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Abstract. A new approach to massive integrable models is considered. It allows
one to find symmetry algebras which define the spaces of local operators and to get
general integral representations for form-factors in the SU(2) Thirring and Sine-
Gordon models.

1. Introduction

Two dimensional integrable field theory today is among the most advanced topics
in relativistic field theory. The reason essentially lies in specific two-dimensional
symmetries which lead to exact solutions of the quantum field dynamics.

In a massive theory these symmetries show up as a drastically simplified scat-
tering theory called Factorized Scattering Theory (FST). This structure was first
observed in non-relativistic scattering of spin waves [1] and quantum particles with
point-like interaction [2, 3], and also in classical scattering of solitons in nonlin-
ear field models [4, 5]. Factorized scattering preserves the number of particles and
the set of their on-mass-shell momenta. This conservation is ensured by an infi-
nite series of commuting integrals of motion [6, 7]. The computation of the exact
factorized S-matrix may be performed by combining the standard requirements of
unitarity and crossing symmetry together with the symmetry properties of the model
[8-10]. Large variety of the factorized scattering theories was constructed explicitly
(see e.g. [11-16]).

The two particle S-matrix uniquely specifies a structure of a space of local oper-
ators for integrable models. In other words, its knowledge can be used to compute
off-shell quantities, like correlation functions of elementary or composite fields of
the integrable models under investigation. This can be achieved by considering the
form-factors of local fields, which are matrix elements of operators between asymp-
totic states [17, 18]. A very important step in this direction was taken in a series of
papers [19-21], where it was shown that general properties of unitarity, analyticity
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and locality lead, in the case of factorized scattering, to a system of functional
equations on form-factors which is powerful enough to permit the reconstruction of
the matrix elements (see also [22, 23, 16]).

In this article I discuss a method to describe the space of local operators for mas-
sive integrable models. It can be considered as a generalization of the Feigin-Fuchs
representation in two dimensional Conformal Field Theory (CFT). The bosoniza-
tion in CFT allows one to express local operators in terms of simple boson fields.
Using well known examples of FST, I shall demonstrate that the Smirnov equations
can be rewritten as a set of requirements for some boson field. The properties of
its two point function naturally generalize the properties of the free boson Green
function in CFT. Methods of the bosonization permit one to find symmetry al-
gebras defining the structure of the space of local operators and to get general
integral representations for form-factors in the SU(2) Thirring and Sine-Gordon
models.

The paper is organized as follows.
Section 2 contains well known facts from FST. For specialists it can be useful

only as a list of necessary notations. Here I introduce the central object of the in-
vestigation: the formal Zamolodchikov-Faddeev algebra [10, 24]. The Hubert space
of a massive integrable model is a space of representation of this algebra. Such rep-
resentations will be denoted as πA. General ideas of this work are illustrated by the
SU(2) invariant Thirring model (51/(2) TM) [25-27] and the Sine-Gordon model
(SGM) [28, 29]. So I recall essential properties of these theories. At the end of the
section, the definition of form-factors is introduced and the Smirnov equations are
formulated.

In the next section, I argue the main idea of the work. From the mathematical
point of view, the Smirnov equations are a kind of Riemann-Hilbert problem. Its
solution is based on the following observation; Form-factors can be expressed as
some traces over the proper representation of the Zamolodchikov-Faddeev algebra.
I shall denote these representations as πz. They essentially differ from representa-
tions %A One can regard πz as a space of angular quantization of an integrable
model [30]. I should note that a similar idea was used for solving the quantum
Knizhnik-Zamolodchikov equation [31]. This is not surprising since the Smirnov
and quantum Knizhnik-Zamolodchikov equations have close structures. Moreover,
they are equivalent for some cases [32]. Closely similar techniques have been used
in a remarkable series of works on lattice models [33-36].

In Sects. 4-8 the formal constructions from Sect. 3 are illustrated by SU(2) TM.
I discuss this model in detail as the simplest example where the general bosoniza-
tion technique can be applied. In this case the construction is equivalent to the
Frenkel-Jing bosonization of the affine quantum algebra Uq(sl(2)) [37]. In Sect. 6
the symmetry algebra of the space of local operators is found. Then using the well
known method from String Theory [38], I get the integral representation for form-
factors generating functions. One can expect that they form a general solution of
the Smirnov equations for SU(2) TM.

In Sect. 9 the method is applied to SGM. I show that the Zamolodchikov-
Faddeev algebra for SGM admits the free boson representation. The classical limit
of this representation was first obtained in the work [39]. The bosonization for SGM
is the natural generalization of the Feigin-Fuchs representation in 2D CFT [40, 41].
I believe also that it has the same base as the bosonizations of the quantum affine
algebra Uq{sί{2)) for general level [42-44].
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As in the SU(2) TM the bosonization permits one to get the integral represen-
tation for form-factors of SGM.

Some details of the construction are described in the Appendices.
The main technical results of this work are represented by the theorem and

Proposition 4 in Sect. 7, together with the explicit bosonization rules.

2. Preliminaries

2.1. Zamolodchikov-Faddeev Algebra. We start with a brief description of the
basics of FST.

The massive character of a spectrum means that the interaction in a theory is
short-distance and, asymptotically for t —• dboo, the particles behave as free ones.
So, two natural different bases can be chosen for the Hubert space of a massive
field theory: initial (in) and final (out) bases of states. Any in- and out-state

\Aaι(pι) ... Aan(pn))iΏ, \Aaχ(pλ) ...Aan(Pn))w\ ',

p \ < p \ < ••• <p\ (2.1)

is characterized by a set of particles {Aa} and their two- momenta p%(μ =x,t):

(P!

a)
2-(px

a)
2 = m2

a. (2.2)

Here index a denotes some quantum numbers specifying different types of particles
Aa with the masses ma. The in- and out-bases should be connected by a proper
unitary matrix, which is called S-matrix

IΛ,(/>',)...Aan(p'n))out = Sb

a]:±(p\,...p'Jpu...PnMh(Pύ- Λ,(Pn)) m . (2.3)

Since the dynamics of integrable models is governed by an infinite number of
nontrivial conservation laws the scattering processes are purely elastic and a general
n-particle element of the S-matrix is factorizable into the two-particle S-matrices

\Aaι(Pι)Aa2(p2))out = Sb

al
b

ai(puP2)\Ab](Pi)Ab2(p2))m . (2.4)

It is convenient to parameterize the energy-momentum spectrum (2.2) in terms of
the rapidity variable β

pf

a = ma cosh β, px

a = ma sinh β . (2.5)

By Lorentz invariance, the two particle scattering amplitude will be a function of
the rapidity difference β = β\ — β2 only.

What can be said about the matrix function Sa\ll(β)Ί In order to avoid some
technical complication we will consider FST which contains only particles of the
same mass in the spectrum1. One can suppose that they are arranged in a multiplet
of some finite dimensional (quantum) group G. In this case general principles of
Quantum Field Theory and factorization condition lead to the following requirements
for the two-particle S-matrix [8-10]:
1. The matrix function Sa\al(β) must be analytic in the physical strip 0 ^ 3mβ :g π.

We assume that there are no bound states.
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2. Unitarity condition

3. Crossing symmetry

Sh

a\
h

a](in - β ) = CaιCSfal(β)Cdb> . (2.7)

Here Cat is the charge conjugation matrix and

C α έ C
6 c = δc

a .

4. Yang-Baxter equation:

>^(ft - ft)^(ft ~ ft)^3(ft ~ ft)

= Sc

a\% (ft ~ ft)%% (ft - ft )S*'£ (ft - ft). (2.8)

To describe a space of states in a massive integrable model, it is convenient to
introduce the formal Zamolodchikov-Faddeev algebra [10, 24]. It is generated by
the operators Va{β) which satisfy the commutation relation

^,(ft)^2(ft) - ^;*2κft - ft)ίVft)^(ft). (2.9)

Asymptotic states (2.1) form the space of representation of the Zamolodchikov-
Faddeev algebra. We will denote it as πA and

Aa(β) = πA[Va(β)] .

One can interpret Aa(β) as particle creation operators, so

\Aa{(pι)...AaιXpn))ouX =Aa](β\)...Aan(βn)\vsic) ,

\Aaχ(pι)...Aan(pn))in =Aan(βn)...Aa](βφac} , (2.10)

where |vac) is the vacuum state (the state without any particle) and β\ < β2 <

•- < βn

The conjugate operators annihilate the vacuum state

[Aa(β)]+\vac)=0. (2.11)

They satisfy the commutation relations:

[Λα i(ft)]+Λ f l 2(ft) = Ab2(β2)Sa

bl
b

a

2

2(β2 - ft )[Ahl(ft)]+ +2π8%δ(βi - ft). (2.12)

Equation (2.12) specifies the structure of the Hubert space on πA

Another important class of operators acting in the space πA is an infinite set
{Is} of local commutative integrals of motion (IM) [6, 7]. The index s denotes the
spin of the conserved charge Is. The asymptotic states (2.10) diagonalise local IM

7,| vac) = 0 ,

n

ls\Aaι(pι).. Aan(pn))mi0Ut = y(s)Σ Qxp(βks)\Aa[(pι).. .Aan(pn))m,out , (2.13)

where y^ are some numbers. It is convenient to consider the generating function
I (a) such that
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/(α) = ]Γ/_,exp(αs),exp(α) -> 0 . (2.14)

The formula (2.13) means that the generating function (2.14) obeys the following
commutation relation with operators Aa(β):

[I(alAa(β)] = dxlns(a-β)Aa(β). (2.15)

The scalar function s(a) is an important characteristic of an integrable model.
Before ending this subsection, I wish to point out that the formal

Zamolodehikov-Faddeev algebra (2.9) may have other interesting types of repre-
sentations when relation (2.11) is not satisfied and the operators π[Va(β)] do not
admit such a simple physical meaning as Aa(β) [34].

2.2. The Factorized Scattering Theories for SU(2) TM and SGM. Now, we
shall consider examples of FST which contain only two particles Aa(a = ±1) in
their spectrum.

Suppose that the formal Zamolodehikov-Faddeev algebra (2.9) is defined by the
two particle S-matrix with the following non-trivial elements [10, 45]

Stt(β) = SΙI(β) = S(β),

β= SI+(β) = S(β)-

iπ

iπ-β'

SΙI(β) = Sll(β) = S(β)-^-: , (2.16)
Ίπ - β '

here

The S-matrix (2.16) satisfies all the axioms of FST, if the charge conjugation matrix
Cab is given by

Cab = δa+b,0 (2.18)

One can define an action of the Lie algebra 57(2) on the Hubert space πA corre-
sponding to (2.16) as follows [46, 47];

1. We assume that the vacuum state |vac) is a sl{l) singlet:

(^Ivac) -β° | vac) = 0 , (2.19)

where
Q±=πA[X±\ Q° =

and {X±,H} is the Cartan-Weyl basis of sl(2):

[X+,X~] = Λ/2H . (2.20)

2. One particle states \Aa(β)) are identified with the fundamental representation
of the Lie algebra sl(2):
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Q°\Aa(β)) = ^\Mβ))

Q±\A±(β))=0,

Q±\Aτ{β)) = \A±(β)) (2.21)

3. The ̂ -particle in-states and out-states (2.10) are regarded respectively as the
spaces i^n 0 0 i^\ and fi<8) ^fw. Actions of the generators β ± ,βo are
specified by the coproduct:

A(H)= 1 0 / / + / / 0 1 , (2.22)

Δ{X±)=X± 0 1-1 ®X± . (2.23)

It is easy to check that this prescription introduces a structure of sl{2) representation
on the space π^.

Precisely speaking, the unusual choice of the sign in the coproduct (2.23) implies
that we are considering the representation of the quantum algebra U-\(sl(2)). Let
us discuss the reason of our choice. First of all, note that the in- and out-spaces
i^2 ® ̂ i , ^ i 0 ^ 2 are isomorphic, and that the two particles S-matrix defines the
operator

S\r1^rx-^rx®r1. (224)

Using the explicit form of the S-matrix (2.16), one can represent this operator in
the form:

s = s(β){Pi + J^βpV' (2 25)

where P\ and Po are projectors on three and one dimensional £/_i(s7(2))-irreducible
components in the tensor product f 2 ® ̂ Ί As it follows from (2.25), S commutes
with charges Q±,Q° (2.19) and they are integrals of motion.

Thus the Quantum Field Theory corresponding to FST (2.16) contains conserved
currents J™, {m — 0, ±; μ = x, ί} and

+00

Q°= JdxJ?(x,t),
— OO

Q±=TdxJ±(x,t). (2.26)
— OO

One can expect that they are local operators in the theory. It means that commutators

vanish on the spacelike Minkowski interval (xμ — yμ)2 < 0. Moreover, from the
formulas for the coproduct (2.22), (2.23) we conjecture that the current J® is a
local operator and currents J^ are semilocal ones with respect the "elementary"
field Ψa(x)- The "elementary" field Ψa(x) means any field with nonzero matrix
elements between vacuum and one particle states.

Let me recall here the definition of a mutual locality index. Consider the operator
product
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As a function of the variable x it can have nontrivial monodromic properties. Sup-
pose

= cxp(2πiω(A,B))A(xμ)B(yμ) . (2.27)

Here the symbol s#c means the analytical continuation along a counterclockwise
contour C around the point yμ. Then the number ω(A,B) is the mutual locality
index for the fields A and B. In the present case

/ , (2.28)

It is well known that FST (2.16) corresponds to SU(2) TM, which can be
defined by the Lagrangian [25-27]

+ OC

L= J dx(iφy"dμφ - gJpl)). (2.29)
— oo

The fields ψ = {φ^} are Dirac spinors with the spinor index {/ =1,2} and isotopic
index {a = 1,2} and the currents J™(x) are equal to

J^=lφμ(σι±iσ2)φ. (2.30)

Here the Pauli matrices σk,{k = 1,2,3} act on isotopic indices of spinors.
On the classical level the theory (2.29) is conformally invariant. However, its

quantum spectrum contains a free massless boson and two massive kinks Aa forming
the fundamental multiplet of the isotopic group SU(2). The two-particles S-matrix
for the kinks is determined by (2.16).

Another non-trivial example of FST is connected with SGM [28, 29], whose
Lagrangian is given by

+oo

= J
(2.31)

If the parameter

is more than one, the quantum spectrum of SGM contains only solitons Aa possess-
ing an internal degree of freedom a = ±\ (soliton-antisoliton). Their two-particle
S-matrix was found in the pioneering work [8]. It reads explicitly

Stt(β) = SΙI(β) = S(β),

sinhl,
= S(β) , i

^smh

sinh ψ
S~+(β) = S±~(β) = S(β) , 1 . (2.33)

sinh —J-
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Here

{ 2 3 4 )
( }

Rp(β) =
4- #
+ πξ

The charge conjugation matrix Cab for this FST has the form (2.18).
The Hubert space of asymptotic states for SGM possesses a symmetry described

by the quantum algebra Uq{sl(2)) [48, 49, 47] with

q = exp ί zπ—-— ) . (2.35)

To fix the notation let me recall that the algebra Uq(sl(2)) is generated by operators
E±,H with the commutation relations [50, 51]:

\JL 1, l~j I — i V -̂Xv ,

[E+,E~] — —: (2.36)
q — q

and coproduct

A(H)= 1 0 i f + if 0 1 ,

) = q-"τH®E± +E±®qyTH . (2.37)

The standard realization of L^(1s
r/(2))-invariance in SGM implies that we have

to identify the vectors

where

Λ(0) = exp (a^Λ Aa(β), (2.38)

with the basis of the fundamental representation of Uq(sl(2)). The commutation
relations for the operators (2.38) are defined by the matrix

SC

a

d

b(β) = exp ((a~ξ)β) Sat(β) (2.39)

One can prove that the operator S (2.24) corresponding to the matrix (2.39) com-
mutes with the action of the charges

Q° = πA[H]. (2.40)

It is necessary to point out that there is an essential difference between SU(2) TM
and SGM. The currents J^ corresponding to the conserved charges Q± are not local
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operators in SGM. At the same time the current J® generating the U( 1 )-charge Q°
is a local one. It is also mutually local with respect to the "elementary" field.

The structures of local commutative IM Is are identical for SU(2) TM and SGM.
The function s{oc) (2.15) was found in the work [52]

S(OL)= coth I . (2.41)

As it follows from this formula, the spins of the local commutative IM are s — 1
(mod 2). Note that the first ones

are the momentum and energy charges.

2.3. Form-Factors. In many cases the FST data are sufficient to reconstruct matrix
elements

Faltiβu- • • β'Δβu- -β«)= ouMb'°(β'm) •

• •.Aan(βn))m, (2.42)

of an hermitian local operator O{x) between asymptotic states [17, 22]. It is con-
venient to introduce the following functions, called form-factors

Fa^aΛβu -βn) = (vac|O(0)|>ίβl (βl % Mn{βn))m , (2.43)

which are matrix elements of an operator O(x) at the origin between an n-particle
in-state and the vacuum state. Crossing symmetry implies that a general matrix
element (2.42) is obtained by an analytical continuation of (2.43), and equals [17]

Γ a x . . . a n \ P \ τ ' P m l P l ' - P n ) ~ ^ •••^ Γ a ] . . . a n c ι . . . c m

x(βu...βn,β[+iπ,...βf

m + iπ). (2.44)

Thus, to describe the local operator one should present a set of tensor valued func-
tions (2.43). Their reconstruction is based on the following system of axioms [22,
23, 16]:

Axioms

1. Function Faι_an(β\9...βn) is analytic in variables βυ = βi — βj inside the
strip 0 < 3mβ < 2π except for simple poles. It becomes the physical matrix
elements (2.43) when all βt are real and ordered as follows:

βl < β2 < ' < βn

2. Relativίstic invarίance demands that form-factors satisfy the equation

Faχ...aΛβι + θ,βi + 0,...βn + θ) = exp(ΘS(O))Fa]..Mn(βu...βn), (2.45)

where s(O) is the spin of the local operator 0{x).

3. Form-factors should satisfy the symmetry property {Watson's theorem)
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Faί...a/+ιa,...aa(βl> • βj + l>βj> • • • βn)

= &%i\(βj - βj+l)Faι...c,c,+ ι,...an(βu...βl,βj+U.--βn) •

(2.46)

4. Form-factors satisfy the equation

Faι...an(βu.. βn-uβn+2πi)

= exp(2πιω(0, Ψ))Faπav..an__ι(βn,βι,...βn-l), (2.47)

where the shift by 2πi is understood as an analytical continuation and the number
ω(O, Ψ) means the mutual locality index (2.27) for the operator O(x) and the
"elementary" field Ψ,

5. Form-factors Fa]..Mn(β\,...βn) being considered as a function of βn have
simple poles at the points βn = β} + in with the following residues:

Fa'ά'....al Λβl>-' βj,- βn-l)

iFaι..,n(βu...βn)=Cana, * "βl_βj_πi

βn-2 - β,)

t

X 5 f l / + i a, (βj + i-βj)

- exp(2π/ω(O, Ψ)^\{βj - j?O

x ...SΪ'lfciβi - βi-itf^iβj - ft -i)

χ 4 ί ! - 4 : !] + ••• ( 2 4 8 )

In the absence of bound states these poles are the only singularities of
Fa]...an(βu-..βn) in the strip 0 < Zmβn < 2π for real βu...βn-X.

It was shown [21, 22] that the operators O(x) defined by the matrix elements
(2.43) satisfy locality relations provided the form-factors satisfy 1-5.

Once the form factors of the theory are known, correlation functions of local
operators can be written as an infinite series over multi-particle intermediate states.
For instance, the two point function of an operator O(x) for the spacelike Minkowski
interval (x — y)2 = —r2 is given by

(O(x)O(y)) =

Σ J \'n .:nFaι...aιXβι,...βn)Fa»^(βn,...βι)ew(-rmΣ™shβk) .(2.49)
«=o n\{zπ) k=ι

All the integrals are non-singular and convergent. The series is expected to be
convergent as well. Similar expressions can be derived for multi-point correlators.
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3. Form-Factors Reconstruction

The system of form-factors axioms (1-5) is a complicated Riemann-Hilbert prob-
lem. Its solution can be based on the following idea.

Let us assume that we have the representation πz of the formal Zamolodchikov-
Faddeev algebra, which satisfies the requirements;

1. In the space πz an action of the operators Za(β) — πz[Va(β)] is defined

Za(βι)Zb(β2) = Sc

aί{βx - β2)Zd(β2)Zc(βι). (3.1)

2. The singular part of the operator product

Za(β2)Zb(βi),

being considered as a function of the complex variable β2 for real β\ in the upper
half plane 3 mβ2 ^ 0, contains only simple pole with the residue

iZa(β2)Zb(βι) = ηr-^ : + . (3.2)
β2 - βi - πi

It means that there is only one singularity (3.2) depending on the real parameter
βι for a general matrix element

(u\Za(β2)Zb(βι)\υ)9\u)9\υ) Gπz .

Of course, this matrix element may also have other singularities for 3mβ2 ^ 0, but
their positions are defined by the vectors \u) and \υ) only.

3. There is a unique G-invariant2 vector |0)(vacuum state) in the space %χ such
that the two point function

Gab(βuβ2) = (O|Zβ(j82)Za(j8i)|O> , (3.3)

satisfies the following constraints:
a. It depends only on the difference β — β\ — β2.
b. As a function of the complex variable /?, it is analytic in the lower half plane
β fg 0 except for one simple pole (3.2).
c. It is a bounded function for β —> oo,3raj8 ^ 03

Gab{β) = 0(l),j8 -> oo&mβ ^ 0 ) . (3.4)

The representation πz will be completely specified if all vacuum matrix elements

Gaχ...an{βu...βn)= (0\Zan{βn)...Zaχ(βφ) (3.5)

are defined. The problem of their reconstruction is close to the Riemann-Hilbert
problem (1-5).

To clarify this connection let us suppose that the following additional structures
are present in the space πχ\

1. The operator K, which obeys the commutation relation

Za(β + θ) = exp(-ΘK)Za(β) exp(ΘK). (3.6)

2 Recall that G is a finite dimensional symmetry group of the model
3 On this requirement see the comment at the end of the next section
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2. The map
O -> Λ(O) e End[πz] (3.7)

from the space of local operators of the model under investigation to the endomor-
phism algebra of π^, which satisfies the conditions:

Λ(O)Za(β) = exp(2π/ω(O, Ψ))Za(β)Λ(O),

exp(ΘK)Λ(O)exp(-ΘK) = exp(ΘS(O))Λ(O), (3.8)

where the number ω(O, Ψ) coincides with the mutual locality index (2.27) of the
"elementary" field Ψ(x) and the local operator O(x) with the spin s(O).

Using the cyclic properties of a matrix trace and the relations (3.1), (3.2), (3.8)
it is easy to verify that the function

Fa]...a,χβu-.-βn) = Trπz[exp(2π//ί)/l(O)Zα,I(^)...Zα](JS1)] (3.9)

formally satisfy the axioms (2.45)-(2.48). For example, let us get the formula
(2.48). To do this, it is convenient to consider the more general trace than (3.9):

Trπz[exp(/(2π + δ)K)Λ(O)Zan(βn)...Za] (βx)] .

As a function of βn, this trace has poles at the points βn = βj -f in and βn =
βj + i(π + δ)J = 1,...«— 1. Their residues are defined by the operator decompo-
sition (3.2) and the commutation relation (3.1). After taking the limit δ —» 0, we
obtain (2.48).

Certainly our observation is not the rigorous method to solve the Riemann-
Hilbert problem (1-5), since we have no proof that the trace (3.9) exists and
satisfies axiom 1. Nevertheless, it can be substantiated in some cases. In this paper
it will be demonstrated for SU(2) TM and SGM.

At the conclusion of this section let us briefly argue a physical interpretation of
the space %z [30]. First of all, note that the space %A is associated with an infinite
line t = const. The formula (3.9) implies that %A is obtained by "gluing" two copies
of πz So we can associate the space πχ with half infinite line. In other words one
should consider πχ as a space of angular quantization of a massive integrable model
[53, 54].

4. Two Point Vacuum Averages

To describe the representation πχ of the Zamolodchickov-Faddeev algebra for
SU{2) TM and SGM we have to reconstruct all vacuum averages

Gaι...an(βu --βn)= (0\Zaι,(βn)--.Zaι(βl)\0) .

Due to the unbroken U( 1 )-symmetry present in the models under investigation, they
are non-trivial only for even n. In this section the two point functions

Gab(βι - βi) = (0\Za(β2)Zh(βι)\0) (4.1)

will be found.
First, let us consider the case of ££/(2) TM. The commutation relation (3.1)

means that (4.1) obeys the functional equation:
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Gab(-β) = SC

a

d

b(β)Gdc(β) .

It is convenient to introduce the function

i
2π

r(k

195

(4.2)

(4.3)

where k is an arbitrary number. It satisfies the following:
a. It is an analytical function the lower half plan 3mβ ^ 0;
b. If β-^oo(3mβ ^ 0), then

c. The function g(β) obeys the functional equation:

As it follows from (2.25), the general solution of Eq. (4.2) is given by:

g(β) {

g(-iπ)

1 ± 0

2 2 U

2 2 U
- 1

1 \
2 2
a b_
2 2

B(β)

(4.4)

(4.5)

(4.6)

Here A(β) and are arbitrary even functions, and the symbol

7i n J

m\ mi m

denotes Clebsch-Gordan coefficient for the quantum universal enveloping algebra
Uq(sl(2)) [55]4, in particular

\ \ 0

f I o
- 1

V2 '
1 x- 1
2 2 X

a b _ι I
2 2 = t l

1 i
2 2

2 2

- 1

(4.7)
- 1

Due to the [/_i(s/(2))-invariance of the vacuum state |0), the function B(β)
(4.6) must be zero,

B(β) Ξ 0 . (4.8)

At the same time, the analyticity condition implies that the even function A(β) is
analytic in the whole complex plane and

In this work the normalization of Clebsh-Gordan coefficients is chosen as in Ref. [55]
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A(-iπ) = iV2 .

Moreover, the boundary condition (3.4) provides the unique reconstruction of this
function:

A(β) ΞΞ iy/2 . (4.9)

We should note at this point that the boundary condition (3.4) for the two point
function Gat,(β) is closely connected with the unbroken symmetry condition. Indeed
if the function B(β) (4.6) is non-zero, we could not impose (3.4).

In this way, the two point function for SU(2) TM is given by

iδa+bto

^j-rr (4 10)

One can find the two point function for SGM in a similar fashion. I have to make
the following comment only: To apply the boundary condition (3.4) one has to
use the basis of the Zamolodchikov-Faddeev operators which conforms to the G-
invariance of the theory. So, in the case of SGM we have to consider the following
simple redefinition of the Zamolodchikov-Faddeev operators (compare with (2.38)):

Za{β) = exp {^j Za(β). (4.11)

Then the function

Gab(β) = eiφ[-£}Gab(β) (4.12)

will satisfy (3.4). Here is its explicit form

where

g(β) = κ

r
The functions Rp(β) are defined by Eq. (2.34) and K is an arbitrary constant.

5. Bosonizatioπ Technique for Massive Integrable Models

In the following I shall have to introduce a lot of new functions and constants. Their
explicit expressions are complicated enough and essentially depend on a model. In
order to avoid bulky formulas I will try to use unique symbolic notations for these
objects and point out their universal properties. One can find the explicit forms of
the introduced functions and constants in Appendices 2, 3.

5.1. Free Boson Field. Consider the formal operator-valued function φ(β) which
obeys the commutation relation for real β:

(5.1)
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In order to construct the representation of (5.1) it is necessary to specify the two
point correlation function

(0\φ(βι)φ(β2)\0) = -lng(β2-βι)). (5.2)

The compatibility of (5.2) and (5.1) means that the functions g(β),S(β) are con-
nected by the relation:

( 5 3 )

We will demand that g{β) satisfies also the proper analyticity and boundary con-
ditions, which are the natural generalization of properties of the free boson Green
function in CFT.

a. It is an analytical function without zeroes and poles in the lower half plane
3 mβ ^ 0 except a simple zero at β = 0.

b. If β-*oo(3mβ ^ 0), then

Equation (5.3) supplemented with the conditions (a-b) is the simplest Riemann-
Hilbert problem. It has the unique solution (4.3).

Now, let us introduce the field

φ(β) = <t>(β + i\) + φ(β~ iψ) (5-4)

It should be considered as a more fundamental object than the field φ(β), since
it has more simple and universal properties. For example, using the unitarity and
crossing symmetry equations

S(β)S(-β) = 1 ,

j ( 5 5)

one can get the commutation relations for this field

ίkβθ,kβ2)l = lnβ

β

2

2~_β

β^+fπ, (5.6)

ίΦ(βι),Φ(βi)] = ^ l ^ β 2 ^ β ' • (5.7)

The two point functions

(010(^)^2)10) = \nw(β2 - βx), (5.8)

(0|φ(jβi)φ(β2)|0) = -\ng(β2- βι) (5.9)

also have simple forms:

w(β) = k~ι./n

2π.πΛ,

g(β) = -r™4π2 • ( 5 1 0 )
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Notice that the functions g(β),g(β),w(β) are connected as follows:

(5.11)

5.2. Elementary Vertex Operators. Consider the elementary vertex operators

V(β) = Qxp(iφ(β)) = (g(0))ϊ : sxp(iφ(β) : ,

V(β) = exp(-iφ(β)) = (g(0))τ : exp(-/φ(β)) : , (5.12)

here the dots implies the normal ordering of exponents.5 The function g(β) and
g(β) have simple zeroes when β = 0, hence the vertex operators (5.12) should
be regularized. We shall do it in a similar fashion as in 2D CFT. It means that
regularized values of the functions g(β) and g(β) for β = 0 are the limits

0(O)reg = l i m ^ = p 2 . (5.13)

The correlations functions (5.2), (5.8), (5.9) define expressions of the operator
products:

V(βι)V(β2) = ρ2g(β2 -βι) V(βι)V(βi) : ,

V(βιW(β2) - pβw(β2 - β γ ) : V(β{)V(β2) : ,

V{βx)V{β2) = p2g{β2 -βι): V{βγ)V{β2) : . (5.14)

5.5. "Screening Charge." In the space of representation πz of the algebra (5.1) (it
will be accurately described later) one can introduce the operator $£

(5.15)

where η is an irrelevant constant. The contour of integration C is specified as
follows:

First of all, we assume that matrix elements

(u\V(y)\v)

are meromoiphic functions decreasing infinitely faster than y~x for all vectors
u),\v) G %z Then the contour C goes from 9ΐe y = —oo to %t y — +oo. It lies

above all singularities whose positions depend on the vector \v), but below singu-
larities depending on \u).

To illustrate this definition let us calculate the following matrix elements of the
operator 9£\

Since the two point functions are c-numbers Wick theorem can be applied
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J(βι - β2) = (0\V(β2WV(βi)\0) ,
Mβi - β2) = (o\v(β2)V(βιw\o),

From the formula (5.14) we immediately obtain the integral representation for these
matrix elements

- β2) = rxp2pg(β\ - βi)Jp-^(y - βzMβr - y),

~i ? rdy

Mβ\ - βi) = n p pg(β\ - βi)\ ^-^{y - ft My - β\),

Mβi - βi) = η~lp2βg(βi - βi)J P~w{β2 - y)w(βι - y) . (5.17)
c2 ^ π

In the case at hand the contours of integration are specified by the prescription (see
formula (5.10)):

The contour C lies above the pole y = β\ + if, but below y — β2 — if
The contour C\ lies below the poles y — β\>2 — if;
The contour C2 lies above the poles y = β\>2 + if.
The functions (5.17) are given by:

Jx(β)=J2(β) = 0. (5.18)

It is convenient to chose the parameter f/ such that —/- = 1, so

(5-19)

Note that there is the simple relation between the functions (4.10) and (5.18),

Gab(β) = iJ(β)δab . (5.20)

5.4. Free field representation for the Zamolodchikov-Faddeev algebra of SU(2)
TM. Define the operators Za(β) for SU(2) TM by the formulas:

Z+(β) = V(β),

Z^(β) =i(%V(β) + V(β)X). (5.21)

The following propositions describe commutation relations and analytical properties
ofZa(β).

Proposition 1. The operators (5.21) satisfy the Zamolodchikov-Faddeev commu-
tation relations (3.1).

Proposition 2. The singular part of the operator product

Za(β2)Zb(βl)
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considered as a function of the complex variable β2 for real β\ in the upper half
plane 3mβ2 ^ 0 contains only one simple pole with residue equals \Qab-

We have proved these propositions for vacuum matrix elements in the last sub-
section. The main steps of the general proof can be found in Appendix 1.

The formulas (5.21) define the integral representation for n-point correlation
functions (3.5) for SU(2) TM. They have simple group theoretic meaning. Indeed,
the operators Za(β) can be regarded as the basis of the fundamental representation
of U-ι(sl(2)) (2.20). If we identify 9£ with the πz[X~], it is easy to recognize the
coproduct (2.23) in the definition (5.21). In the next section the generators πz[X+]
and πz[H] will be constructed.

6. Fock Realization of the Representation πz

In this section it will be shown that the space πz can be represented in the form:

πz = \imπε

z. (6.1)

Here the space π | admits a decomposition into a direct sum of Fock modules and ε
is a parameter of the ultraviolet regularization. In the case of SU(2) TM the below
construction is equivalent to the Frenkel-Jing bosonization of the quantum affine
algebra Uq(sϊ(2)) [37, 35].

6.1. Oscillator Decomposition. Trying to get an oscillator decomposition for the
field φ(β) (5.1), we run into the well known problem. The function \nS(β) does
not tend to zero when β —> ±oo. So, the commutation relation (5.1) is not com-
patible with the decreasing boundary condition for the field φ(β) and it cannot be
decomposed into a Fourier integral.

A possible way out is to consider the field φε(β) which is defined on the finite
interval

- : s , i : (6.2,

and satisfies the commutation relations:

[ φ ι ( β λ ) , φ t ( β i ) ] = I n S ε ( β 2 - β t ) . (6.3)

The function Sε(β) must tend to S(β) when ε —» 0 for finite β and

Sε (--) = S(-oo) = exp(iπs). (6.4)

Then the field φε(β) admits the following decomposition

ΦΓ(β), (6.5)
where the field φfc(β) is periodic in the interval (6.2). Zero modes P,Q obey the
canonical commutation relation

[P,Q] = \ (6.6)

and commute with the oscillator part φ°ε

sc(β). One should consider the operator
φ(β) as a properly regularized limit of φε(β).
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Now let us apply this simple idea to our problem. In the present case the
regularization (6.2) has a clear physical meaning. Indeed we regard the parameter
β as rapidity of physical excitations in massive models, so (6.2) is the ultraviolet
cut-off.

Introduce the following expansion:

ΦAβ) = VS(Q - eβP) + Σ 7 - ^ expίime/0 . (6.7)

I wish to emphasize that this representation for the field φε(β) will be used in the
SGM model also. In the case of SU(2) TM we have

s = \ , (6.8)

and the oscillator modes am satisfy the commutation relation

sinh zψ- sinh πmε π\m\ε _
[am,an] = exp — — δm+nβ . (6.9)

m 1

The operator (6.7) commutes as (6.3) and the function Sε obeys the necessary
requirements. It can be represented in the form:

S£(β) = cxp(-iεsβ)^^- . (6.10)

The function gε(β) defines the commutator of the positive and negative frequency
parts φf(β) of the field φε(β)

— exp(-imεβ)\ . (6.11)gε(β) = exp

The sum (6.11) converges only for 3mβ < 0. It can be analytically continued to
the whole complex plane by the following:

9e(β) = [1 - exp(-2πε)]i ^ V . x ' ( 6 1 2 )
IE)

here

Γε(x) = [1 - exp(-2πε)]1^+Π ] exp(2πεk)
κ J F V J /Ji 1 - exp(-2πε(x + k - 1)) V }

In the limit ε —> 0 the "quantum" Γ-function (6.13) becomes the usual one and the
functions Sε(β),gε(β) tend to S(β),g(β). Note that the constant k in the formula
(4.3) is connected with the ultraviolet regularization of the theory. So all the final
formulas should not depend on it.

Let us consider regularized versions of the operators introduced in the last
section,
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Vε(β) =

Vε(β) = exp(-/φε(jS)),

The following proposition explains our choice of the regularization.

Proposition 3. The operators

Zε+(β) = exp (^pj Vε(β),

[exp ™%εVε(β) + exp (-™) Fε(/ί)^] , (6.15)

obey the Zamolodchikov-Faddeev commutation relations (3.1) with the S-matrίx:

sχi(β) = szi(β) = sε(β),

s i n h L (6.16):(ιπ-p
2

77ze operator product
Zεa(βi)Zεb(βι)

has a simple pole at the point β2 = β\ + in. If the constant ηε reads

i

ηε = — sinh — , (6.17)

then the residue is given by

iZεa{βi)Zεb{βx) = R

 δa+

R

b'° . + . (6.18)
β2 - βx - iπ

6.2. Second "Screening Charge" As discussed already, we regard the operator 3£
as the generator πz[X~] of the quantum algebra U-\(sl(2)). Let us now define the
actions of other generators. In order to do this, we have to introduce a set of new
fields and vertex operators. First of all, consider the fields

(6.19)

In the case of SU(2) TM the parameter s' is given by
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s'=s=\ (6.20)

and the normal modes a'm satisfy the commutation relation:

sinh ^~ sinh πmε ( πl/wlελ
[a'mX] = 2- exp — L A - <5m+»,o . (6.21)

m \ 2 J
They are simply connected with the oscillators am (6.9),

, π|w|ε / π|m|ελ
am e x P —4— = am exp ( — 1 . (6.22)

Define the operators Vε

f(a), Vε{a) and 3Cι

ε by analogy with (6.14),

F (OC) = exp(ί#(α)),

(6.23)

By working out the operator product expansion, one may check that 2£c, 2£f

ε and
P satisfy the commutation relations:

As follows from the explicit form of Zm(β) (6.15), the coproduct for the quantum
algebra (6.24) reads

A(P)= 1 Φ P + P ® 1 ,

/ π \
Δ{S£ε) = ^ ε 0 1 - exp -~Pπε U

) = ^ 0 exp ί ^ ^ π ε j - 1 0 3ί"ε . (6.25)

If we conjecture the identification

%' = πz[X+l % = πz[X~l P = πz[Hl (6.26)

then the commutation relations (6.24) and the coproduct (6.25) become (2.20),
(2.22), (2.23) in the limit ε -> 0.

6.3. Fock Decomposition for SU(2) TM. At the conclusion of this section let us
discuss a structure of the regularized space π | for SU(2) TM. Define the highest
vector \p) by the system of equations
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am\p) =0, m > 0 ,

P\p) = p\p), (6.27)

where p is some number. Fock space Fp is generated by all possible vectors:

a - m ] . . . a - m n \ p ) , m u . . . m n > 0 , (6.28)

and it is an irreducible representation of the algebra (5.1). Any representation π of
the universal enveloping algebra generated by operators am,P,Q can be decomposed
into a direct sum of Fock spaces

0p. (6.29)

Here the parameter p specifies components in the decomposition.
To describe the decomposition of the π | , we have to find admissible values of

the parameter p in the direct sum (6.29). First of all, let us determine the value
po for the vacuum state |0). From the definition of πz, its vacuum vector must
be ί/_i(s/(2))-invariant. It is natural to assume that the vacuum state for finite ε
satisfies the system of equations:

= P | 0 ) = 0 . (6.30)

The highest vector |;?o} with the eigenvalue po = 0 is the unique solution of (6.30).
1

V2-
The operators Zm(β) (6.15) change an eigenvalue p to /? ± -4=. Hence the space

π | is represented by the direct sum:

•j_. (6.31)
lez y/ϊ

In the space (6.31) the action of the following operator is well defined:

Kz = iεHc - i^εP (6-32)

Here

H = P

C 2 J ^ f
It is easy to check that the operator Kε generates an infinitesimal shift of the variable
β for Zm(β). Hence we can consider the operator K (3.6) acting in the space πχ
as the limit of K& when ε —» 0.

7. Additional Structures in the Space πz

In this section I shall introduce all operators which are necessary for reconstruc-
tion of form-factors in SU(2) TM. There are analogical structures in SGM. So,
statements will be formulated in universal forms.

7.1. Principle Theorem. Let us define the following operators in the space πχ.
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Z'_{μ) = i{ΘC!V'(μ) + V'(<*)&') . (7.1)

Principal Theorem summarizes properties of the algebra generated by the operators
Za(β)X(a).

Theorem

1. The operators Za{β),Z'a(a) satisfy the commutation relations:

Za{βι)Zb{β2) = Sc

a

d

b{βγ - β2)Zd(β2)Zc(βι),

Za(β)Z'b(a) = abtm (^ + i ^ - λ Z'b(a)Za(β). (7.2)

In the case of SU{2) TM the matrix Sc

af(β) is given by (2.16) and

Rc

at(a) = -S%(-ct). (7.3)

2. The singular part of the operator product

Za(β2)Zb(βι)

considered as a function of the complex variable β2 for real β\ in the upper half
plane ^smβ2 ΞS 0, contains only one simple pole with the residue

iZa(β2)Zb(βι) = τ - ^ : + • . (7.4)
βi - β\ - nι

3. The operator product
Z'a(*2)Z'b{*x)

considered as a function of the complex variable 0C2 for real OL\ is regular for
^ — π and

CabZ
f

a(a + iπ)Zf

b(a) = i,

Z > - iπ)Z'b{*) = iCab . (7.5)

4. The following combination

2 π J-Z'a(z)Zb(β)
1 * 2π

considered as a function of the variable β is regular in the whole complex plane.
5. The commutation relations (7.2) and operator products (7.4), (7.5) are con-

sistent with the following conjugation conditions:

[Za{β)γ = CabZb(β + iπ),3mβ = 0

ilZf

a(oc)]+ = CabZf

b(a + /π), 3/wα - 0 . (7.6)
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The proof of the theorem is close to the proofs of Propositions 1, 2 from
Sect. 5.4. It is based on explicit expressions for operator products of the vertices

V(β), ), Ϋ\δ).

To get them, it is necessary to apply the oscillator representation from Sect. 6
and then consider the limit ε —> 0. The result of the calculations is presented in
Appendix 2.

7.2. Symmetry Algebra of the Space of Local Operators. As it follows from dis-
cussion in Sect. 3, the problem of a description of the space of local operators is
reduced to finding operators Λ(O) G End[πz] satisfying (3.8). The operators Z'Jjx)
allow us to solve this problem as follows.

In the case of SU(2) TM let us introduce the set of operators:

(7.7)

(7.8)Λm(oc) = -
1 I 1
2 2 i

- - m
2 2 m

Note that due to formula (7.5) the operators (7.7), (7.8) can be represented in the
equivalent forms:

Γ(α) = l-CabZ'a (α - i | ) daZ'b (α 4- * | ) + const,

1 i 1
2 2 l

f I *
where the irrelevant constant reads

const = — ( 1 - 4 In 2).
2π

We shall need also the bosonic forms of Λm(a),

(7.9)

(7.10)

(7.11)

Here the new vertex operator

V (α) - exp(iφ (α)) . (7.12)

is introduced.
The essential properties of the operators Γ(oc), Λm(μ) are direct consequences of

Principle Theorem:
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Proposition 4.

1. The operators T(a),Λm(oc) generate the quadratic algebra:

~ CC2)(Λm((Xι ) + Λm(cC2))

-a2), (7.13)

[Λm(a{%T(GC2)]= -^mm2m](ccι - cc2)Λmi(μ2)Amχ

(7.14)

- α 2 ) . (7.15)

explicit expressions for the structure functions έ%, J / , ^ , ^ z/2
Appendix 3.

2. The operators T(a),Λm(a) obey the following commutation relations with

Za(β):

Λm(a)Za(β) = (-l)mZa(β)Λm(a), (7.16)

[Γ(α),Zβ(j8)] - 3αlnj(α - β)Za(β), (7.17)

= coth - .

3. The combination
(oc-β)Λm(oc)Za(β) (7.18)

considered as a function of the variable β is a regular one in the whole complex
plane.

It is useful to compare (7.16) with the formula (3.8). The operators Λm(μ)
satisfy the proper commutation relations with Za(β). In the next section it will be
explained that they define generating functions for form-factors. Here I wish to note
only that the sign factor in the formula (7.16) is connected with the mutual locality
indices (2.28).

To clarify the meaning of the operator Γ(α) let us return to the general con-
sideration from Sect. 3. Note that if O(x) is a local operator then its commutators
with IM (2.13)

O(x9s) = [O(x)9Is] (7.19)

are also local operators. The generating function for the form-factors of (7.19) reads

f a f i ( β u . . . β n ) , (7.20)
k=\

where the function s(α) is defined by Eq. (2.15) and Fa]mmman(β\9... βn) is the form-
factor of the operator O(x). Suppose that the function Faι_an(β\y...βn) can be
represented by the formula (3.9) with a some Λ(O) e End[πz]. Then the generating
function (7.20) is also given by the trace

Faι...a,M\βu...βn) = Ίxπz[exv{2πiK)Λ{O,a.)Zan(βn)...Zaχ{βx)}, (7.21)
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where
Λ(O9 a) = Λ(O)T(a) - T(a + 2iπ)Λ(O), (7.22)

and the operator Γ(α) satisfies Eq. (7.17).
Thus the algebra (7.13)—(7.15) determines a structue of the space of local op-

erators in the theory.

8. Trace Calculations

In this section we will get the integral representation for form-factors in SU(2) TM.
Consider the following functions:

= Ίτπz[eχip(2πiK)Λmk(oίk)...Am,(ui)Za,,(βn)---Za,(βi)] . (8.1)

Due to the boson representation for the operators Za(β) and Λm(α), they are given
by combinations of multiple contour integrals. The integrands are functions like

R(aι,...ak\δι,...δp\βι,...βn\γι,...γr)

= Tΐπz[cxp(2πiK)V(ak)... f (α, )V(δp)... V(δ, )V(βn)... V{βλ )V(γr)... V(7l)].

(8.2)

Here {<5j}, {yy} are variables of integrations. To treat the traces (8.2) it is useful to
consider the space πz as the limit (6.1),

Λ(αi,...) - limTrπε[exp(2π«:e)Fe(α ik),...] (8.3)
ε—>0 z

According to the formula (6.31) the trace over π | is a product of the traces over
Fock module F(Tr^) and the space of zero modes (Tro). First, let us consider the
second one,

Tr0[exp(2πtf: f i)Fe(αO...] = ϊ>n-ur+iP-uφf \ Σβj ~ ΆΊJ + l&j ~ 2Σα7- J .
\/=l ./=1 ;=1 7=1 /

(8.4)
Here

Aβ)= Σ
/=-oo

The limit ε —» 0 can be calculated directly if we apply the Poisson formula:

Σ, u(nδ) = δ~ι Σ »(2πn/δ), (8.5)
n— — oo n= — oo

where
-foo

v(k) = f dx Qxp(ikx)u(x).
— oo

After a little algebra one can find that the function f(β) (8.4) equals to (infinite)
constant. Hence we can set up

Tro[exp(2π/A:)F(α*) •] = δn-2r+2p-2k,o (8.6)
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The calculation of the trace over Fock module is simplified by the technique of
Clavelli and Shapiro [38, 35]. Their prescription is as follows: Introduce a copy of
bosons bn satisfying [am,bn] — 0 and the same commutation relations as the an. Let

am — 1 — exp(—2πmc)
b-m(m ), άm — am +

Qxp(-2πmε) -
-(m < 0 ) .

(8.7)

For a linear operator G{{an}) on the Fock space F[a], let Θ — 6({άn}) be the
operator on F[a] <g> F[b] obtained by substituting άm for am. We have then

(0|φ) S.8)

where (Oj<T |0) denotes the usual expectation value with respect to the Fock vacuum
|0) eF[a]®F[b],(0\0} = 1.

Here is the final result of calculations of the functions (8.2):

R(txι,...ak\δι,...δp\βι,...βn\yι,...γr)

Π G(β,-βf) G(γ,-γ,) Π W(y, - β,)

Π G(δ,-δ,)

Π (8.9)

For the case of ££/(2) TM the functions and constants in the formula (8.9) have
the following explicit expressions:

7θ({α,}, {δi}, {/?,}, {7/}) = δn-2r+2p-2k,0 •>

G(^) = /r^i sinh - exp
- / £ ) e x p ( - 0

sinh 2ί cosh ί

s i n h α

2—-T-
α + zπ

= /sinh - ,
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coshα

M e X P I o t sinh It cosh t

Γ4 (-)
wz — ^ 2 — Λ 3 vυ i υ ;

Now, to complete the construction of integral representations for the functions (8.1),
we have to describe the contours of integrations. The rules are: If all {/?}*, {oc};
are real then contours of integrations over the variables {<5}7, {y}j lie in the strip
—in < {δ}j,{y}j < iπ exactly in the same way as in the integral representation for
the vacuum averages,

(0\Λmk(ak)...Λmι(0Ll)Zan(βn)...Zaι(βι)\0) .

Let me recall that contours for vacuum averages are taken according to the definition
of the action of the operators %,\θ£' (see Sect. 5.3).

Now it is useful to consider examples of (8.1). I calculated explicitly the simplest
ones,

^ab(β\>βi) = 0 , ^ m ( α ) = 0 , (8.11)

sinh

Let us analyze these formulas. One should expect that the functions ^abiβx^βi)
are two particle form-factors of the unit operator. Hence it must be zero for real
β\ ~ βi Then, we can see that #^(α|/?i,/?2), considered as functions of exp(α)
admit decompositions into the series in the neighborhood of the points exp(α) = 0
and exp(α) = oo:

Σ

β2). (8.13)
j=-l

The coefficients F™b(s\β\,β2) are form-factors of operators which are SU(2) vectors
and have Lorentz spins s. Moreover, F^(s\β\,β2) and F^b(s\β\,β2) correspond to
operators which are respectively semilocal and local with respect to the "elementary"
field of SU(2) TM. This follows from the commutation relations (7.16). So, we
conjecture that the functions F™b(s\β\,β2),(s = ± l ,m = 0,±) are the form-factors of
the currents - ^ [sJt

m(x)+J?(x)] [17, 21]. Note that the constant of normalization
is fixed by Eq. (2.26).

From this simple example we have learned that #^(a|/?i,/?2) are the generating
functions for form-factors of local operators in the theory. As a matter of fact it
is the general property of the functions (8.1). Indeed, using Proposition 4 from
Sect. 7.2, we can show that any function (8.1) has the form:

(8.14)
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where

Scalar periodic functions C(θL\,...<x.k\βι,...βn) admit, in the neighborhood of the
points exp(α/) = 0, oo, decompositions into the series. Hence the functions (8.14)
can be represented as follows:

*%;£(*!,...*k\βu...βn)

(8.15)

The coefficients Faχ_Mn{{sj}\β\,...βn) satisfy the axioms (1-5) from Sect. 3, so
they are form-factors of local operators in the theory. One can expect that this huge
set of functions is a general solution of the Riemann-Hilbert problem (1-5) for
SU(2) TM.

9. Free Field Representation for the Sine-Gordon Model

In this section the representation πχ for SGM will be investigated. The main steps
of the construction have been already discussed for the case of SU{2) TM, so we
shall focus only on essential differences.

9.1. Bosonίzation of the Zamolodchikov-Faddeev Algebra. Let us begin with a
definition of the space π | . Consider the set of oscillators am, which satisfy the
commutation relation:

[am,an] = smh • — sinh πmε : δn+m$ . (9.1)

It is also convenient to introduce the set of "dual" oscillators a'm connected with am

as follows:

a'm sinh ψ(ξ +l) = am sinh ψξ . (9.2)

They obey the commutation relations:

[a'm,a'j = sinh ^ψ sinh " ^ ^ g ^ ^ ^ . o ( 9 3 )

Note the duality between the operators am and a'm;Z2-transformation

ξ->-l-ξ (9.4)

transforms the commutation relation (9.3) into (9.1) and vice versa. As we shall
see below, this duality has the same nature as the " α + <-> α_" one in the minimal
model of 2D CFT [56, 41].

Using the oscillators am,a'm, we define the fields φ(β) and φ'((x) in the same
way as have been done for SU(2) TM (6.7), (6.19). One should point out only
that the parameters s and s' must be chosen as



212 S. Lukyanov

v - ί ± l c'-__JL_ (9 5)
S~ 2ξ ' S - 2 ( ί + l ) ( 9 ' 5 )

It may be useful to recall that s is connected with an asymptotic behavior of the
two particle S-matrix (6.4).

Introduce the operators

by the formulas (6.14), (6.23). Using 9£ε and 3C'^ the vacuum state can be specified
as follows:

^ ε | o ) = ^ | o > = o • ( 9 6 )

Their unique solution is the highest vector |/?o) with

Po = ^ , (9.7)

where we have conveniently used the notations:

*+=-«Zι = <fi±± . (9.8)

The vertices Vε(β), Vc(y\ Fc'(α), Vε(δ) shift a n eigenvalue p of the operator P to,
respectively,

P + % > ^ ^ α ^ , P + ^ ? ^

Hence one can expect that the space π | admits the following decomposition:

0 ^+/+^/' (9.9)
{/,/'}€Z V2

The operator AΓε is defined by

V2

here

(9.10)

2 £zι sinh -^ψ- sinh

It satisfies the proper commutation relation with Vε(β)

(9.11)

The space πχ must be considered as the limit (6.1). It allows to determine forms
of necessary operator products. They are listed in Appendix 2.

Now, we can introduce the following set of operators acting in the space π^:
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Z » = expf-^-ττ)F'(α)) (9.12)

Z'_(μ) = exp

Here
q = exp/πα+, q' — exp/παi . (9.13)

Note that the integrals associated with the action of the operator $£ in (9.12)
can be calculated explicitly at the free fermion point (ξ = 1). For this case the total
contour of the integration closes and the operators Za(β) read as:

Z_(j?) = exp ^[cxp(-iφ(β + in)) - cxp(~iφ(β - in))] . (9.14)

Principle Theorem from Sect. 7.1 describes the essential properties of the oper-
ators (9.12). In the case of SGM the S-matrix defining the commutation relations
of the two operators Za(β) is given by (2.33). At the same time the matrix Λ^(α)
in the formula (7.2) has the following nontrivial elements:

Λΐΐ(α) = RZZ(a) = R(a),

/C(«) = R~t(*) = -*(«)Sin, £ . (9 i5)

sinn ί + 1

sinh ^rsinh 'j±f •

Here the function R(a) is represented by:

(9.16)

Γ ί̂ -^2- 4- l g ^ Γ (\ A- ̂ ~ 4- ia

Γ
i J+Ϊ)J

The proof of Principle Theorem for SGM is based on the ideas given in Ap-
pendix 1. I wish to comment only the following commutation relation:

α) = tan (^ + * ^ ) z-MZ-(β). (9.17)

To prove it we have to show that, for all vectors |w), \v) G π z ,
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a general matrix element

(u\[sr'9sn\υ)
vanishes. The structure of the operator products provides exactly this important prop-
erty. Here we have the essential difference from the SU(2) TM, where commutation
relations

hold.

9.2. Connection with the Feigin-Fuchs bosonizαtion. Now let us argue a group
theoretic meaning of the formulas (9.12). As has been mentioned in Sect. 4 the
operators

Zα(β) = exp Zα(β)

can be regarded as the basis of the fundamental representation of Uq{sl{2)). Then
the definition (9.12) is equivalent to the coproduct (2.37), if the operator 3C is
considered as

3C = πz[E-q~:^LH] . (9.18)

The definition of the operators Za(a) admits the same interpretation. Hence we
conclude that there are two quantum algebras (Uq(sl(2)) and Uqr(sl(2))) in SGM.
Their quantum parameters q and qr are given by Eq. (9.13). Analogous phenomena
takes place in 2D Conformal Field Theory [41, 57].

As a matter of fact, the algebra generated by the operators Za(β),Zf

a{oC) is the
natural generalization of the vertex operator algebra in the minimal models. In order
to clarify this statement, let us consider n-point vacuum functions

Gaι...an(βu ~βn) = (0|ZΛn(/ϊΛ)...Zβl(/?i)|0) . (9.19)

The vacuum state |0) is a L^(s/(2))-scalar, so matrix elements (9.19) have the
following structure:

Gαι...αn(βl,-.'βn) =

}

1
2

a2

_τ
y'/i-i

m,i - l

1
2

£1

«]
o

h
mλ

q

j] ...jn-

1
2

£i
2

vP

m\
n
πi2

(9.20)

Functions 3/,..._, n_,(/?!,.../?„) are vacuum averages of Uq(sl{2)) scalars. To clear up
their property it is useful to rewrite the variables β, in the form

βi (9.21)

and take a limit L —> -f-oo. Let us consider the commutation relation for the operators
Zα(β) in this limit. Using the explicit expression for the matrix S(β) (2.33), (2.39),
one can derive the formula:

Sab(Lσ) -+ R%(q)θ(-σ) >—1 \dc)t(q)Θ(σ),L (9.22)
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where

Θ ( σ ) = ί h if σ > 0
^ ' 10, otherwise

and Rc

a

d

b(q) are matrix elements of the universal R-matrix [51] in the tensor product
of two fundamental representations of Uq(sl(2)). Hence the commutation relation
for the operators Za(β) becomes

Xa(σι)χb(σ2) = [Rc

a

d

b(q)Θ(σ2 -σ{) + {R-χ)d

b

c

a{q)Θ{σι - σ2)]χd(σ2)χc(σι) . (9.23)

Here the limit of the operator Za(Lσ)(L —» oo) is denoted as χβ(σ). Now it is easy
to see that functions

3 ° V , (σi, -σn) = L Urn^ 3Λ...,„_, (σιL,... σnL)

satisfy the same equations as conformal blocks; their braiding is described by the
quantum 6-j symbols [57-60]. Braiding properties do not uniquely specify conformal
blocks. For example, the chiral correlation functions of conformal descendants have
the same monodromic properties as correlators of primary fields. The braiding will
uniquely determine conformal blocks if we describe their singularities at coincident
points Gi —> Gj. In the present case one can find the character of singularities from
the explicit form of the two point function (4.13). In the limit β —> oo(3mβ S 0)
the function g(β) (4.14) has the following asymptotic behavior:

(9.24)

Hence the conformal dimension of the field χa(σ) is given by:

Λ[χa(σ)] = 2(2,1), (9-25)

where the standard notation [41] for the Kac spectrum is used

- (α+/ + α - / / ) 2 - ( α + - f α - ) 2

Auv = . (9.26)

In this way we identify the functions 3°° j χ(σi,... σn) with the «-point conformal
blocks of the fields Φ(2/i)(o") [56]. The corresponding central charge is expressed
by the parameter ξ as follows:

c= 1 - 6 ( α + - f α _ ) 2 . (9.27)

Similar arguments show that the operator

Za(μ) = exp (β-77^—r ) Za(oc) (9.28)

can be regarded as the field Φ(i/2) in the limit a -* oo.
In spite of the remarkable connection between operators (9.12) and the fields

Φ(2/i)?Φ(i/2)> it is important to understand their physical differences. We consider
the variable β as a rapidity of physical excitations in massive models and it cannot
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be identified with the holomorphic coordinate in the 2D CFT. From this point of
view the discussed connection seems to be a puzzle.

9.3. Integral Representation for Form-Factors in SGM. In order to get the integral
representation for form-factors we have to introduce an analogue of the operators
Λm(oc), Γ(α) for SGM. It can be done by using the operators Zβ(α) (9.28). The
following formulas are a generalization of (7.7),

T
1

(α) =

( 2 COS 7

/

i
' 1

2

. 2

1
CV)2

1
2

&
2

" 1
2

. 2

1 "

1
2

2

<7;

o"
0

(•

(9.29)

(9.30)

here v = £ I i Using this definition, one can obtain the bosonic representation for

/4w(α), which is necessary for evaluations of form-factors.

Λι(a)=V(a)9

(2cosπv)2

---1 [q'r2v'(a)-
2cosπv w v y

(<x) - q'~ιV (<*

'F'(α)

(9.31)

As in the case of SU{2) TM, the properties of the operators Λm(a), Γ(α) are
described by Proposition 4 from Sect. 7. So, ^l:;Zk(<xu . <Xk\βu. .βn) (8.1) will
be the generating functions for form-factors in SGM. The evaluations of traces can
be done by the technique discussed in Sect. 9. I should make the following remark
only: the trace over the zero modes essentially depends on arithmetical properties
of the interaction constant ξ. The same phenomena take place when conformal
blocks on a torus are calculated [61]. To avoid difficult problems connected with
a reducibility of the representation πz, we shall consider a general case when the
parameter ξ is an irrational number greater than one. Then traces of the vertex oper-
ators (8.2) are represented by the formula (8.9), where the functions and constants
have the following forms:

7=1 /=1 ζ + 1 7=1

G(β) = ic€\ sinh - exp

W(β) =

o ί sinh 2ί cosh/ sinhί^

coshjS exp

sinh t[\-in at

IT
- 1)

o ί sinh2ί sinh/^
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G\a) = -<g':

U(oc) = i sinh - ,

sinhα

coshα '
+°°dt smh I sinh/(ς - 1 ) 1

~ o / /sinh2/cosh/ sinhίξ

= exp

2 = exp

= G(-iπ),

4 Γ _ _
o t sinh 2/ sinh/ξ

+?°ί/ί sinh2 I sinh ίξ

= 4 ^ i ^

- 2

Q / sinh It sinh/(ξ+ 1)
(9.32)

In Appendix 4 it is shown that two particle form-factors of the unit operator are
equal to zero. Evaluations of integrals which define nontrivial generating functions
(8.1) is a complicated enough problem. I am going to discuss it in a separate
publication.

10. Conclusion

At the end I wish to point out that functions

, (10.1)

are of special interest. One can expect that they and more general objects

Ύrπz[exp(2πiK)Zf

an(an)... Z'aχ (aλ)] (10.2)

represent some vacuum correlation functions in SGM. The simplest of them have
the following explicit forms:

(10.3)

(10.4)

= Ca
exp y (αi — 0C2 — *π) sinh v(a\ — oc2 + in) G'(a\ —

4v cos πv cosh^y

where G7(α) is given by

Gf(θί) = exp

and

+pΛsinh 2ί(l-/f) ύn\\tξ
o / sinh2/cosh/ sinh/(ί+l)

(10.5)
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Fourier transformation of the function 0(α) for ξ > 2 reads:

+9° tanh g exp(/αί)
θ ^ = - io^cos §(v - z'Ocos f (v + it) cos f (3v - #)cos f (3V + ft) ' ( 1 ° ' 6 )

Here v = ^

It seems important to clear up a physical meaning of these functions.

Note Added in Proof.After submitting this paper for publication the author has found the inter-
pretation of the functions (10.2) [53]. They are nothing but correlators of the Jost functions. At
the same time the correlators of elements of the monodromy matrix for SGM can be expressed in
terms of (10.1). In [53] a physical meaning of the space πχ is also discussed.

Acknowledgements. I would like to thank D. Brazhnikov, R. Chatterjee, V.A. Fateev, S.
Shatashvili, S. Shenker, Al.B. Zamolodchikov and especially A.B. Zamolodchikov for helpful
discussions. This work was supported by grant DE-FG05-90ER40559.

11. Appendix 1

Here I give a draft of the proofs of Propositions 1,2 from Sect. 5.
Let us begin with Proposition 1. The commutation relation

(βo ( l i . i )

is evident from the definition (5.1). To prove the formula

- β2)Z^{β2)Z+{βx) + StKβi
(11.2)

we have to use the relation:

R

P2-PI

(11.3)

It may be derived in the following way. Consider the algebraic identity:

(βι ~ βi) (i\ - βx) ( i f " βi) + (»π + βι-β2) (i\ - βι) ( i | + β2)

= {ίπ + β2- βι)(i^+ βλ) (i^- β2) +(β2- βλ)(i^+ βγ) (i^+ β2) .

(11.4)

It is equivalent to the relation between the functions g(β) and w(β):

w(β2 - γ)w(βι - γ)g(βι - β2) = ^ ± A - I ^ w ( y - β2)w{βx - y)g(βι - β2)

βi ~ βi
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+™ + β ± z A s ( β 2 _ βι )w(βi _ y)w(y _ βχ )g(βi _ βι)

P\ - Pi

-w(γ - β2)w(γ - βι)g(β2 - βx). (11.5)

Hence

m ^ β l β l V(β2)V(γ)V(βι)
92 ~ Pi

iπtβ2~βl - βι)V(βχ)V(y)V(β2)βi - βi

- v(β2)V(βι)V(y) (π .6)

One can integrate both parts of this equation over the variable y and get (11.3)
after proper deformations of the integration contours.

Using the formula (11.3) and the definition (5.21), it is easy to derive (11.2).
Other commutation relations for the Zamolodchikov-Faddeev algebra can be ob-
tained by similar arguments.

Now let us prove Proposition 2. Its statement for the operator product

Z+(β2)Z+(βx) = p2g(βx - β2) : V{β2)V{βx) : (11.7)

follows from the explicit form of the function g(β) (4.3). Consider the operator
product:

Z+(β2)Z^(βι) = ip2pη~]g(βι - βi)

jΪLw(γ _ β l M β ι _ y ) . V(βx)V{β2)V{y):

^ (11.8)

Here the integration contours are the same as in the formula (5.17). There is one
possibility of getting a singularity in the operator product (11.8). It appears when
two integrand's poles clutch the integration contour. Using the form of the function
w(β) (5.10), we can find that the second term in (11.8) is regular and the first one
has a simple pole with the proper residue for β2 = β\ + in.

The analytical properties of the operator products Z_(/?2)Z+(/?i) and
Z-(β2)Z-(β\) can be investigated in a similar manner.

12. Appendix 2

In this Appendix I list the explicit expressions for the functions and constants, which
describe the operator products:

V(β_2)V(βι) = P2g(βι - β2) •
V(γ)V(β) = pβw(β - y): V(γ)V(β):,

= p~2g{yχ - yί) • V{y2)V{Jλ):,
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V'(μ1)V'{aLι) = p'2g\a{ - «2): F'(α2)F'(α1): ,

V'(δ)V'(a) = p'β'w'(a - δ) : v'(δ)V'(a):,

v\δ2)V'(δ0 = P'2g\δx - δ2): v'(δ2)V'(δ0 : ,

V'{a)V{β) = pp'h(β - α) : V(β)V'{x): ,

v'(δ)V(β) = pp'u(β - δ): V(β)Ϋ\δ):,

V'(a)V(γ) = pp'u(γ - α): F(y)F'(α) : ,

v'(δ)V(y) = p^A(y - <5): V(y)Ϋ'(δ): . (12.1)

The functions g,w,g,g',w',g',h,u,h have the following forms for SU(2) TM:

•(«) '

y 2α(α-/π)
C 4π2 '

: - * ~ ^ - (12.2)

The constants ρ,p,ρr,βf are given by

1 .2
-2k Ί

' _„ k2

k2

The constant k is connected with the parameter of the ultraviolet cut-off ε (6.2) as
follows:

* : = 1 -exp(-2πε) (12.4)

In the case of SU{2) TM, the constants η, ηf in the definitions of the operators
&,&' equal:
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*/ = [-/π]i, ηf = [iπ]]2. (12.5)

Now, let us consider the case of SGM. The functions g,w,g,g\w\gf,h,u,h are
given by:

g(β) =

r G)J r ( 4
Π

2 //? Γ ( 1 + ί + i

g'(0L)= \κ'Γ Π

Γ/_L_ + _H

JΓ l -
(c+l) m

= K
, 2 ICC Γ V1 «+' + π«+i)J

(i + l )
3 , ί
4 + 2π

A(^) - -k~
4π2

(12.6)

Here Rp(β) and Rf

p(oc) are defined by Eqs. (2.34), (9.16). The constants p,p, p ; ,p ;

have the following values for SGM:

P = - £

πξ Γ
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P'2 =
Γ

+00

Π

π(ξ + l ) Γ ( ι
(12.7)

The constants κ,κ',k are connected with the parameter of the ultraviolet cut-off ε
as follows:

^ , f c - 1 - exp(-2πε).
(12.8)

In the case of SGM the constants η, ηf equal

η= I —zί sin (12.9)

13. Appendix 3

In this Appendix the structure functions for the algebra (7.13)—(7.15) are listed in
the case of SGM. The structure functions for SU(2) TM can be obtained from the
presented ones by taking a limit ξ —» 00.

The matrix Mcfb is the R-matrix for the 19-vertex model [62]. It can be repre-
sented as follows:

Σ
/=0,l,2

πi\ rn
1 1 j

mi m

Here

do(oc) =

and

The structure functions

[a-

[α +

[α

[α

[α +
[α-

2/π]
2/π] '

+ /π][α -

- /π][α H

/π]

iπ] '

- 2/π]

h 2/π]

read

[/π][4/π]2

([/π]3[3/π])2-[2α]

(ξ- [α - zπ][α][α + zπ][α + 2/π]

1 1

1 1 0

(13.1)

(13.2)

(13.3)

(13.4)

(13.5)
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[zπ]2[2/π]

(ξ 4- 1 )[α - /π][α][α 4- zπ][α 4- 2/π] '

[/π]2[2α -

(ξ 4- 1 )[α - zπ][α][α + zπ][α 4- 2/π] '

[zπ]3[α + 3/π][2α]

223

(13.6)

(13.7)

w (£4-1 )[2/π][α - /π][α][α 4- /π]2][α + 2/π]

where R(a) is defined by Eq. (9.16).
(13.8)

14. Appendix 4

Here it is shown that two particle form-factors of the unit operator are equal to
zero.

According to the integral representation described in Sects. 8, 9 the functions

^ba(βι -βi) = Trπz[Qχp(2πiK)Za(β2)Zh(βι)]

can be

where

Kβ

represented as

*Uβ) = -c

π
ξsm-W

follows:

Ίh exp —

/ π\]

V 2 y j

4- I(-β - 2π/)] ,

S ^ ( ' ' ~iπ)W{y ~β~/π)exp

(14.1)

(14.2)

and G(/?), W(/?) are given by the relations (9.32). Using the Fourier transformation
let us rewrite (14.2) in the form:

π „. / π

The function

1 foojv

<̂ sin '\W (/^ ) I f -tW(γ - π)exp(izy)

ζ V 2 / J —oo 2τc

satisfies the following functional equations:

W(β - iπ) = W(~β - in) ,

(14.3)

) " s i n h / i s i n h ^ '

They make it possible to calculate W(z) (14.3) explicitly:

(14.4)

1

2 cosh π ( f - /%J-

.-e. (14.5)
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where
Γ(2p±l I \Γ(2p±i \

(j ί ) ( ψ ή

One can check that the function iΓ(z) satisfies the equation:

l--z)= — . (14.7)
ξ ) 2 cosh π(z — jξ)

With this formula at hand the calculation of the integral I(β) (14.3) becomes trivial:

I(β)= ί _ . (14.8)

2 cosh \

From (14.1), (14.8) it follows that

Trπ2[Qχp(2πiK)Za(β2)Zb(βι)] = 0,3m(βι - β2) = 0 . (14.9)
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