1
f Z 1 kg1 S Sk :
0 my<--<mpeNMy ..My my <. <my <my €N My~ .. T My

By using these relations inductively to compute (3.11), we get the right-hand side
of (3.7a).
We reduce the other cases to the £k =/ = 0 case. Since

SQnfem) _ 5 sy
=0 mi)F g s«

>

e~ fufen) _ 531 ds.

3.12
im0 Qi) Loy se— 17 (312)

the coefficient of Q;,, of the integral e~92/2™ Z(I(1 — ¢,¢;¢,1 — £)) e912/2™) g
given by

k ¢ (k—n) dx, (f—m)dy* sh

1
e 3 [ fe(s0)ds.x
(miyk+ =+l n=0m=0[1-c,e] X+ = Lie e Vs [e,uy]

(n) du, (m) dv,

. (3.13)
N-ee) Ux = L Vs
The iterated integral satisfies the following:
(k) (&) () (k)
[ [ fe(s)dsega(t)dte = [ [ g (t)dts fo(se)ds, . (3.14)

[a,b}[a,11] [a,6] [s1,B]
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This implies

ny (D (¢=m) g . (m) dv,
(3.13) = <Z J o=

(2mi e+t +1] 0SnEkle, i—e) [euy] \OSmSC [eis)] Vx (1) U )

du, %M dx,
u* - 1 [1_5’0] x* - 1

Sx(8:)dsu

(1Y WD B gy O gy,

= i [ (85)dsy .
iyt i o e — 1 [s;j,ﬂl] Vs
Hence the limit of (3.13) is

—1yte D kg . D dp,

Sald) “ v [ (s:)dsy .

QriY VT gy oisy Ue = Lty U

First split the integral intervals of uy, ..., ux by sy, ..., 81715 and then split the
integral intervals of vy, ..., vz by s1, ..., 815, u1, ..., w. Then the above integral is
a sum of iterated integrals and each integral is expressed by cj 0 for some J. Con-
sidering which J corresponds to a part of the integral, we get the proposition. [

Now we introduce an operator 4 which duplicates a string of a tangle. Let
T € 7" be a tangle without maximal nor minimal points. Let w be a string of
T connecting the k™ point at the top and the j® point at the bottom. Let T’ be the
tangle obtained by adding an extra string w’ to T which is close and parallel to
w. The orientation of w' is equal to that of w. We denote this operator by 4.
Then 4y (To,ce) =Ty . Where o'(£) = o(k) if o(/) £ k o' (Is]) =k o'(4) =
a(?) + 1 if otherwise, and 7' (/) =1(£) if a (/) £ j, 7 (Jr) =4, 7 () =({)+ 1
if otherwise. We can compute the modified integral of 4y (75, ) from the modified
integral of 7, .. as follows.

Proposition 3.15. We have
: —1 . ~1
gm}) €t Ak (T(;./YI/’E)ET/,S/ = gm}) € Z(To,r) Eus |Qu=QutQ,, (3.16)

for every string v of T other than w.

Proof. Let a. = Ax (T}, ) and a9 = Z (T5,c,r )0, =000+0,s, - Then we have [a(e),|)
—o(0)| < O(e). Since the coefficient of 5|,[Qwu-'/(2“’> for the configuration with 7
cords has order (logey, Y, we have

Q“,)‘,//(Zm) _Q\rn"/uni) —_

= lim ¢
I €=l £ =0 |

Qs /(2ni)
7 0 yr]

“Q“.,‘//(Zni) = 0. (317)

For the last equality, we use the 4-term relation [Q,,,/, Qu, + 2,/,] = 0. The for-
mula (3.16) comes from (3.17). O

Lemma 3.18. For I(a —¢,e;¢,a — ¢),

. _ Qe [ _fx 1
lim ¢~ ~ 2= lim e™ 2w Z(I(a—¢, €, 6,a—¢€))em I
e—0

a—0

Q1 Q3+
a

2

Q
= lim e Z(U(1 — e, 656, 1 —e))en . (3.19)
6*‘?
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1 €
T, a-¢g
I(a,e)
TZ a-¢
€ 1

Fig. 11. Product of tangles I(¢,a), T, and T

Proof. Consider a product T1/(a — ¢,€;¢,a — €)1, of three tangles in Fig. 11. Let
&/f,k)(X ) denote the subspace of o7((X) spanned by cord diagrams with & cords

and p; : o(X) — Z5(X) be the natural projection. Form (3.12) and proof of
Proposition 3.15, we have

Dk (a—(9|z+9|3)/(27ti)) = (5—923/(2711') 7 (TI)EQn/(Zni)) + O(e(log 5)1\7) ,
Pe (a(9|3+923)/(27ri)) = D (5—912/(27”') Z (T )6912/(2711)) + O(e(logs)k) .
Hence

21

_ Lt [ _ 23 2
) (a b lm}) e m Z(I(a—¢€,e5e,a—¢€))em |a
E—>

. _ 20423 : Qp Q3+
= lim py <a o e Vs (g — e e e a—¢€))eTm g Tm
E—>

it

. =2 20
:il_‘f}) prlem Z(T)Z(U(a—¢,e;e,a—¢€))Z(T)em O(e(loge)*)

Q Q
= lim pu(e™ 7 Z(I(1 e, 55, 1 —€))e ) ,
E—>

since the tangle Ty I(a —¢,€;¢,a—¢) T, is isotopic to I(1 —¢, €; ¢, 1 —e) with
the same endpoints. The last form does not depend on @ and so we get (3.19). O

Let
oo [m/2]

PQu, Q) =3 ¥ w22,
m=0g=0 k720

9(J)=g
k+l4+)T|=m
Then, by (3.9),
$(Qu2, Q) = lim eI 7(J(1 — ¢, g5 ¢, 1 — ) 22/ (321)

Theorem 3.22. Let I be the trivial tangle in T for some r and let n be
a permutation of |r| — 1 letters. Then the limit

lim &, i 2k krnyne)Enr =1 € A1) (3.23a)

if there is j < k between n(k) and n(k + 1),
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. ~1
g‘_rf}) Entkrryr  ZUnkkr1yne) Enr

¢< > 7 p¥g82pgs > ”p”quq>’ if nk) < nlk+1),

n(k)+1< p=n(k+1) ¢ < p<nk)
nk+D+1sq9s/ n(k)+1<q<n(k+1)
¢ > 77482 pg> > ForqQ@pq | i n(k) > nlk+1),
n(k+1)+1< pn(k) ¢ < pEn(k+1)
nk)+1=qst n(k+1)+1=g=<n(k)

(3.23b)

where ¢ is the maximal number such that n~'(q) = ¢' + 1 for all q such that
max(n(k), ntk +1))+1 < q < ¢, and ¢' is the minimal number such that n=" (p)
=k for all ' £ p < min(n(k), n(k + 1)).

Proof. We prove the above for » =(1,1,...,1). Results for other cases come
from this case by changing the signatures corresponding to the factor (—1)"1 in
Definition 1.1. Assume that ¢; is very small for £ > i+ 1. Then the strings of
Iyk k+1),n,c are split into k 4 2 groups, in which strings are parallel and very close.
Let G1,Gy,...,Giyn be those groups from left to right. Let ' be a sequence of

k 4+ 1 ones and I’ be the trivial tangle in 7~ (GRS} Then, there is ' € Sk; such that
!

W (k1) e 18 the modified tangle obtained by replacing each group G, by a single
; i) —
string. Let QU = ESEG_,, €6,

s and 7. Proposition 3.18 implies that we can get lim.o¢€, k+1),r_l Z(Lyk k+1y,n,e)

Qg where Q denote the cord connecting the strings

ep,r from lim._,o o kH),r,“lZ(],’],(k k+1),n',e)5n’,r/ by changing each string to
strings in the corresponding group and each cord Qj, connecting the j* and /"
strings of I’ to a sum of cords QU).

From now on, we investigate lim._o &,/ k+1),,/‘lZ(I’;,(k kH)’”,,E)e”/’,./. Let j
be an integer with 0 < j < y(k) or n(k +2) < j < k + 2. Then the coeflicient of
a configuration containing Qjyx), Qjnk)+1,---» OF Qjyk+1)+1 is 0 in the limit of the
modified integral since such a coefficient in €k k+1),,,,“1 Z(L i ki 1)..e) Entr 18 0

or bounded by O(g; (logey)’) for some 7.

Now consider the case n(k)+1 < nlk+1). Letylk)+1 < j =gk +1)+ 1.
Then the coefficient of a configuration containing Q) or Qjyky41 is 0 in the
limit of the modified integral as before. Let n(k)+1 < ¢ < n(k+ 1)+ 1. Then
the coefficient of a configuration containing Qj,x) or Q)41 is also 0 in the limit
of the modified integral as before. Hence, the limit has a nontrivial coefficient for

configurations consisting of Qyuyk)+1 and Qi+ 1ymk+1)+1. We can compute the
. . . . 1

coefficient of @ yyk)+ 17 Ly k41?0 ZUy ik ks1y,.2)> and it is T

(log ex —log gr41)?(log ex41 — log &;)?. Therefore, the coefficient of Q,yyiy41”

Q”(k+1),1(k+1)+1q in the modified integral En'(k k+1),r'_IZ(I,;/(k k+l),r1’,5)€'1',r' is

1
e — —_— '—10 E 1 -‘10 £ le
Q)P oy STsylsalr rtry1 U108 &6) (=1og ekt

S| +8y+53=¢q
(log ex —log €441)?(log exy1 — log g4 )?(log ex41)? (log &)™
_ { 1 if p=¢g=0,
0 if otherwise.
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This implies that lim. o €,k g1y, " Z(I,;,(k ki tte) Enlr = I' € o(I'), and so
lim ey kiyr 2y ke ) e =1 € A(U) . (3.24)

If n(k+ 1)+ 1 < n(k), we get the same result.
Ifntk)+1=nk+1)or nlk+1)+1=n(k), we get

. ~1
gl_rf(l) v ke LUy iy Entr = Pyt er1yet> Lo aoer)  (3:25)

from (3.16) and (3.21). Hence, by substituting Q;; = QUY), we get (3.23b). O
This theorem implies the lemma at the end of the last section.

Remark. 3.26. Lemma 2.8, Lemma 2.11 and (3.23) give modified integrals for sim-
ple tangles in Proposition 2.6.

4. Modified Integral for q-Tangles

In Sect. 2 and Sect. 3, we investigate the modified integral for pre-q-tangles. Here,
we show that the category of g-tangles is a quotient of the category of pre-q-
tangles. We also show that the results for pre-g-tangles in the last two sections can
be translated for g-tangles.

First, we give a mapping f from pre-g-tangles to g-tangles. Let » and s be
sequences of 1,7 € 7" and ¢ € S, € S},. We define

J((T,0,7)) = (T, fu(o), fu(1)) (g-tangle), (4.1

where f,(o) and f,(t) are non-associative words with supports » and s defined
by the following. For the sequence » = (r1, 12, ..., Fir)s first put a bracket to group
Fa(lrl-1) a(jrl-1)+1- At the k™ step, put a bracket to a subsequence (w;w;), where
wi is the group containing 7,(,|—) as the right-most element and w; is the group
next to wi. Repeating this procedure to (|#| — 1)® step, we get a non-associative
word and we denote it by f,(c). We similarly define f, (7). Since the families
of morphisms of the categories of pre-q-tangles and g-tangles are identical, the
definition of the mapping f immediately implies the following.

Proposition 4.2. The mapping f induces a surjective functor from the category of
pre-q-tangles to the category of g-tangles.

In the rest of this section, we show the following.

Proposition 4.3. The mapping f induces a representation of q-tangles from the
modified integral for pre-q-tangles in the last two sections.

Proof. We show that the modified integrals of pre-q-tangles (T, 0y,7;) and
(T, 03, 12) are equal if f,(01) = fuw(02) and f(11) = fw(12). Since (7, 02, 72) =
W, 02, a1 (T, 01, 11)(, 71, T2), it is enough to show that the modified integral for
({,0,7) is equal to [ if f,(0)= fw(t). Then the following lemma and (3.24)
implies the proposition. [

Lemma 4.4. Let o and t be two permutations of n—1 letters. Then f,,(c) = fw(1)
if and only if there are sequences of permutations o =1y, ..., ; = T and integers
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ki, ..., ks satisfying (), = ni(k,, ki + 1) and there is some j; < k, between n,(k;)
and n;(k; + 1).

This lemma comes from a combinatorial argument. We omit the proof.

Proof of Theorem 0.4. By Remark 3.27, Z r in Theorem 0.4 for simple tangles
in Proposition 0.3 coincide with the representations in Proposition 4.3 for those
tangles. [

5. Invariant for Framed Tangles

In this section, we construct an invariant of oriented tangles with blackboard fram-
ing (see for example [13]). Let T be a tangle. In this section we use chord diagrams
o/ (T) instead of 7¢(T). It means that we do not impose the framing independence
relation given in Fig.1 (b). We construct an invariant of framed g-tangles with
values in /(7). Kontsevich’s integral for a tangle becomes infinity at neighbor-
hoods of maximal and minimal points if we don’t have the framing independence
relation. We normalize the integral at maximal and minimal points so that it is
finite.

Let T be a tangle with only one minimal or maxima point p. For small positive
e € R, let T, be the tangle obtained from T by cutting a part near p by a horizontal
plane. Here ¢ is the distance between two intersection points of the distinguished
string containing p with the cutting horizontal plane. Then T = T, x (T — T;.) and
T. is a trivial tangle. We can define Z(7.) € ./(T.). Let w? stand for a chord dia-
gram in /(T — T.) which consists of d parallel dashed lines near p and connecting
points of the distinguished string as in Fig.12. We regard w? as the formal 4™
power of w.

Proposition 5.1. Let T be a tangle with just one extremal point p. If p is a
minimal point, there exist

Z/(T) = lir%Z(Te)e_“’/(Z”i) € A(T) .
E—
If p is a minimal point, there exist
Zy(T) = lim /@M z(T.)y e A(T) .
E—>

Proof. We use a similar argument in the proof of Lemma 3.1. We prove for the
minimal point case. We may assume that the bottom plane of 7 contains the mini-
mal point p. Let T’ be a tangle obtained from T by a horizontal move, keeping
each point of the top and the bottom planes invariant. Due to the 4-term relation,
Zi(T'y=Zy(T) if Z;(T) is finite. Hence it is enough to show the finiteness for
the tangle 7 in Fig.13.

We compute the coefficient of the integral Z(T,)e~“/®™) for the configura-
tion Q@ Q@ QWP Recall that we assumed every tangle is contained in
R x R C R x C except neighborhoods of crossing points. Hence, 7. C R x R. As in
the proof of Lemma 3.1, this notation stands for a configuration with Q ), .. Q®

from top to bottom in turns and the lowermost part is w?”. Let wg) and wf)
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z=0

Fig. 13.

be the two string of 7 containing the end points of Q®. If w{"” and w{? are
parallel for some k, then the coefficient is equal to 0. So we assume that they
are not parallel for all &, in other words, one of wfcl) and w,(f) is the non-vertical
string. Let 1/|f4(¢)| denote the distance of the end points of Q*) at level ¢, i.e.
fie(t) = £1/(t — a;) for some a; € R. We choose the signature of f(¢) as follows.
fi(t) > 0 if the distance is increasing with respect to ¢ and the orientations of
wi,w, are coherent, or the distance is decreasing and the orientation of w;,w; are
not coherent; f(¢) = 1/(t — a). By repeating similar computation to get (3.5), we
know that the coefficient is

1 (r)

1 r
W[€f,,] E(log 1) fo(s:)ds, Q0 ... QWP (52)

The limit of the above integral is finite because f(t) = £1/(t — a;) with a; +0.
Similarly, we can prove the finiteness for the maximal point case. [
Due to the 4-term relation, we have

Lemma 5.3. Let T be a tangle and t| < t < --+ < t,, € R such that T has a
maximal or minimal point at level t =t;. Let T' be a tangle obtained from T
by a horizontal move keeping each point of levels t = t; invariant. Then Z;(T') =
Zy(T), where Z; is defined in Proposition 5.1.

Lemma 5.4. Let T be a tangle and t; < t, < -+ < ty, € R such that T has a
maximal or minimal point at level t = t,. Let T(¢) be a tangle equal to T except
a neighborhood of a maximal or minimal point at level t; of T where T(¢) is
given as in Fig.14. This figure explains the case of maximal point. Assume that
the two strings used for moving the extremal point are parallel to each other, they
are not parallel to C and they are contained in a plane transversal to C. We also
assume that the level of the moved maximal (resp. minimal) point is less than t
(resp. more than t;_;). Here we use conventions to = —00 and t . = oo. Then

Zp(T(e)) = Z(T).
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A \ A \
t0+ a
to+a 7 \ 5O ¥o)
Tl tota-€ !
to T’ V(l) e )
2 v
T, ug”/\u(zz) 2 \\ < 2
to-€ to- €
1) ) ’ 1 2
T, \ uj u3” T, \ v(3 ) v(3)

Fig. 14. Vertical move of a maximal point

Proof. We prove for the maximal point case since proof for a minimal point
is similar. We split T to three parts Tj, T, and T3, and split T’ to three parts
7!, T} and 74 Let u$V, P, u" and u{) be parts of a Wilson loop of 7' and

let 0", 0(12), v, vgz), vgl) and v\ be parts of a Wilson loop as in Fig.14.

A configuration for 7; is called zype I if it has only chords with end points on
ul(l) and u,@)‘ A configuration for 7 is called type II if it has a chord with one
end point on ufl) or ufz) and another end point on neither ugl) nor uf2). A con-
figuration for 7; is called type III if it has only chords with neither end points

on ugl) nor uﬁz). We also define types of configurations for 7] similarly. Let
Z(T)) = AT + 47 + 4™ where A7 denote the integral for configurations of type
Jj. Similarly, Z(T!) = B! + B! + B

We have Z(T) = Z(T\) Z(Ty) Z(T3) = AT (A} + AL + A1) (A% + 4] + 41"
and Z(T") = Z(T}) Z(T3}) Z(T}) = (B}, + BY + By (BY + BY") (B + B} + BY").
Note that B, =0. By using lim._e*(loge) =0 for k > 0, we have Z(T) =
lim. o Z(T) = lim._o A (45 + AT + 47") (A§ + AT + Ay = lim,_o A 4} (A]
+ AT+ ATy and Z (T") = lim—y Z(T") = lim.q (B} + BY + B{") (B} + BY")
(B + BY + By = lim._o BY(BY + B¥) (B + BY + BY"). Here we use the in-
variance of Z, under the horizontal move and use the condition for the level of new
maximal point. We also have lim,_,oBIBY =0, and Z(T') = lim._.oB{B¥ (B} +
lZi’éIT;l;Bg”D). Noting that Bl = 45, B = 44" and BiBUl = BBl we get Z(T) =

An isotopy of R* =R x C is called horizontal if it preserves the first (R)
component of each point. By using previous two lemmas, we get the following.

Lemma 5.5. Let T' be a tangle obtained from T by a horizontal isotopy. Then
Zp(T") = Zy(T).

By using this lemma, we can remove the condition for the new maximal or
minimal point in the lemma for a vertical move.

Lemma 5.6. Let T(¢) be a tangle equal to T except a neighborhood of a maximal
or minimal point where T(¢) is given as in Fig.14. This figure explains the case
of maximal point. Assume that the two strings vg’) and v(zz) are parallel to each

other, they are not parallel to C and they are contained in a plane transversal to
C. Then Zs(T(£)) = Zs(T).

Due to the above two lemmas, Z/(7") is invariant for Reidemeister moves except
the stretching moves. As in the case of original Kontsevich’s integral, we normalize
Zy(T) so that it is equal for tangles 7' T’ in Fig.7. Let
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v =2Zp(U), (5.7)

where U is the diagram in Fig. 5. Let T be a tangle with £ numbered component
and

Zi(T) =" ®...09,™) - ZK(T) , (5.8)

where m; is the number of maximal points of the j® component of 7 and so y;m’
acts on the j component.

Theorem 5.9. 7 #(T) is an invariant of regular isotopy.

Proof is similar to Z case.

Remark. 5.10. Z £(T) is not invariant by the twisting at the minimal and the maxi-
mal points. Let T be a tangle and let 7’ be a tangle twisted by angle +7 at a max-
imal (resp. minimal) point of 7. Then Z (T") = e*%? Z ((T) (resp. e¥¥* Z ;(T)).

Now we compute the values of Z #(T') for simple g-tangles in Proposition 0.3,
which are given in Theorem 0.4.

Proof of Theorem 0.4. If the tangle T is Ry, R, or I, the argument for Lemmas

2.7, 2.10 and Theorem 3.22 is also good for Z and so we get the values of these
cases as in Theorem 0.4. For T = E}, we show that

lim e, Z/(T, 0, B) g5 = E - (5.11)
£E—

We may assume that the tangle E} is of the form as in Fig.13 and the string
with the cusp connect the k™ and k + 1™ points at the top. It is enough to show
that lim,, _ot; %k k+1/CDZ (T, 0, f) = E}. For a conﬁguration containing a cord
other than Qy,,;, the coefficient of the integral Z f(TO,oc, p) of this configura-
tion is bounded by O(#)(logt;)’) for some ¢ from the proof of Proposition 5.1.
Hence, for a configuration containing a chord other than Q.;, the coefficient
of 1y k1) Z (T4 o B) of this configuration is bounded by O(# (log#)) for
some /. Therefore, the limit of this coefficient is equal to 0. The remaining con-
figurations are Q¢ for nonnegative integers d. The coefficient of @, ,,, ¢ is

G okt /:d%(log 1)+, which is equal to 1 if 4 = 0 and 0 if otherwise. This

implies (5.11). The proof for the tangle E is similar. E; contains a maximal point,
so we have to multiply the factor y,. [J

For a g-tangle (7,0,7), we have another invariant Z)(T ) € (T) constructed
from Z(T,0,7) € #o(T) as follows. Let y be a mapping from /(T) to /(T)
defined by

Y(Q)=Q — 1/2(6) + 82) (5.12)
for a cord Q, where 0; (resp. J;) be a cord connecting two points in a small
neighborhood of one (resp. another) end point of Q. ¥ is factored by o O(T ) and let
Vo be the factored mapping from o/((T) to /(7). Let ZO(T 0,1) = l//o(Z(T 0,7)).
Then Z, is also an ambient isotopy invariant of g-tangles, while Z s is regular isotopy
invariant of framed links. We have following relation between Z r and Z.
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Theorem 5.13. For a g-tangle (T,0,1),

R i+ 01/ TSN AN
Zi(T,o,t)= e '*! ®..Qe T - Zo(T,0,7) , (5.14)

where k is the number of components of T,w, is the writhe of the knot of the
J™ component, ¢ ,, is the linking number of the p™ and q" component, © is the
chord diagram on a circle with one chord, and @' in the Taylor series of the

exponentials is the product of j copies of © in .

Proof. Due to Proposition 0.3, it is enough to prove for g-tangles in Proposi-
tion 0.3. We have Y(Z/(T)) = Y(Z(T)) = Zo(T) since Y(E 59) (resp. Y(e~2E*))
is equal to E (resp. £*). We compare Z,(To 7) and lp(Z,«(Ta 7)). We first
compare Z;(T,0,t) and Y(Z;(T,0,7)), then show that y, =y. For T = E; or E,
W(Z(T,0,p)) = Z(T,, ), since 2,(T,o¢,ﬁ) =FE; or E}. For T =Ry or R/:]’ we
have Z;(T, o, o) = e*¥? and so Y(Z(R)) = eT@2=01/4=0/4) We show

W(Zy(Ln(k k+1),m) = Zy(Lin(k k + 1),n) (5.15)
for a trivial tangle /. Recall that Z,(Z,(12),(21)) = ¢(12, 223). We first show
Y(P(€12,223)) = P(212,203) (5.16)

where [ is the trivial tangle with three strings. Let (5{‘ ,(i=1,2,3) be k£ small cords
connecting 2k points of a small neighborhood of a point of the i string without
crossings. Let 4 = 1(Jf + /). Let ¥; be a mapping acting on /(/) defined by

Vi Qi Lkt Ligr) = Sormy Qi V(L) Qe and V(2 0) = Qp
— 01 if k, =1 and Qs if otherwise. Let ¥> be a mapping acting on /(1) de-
fined similarly to ¥y, with ¥p(Qy 1) = Qs — 023 if k; =3 and Q, s if other-
wise. Then lﬁo((b(glz,gg)) = GXp(lpl + lpz)(f)(Qu,Qz}). From (310), we have

oo [m/2]

P(R12,Q23) = > > > cro0% s (5.17)

m=0 g=0 ¢(J)=¢
|/ |=m

where

_ Vitr (2 (@ pJ") g")

&= Z (—1) H ! ' Q23 QJ_J/Q]Z .
(0..0=J/ <J =1\ Zj q,
component  wise

Here J' = (p), q},..., Py q,)- We show that ¥, and ¥, send o to 0.

/ /
We see the coefficient of 512Q23pu )QJ_J/QHW ) in ¥,(). This is

U+ [ Gt qq ") ¢ p 4qj
= <q1>"'<fJZ)(( D) E(#)(CI?)
- Di Dr
+I§(p, p,+1)< 1> . (pf~1)"'(pf.>> ) (5.18)
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Since (p;— pi+ 1) (p,p_‘ ]> = pl (55) , (5.18) is equal to 0. Similarly, ¥,
i 1
sends o to 0. Hence, Yo(a) = exp(¥; + ¥2)(¢) = o and so Yo does not change
H(Q12,223).
We show (5.16) for a trivial tangle / with more than three strings by similar
argument. We use the notations in Theorem 0.4. Since

Y S rpre@pg | = 3 rprgQpa— X rpr(dp+9dy),
aspsh aspsb aspsh
b+15¢=c b+15q=<c b+1<qg=c
we can use the previous argument to prove (5.16) with S Yq ¥482p g
ksp<)o
n+H1sgs)+1
Yo Qg Y, rprg(0,+9dg), and  >°  rp re(d, + Jy) instead of
Jot1Ep<y) k<p<jp JoSPSJ)
Ntlsqs/ Jot1sq=)) Nt1sqs/

Q12,203,812 and O3 respectively.
The above argument implies

W+ 41))0/2 W+ 44012
Zi(T,o0,1)= e /*! ®.Qe IF < Yo(Z(T,0,7)) . (5.19)

In the rest of proof, we show Y o(y) = y,, where y = Z(U) and y, = Z,(U) for
the diagram U in Fig. 5. We know that y, = E;p(—Q12, —Q23)ET, and so Y(ys) =
7. On the other hand, ¥ = and ¥ gives an isomorphism between .«/((T) and
the image of  in .2&/(T) for any tangle 7. Note that v/ ! is equal to the natural
projection from Y(/(T)) C H(T) to Ao(T). Since y; € Y((1)), where [ is the

trivial (1,1)-tangle, l//()‘l(yf) =7y, and so Yo(y) =7y, O
Remark. . Another proof for (5.16) is in Appendix of [19].

6. Relation to a Quasi-Hopf Algebra

Let +® =(1,...,1) and #4® = o#(I®), where I¥) is the trivial tangle in
—_———

7™ Whose strings are oriented downwards. Then .#® is an algebra with
the product induced by the product of tangles. We call .#*) the chord dia-
gram algebra of degree k. .#'© = C by definition. For a sequence of alge-
bras C= .49, .4D,..., #®,..., we introduce a structure similar to a Hopf
algebra structure. The algebra .o/ is isomorphic to .#". We have an inclusion
A~ (MO 4P, We also have a linear mapping .#/*) — /®* defined
by the following. Let D be a chord diagram in .#*). Removing all the chords
of D with two end points at different strings, we get a disjoint union of k& chord
diagrams Djy,...,Dy. Let D} be the chord diagram on a circle obtained from D; by
connecting the ending point and the starting point of the string of D,. Then D] ®
...® D} € /%, The projection .#/* — o/®* is a linear extension of the above
mapping for chord diagrams. We extend the “Hopf algebra structure” of 7 to .4,
MOV, M), with respect to the above inclusions and projections.
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We put numbers 1,...,k to the strings of chord diagrams in .#®). We first
extend the multiplication m : ./ ® &/ — .o to a linear mapping m : #® — 4D,
For a chord diagram D € .#®, we can make a chord diagram D’ € .#") by con-
necting the ending point of the first string to the starting point of the second string.
Let m be a linear extension of the above mapping. We sometimes need an ex-
tension of the mapping id®“ ™" @ m @ id®* /=1 . & _ F®K*-D o id®“D g
m@id®* D g® — g&=D_ In our notation, id®Y P @ m @ id®* /D does
not mean the usual tensor product any longer. For a chord diagram D € .#%®, we
can make a chord diagram D’ € .#%*~1 by connecting the ending point of the /"
string to the starting point of the (£ + 1)M string. Let id®CD @ m g id®*k——b
be a linear extension of this mapping. This extended mapping and the original one
commute with the inclusions .&Z/®* — #® and /®*=D — %=V The unit 1 is
the chord diagram without any chords.

Next, we generalize the coproduct 4:4 — o/ @ .o to A: MDD — 4P, Let
D be a chord diagram in .#'V and p;,..., p; be the points on the non-closed
string of D where the chords are attached. Take a duplicate of the string and let
Di,--.» Py be the corresponding points to py,..., pr on the new string. Then replace
chords as follows. If a chord, say Q, ,, connects p; and p; then replace it by
Qpp, +4 oo T Q, ? +Q A By the above replacement, D is replaced by a sum

of 2% chord diagrams in .#®). Let A be the linear extension of the above mapping.
We sometimes need an extension of the mapping id® D @ A ®id®¢) . ok -
AOEHD 10 i d®D @ A @ id® D . g ® — %D In our notation, id®¢ "V
A ®id®* =) does not mean the usual tensor product any longer. Let D be a chord
diagram in .#%® and py,..., px be the points on the /" string of D where the
chords are attached. Take a duplicate of the /™ string and let pi,..., p, be the
corresponding points to py,..., pr on the new string. Then replace chords as follows.
If a chord, say Q,, ,, , connect p; and p; then replace it by 2, , + £ oo T Q, v +

Q. If a chord, say Q,,, connect the point p, and a point g not on the ¢
1y
string, then replace Q,, by Q,4 + ©2,/,. By the above replacement, D is replaced

by a sum of 2% chord diagrams in .#®. Let id®‘™" ® 4 ®id®*~) be a linear
extension of this mapping. This extended mapping and the original one commute
with the projections #/*) — o/® and M*+) — g OK+D,

We have a counit € : ./ ~ .# — C. For a chord diagram D € .4V, ¢(D) = 1
if D is the chord diagram without any chords and (D) =0 if otherwise. We
also need an extension of the mapping id®Y ™) @ ¢ ® id®* ) : @ — F®*-1 to
id® D @ e @id®* = g® — 4* =D For a chord diagram D € .4®),id®¢~!
®e®id®* (D)= D if there is no chord of D ending at the /™ string and
id® D gew id®(k_/)(D) = 0 if otherwise. Let id®“ ™" @ ¢ ® id®*~ be a linear
extension of this mapping. This extended mapping and the original counit commute
with the projections #/*) — of®F and H*—D — @k=1)

We have an antipode S : .o/ — /. For a chord diagram D € .#V,S(D) is a
copy of D with opposite orientation for the string. We also need an extension
of the mapping id®“~D @ § @ id®* =) . ® — F®F 10 id®"D @ § @ d®*
ME — 4P, Let D be a chord diagram in .#®. Change the orientation of the /%
string and replace each chord Q with just one end point at the /™ string by —Q, we
get a chord diagram D' € 4%, Let id®“ ™V @ 8§ @ id®*~*) be a linear extension
of this mapping.
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Let ¢ = Yy (Q12,23) € M), where Yr(Q12,Q23) is defined in Sect. 5. Let
id®” ® ¢ ®id®? be an element of .#(P*9+3) obtained by adding p+ ¢ strings,
numbered from 1 to p and from p+4 to p+q+ 3. The /™ string of ¥ is num-
bered by £ + p. By the construction of ¢, we have the following relations.

(id® 4) (4(a)) = (4 ®id) (4(a)) = ¢ (A®id) (4(a))p~', aec .4
([d®id® 4) ¢ (40ideid)¢ = ([d® ¢) ([d® 4®id) ¢ (¢ ®id) ,
(e®id)d=id=(id®e) 4,

(idee®id) ¢ = 1. (6.1)

These correspond to relations for a quasi-bialgebra, and so the sequence M©®, M),
..., M®), . is a generalization of a quasi-Hopf algebra in some sense.

Let yy =Zg(U). Let 1:C — MYV be a linear extension of the unit 1 and
id® D @1 @id®* ) M® - g*+D be the linear mapping defined by the fol-
lowing. Let D be a chord diagram in M*). Adding a string to D, we get a chord
diagram D’. We put a number p (resp. p+ 1) to the strings of D’ correspond-
ing to the p™ string of D if p < # (resp. p = /) and put / to the newly added
string. Then id®“ V@1 ® id®(k“f)(D) = D’. From the definition of m, 4,¢ and S,
we have

(id®({’—1) Qm® id@(k—t’)) (id®(f—l) RS ® id®(k—/+1)) (id®(/—l) ® Aid@(k—t’)) -a
= ((d®¢ D 1 ®id®* ) (i[d®’V g e @ id®* ) . q |
(id®(/—1) QMR id@(k—(’)) (id®(f) QRS ® id@(k—/)) (id®(t’—1) ® Aid@(k—/)) ca
= (id®“ V@ ®id®* ) (d®Y DV geid®* D). q, (6.2)
for a € M™® and
m(m®id) (ideS®id) ¢ =7y, ,
mmid) (SRideS) ¢~ =y, . (6.3)

These correspond to relations for a quasi-Hopf algebra, and so the sequence
MO, MDD M®,_ . is a generalization of a quasi-Hopf algebra in some sense.
Let R = e?12/2 ¢ #/®. Then we have

Aa)=RA@R™", ae.u
(4®id)R = ¢312 Rispyzy Rz

(id ® 4)R = ¢33y Rizpa1z Rz (6.4)

where R,; = e9f1/2,¢,-jk = Y(Qy;, Q). These are relations for quasitriangularity, and
so the sequence M©, MM . M® . is a generalization of a quasitriangular
quasi-Hopf algebra in some sense.

As the above argument shows, the sequence M@, MM, . M%) possess all
properties needed for a quasitriangular quasi-Hopf algebra. This sequence plays the
role of a quasi-triangular quasi-Hopf algebra in the construction of link invariants
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as in [2]. The 4-term relation corresponds to the classical Yang-Baxter equation. So,
once we are given a solution of the classical Yang-Baxter equation, we can construct
a “state model” of the sequence M@, MM, ... M® . as in [5,18], from which
we get a C-valued invariant of links. The sequence M, M, . M®) . does
not include the quantum groups, but is a universal object for the algebras generated
by classical r-matrices.
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