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Abstract: We study representations of the mapping class group of the punctured
torus on the double of a finite dimensional possibly non-semisimple Hopf algebra
that arise in the construction of universal, extended topological field theories. We
discuss how for doubles the degeneracy problem of TQFT's is circumvented. We
find compact formulae for the S ± ^matrices using the canonical, non-degenerate
forms of Hopf algebras and the bicrossed structure of doubles rather than mono-
dromy matrices. A rigorous proof of the modular relations and the computation of
the projective phases is supplied using Radford's relations between the canonical
forms and the moduli of integrals. We analyze the projective SL(2, Z)-action on the
center of Uq(sl2) for q an / = 2m + 1st root of unity. It appears that the 3m + 1-
dimensional representation decomposes into an m + 1-dimensional finite repres-
entation and a 2m-dimensional, irreducible representation. The latter is the tensor
product of the two dimensional, standard representation of SL(2, Z) and the finite,
m-dimensional representation, obtained from the truncated TQFT of the semisim-
plified representation category of Uq(sl2).

1. Introduction

Since the seminal paper of Atiyah [A] on the abstract definition of a topological
quantum field theory (TQFT) much progress has been made in finding non-trivial
examples and extended structures. The most interesting developments took place
in three dimensions where actual models of quantum field theory, like rational
conformal field theories and Chern-Simons theory led to the discovery of new
invariants. See [Cr] and [Wi].

In an attempt to counterpart these heuristic theories by mathematically rigor-
ous constructions the field theoretical machinery had been replaced by quasitrian-
gular Hopf algebras, or quantum groups. The resulting invariants are described in
[TV] and [RT]. From here it is not hard to understand how to associate a TQFT
to a rigid, abelian, monoidal category and an extended TQFT to a braided tensor
category (BTC). In order for these theories to be well defined one has to make a few
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more assumptions. One is that the category shall obtain only a finite number of
inequivalent, simple objects, i.e., it is rational. The other is a technical non-
degeneracy condition, called "modularity" in [T], which is to assure that
elementary cobordisms are associated to identifications rather than projections.
Alternatively, if the modularity condition fails to hold, it is standard in the Atiyah
[A] description to define a truncated TQFT by reducing the vectorspaces to the
images of the projections.

All of the mentioned TQFT's are semisimple, i.e., they rely on the decomposi-
tions into simple objects. Clearly, semisimplicity cannot be an assumption of
a fundamental but only of a technical nature. In seeking universal constructions of
TQFT's, which do not refer to decompositions, one should thus not only generalize
the existing ones to non-semisimple theories but also gain a deeper understanding
of the structure underlying them.

A partial answer for the genus one case of how a universal TQFT should look
like had been given by Lyubashenko in [Ly]. These representations of the mapping
class group Q) of the punctured torus are constructed as a subgroup of the End set
of a coend in a BTC with certain finiteness conditions. For the representation
category of a finite dimensional Hopf algebra the coend turns out to be the algebra
acting on itself by the adjoint action. A number of explicit formulae for the action of
genus one mapping class groups on Hopf algebras had been derived from this by
Lyubashenko and Majid [LyM].

One of the objectives of this paper is to give natural definitions of the modular
operators and independent, rigorous proofs of the relations that rely mainly on the
theory of integrals on Hopf algebras as developed by Larson, Sweedler and
Radford. In doing so we will be able to give the precise relation of the projective
phases of the representation to the basic invariant of a Hopf algebra obtained from
the moduli.

Starting with nonsemisimple Hopf algebras it is a natural question to ask how
the universal TQFT relates to the reduced TQFT defined by the semisimplified
representation category of the same algebra. In the second part we give the precise
connection for the mapping class group SL(2, Έ) of the closed torus and the
quantum group Uq(sl2). In the universal picture the representation of SL(2, Έ) is
found as the restriction of the action of Q) to the center. The usual modular
representation will appear in a tensorproduct with the fundamental, algebraic
representation besides an additional, inequivalent finite representation.

In order to give an idea where these results fit into the general framework of
a TQFT we give here an outline of the construction of an extended three
dimensional TQFT with BTC's. The axioms are essentially due to Kazhdan and
Reshetikhin, [KR], and differ from other definitions in that they make no use of
higher algebraic structures like 2-categories. We shall give the objects assigned to
compact, oriented surfaces with boundaries both in the case of the TQFT construc-
ted in [RT] for semisimple categories and for the universal TQFT associated to
a Hopf algebra s&.

Extended Three Dimensional Topological Quantum Field Theories. As in [A] an
extended TQFT is defined as a functor or, more precisely, a collection of functors
from cobordism categories to abelian categories over an algebraically closed field k.

To a given one dimensional manifold S we can associate a cobordism category
Cobs as follows: The objects of the category are compact, oriented two-folds Σ with
coordinate maps S ^ dΣ. A morphism between Σ1 and Σ2 is a 3-fold M whose
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boundary is parametrized by — Σ1USΣ2 ^ dM. The composition of two mor-
phisms is given by an identification along a common surface. An extended TQFT
assigns to every surface S a category ^s and a functor

Φs:Cobs -> <€s.

Assuming that Ήφ = Vect(k) this implies the original definition of [A]. We have
a natural inclusion of categories CobsxCobS' c; Cobsus For the respective
abelian categories we also assume a functor

Q:VsxVs' -+VSUS> (1.1)

compatible with Φ. We require this to be a tensorproduct of abelian categories in
the sense of [D]. Note that this is consistent with ^ 0 Θ ^ = Vect(k)Q^ ^ #.

A standard consequence of this are representations of mapping class groups. To
see this we consider M = Σ x III _ dΣ, where the relation ~ is (5, t) ~ s\/se dΣ,
t el and I is the unit interval. For the boundary dM = Σllδχ Σ we choose different
coordinate maps for the two boundary pieces coinciding on dΣ. If we denote by
Q)iff(Σ, dΣ) the group of homeomorphisms of Σ to itself which are identity on the
boundary we obtain from these cobordisms a representation:

πo{βiff{Σ9 dΣ)) - EruhdΣ(XΣ) (1.2)

Here we denoted by XΣ = ΦdΣ((Σ, dΣ)).
Next we formulate the axiom that leads to lower dimensional cobordism

functors. To this end suppose that S = ΛUB and S' = BJ1C, then for tensor
categories the contraction functor Hom(l, _ ® _): C€B x ̂ B -> Vect(k) induces a bi-
linear, covariant functor

VAUBXVBUC-+VAUC (1.3)

On the side of the cobordism categories we consider two three manifolds M and
M'that belong to CobAUB a n d CobBuc respectively. We can consider half tubular
neighborhoods of the 1-folds B in the boundaries of M and M'. These define
oriented ribbon graphs in the boundaries along which we can glue the two
manifolods M and M'. The result is again a three manifold MUBM'. The boundary
pieces are the boundary pieces of the individual 3-folds glued along B. This way we
obtain a cobordism in CobAuc from Σ\HβZ"2. The assignment

CobAUB x CobBUC -> CobAUC (1.4)

is easily seen to be a functor. The next axiom of an extended TQFT asserts that the
functors Φ intertwines the two functors in (1.3) and (1.4).

This axiom allows us to define a functor from the category of 2-cobordisms
between 1-folds and the category of abelian, tensor categories. The assignment of
morphisms is given by the composition:

Hom(l, _(g)_)Θύf

> VB . (1.5)

Here Σ denotes a 2-manifold cobording the pieces A and B by some coordinate
maps — A -• dΣ <- B.

In order to check functoriality of A —• <€A and Σ -» # £ we consider again the
manifold M = Σ x ILL ̂  dΣ as in (1.2) now with the same coordinate maps for the
boundary pieces but two components for dΣ. Specializing to surfaces of the form
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Σ = S x I, we get as in (1.2) a homomorphism

(1.6)

For compact S and by (1.1) we easily identify (1.6) as the homomorphism from the
permutation group of circles to the permutations of tensor factors.

The functors associated to the elementary cobordisms, given by spheres with
one, two, and three punctures (denoted Pu P2 and P3 respectively) have a specific
meaning for the circle category. Since P2, seen as a cobordism from S1 to S1 with
the same coordinate maps is a unit in the cobordism category we want the
associated 3FFl to be the identity functor in the basic category (€1 of the circle.
Regarding P3 as a cobordism from S^IIS1 to S1 the associated functor defines
a tensor product J*>3 = 0 : ^ 0 ^ ^ ^ , which we assume to be the same as the
one used in (1.5). Finally, the functor of P i : 0 -> S1 clearly gives the injection of an
identity object with respect to (x) and Px'.S1 - • 0 is assigned to the invariance
functor Hom(l, _).

In an extended TQFT we can also consider 3-cobordisms of 2-cobordisms,
which yield natural transformations. More precisely, let M have boundary pieces
Σh ί = 1, 2 and dΣt = AUB. The functor ΦdΣ associates to the surfaces Σt objects
Xie^AO^B and a morphism/M e Hom(X 1 ?X 2). For an object 7 e ^ w e apply
to the morphism id Θ/ M : Y Θ Xx -• Y Θ X2 the functor Hom(l, _ ® -) Q id as in
(1.5) to give us a morphism JM'-^ISJ) -* ^ r 2 ( ^ ) It is easy to see that this
defines a natural transformation fM'^rΣι -+ ̂ Σ2 and thereby a functor
CobAUB -> Funct(^A, <#B).

A special type of natural transformations are generated by cobordisms of the
form M = Sll^SxlxΐjUβS with relations <x:s~(s, 0, ί) and β:(s, 1, t) ~

F(s, t)\/seStel. Here F is a homotopy in the set of homeomorphisms @iff{S) of
S to itself. Confining ourselves to loops, i.e., F(s, 1) = F (s, 0) = s, we obtain
a homomorphism

> Nat{ίd, id) . (1.7)

Reconsidering the elementary cobordisms Ph we can discuss some elementary
natural transformations that identify the circle category ^ Ί as a BTC. The 2π
rotation of S1 generating π^iffiβ1)) gives us by (1.7) a natural transformation,
denoted θ e Nat(id). We can also cobord the surface P3 to P 3 with exchanged
coordinate maps for the S1US1 piece of the boundary by moving the circles
around each other in one of two directions. The TQFT assigns a transformation
ε± eJVflί(®,P®). The square of this cobordism is homeomorphic to the one
where annuli around the punctures are twisted by 2π so we obtain the identity of
natural transformations:

ε(Y,X)ε(X,Y) = θ(X®Y)θ(Xy1®θ(YΓ1 . (1.8)

This means θ is a balancing of ζβ^. The associativity constraint is obtained in
a similar way.

Let us discuss for a surface Σ' whose boundary is the union on n circles and the
corresponding closed surface Σ a connection between (1.2) and (1.6). We have
fibrations

\ dΣf)

and @iff{Σ')<ϊ@iff{Σ)-»Kn
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where Kn is the symmetrized configuration space of n points in Σ. From the long
exact sequence for the first fibration and the injection of the second we obtain the
top row of the following commutative diagram:

πo(mff(Σ'9dΣ')) > πo(@iff(Σ))

(1.9)

NatdΓ(idJd) > End«er(XΓ) > Endk(V(Σ))

In the bottom row the left map is simply the evaluation of a natural transformation
on an object. The second homomorphism is given by the invariance functor
Hom(l, _ ) Θ " acting on <gdΣ. ^ %¥" and V{Σ) = Hom(l, -)Θn(XΣ>) is the vector-
space associated to the closed surface.

Examples and the Degeneracy Problem. The objects associated to punctured surfa-
ces can be identified up to isomorphie for two types of categories. One is
a semisimple, rational BTC Ήo with simple objects </, the other is the representa-
tion category R(si) of a finite dimensional Hopf algebra si. Quite generally it is
possible to produce a semisimple, rational category from R(si) by a generalized
GNS construction with respect to a canonical categorial trace tr, see for example
[K]. Thus in principle there are two ways of constructing TQFT's from a given
Hopf algebra si which will lead to a different representations, e.g., of mapping class
groups. The precise connection in one example will be discussed in an example in
the last chapter.

The assignment of objects for the two punctured sphere is easily inferred from
J^P 2 = id and formula (1.5). In ̂ 0 the answer is XPl = ΣjεJJ ® 7 v a n d i n R(<si) the
module XPl is given by si with j/ O 2 -action given by aΘb (x) = axS(b). More-
over, # p 3 = (x) implies that XP3 ^ ΣijesiG>jO{i®jV or XP3 = si ® si with
^ Θ 3 - a c t i o n (a Θ b Θ c) (x ® y) = (ax <g) by) A(S(c)). This allows us to identify the
object associated to the punctured torus T" with dTr = S1 by contracting the
objects Xp3 and XPl along the category of the S1IIS1 -boundary pieces. In ̂ 0 the
resulting object is Xτ> = Σjejj ® J v a n d i n R(<si) by the module si with adjoint
action. The objects of all other surfaces are now found easily by sewing along
circles. For example the surface Σg, 1 of genus g with one puncture is assigned
to X®?. The object of the (n + l)-punctured sphere Pn + 1 has object
XPn+ι = Σik h O . . . ΘinQ(h ® . . . ® in)

v in %0 and in R{si) the module
XPn+ί = si®n, where the j / Θ ( " + 1)-action is given by the obvious generalization of
the cases n = 2, 3. The object for a general compact, orientable surface is found
by sewing XPn+ι and XΣ r For R(si) this gives for example the module
Hom^(s/®9, si®n) of interfwiners for one of the ^/-actions.

Let us discuss the case g = 1, n = 1 in some more detail. The mapping class
group 0 = πo{@iff{T', dT')) maps by (1.2) into End(T'), so that we obtain in
R(si) an action of Qι on si intertwining the adjoint action. Following (1.9) we
obtain a representation of the modular group πo(Q)iff(T)) on V(T) = Hom(l, T),
which for R(si) is just the restriction of the <3 action to the center
Z(si) = Hom(l, si). In order to interpret the rest of (1.9) recall that for R(si) the
natural transformations of the identity functor are given by the action of central
elements of si. In particular the generator θ of π^ΦiffiS)) acts on si as ad(v),
where υ = θ(si) is the central "ribbon element," see [RT]. The Dehn twist along the
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boundary can also be given by y74, where £f is the standard generator of S. The
restriction of Sf4 = ad(v) to the center is clearly trivial. The second generator of S,
the Dehn twist at a handle, 2Γ is given by the action of θ on the constituent XPl9 i.e.,
by multiplication of v on si.

The definition of a TQFT we presented so far is not quite complete. Clearly,
there are many ways of sewing up a surface Σ so we have many ways to construct
the object XΣ. For example instead of using the center of si as the vectorspace for
the closed torus V(T), we can also choose the space Hom(j^, 1) - which is
isomorphic to the space of characters on si - or we could have chosen the
endomorphism set End(Xp2) = End^®2(szf). These spaces are isomorphic to each
other but there is no one canonical isomorphism identifying two of them. Instead
the sewing procedure used to find the object defines a surface with a cut diagram of
decoration. Thus we should take as objects of the cobordism categories surfaces
Σ together with a Lagrangian subspace of Hx (Σ, 1R) which must be compatible with
the cobording 3-manifolds. The functor of the TQFT is now allowed to have
projective phases. This means for two cobordisms M1 and M2 with a common,
decorated boundary component that

Φ(MιM2) = c^[M^{M2) , (1.10)

where μ is the Maslov index of a triple of Lagrangian subspace defined by the
cobordisms. It also measures the non-additivity of the signature of the 4-manifolds
cobording the Mf to the corresponding union of handlebodies. If the Mt are
invertible morphisms in the cobordism category we obtain projective representa-
tions of the modular groups. For details see [T]. The main result of the first
chapter is the relation of the phase c to intrinsic invariants of the Hopf algebra si.

In order to discuss the modularity condition we recall how the y matrix can be
obtained from the [RT]-construction for standard TQFT's with S = 0. The
cobordism describing the action of £f on T' is a 3-manifold whose boundary is
dM = T'JlsiT\ the closed surface of genus two, and can thus be considered
a cobordism Σ2 -+ 0. In [RT] the vectorspace associated to Σ2 is
φ ί < 7 Hom(i(g)iv ®j®jv, 1). The linear form assigned to Σ2 -> 0 is found by
computing the invariant in S3 of the ribbon graph embedded in the outside of Σ2.
On a vector/its value is

coev (g) coev

> i <

In the description of an extended TQFT we have to consider this as the matrix
element o f ^ e End(T') ^ φ ί 7 Hom(7 ®7 V , i ® i v ). Thus on a summand we have

where c, is proportional to j®jv ——> j v ®j——* 1. The generalization of this
formula to non-semisimple categories is described by [Ly] and will be reviewed in
the next chapter.

The matrix elements of the restriction of y to V(T) = Hom(l, Xτ,) =
φ 7 - Hom(lj ' ®jv) ^ kJ are given by y f j = tri®j(ε(ij)ε(j, OX where tr is the usual
trace of a balanced category.

A priori the operations Sf and ZΓ defined for a general semisimple ^0 do not
yield a projective representation of SL(2, Z) unless we impose one further condition.
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This is the rather specialized "modularity condition" introduced in [T] asserting
that the ^-matrix is invertible. In case this condition is violated we may still apply
Atiyah's prescription and reduce the space kf by the projection P = 9~, where the
matrix y ^ = 9^ is assigned by the [RT]-prescription to the inverse cobordism.

For example if ^0 is a symmetric category, the £f matrix is of rank one so the
SL(2, Έ) representation is one dimensional. A degeneracy problem occurs quite
generally if*/ contains a subset J?o, of irreducible objects, which braid trivially, i.e.,
ε(kj)ε(j, k) = 1 for all ke J*0,j e J*. In case J>0 is a subgroup of invertibles {σ} we
have for the natural action of its elements on fcy that 9σ = 9*. Hence £f and 2Γ can
be defined on the orbit space im(Σσejo<τ), where we can hope for the modularity
condition to hold.

This situation occurs for the semisimplified representation categories of quan-
tum groups at certain roots of unity. The example we will come back to in the last
chapter is Uq(sl2), where q1/2 is an / = 2m + 1th root of unity. We have \βΓ\ — 2m
and the 2mth representation braids trivially and is invertible of order two. The
truncated theory yields an m-dimensional representation of SL(2, Έ).

The problem of degeneracy is resolved in a very natural way in the universal
picture for R(si) by choosing si to be a double constructed algebra. In this
situation we find very simple formulae for £f and its inverse.

Survey of Contents and Summary of Results

In Chapter 2 we define and study the action of operators generating the mapping
class group Q) := πo(@iff(T, D)) on the double D(s/) of a finite dimensional Hopf
algebra. We start in Sect. 1 with a review of the bicrossed structure of a double and
properties of an isomorphism D(si)* ^ D(si). These are in particular the relations
between traces and characters on D(si) and central and group like elements in
D(st). We also recall the definitions of canonical and balancing elements in
quasitriangular Hopf algebras. For later application we derive a relation for the
monodromy matrix of D(stf). The next section is a recollection from [Rd] of
relations between several nondegenerate bilinear forms and moduli defined by the
integrals of a finite dimensional Hopf algebra. This leads for Ό{si) to the
Drinfeld-Radford formula S4 = Ad(g). In Section 3 we determine the integral and
cointegral of a double D(J/). In particular we find that the comodulus is trivial and
that the modulus is the canonical element g. This allows us to show that a pair of
non-degenerate, canonical traces on D{si) can be defined very simply from the
natural contraction on D(s/). The balancing of a double D(si) is related in Section
4 to second order roots of the moduli and a fourth order root v of the ω- invariant
of si. Guided by categorical constructions in [Ly] we define in Section 5 the action
of the generators of the mapping class group 2 on D(si). We obtain an intriguingly
simple expression for the actions of 9 and 9~ι involving only non degenerate
forms on si and si* and the bicrossed isomorphism of D(si). Similarly we have
a formula for the braided antipode. The results from all previous sections are used
in Section 6 to give a rigorous proof of the modular relations and determine the
protective phase of the universal TQFT as v~3.

In Chapter 3 we find the structure of the representation of SL(2, Έ) on the
center of Uq(sl2) by restricting the action of <3). The non-degenerate forms and
moduli of the double of Bq, the Borel algebra of Uq(sl2), are given in Section 1. In
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Section 2 we determine the center of D(Bq\ which for the TQFT is the vectorspace
of the torus. If q is an / = 2m + 1-st primitive root of unity it is given by
C[Z//] ® i^. Here Ψ" is a 3m + 1-dimensional algebra with a basis of m + 1 idem-
potents and 2m nilpotents. The balancing element of D(Bq) is expressed in terms of
this basis, see Section 3. In doing so we propose a method to generate new partition
identities. In Section 4 we compute the matrix elements of the SL(2, Z)-action on
the center of D(Bq). This requires us to find transformations from the PBW basis of
Uq(sl2) to the algebra *V ® C[K], where K is a Cartan element. We analyze this
representation in Section 6. We find evidence for the decomposition of the repres-
entation into two irreducibles. One of which is a finite, m + 1-dimensional re-
presentation, the other is the tensor product of the two dimensional standard
representation of SL(2, Z) and the finite, m-dimensional representation obtained
from the semisimplified representation category of Uq(sl2). The conjecture is
verified in the last section. Here we find the decomposition and the explicit finite
representation for two non trivial roots of unity.

2. Mapping Class Group Action on Doubles

1. Double Algebras and Balancing. In this section we recall some basic facts and
notions on Hopf algebras that we will use later. For a finite dimensional Hopf
algebra si over a field k we denote by si0 the dual Hopf algebra with opposite
comultiplication. We shall always assume that si has a counit ε and an invertible
antipode S. The antipode of s/° is thus given by S"1*.

For λ, μe si0 and a,b e si we have the following relations:

<λμ, a} = (λ<g)μ9A(a)y (A(λ), a ® b) = (λ, ba) , (2.11)

A ® id(R) = R13R2\ id ® A(R) = R13R12 , (2.12)

<ST1(/), a} = </, S τ » > , S ® id{R) = id ® S'^R) = R'1 . (2.13)

Here <, >: st° ® stf -• k is the usual contraction and R is the canonical element
RES/® si0. Thus, if {ej is a basis of si and {/•} the respective dual basis si0 we
can write R = £ f ef <g)/f. A bicrossed product of the two algebra is a Hopf algebra
D which contains si and si0 as sub-Hopf algebras such that : si ® si0 ^ D is an
isomorphism, where is the multiplication in D. Clearly, a bicrossed structure is
uniquely determined by an isomorphism x: si (x) si0 z> si0 ® si which by
. x = . defines an associative product, such that the coproduct on D defined by
the coproducts on si and si0 extends to a homomorphism into D® 2. In [DrO] it is
shown that there is precisely one bicrossed product D(si), the double, such that

RA(y) = A'(y)R for all y e D(si) . (2.14)

Here A' = τ ° A is the opposite comultiplication and τ is the flip τ{a®b) = b® a.
The bicrossed structure is given explicitly by

(2.15)
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If we use the usual abbreviation A (a) = ^a (x) a" = a' (x) α", A2(a) = a' (x) a" ® d"
(2.15) can be summarized in the formula

The inverse is given similarly by

x ~1: si0 (S> si —-—• si0 ® si0' (x) si' ® sύ

^ ® ^ . (2.16)

For a Hopf algebra D, with dim(D) < oo we denote by G(D) the finite group of
group like elements g, characterized by A(g) = g (x) g. Also we shall use the notation
Ch(D) ^ G(D*) for the group of one dimensional representations of D. For doubles
we have the following easy fact:

Lemma 1. For a Hopf algebra s$ the multiplication map : si (x) s$° z+ D(si) yields
a group isomorphism:

G(s/) Θ Ch(stf) ^ G(D(s/)) .

Similarly the sum of restrictions yields:

Ch(s/) ® G(s/) .

Proof For b e D(s/) let b be the corresponding element in End(j/). For the
coproduct this means A (b) (x ® y) = zϊ(fe(y:x)), which for fc e G ( J / ) has to equal
fe(x) ®b(y). Inserting y = 1 and applying ε ® 1 we find that b is of rank one and
b = g y, where # = b(\) and 7 = ε°b. Inserting instead x — 1 and y = 1 (applying
ε (x) ε) shows that # e G(j3/) (γ e Ch(jtf)). The adjoint action of Ch(stf) on the double
D(stf) stabilizes si and, there, coincides with the coadjoint action, i.e., we have
7' y 7 ~1 = y ̂  y v— 7 ~ J for all y 6 J / . Since the coadjoint action on group-likes in
si is trivial, the images of G(si) and Ch{si) centralize each other and the inclusion
factors into the direct sum. Injectivity now follows from linear independence of
group-likes, see [Ab], and injectivity of . •

Here we used the notation -^(^-) as in [Ab] for the left (right) action of D* on
a Hopf algebra D. Similarly, we use {a > λ) (y) := λ(ya) for the left action of D on D*
and O for the corresponding right action. We also use the adjoint actions of D on
itself given by ad(a)(y) = a'yS{a") and on D* given by ad*(a) (λ) = a"> λ<\ S(a').
The invariance in D under the adjoint action is precisely the center Z(D) and the
invariance in D* are the q-characters C(D) = {λ eD*:λ(xy) = λ(S2(y)x)}, which
were introduced in [Dr]. In [Drl] it is shown that these two spaces are related to
each other by the map

f:D* -> D:λ -» λ®l(M) . (2. 17)

Here M e D®2 is the element M = τ(R)R = Σijfjβi <g) e/i = Σkmk ® nk. In the case
of a double D — D(si) {mk} and {nk} are a different basis of D ( J / ) so that M is
nondegenerate. The following is a slightly extended version of a lemma in [Drl] .
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Lemma 2. 1. The map f\D(stf)* >̂ D(s/) is an isomorphism of D(stf)-modules with
respect to the adjoint actions.

2. / : C(D(stf)) >̂ Z ( D ( J / ) ) is an isomorphism of algebras.
3. / : Ch(D(stf)) >̂ G(D(stf)) is the group isomorphism (g, y) i—• (γ, g)
4. We havef*°S* = S~1°f.

Proof. The fact that/intertwines the actions of D(srf) follows from basic Hopf
algebra relations, (2.14) and the identity (S(y') ® 1 )M(/ <g) 1) = (S(y') ® l)M(y" ®
(y'"S{y""))) = (S(y') ® \){y" ® yM)M(ί ® S(y"")) = (1 ® / )M(1 ® S(y")).

It is clear that / is an isomorphism. In particular we can write it as the
composition:

Clearly, the invariances are mapped isomorphically to each other and a computa-
tion in [Dr] shows that this is a homomorphism. In fact we have/(χA) =f(χ)f(λ)
for χ E C(D(srf)) and any λ e D ( J / ) * . 3) follows from Lemma 1 and the form of M.
Finally, (2.13) implies S ® S(M) = τ(M) and thereby 4). Π

It follows from (2.12) that the R matrices satisfy the Yang Baxter equation
R12R13R23 = R23R13R12. For later computations of the modular relation we
derive here an analogous equation for the M matrices.

Lemma 3. For M and bases {#,•}, {f}, {nk}, {mk} as above we have

kj

or equivalently

1 ® λ® l((τ(M)® 1)(1 ® M)) =
ij

Proof If we multiply R matrices from the left and right to the Yang Baxter
equation and permute the first and third factor we obtain (R " * ) 3 1 (R ~λ)3 2 R 21R31 =
^21^-1^32 Applying 1®1®S~1 to this equation and using (2.13) we find

®eJ= Σ fifjfk®fιej®S-\ek)eιei.
if i,j,k,l

Multiplication with R ® 1 from the left and 1 ® R from the right yields

(τ(M) ® 1) (1 ® M) = £ etfjjfk ®ffe^ ® S~ 1 f e ) ^ ι / s

tsijkl

by (2.i2) = ^ eϊfifj"fk®fιej®S-1(ek)e'{eifj
ijkl

by (2.14) = ^ eίfjfifk®fιeJ®S-1(ek)e'{fj'.
ijkl

The formulas follow now from Λ(n{lj)) = e'J ® e'ίf and again (2.12). •

Let us also record here the canonical elements from [Drl] and [Lyl] imple-
menting the square of the antipode. They are defined by
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and satisfy the relations

S2(y) = uyu~1 =ύyύ~\ ύ = S{uy1

and M = u®uA(u~1) = ύ~1 ®ύ~1A(ύ) . (2.19)

From u and ύ one has two further elements of a quasitriangular Hopf algebra
D with special properties:

g ; = uu. with g e G(D) and S*(y) = gyg~1 , (2.20)

z:=uύ-\ with zeZ(D) and M2 = z® zA{z~ι) . (2.21)

2. Integrals, Moduli and Radford's Relations. We start this section with a review of
basic facts from Hopf algebra theory and a summary of the formulae in [Rd] which
we will use in this paper. The analysis of integrals of Hopf algebras in [LSw] is
based on the fundamental theorem of Hopf modules. It asserts that a Hopf module
M of a Hopf algebra D is free in the sense that Mcov ® D o$ M is an isomorphism of
Hopf modules. Here D acts on itself by multiplication and comultiplication, Mcov is
the coinvariance of the coaction and ^ is given by the left action on M. It is
instructive to apply this to the situation where M = D* with actions h λ := λ <3 S(h)
and coaction δ{λ) = λ ® 1A e End(D) = D ® D*. The isomorphism J ®D ^>D*
then implies that J = {λ: λ ® \Δ (y) — \λ(y)} - the space of right integrals - is one
dimensional and every nonzero element induces a nondegenerate bilinear form.
Analogous statements are found if we use left actions or consider Hopf bilinear
form. Let us fix once and for all a left integral μ and a left cointegral x with the
properties.

1 ® μA (h) = lμ(h), hx = ε(h)x, and μ(x) = 1 . (2.22)

As in [Rd] we use notations for the following isomorphisms:

βhβr:D^D* with βι(h) = μ<h and βr(h) = h\>μ, (2.23)

βh βr:D*^D with βι(λ) = x^λ and βr(λ) = λ-^x . (2.24)

They intertwine the right and left actions as in

= βι(k)<h and βr(kh) = k>βr(h) . (2.25)

It is obvious that xh is again a left cointegral for any he D. Hence by uniqueness of
x? we find α e Ch(D) and for the dual situation a e G(D) such that

φ)x = xh and μ®lA(h) = aμ(h) . (2.26)

Since D is finite dimensional, both the modulus α and the comodulus a are of finite
order and

ω:=φ) (2.27)

is a root of unity. Note, that in the following we use the opposite comultiplication
for D* so that, e.g., S" 1 = S*( = y in [Rd]). The antipode acts on the integrals as
follows:

S~1(μ) = a> μ = ωS(μ) = ωμ < a , (2.28)

S(χ) = oc-^x = ωS'Hx) = ωx^-oc . (2.29)
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The compositions of isomorphisms in (2.23) and (2.24) are given by the following
formulae. Each one can be given on D* or the adjoint one on D using βf = βr\

βrβr{λ) = S(a(λ) ,

βιβι(λ) = S(ot~1),

βιUλ) = ̂  S-ι(λ<a),

βrβι(h) = S(h),

βιβ,(h) = S-1(h) a,

M(/J) = 5-I(oc-/J)

β,βr(h) = a S(h^-u)

(2.30)

(2.31)

(2.32)

(2.33)

From (2.28)-(2.30) we can derive further useful relations between adjoints:

βι(S(h)) = ωa-ί>S(βr(h)) and βι(S~1(h)) = a'^S'^βrih)) 9 (2.34)

βι{a-^h) = βr(S2(h)) resp. μ((aι-±k)h) = μ(hS2(k)) , (2.35)

I)) and βι(S~1(λ)) = ωoc-1-^S'1(λ), (2.36)

resp. S2 ® lzΓ(x) = Δ(x)(a ® 1) . (2.37)

Combining these identities we find Radfords formula for S4:

S4 = ad*(oc)° ad(a~1) . (2.38)

Since in a double D(<$/) the adjoint action of G(s/°) coincides with the coadjoint
action of Ch(srf) on stf we find from that (2.38) and the corresponding equation on
#0° that the group-like element α ® a~γ implements S4 on D(<szf). The same is true
for the element defined in (2.17). In fact we have the following result of Drinfeld for
doubles:

Proposition 4 [Dr l ] .
g = (χ.a~l .

3. Integrals and Canonical Traces of Doubles. In the construction of representa-
tions of the modular group the integrals of the defining algebra play an important
role. The integral μD and the cointegral xD of a double D(stf) clearly have to be
related to the integrals and cointegrals of stf. In this section we are also interested in
finding the moduli ocD and aD. Comparing Proposition 4 to (2.38) we are led to
expect that aD = 1 and aD is the same as g. We shall prove triviality of the
comodulus first:

Proposition 5. For left integrals μ and x as in (2.22) define the canonical element in
:). Then

1. S(p) = p.
2. p is both a right and left cointegral in D(jtf) and ocD = 1.
3. Let P 6 End(stf) be the image of p under the map "~1: D(sί) ^ stf ® J / * =

^). It is the projector onto the space of left cointegrals and is given by:

^

Proof Since S(p) = x S(/i) and 5~ ι (x) and S(/i) are right integrals it is clear that 1)
implies that p is an invariant with respect to right and left multiplication of s/ and
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srf°. This shows 2). Assuming that 1) is true we show 3):

HS-1(x)) = (S(μ'),S-1(xY><μ",S-1(xy")S-ι(x)"®μ" (2.39)

0,(2.28, = ω-\S(μ') S(x'"))(μ'", S(x'))S(x") ® μ"

' 1

= ω-ιΣ(μ",e';ei)(J
ij

= oΓiΣ(fj,Sβιβr(e';ei))e'j®fi
ij

by(2.30) = ω - i £ </ j? S
2{e'jei)ye'j®ft

 by{U)) = x® S(m) . (2.40)

If we apply 1 (x) 5 2 to both sides of the last equation and use (2.28) we find

P - Σ </;> S2{e])e^efj ®ft = X <//, S2(e]))e'j ®f\

which is precisely the equation given in 3). The same formula has been proven in
[Drl] using the theory of Hopf modules directly. From (2.28) we find
S(μ)(x) = μ(ax) = 1 so that P as in (2.40) is a rank one projection. It remains to
show the first part of the proposition. For this purpose we need two identities for
the integrals, namely

S2((S(μY<a-1)a)(g)S(μY ^

M2.28) = 5 2 ( μ " α ) ( g ) / /

hyv ss) = μ'® μ» =A(μ), (2.41)

and

1) . (2.42)

Inserting (2.41) and (2.42) into the expression for the bicrossed product of p in (2.29)
we find:

'), S2((x"a-ι)^α)><S(μ)", x"}x' ® S(μ)'

")),(x'"a-1)^a) <S(/ί)", x"> x' (x>S(μ)'

)'"), x'"} <S(μ)", x"}x' ® S(μ)'

= (S(μ)"S(S(μy"), x">x' ® S(μ)' = x ® S(μ) . (2.43)

Hence μ S~1(x) = S(μ S~1(x)) = x S(μ) and we have shown 1) of the
proposition. •
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Thanks to the simple comultiplicative structure of D [si) it is much easier to
find the integral. Since S^1(μ) is a right integral of si and since we have opposite
comultiplication on si0 a right integral of D(si) is given by

μD(λ y) := λ(x)μ(S(y)) for all λ e s/°, and ye si. (2.44)

Its properties are described next:

Proposition 6. Let x and μ be the left integrals of si as in (2.22). Then

1. μD is a right integral of D(si) with μD(p) = 1.
2. The modulus (as defined in 2.26) of D(si) is aD = g"1.
3. μ^ eC(D(s/)), in particular μD(λ j;) = ωμD(y λ)\/yesi, λesi0.

Proof Part 1) is clear. Also, it follows directly from the definitions of the moduli of
si that 1 <g) μD A (h) = α α " VDCO 2) follows if we apply the antipode and use that
S(μD) is a left integral of D(si). In order to show 3) we observe that the equation
for right integrals analogous to (2.35) is μD(S2(k)h) = μD(h(k^otD *)). Together
with Proposition 5.2 this shows μD e C(D(si)). In the case where k and h are in the
special subalgebras we use (2.28) to show μD(S2(λ)y) = ω~1μD(λy) which yields the
last equation in part 3. •

The fact that the right integral of a double algebra is invariant under the
coadjoint action allows us to identify as an object in the representation category of
D(si\ namely with the integral of the "braided algebra" [Ly] of the category.
Before we explain this aspect in more detail in the next section let us discuss a few
more consequences of Proposition 6 for doubles.

It is easy to see that an element of a Hopf algebra w eD with S2(y) = wyw~ί

provides us with an isomorphism C(D) -% C0(D):λ \-^λ<w. Here C0(D) denotes as
in [Drl] the space of traces on D. Given the two canonical elements in (2.19) we
wish to compute the respective traces for μD. To this end define the following linear
forms on D(si):

k . (2.45)

The forms on D(si) and the canonical elements are now related as follows.

Proposition 7.
1χ = μD<iu, χ = ω~1μD<u, (2.46)

and both χ and χ are nondegenerate traces on D(si).

Proof From previous considerations it is clear that μD<u and μD<ύ are traces. The
rest of the proof are straightforward computations:

(μD<u)(λ - y) = (μD<u)(y λ) = £ μD(S(f) -ery-λ)
i

= ΣμD(S2(λ).S(fi)-ery) = Σ(S2(λ)S(fi))(x)μ(S(y)S(eί))
i i

= Σfi(x^-S2(λ))μ(S(y)ei) =
ί

= μ(S(y)β,(S2(λ))) = jSr
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Similarly,

M2.3D = ωs(μ>λ)(ay) = ωS(λ)(y) = ωχ(λ-y) .

Nondegeneracy of χ and χ follow directly from nondegeneracy of μD. Π

4. Balancing in Doubles. In a rigid BTC any object X is isomorphic to its double
conjugate X v v . Yet the only isomorphism that is a priori canonical is between
X and χ v v v v . Thus in addition to the usual axioms defining a BTC one often
requires the existence of a ® - natural isomorphism of the functor X -> Xv v to the
identity, which squares to the canonical one from X -+ Xv v v v to the identity. For
the representation category of a quasitriangular Hopf algebra D this is equivalent
to the existence of a group like element k with:

k e G(D\ Q = k\ and S2{y) = kyk~ι . (2.47)

It is clear that a balancing does not exist since often g is not a square in G(D). If it
does it is unique up to multiplication with central, group-like elements of order
two, i.e., elements in Σ(D):= 2G(D)nZ(D).

Equivalently, we can consider the corresponding element v:= u k~ι =ύ~x k.
Inspecting (2.21) it is easily verified that v defines a balancing of elements iff

veZ{D\ S(υ) = v, and M = v®vA{v~1) . (2.48)

From these conditions ε(v) = 1 and v2 = z follow. This point of view has been
introduced in [RTO] where v is called a ribbon element. In their context the
eigenvalue of v in an irreducible representation yields the framing anomalies of
colored link.

For a double D(s$) the existence of a balancing can be phrased as a property of
the moduli of j / .

Proposition 8.

1. k is a balancing of D(srf) if and only if

k = yfi φy1, (2.49)
where ^/α e G(<stf°\ J~a e G(sd) square to α and a respectively, and

S2 = ad*(v/oc)oad(v/
ra~-1) on s/ . (2.50)

2. To a given balancing we associate the number v defined by

(2.51)

admits a balancing v is a root of unity, v4 = ω and v2 does not depend on
the choice of balancing.

Proof. From Lemma 1 and (2.47) we infer that k has to be a product of group-likes
of the special subalgebras. By definition of doubles (2.50) is the same as
S2(y) = kyk~γ\/y e si. The inverse adjoint of (2.50) yields the same equation on J / °
and thereby (2.47). For part 2 we remark that two balancings k and k' are related by
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k' = k-R, where R = p r eΣ(D(s/)) ^ Σ(sί°)@ Σ(s/). Then χ(kf)-χ(k)~1 =

•s/a{r) p(-s/a)p(r) which is of order two since p and r are. •

In particular, the last statement implies that once a balancing exists the intrinsic
quantity ω has a canonical square root.

5. Representation of Mapping Class Groups on Doubles. In several papers [Ly]
Lyubashenko has developed the notion of a Hopf algebra F in a braided tensor
category (6. It is an analogue to the notion of a braided group, as defined by Majid
[M2]. As an object F in a category with all limits the algebra is the constant
functor of the coend (Horn; fr:Hom-ll>F) of the functor Horn:% o p p x ff ->
^:(X, 7) h->XV ® 7. For definitions see [Me]. The multiplication and comultipli-
cation of F are induced by certain compositions of dinatural transformations using
universality of the coend. As opposed to symmetric categories the definition of the
multiplication of F depends on the choice of a commutativity isomorphism. The
same is true for the axiom replacing cohomomorphie of the multiplication. An
analogous statement of the fundamental theorem of Hopf modules holds for the
braided algebras so that under certain finiteness conditions the algebra has an
integral μ eHom(l,F). The algebra also possesses a braided antipode Γ eEnd(F).
Lyubashenko constructs, in analogy to the definitions for semisimple categories,
modular operators 2f \£f e End(F). They are determined by the coend properties of
F and the following commutative diagrams:

XV®X

hx \hχ \hχ

(2.52)

Here v- e Nat (id) is the balancing and yx:= qx® 1 ε(Xv,X), where ε is the

commutativity constraint and qx: X -• Xv ® Xv v <g) X 1 @ β > Xv ® X ®

Xvv -+X. Furthermore,

(
1 . (2.53)

The coend and integral exist if Ή is the representation category of a finite dimen-
sional Hopf algebra D. Specifically, we have that F = D*9 which is a D-module by
ad*-action. The comultiplication is just the multiplication on D. However, the
multiplication in F stems from a distorted coproduct ΔB on D as the usual one is
not ad*-covariant. In one convention we have, e.g., ΔBr(y) = eϊyfS~1(ef

i) ® fay". As
remarked in [LyM] the right integral for the braided multiplication coincides with
the ordinary right integral. This is seen easily, e.g., from the fact that μD for a double
is ad*-invariant. An antipode Γ eEnd(D) of the braided multiplication consistent
with ΔB is

Γ(A):=ΣS(ei)S(A)ufi. (2.54)
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The triple (D, ,ABr) is the prototype of a braided group. For a thorough treatment
of this structure which inspired the algebraic construction in [Ly] we refer to [M2].
However, the construction of the £f and 2Γ given in [Ly] can also be translated
into the context of ordinary Hopf algebras. The action of 2Γ is clearly given by
multiplication of a ribbon element v. The identity of integrals allows us to derive
from (2.53) a formula for Sf acting on a quasitriangular algebra D,

£f(A) = S(f{μD<A)) = Σ μϋiAfjeMej) . (2.55)

This formula (with slightly different conventions) has been given in [LyM]. Using
the form of the right integral given in (6) and applying the bicross formula (2.15) to
order Λfjβi this formula can be worked out further. The formula
Sf(λ ®h) = ΣJi ® (x") </l, eTx'S-l{e'i)y resulting from this has been in [Ml] .

Let us now use the properties of integrals given in the previous section and the
identities for the canonical isomorphisms to derive an intriguingly, compact for-
mula for £f. From this form the invertibility of £f for doubles is obvious and the
inverse readily computed from the identities (2.31) and following.

Proposition 9. For a double D(stf) over a finite dimensional Hopf algebra si let μD be
as in (2.44) and Sf e End(D(si)) be defined as in (2.55). Then the following diagrams of
isomorphisms commute:

(2.56)

Here La denotes left multiplication with a.

Proof. The first diagram is verified by direct computation:

Sf{yλ) = Σ μDiyλfje,) <g> S(f,)S(ej) W p 6 3 ) = £ μD{λfreiS-\y))

The second diagram follows immediately from relations (2.30) and (2.31), which
allow us to invert βι and βh •

Let us also give a more convenient form for the braided antipode:

Lemma 10. Let Γ: s/° ® si -3 si ® si0 be given by
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and Γ as in (2.54). Then the following diagram commutes:

(2.58)

Proof Straightforward computation:

Γ(λ y) = Σ S(ei)S(y)^S(λ)ύfί = Σ S
ί i

= ΣS(S(fJ)yei) ejS~1(λ)fi, (2.59)
0'

which is precisely the above composition. •

6. Proof of Modular Relations and the Projective Phases. For the square of the
braided antipode we easily verify

Γ2 = αd"(ι?"1), (2.60)

where υ is any ribbon element and ad~(y) = S'1 oad(y)oS. Proposition 9 and
Lemma 10 put us in a position to prove the next lemma. From this we will infer one
of the modular relations and the correct projective phase.

Lemma 11. We have the following relation for maps stf° (x) stf' ̂  s$' ® s/° (x) j / :

f a ) . (2.61)

Proof. We shall prove (2.61) by evaluating both sides on λ ® y esrf° (x) stf indivi-
dually and comparing results. For the right-hand side we have

xβr (8) (βtLa) (λ®y) = tx(x'λ(x") ® μ<(ay))

)'"), x"fyλ(x"")(μ<(ay)Y ® x"

")μ" ® x"

= Σ <M'^'> <fi>*"> <μ"\ayS-\e'l)yλ{eΊ')μ" ® e\
i

= Σ <μ', βλfd> <μ"\
i

= Σ <βrβr{flT,

= Σ <S(fir,yS-Hei)>λ(enS(fi)' ® e\ • (2.62)
i
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The evaluation of the left-hand side gives:

= £ β,(S(e,)yej) ® S o β,(ftS- W ; )

= Σ <fi>x'> <S-1(λ)fj,x'">μ<(S(et)yej) ® S(x'")
ij

= Σ<S-ί(λ)fj,x">S((S-1(yeJ)x')>S-1(μ))®S(x"

= ωΣ(S-1(λ)fj,e'i)S((S-1(yej)βr(fi))>μ<a)®

= ω Σ <S-HQfj,e'i)S((S-1(yej)Mβrβr(fi))<a)
ij

= ω Σ
0'

= ω Σ

= ω

= ω Σ <S(/()",>'S-1(e?)>λ(enS(/ί)' ® «ί (2-63)
i

Comparison of (2.62) to (2.63) proves the assertion. •

The projective phases of the second modular relation arise in the computation
of the value of £f on the ribbon element.

Lemma 12. Suppose v is a ribbon element of a double D ( J / ) and v is the associated
fourth root of ω {see Prop. 8.). Then we have for £f as defined in (2.55):

) = v 5 v . (2.64)

Proof. Straightforward computation: Using v = uk~ι we have

Sf{v) = Σ μoiuk-'fjedSift) • S(ej) *""*•r = £ xie^1 f})S(ft) S(e})
ij

(2.65)
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The second relation follows with υ~ι =ύk~1 from:

(e, ) = ω Σ
0'

= v 5 k - i u = v5v (2.66)

Let us now prove the second modular relation:

Proposition 13. For a double D{stf) with balancing, let £f be defined as in (2.55) and
3~ by multiplication with v. Then

y^r-1^ = v5^r^^r . (2.67)

Proof. If we apply f/o iS" 1®l(χ)5 ίfor some η eDfj/)* to both sides of the equa-
tion in Lemma 3 we find with τ(M) = S (x) S(M) that

Sof(λ<Sof(η)) = (λ ® S)((S(f(η)) ® \)M)

= ηoS~1®λ® S((τ(M) ® 1)(1 <g> Af))

ej . (2.68)

Inserting into (2.68) the forms λ = μD<p and η = μD<Λ for some A,p eD(rf)
and by using the definition (2.55) we find:

= x^μs-H/^y s-^^ίp)"))^^)^!^'^. (2.69)
ij

Here L p is the left multiplication with p. The left-hand side the assertion (2.67) is
now found by specializing ρ = v~1, where Lv = ^~. In order to evaluate the
right-hand side of (2.69) we notice that Lemma 12 implies the following identities:

Δ(Sf(υ-x)) - v5A(v) = v5v ® vM~1 = v5v ® υ ® y R " 1 ^ " 1 )

= v5t; ® t;53 ® S2(Λ)1 ® S(τ(Λ)) = v5 ^ vS3(ek)f ® t;52(/,)^fe) .

Replacing ^ ( t ; " 1 ) ' ® ̂ ( t ; " 1 ) " in (2.69) by this expression yields the assertion:

crg-icf = v5Σ μD
ijkl

= v5ΣΣ

jl ik

jl

We readily identify the last equation with the right-hand side of (2.67). This
completes the proof.
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The Sf matrix was originally defined as an element in the End-sot of the coend
of the representation category. As a map on D ( J / ) it therefore intertwines the
ad~-action (see (2.60)) of the algebra on itself. (This property can also be inferred
directly from Lemma 2, 1.) The same is true for multiplications with central
elements as for example for 2Γ. Hence the center Z(D(s/)) - which is the in variance
of the ad~-action - is an invariant subspace of both operators. It follows immedi-
ately from (2.59) that the restriction of Γ to the center is the usual antipode S and
thus involutive.

We summarize these observations and the relations found in (2.60), (2.61), and
(2.67) in the following theorem:

Theorem 1. Suppose D(stf) is the double of a finite dimensional Hopf algebra. Assume
that D(jtf) admits a balancing and let v and ω be as in Proposition 8. Furthermore, let
ZΓ be the multiplication with υ, and Se and Γ be defined as in (2.55) and (2.59),
respectively. Then

1. The generators define a projective representation of the mapping class group
@)\= no{Θ ίff(T,D)) of torus maps fixing a disk with the following relations:

(2.71)

= V

3Γ~2 = v2ad~(v) . (2.72)

2. The maps Se and 3~ stabilize the center Z(D(JZ/)). The restrictions 9 and 3Γ satisfy

ψ^f = v3 , P2 = ωS±\ 3TS = S*Γ , (2.73)

where S is the involutive map given by the restriction of the antipode to the center.

The relations in (2.73) show that £f and 2Γ define a projective representation of
SL(2,Z). The normalization of the 5^-operation was defined by the canonical
normalization of μD. For the computation of topological invariants it is often more
convenient to have a normalization for which the operators are inverted if we
invert the braided structure. For a given balancing k let 9" and SΓ' be the
analogous operators defined with respect to K = τ(JR"1). Then as u' = u we have
that #"' = ^~ι is already correctly normalized. A computation similar to the one
in Proposition 9 yields

<?' = ω&-' .

Thus it is the matrix y . := v 2 ^ " 1 which inverts under inversion of the braided
structure. For these generators we have the relations:

Sef = 1 , {Sf.έrf = v~36^2 . (2.74)

Comparing (2.74) to relations in [T] and [RT] we find that the projective phase c of
the functor Φ in (1.10) for a universal TQFT over a double D(s/) is given by:

3. The Relation of Universal and Semisimple TQFT's: An Example

In this section we shall analyze the proposed representation of the mapping class
group 3) of the punctured torus explicitly in the example of the double of the
quantum-s/2-Borel algebra Bq.
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1. The Algebra D(Bq). Let q be a primitive /th root of unity where l = 2m+ \,rneTL^γ.
We denote by Bq the Hopf algebra with generators e,k±λ and relations:

kek~1=qe, kι = 1 , eι = 0,

A(k) = k®k, Δ{e) = e® 1 + k2 ® e , (3.75)

S(e) = -fc- 2 e , S(k) = k~ι , ε(e) = 0 ε(k) = 1 .

As a PBW-basis for Bq we choose e"/cj with n = 0,. . ., / - 1 and j eΈ/l The left
coίntegral of 2?β is given by

(3.76)
J = 0 /

and the left integral with normalization m(x) = 1 is

m(e"k') = q2δj,2δHΛl-1). (3.77)

The moduli of these integrals are easily found to be

α = /c2 and α(ίc) = g , a{e) = 0 , (3.78)

so that ω = g2 . (3.79)

Since we assumed / to be odd we can choose as generators of the dual algebra
J5* the modulus α and the linear form/defined by </, enkj} = δnΛ. The following
relations together with those in (3.75) can be used as a definition for the double
D(Bq) containing Bq and Bq with opposite comultiplication:

aea~ί=q'2e, kfk~1=q~1f,
(3.80)

ef—fe = a — k2 ,

We shall sometimes refer to the Έ-gradation of D(Bq) which is defined on the
generators by gr(e) = 4 - 1 , gr(k) = 0, grr(/) = — 1, and gr(ot.) = 0. The universal
Jί-matrix of this algebra is

1-1 Hill N / j \

Σ τ τ e " ® / " T Σ ί-'̂ Θα1 (3.81)

Here [n]! = [w] [n - 1] . . . [1] with [w] = ^—Γ. If we compute the
q-q λ

expressions in (2.23) and (2.24) for the integrals in (3.76) and (3.77) we obtain the
following isomorphisms between Bq and B*:

(;-i-H)d-2-B)

q 2 ' 1 - " 7 Σ ^°- 2 ) « i + 1 , 0.82)) π Ί , / 7 Σ ̂ « ,
and

βι(aίfη = (-l)nln~]lq-"Jli11-2ieι-1-n ^ qj{i~l)kj. (3.83)
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As an associative algebra D(Bq) is isomorphic to the product C[Z//] (x) Uq(sl2),
where the central group algebra C[Z/Ϊ] is generated by

z:=oc-mk. (3.84)

The generators of the Uq(sl2) factor are defined by

E—z~γe, F:= - / , K:=ocmk (3.85)

and obey the relations

KEK~1=q2E, KFK'1 =q~2F , (3.86)

EF -FE = K- K'1 . (3.87)

2. The Center ofD(Bq\ Thanks to the above decomposition the center of D(Bq) is
given by C[Z/Z] ® ̂ 9 where Ί^is the center of Uq(sl2). In order to give a descrip-
tion of "V it is convenient to introduce the projections

πj(K) = \ Σ ^ i J κ i JeZ/l (3.88)
* ieZ/l

on the eigenspaces of K with eigenvalue q~2j. Furthermore we introduce the
projections

Tj= ΣJπs(K) 7 = 0 , . . . , m - l . (3.89)
s = j + l

The standard quadratic Casimir of Uq(sl2) is given by:

X = EF +

 q K ~ 1 + \ 1 K . (3.90)
q-q

The trivially graded part U° of Uq(sl2)(gr(E) = 1, gr(F) - - 1 , gr(K) = 0) is a free
module over the ring C [ X ] with basis {XJ}j=o,.. .,/-i and the minimal equation
for X is:

Π (^ - Hj)) = 0 , (3.91)

where the roots
0(2.7+1) _, -(2j+l)

6(j) = &(/ - 1 - 7 ) : = q

 q_*_x (3.92)

are of order two for j = 0,. . ., (m — 1) and of order one for j = m.
Using the polynomials

Φj(X)= Π ( * - & ( * ) ) 7 = 0 , . . . , m (3.93)

of order (Z — 2) for 7 < m and of order (/ — 1) for 7 = m we can define the idem-
potents and nilpotents associated to X:

(X - b(j))φj(X), j = 0,...,m-l, (3.94)

]- = (1 - T})Nj.
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For example a general polynomial Ψ(X) in X is expressed in terms of Pj and Nj
by the formula:

m m— 1

Ψ(X) = £ Ψ(b(j))Pj + X Ψ'{b(j))Nj. (3.95)

The normal izat ions in (3.94) can be evaluated explicitly using

I2 1

I2 X 2 ά Λ
Φ'jΦϋ)) = - ( g g - i ) ( « + i) ̂  for j = 0,. . ., (m - 1) , (3.96)

The center of the quantum algebra does not only contain the subalgebra
generated by X but also the above combinations of nilpotents with the weight-
projectors Tj. More precisely, we have the following lemma:

Lemma 14. The center, denoted by Ϋ~ ofUq(sl2) is the (3m + l)-dimensional algebra
with basis {Pi9 JV/: i = 0,. . ., m; j = 0,. . ., m — 1} and products:

PiN? = δtjNf , (3.97)

jV ĴV/ = N^iV/ = 0 .

Proo/. We use the fact that every element y in the trivially graded part Uo has
a unique presentation:

3;= Σ π8(K)p8(X),
seZ/l

where the ps are polynomials of order smaller than I. The condition that y com-
mutes with E is then:

seZ/l

Here we denote the ideal J = {y e U°: Ey = 0}. It is clear that«/ is generated by

Eι-iFι-i= ^ π s + l ( x ) γi (X-b(j)).
ssZβ jeΈ/lJ + s

The polynomials in X occurring in this sum are proportional to the nilpotents and
idempotents defined in (3.94). The ideal J is therefore spanned by the elements

πs+1(K)Ns, 5 = 0,. . . , m - 1 and πm+1Pm .

Solving the recursion for the p/s we find that the center is generated by the elements
in (3.94). The commutation with F yields exactly the same conditions. Linear
independence of these generators can be shown by choosing special representation
ofX. •

3. Canonical Elements and Balancing. The canonical, group-like element, g, from
(2.20) implementing the fourth order of the antipode is obtained from the equations
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for the moduli:

g = ock-2 = K-2 . (3.98)

For odd / this element has precisely one square root in the group-like elements,

K~1, (3.99)

so that we have uniqueness of balancing. The fourth root of one associated to this
by (2.51) is

v = q~m . (3.100)

The canonical element u = S(Ri2))R{1) can be expressed as the following product of
commuting elements

u = uzuκu0 , (3.101)
where

^ Zuz = —r Σ 4 z ' uκ - —γ Σ
yj I ieZ/l yjl ieZ/l

and

Here we denote the Gauss sum yq''=—γYJ

ι

jZ
1

0q
mi\ which is a phase for odd

v '
/ and can be evaluated explicitly (see e.g. [L]). The unique ribbon element v can be
written as a product of an element in the C[2£//] factor and an element in the
L^(s/2)-factor of the algebra:

v = uzv0 ,

where
% = Kuκu0 . (3.102)

If we denote by ^ , 9~0 and <F the linear operators on C[Z//], Uq(sl2) and D(Bq)
defined by multiplication with uz, v0 and v respectively this implies

^ = ^ z ® ^ . (3.103)

We have the following expression for the central element v0 in terms of the basis
given in Lemma 14:

Lemma 15. The central ribbon element v0 e Uq(sl2) has the Jordan decomposition

vo = QmPm + mΣ q2JU+1)(Pj + SϊNΪ +-£==Nϊ). (3.104)
j=o \ \-aj J laj J /

Here the basis elements of Ψ* are the same as in (3.94) and the numbers
df = 1 , . . . , / — 1, are defined for j = 0,. . ., m — 1 by

Proof The computation of these coefficients is most conveniently done by multi-
plying the expression for v0 obtained from (3.101) by a weight projector πs(K). The
result can be expressed in terms of a polynomial Ψs of the quadratic Casimir X:

πs(K)v0 = πs(K)Ψs(X) , (3.105)
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where
/ - I Q ' ^ H l-l

XU ίV\ V* _ /Ί2α(α —n—1) T~T IΛT Uίi _I_ <Λ\

n=0 L^J i=l-n

From the general expansion (3.95) we see that the coefficient of Pj is given by
Ψs(b(j)) for any s and the coefficients of Nf and N]~ are given by Ψs(b(j)), where
s =j + 1,. . ., / — 1 — j and s = —j,. . . , j respectively. For a choice of s with
b(s — 1) = b(j), we can avoid one summation in the expressions for Ψs and Ψ^. In
order to evaluate the remaining sum for Ψf we invoke the partition identity for
t with ύ Φ 1 for i = 1,. . ., d:

d _ 1 " - 1 ,. .,
-d = Y Ί « Π (! ~ ί ) ( 3 1 0 6 )

Remark. From the observation that the coefficients should be independent of the
choice of the weight s we are led to new partition identities. For example in the
computation of Ψs we find the formula:

min(A,B) n- 1 (fA _ fi\(fB _ fi\

tAB =

4. The SL(2,Έ)-Action on the Center ofD(Bq\ We use the formula obtained in (9) to
give the explicit action of Sf on D(Bq). Together with F defined by multiplication
with the ribbon element this yields a representation of the mapping class group Q) on
D(Bq). If we insert the expressions for the integrals from (3.82) and (3.83) the action of
£f can be immediately written if we use both PBW bases kjenfpots and ocsf"epkj as:

(3.107)
\ieZ/l

A similar formula was obtained in [LyM]. It is immediate from the above form
that the y7 matrix preserves the gradation n — p e TL of a basis element. Given that
the balancing element is trivially graded and acts by multiplication it follows that
the ^-representation on D(Bq) decomposes into a direct sum of the 21 — 1 spaces
corresponding each gradation.

Clearly, the category from which y is obtained is the tensor product of the
representation category of Uq{sl2) and C[Z/7] as an abelian category. Also, since
the balancing element and hence the monodromy can be factorized into a product
of invertible elements from either algebra, the ^-matrix has to factorize too. More
precisely we define the following isomorphisms on C[Z//(z)]:

9>z(zny=—Γ Σ q~jnzj, (3.108)

and on Uq(sl2)

S?0(KjEnFp):=-

li - i - nj!
/ 1 _ . . . Λ . .

(3.109)
q«U-»)Kk\F(i-i--)£(/-l-P).
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Using the isomorphism D(Bq) ^ C\TLjY\ (x) Uq(sl2) defined by the change of basis in
(3.84) and (3.85) we can now write the ^-matrix in the form:

se = (3.110)

Together with (3.103) this shows that the representation of <2) on D(Bq) is given
by the tensorproduct of two projective representations of Q). Since C\TLjY\ is
central in D(Bq) we expect the representation generated by !TZ and £fz to factor
through a projective representation of SL(2, Έ). In fact we easily verify the follow-
ing relations:

CPl or <yr cf>2 cjpl ( n\ __ 7 ~ n ί CJ? OΓ Λ^ — -y t| C3 1 1 D

It is clear that the action of Sf0 on Uq(sl2) preserves the gradation in the same
way as the action of Sf on D(Bq). For example the restriction on the highest I — 1
graded subspace defines for each g0 e Q) by

an action g on an element a in the group algebra C[Z/Z] generated by K. It factors
into an SL(2,Έ) representation and is equivalent to the one defined previously by
&~z and ^ z with q replaced by q'1.

In the following we shall focus on the 0-graded part Uo of Uq(sl2) from where we
wish to compute the restrictions to the center. We determine explicitly the
(3m + l)-dimensional representation matrices of SL(2,Z) which we obtain by
restricting the action of h onto the center y of Uq(sl2). We choose the basis as in
Lemma 14 in the order P o , NQ, NQ, P 1 ? . . ., N[m-ίh Pm. On the subspace spanned
by Pj, iV/, NJ we define the Jordan block:

1 0 0

dt 1 0

0 1

for j - 0 , . . . , (m - 1)

Then it is obvious from the formula in Lemma 15 that the
multiplication of v0 is given by the direct sum:

Γ0 matrix defined by

(3.112)

The restriction of £P0 to the center is much more complicated and will be dealt
with in the rest of this section. It involves finding transformations from the
idempotents and nilpotents given in Lemma 14 to polynomials in X and K, to the
standard PBW basis of Uq(sl2) and backwards. The transformations between the
center and expressions in X and K can be obtained from the relations given in
(3.94) and (3.95). In order to reexpress polynomials in X and K in terms of the basis
KjEnFn and conversely, we need the following two technical lemmas. A special case
of the first lemma we used already in the computation of the center. The proof is
straightforward.
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Lemma 16. Let X be the quadratic Casίmίr defined in (3.90) and set

q — q

then the following relations hold:

= Jγ[ (X - Qs), (3.114)
s = O

Before we give the converse transformations let us state the following identity
for general polynomials

Lemma 17. Suppose λo,...,λN is an ordered set of roots and

0 ^ a i < a 2 < ' ' ' < ak ^ N are an ordered set of k indices then we have

U (x-λj)= Σ 'π(χ-λd
j = O,jφ{aj} 0 ^ s i < s 2 < <Sk ^N ί = 0

x S\\ {λaι-λt)... Π (K-h), (3.116)
i = si + l i = sk+l

reexpressing a polynomial with omitted roots in terms of polynomials with consecutive
roots.

Here an empty product is meant to be 1. The proof is a straightforward
induction which is most conveniently done by assuming the statement for all (/c, AT')
with k' < k or k' = k and N' ^ N and proving it for k' = k and N' = N + 1 thus for
all pairs with k! — k. This is followed by an induction in k. If we combine Lemma 16
and Lemma 17 we arrive at the following formula for the polynomials defined in
(3.93)

Lemma 18. Let φ\XX) be the polynomials in the quadratic Casimir X as defined in
(3.93), πs(K) the projector from (3.88) and b(j) as in (3.92). Then

πt(K)(X-b(k))φk(X)=Σ Π (b(k)-b(i + t))πt(K)EW, (3.117)
j = 0 1 = 7 + 1

πt(K)φm(X)=Σ Π Φ(m)-b(i + t))πt(K)&FJ

9 (3.118)
7 = 0 i = 7 + l

πt(K)φk(X)=Σ Π Π (b(j)-b(i + ή)πt(K)EW. (3.119)
7 = 0 s = j+l i=j+l

i + s

Proof We apply Lemma 17 to the situation where N = I — 1, X is the quadratic
Casimir and the roots λj are replaced by the elements Qj defined in (3.113). The
polynomials with consecutive roots on the right-hand side (3.116) are precisely
those in (3.114). Thus for k = 1,2 we obtain the specializations:

Π(X-Qj) = lΣ Π (Qa-Qs)EjFj, (3.120)
7=0 j=Os=j+ί
j
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and

Π (X-Qj)=Σ Σ Π (Qp-Qi) Π (Q*-Qi)EJF]. (3.121)

j + a, b

Notice that the polynomials φk(X) and (X — b(k))φk(X) are obtained from (3.91)
by omitting one or two roots. If we multiply Eq. (3.120) and (3.121) with the
projector πt(K) for suitable choices of a and b we obtain these polynomials on the
left-hand side. The identities (3.117)—(3.119) follow using πt(K)Qj =
πt(K)b(j + t). D

Lemma 18 puts us now in the position to determine the action of £f0 on the
polynomials φk(X) and (X - b(k))φk(X).

Insertion into (3.109) yields for k = 0,. . ., (m — 1):

<?0(πt(K)(X - b(k))φk(X)) = Σ Kb(K)Alk(X) , (3.122)
bsΈ/l

<?0(πt(K)φk(X)) = Σ πb(K)Γf(X), (3.123)
beZ/l

,Z(πt(K)φm(X)) = X πb(K)AT(X) • (3.124)
beZ/l

The polynomials Δ%{X) and Γb

tk(X) are defined by

a ι~i (-lVT/Ή / - 1

Δtb(X)'=— Y q(.i+2b)(j+2t+l) ΓT foΠΛ _ frn + t\\

l - l

x Π (X-b{i + b))9 (3.125)

and

„ 1-2 1-2 ( \\\r i l

j=0 S=j+1 I1 1 -JJ

fe(i + 0) Π (X-Hi + b)). (3.126)

The action of 5ζ on If is now easily obtained by summing Eqs. (3.122) to (3.124)
over an appropriate range of t and combining them in (3.94). The result contains
products of projections πb(X) with polynomials of the form Σ^WX) and
^ f Γb

kt(X). The polynomials can be expanded for every weight b into the basis
if defined in Lemma 14; the coefficients of Pp and Np are obtained by the values of
the derivatives of these polynomials at X = b(p).

By general construction the 5^-matrix has to map if to itself. As in the
remark following Lemma 15 this can be used to produce new families of partition
identities.
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In order to find the matrix coefficients of the SL(2, Έ) representation we need the
following quantities:

η(dA,dB):=

( _ ~l\lmin(dB,dA-l) dA / _ i W

I j = l s = j+l UJ

x Π k - f 1 ) ^ - i] idA-s + i] fΐ (ί'"*"0 - <ΓWs-°), (3.127)
i = 1 i = l

(q-q 1)/ v

ι2 ^

dB

Σ

r\\ί

ΣU

lA-s +

i iV-

Π Γ7 (fl

(-1Y

IΩ

- " ' - 0 ) , (3.128)
i = l i = l

and

/ / 7 _ / 7 - i y - l <*B ϊ ( j-

p f e ) : = ( g p } Σ Σ P - i - Λ ! 5

x Π ^ - ^ 1 ) ^ - *']2 Π te(d*~° - q~{dB~i]) (3.129)
i = 1 i = 1

The main result of the previous calculation - the SL(2,Z) representation on
y* - is described in the next theorem:

Theorem 2. Let PO9NQ9 No9Pί9. . ., Nim-ί)9 Pm be the ordered basis of V as de-
fined in Lemma 14. Then the following matrices define a protective SL{2,Έ)
representation.
The £Γ0 matrix is given by (3.112).
The yo matrix is given by the following formulae'.

1. For k = 0,. . ., m — 1

p=0 LwpJ

^ - + 4 Σ Σ
\ / / p = ° ε = ±

2. Fork = 0,...,m-ί

_ q [24*]

-~fTdn m

y/i P=o ε=±

3.
a a m " 1

=^γPm + JjιΣ Σ
yjl Ul p = 0 ε=±



Mapping Class Group Actions on Quantum Doubles 383

These matrices satisfy the relations

= q2t .

Here the superscript * means that either + or — can be inserted yielding the
same result.

5. The structure of the SL(2,TL)-Representation on Ψ*. For small values of / the
following polynomial identities hold true:

η(dϊ,dϊ) + ηfcJΪ) = η(dk\d;) + η(dkj;) and p(d+

p) = p{d~) . (3.130)

In this case it is easy to see that the representation contains an m + 1-dimensional
subrepresentation spanned by the JV/s and Pm.

On this subspace the ^-matrix is diagonal and has eigenvalues
[q2ju+ 1]J = 0,. . ., m}, i.e., one more than the finite m-dimensional representation
obtained from the semisimpliίied representation category. For prime / it is not hard
to see that the representation is irreducible. Also, for small / we find that it is finite.

It is clear by inspection of the ^-matrix that a complement to this representa-

tion has to contain the linearly independent nilpotents Nj = £ ε = + FlFT^/ Thus it

also contains the vectors &Ό(Nj)k, where the subindex fc = 0,. . ., m — 1 means that
we take the component in the kth eigenspace of 5\ Since the elements ^0(N0)k are
linearly independent from the nilpotents, a 2ra-dimensional component exists only if

+ bjk% , (3.131)

for some coefficients cjk and bjk. Comparison of the coefficients of the idempotents

shows that we need cjk = ~- [_djdk], i.e., the m x m-matrix c defined by these

coefficients is equivalent to the ^-matrix of the semisimple TQFT. We can write
polynomial identities similar to (3.130) which are equivalent to (3.131) with bjk = 0.
Again, for small values of / we know that they hold true. Using that 9"2 is
proportional to the identity they also imply that Sf decomposes into a tensor product
b (x) c, where b is a two by two matrix with vanishing diagonal elements. The ^-matrix
on the second summand has eigenvalues {q2jij+ 1]J = 0,. . ., (m — 1)} all of which
are doubly degenerate, with non-trivial Jordan-block. For a suitable normalization
we thus expect the second summand to be the tensorproduct of the two dimen-
sional standard representation and the known m-dimensional finite representation.

In a TQFT SL(2, Έ) extends to representations of modular groups at higher
genus. If these factor through their actions on the homology of the surface the
projective SL (2, ̂ -representation extends to representations of a higher symplectic
group. It is a fact that for congruence groups at the higher symplectic groups over
Έ any irreducible representation is the tensorproduct of a finite and an algebraic
representation, see [Kz]. Thus it is likely that the tensorproduct presentation described
in the previous paragraph can also be inferred from rather general arguments.

We summarize our observations in the following conjecture. In the next section
we show that it holds true for the five and seven dimensional representation.

Conjecture 1. The projective, 3m + 1-dimensional SL(2,Έ) representation defined in
Theorem 2 decomposes as
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wherewhere
1. Ϋ"N is an (m + l)-dimensional, irreducible, finite representation spanned by

Nj = N+ + NJ- and Pm, see (3.134) or (3.138).
2. Ys is the 2m-dimensional subrepresentation spanned by

and the j t h &-eigenspace components

This representation is the tensorproduct Ψ"s = "Kemis of

(a) the two dimensional, algebraic standard representation i^stan as in (3.135) or
(3.140) and

(b) an m-dimensional finite representation i^semis which is isomorphic-up to a pro-
jective phase-to the SL(2, Έ) representation obtained from the semisimple
subquotient category, see for example (3.141).

6. The Examples I = 3, 5. In this section we verify the conjecture of the previous
section for / = 3 and / = 5. We compute the explicit representation matrices of the
various finite representation:

For / = 3 the matrices of the SL(2,Έ) are given in the basis PO,NQ,NO,P1 by:

1 0 0 0

1 1 0 0

- 2 0 1 0

0 0 0 q

(3.132)

- 1

- 1

0

0

- 1

-Uq-q'1)
1

(3.133)

This representation decomposes into the sum of two irreducible, two-dimen-
sional subrepresentations

Here the subspace Ψ"Ή is spanned by No = NQ + No and Pi with £f and ?Γ acting as:

, r _ Γ 1 0 Ί y -J-\ -X -Uq-q-1)] (3 m )

1

ι)

This subrepresentation f~s

 n a s basis vectors Po = Po + •

iV0

+ — 2N~ for which the Sf and &~ matrix have the form of the standard repres-
entation:

^ _ Π °Ί ^_ατ Γ° - 1 ] ί3135)
L1 U L1 o J

For / = 5 the matrices are given for the basis Po,N£,No,PiNf,Ni,P2:
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CN CN

ΓN <N
I I I I

CN CN

"J 1 "J> I I

CN CN

I I

Hj> -H|>n -π|in ~<\ιn H«"> H ^

O O O

O I O

+
I

<N <N

H I Λ ~\<n

+ : CM

<N <N

I <N

<N <N OO Hj> " I

o o —̂  o
(N <N

I I I I

< N C M

m m

o -H o o o o o

o o o o

J I



386

where

T. Kerler

ξ =
q-q

This representation decomposes into two irreducible representations Ψ~N and
i^s, with dίm(i^N) = 3 and dίm(i^s) = 4. The three dimensional representation is
spanned by the vectors

ί ^ r ϊ ( i V ί + J V Γ ) and P 2 .
q-q

The representation matrices are

" 1 0 0

0 q'1 0

0 0 q2

[2] - [2] 2

- ( 3 + 2 [2]) [2] (4+ 2 [2])

1 (l-[2]) 1

(3.138)

The four dimensional representation is spanned by

and

P o : = Po -

iVo:=(iVo+-4JVo-) N i : =
[2]2

With ordering Po,No, Pi, Hi we find the matrices:

1

1

0

0

0

1

0

0

0

0

4 - 1

- 1

0

0

0

-

0 - 1

1 0

0 - [ 2 ]

[2] 0

0 - [ 2 ]

[2] 0

0 1

- 1 0

(3.139)
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Now it is easy to see that this can be written as a tensorproduct of SL(2,Z)
representations:

' S = 'stan 09 'semis

In order to denote the isomorphism

Pi-> vP(g) Wi , Ni -» vN (x) wf ,

we introduce bases {vP,vN} and {wo,W!} of f̂ ίflM and ^ e m ί s respectively. For these
bases we can write

or or /θ| or cp n cp (θ\ cp
*s N ^ stan v-y ^ semis > ^iV H^stan ^C/ ̂  semis

with

^ ς ί f l Π = I ^sίflΠ = ~ I (3 .140)

and

' semis i Q

Conclusion

The results of Chapter 2 show that the construction of a universal TQFT should
include two features. One is to avoid degeneracies by considering only doubles. The
fact that the projective phases and the proofs of modular relations are most
conveniently given in terms of the bilinear forms and moduli defined from the
integrals is an indication that this is the correct language also for constructions at
higher genus. In view of the gluing operations described in the introduction, the
genus one case can in fact be thought of as a basic building block. It should be
possible to understand more conceptually the appearance of the finite representa-
tion we know from the semisimple theory as a tensorproduct with the standard
representation rather than a subrepresentation. In particular it should be interest-
ing to see how the representation on general D(s/) is modified if we pass the
semisimple quotient of the representation category oiD(srf) and a possible trunc-
ation of the resulting TQFT.

Also, the appearance of algebraic representations is a novel feature of these
theories. We expect to find higher dimensional algebraic representations of
SL(2,Z) if we start from higher rank quantum groups for which the orders of
nilpotencies of central elements will be higher.
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Note added in proof: It appears that for prime / i^N 0 i^ s e m i s is just the decomposition of the
metaplectic representation of SL(2, Z) on C[Z//]. I owe this remark to Vanghan Jones.




