
Commun. Math. Phys. 167, 155-182 (1995) Communicat ions in

Mathematical
Physics

© Springer-Verlag 1995

Aspects of Fractional Superstrings

Gerald B. Cleaver,1 Philip J. Rosenthal2

California Institute of Technology, Pasadena, CA, 91125, USA

Received: 19 July 1993/in revised form: 18 February 1994

Abstract: We investigate some issues relating to recently proposed fractional
superstring theories with Dcriilcaι < 10. Using the factorization approach of Gepner
and Qiu, we systematically rederive the partition functions of the K = 4, 8, and 16
theories and examine their spacetime supersymmetry. Generalized GSO projection
operators for the K = 4 model are found. Uniqueness of the twist field, φf/t, as
source of spacetime fermions is demonstrated.

Section 1: Introduction

In the last few years, several generalizations of standard (supersymmetric) string
theory have been proposed [20,28,25,22]. One of them [16,7,10,6,9,14,15,13]
uses the (fractional spin) parafermions introduced from the perspective of 2-D
conformal field theory (CFT) by Zamolodchikov and Fateev [31] in 1985 and
further developed by Gepner and Qiu [18].3 In a series of papers, possible new
string theories with local parafermionic world sheet currents (of fractional con-
formal spin) giving critical dimensions D — 6, 4, 3, and 2 have been proposed
[16,7,10,6,9].

At the heart of these new "fractional superstrings" are Zκ parafermion con-
formal field theories (PCFT's) with central charge c = 2(K - 1)/(K + 2). (Equiva-
lently, these are SU(2)κ/U(l) conformal field theories.) The (integer) level-X PCFT

Work supported in part by the U.S. Department of Energy under Contract no. DEAC-03-
81ER40050
1 gcleaver@theory3.caltech.edu.
2 phil@theory3.caltech.edu.
3 This is not to be confused with the original definition of "parafermions." The term "parafer-
mion" was introduced by H.S. Green in 1953 [19]. Green's parafermions are defined as spin-1/2
particles that do not obey standard anticommutation rules, but instead follow more general
trilinear relations [5,27,12, 3,21].



156 G.B. Cleaver, P.J. Rosenthal

contains a set of unitary primary fields φJ

m, where 0 rgj, \m\ ̂  K/2;j, m e Z/2, and
j — m = 0 (mod 1), which have the identifications

κ_.
φJ

m = φJ

m+κ = φ 2 x . (l l)
m-2

In the range \m\ ̂ 7 , the conformal dimension is h(φj

m) = . At a given
level the fusion rules are

r

j = |ji —jz\

where r = min(j 1 +J2>K—Ji —h)* This CFT contains a subset of primary
fields,

(φj = φκ-i) which, under fusion, form a closed subalgebra possessing a Έκ Abelian

symmetry:

φixφj = φί+j(modK) . (1.4)

The conformal dimensions, h{φi\ of the fields in this subgroup have the form

_ ^ ~ ^ ί\ ^\
~ 77 \i'J)

It has been proposed that string models based on tensor products of a level-K
PCFT are generalizations of the Type II D = 10 superstring [16,7,10,6,9]. The
standard c = \ fermionic superpartner, ψ(z), of the holomorphic world sheet scalar,
X(z), is replaced by the "energy operation," ε(z) = φl(z), of the Zκ PCFT. (Similar
substitution occurs in the antiholomorphic sector.) Note that ε is not in the
Έκ Abelian subgroup, and thus is not a 7LK parafermion, except for the degenerate
K = 2 superstring case, where φι

0 = φ\. ε has conformal dimension (spin)
2/(K 4- 2), which is "fractional" (i.e., neither integer nor half-integer) for K Φ 2 .
This accounts for the name of these models. Each ε — X pair has a total conformal
anomaly (or central charge) c = 3K/(K + 2).

The naive generalization of the (holomorphic) supercurrent (SC) of the stan-
dard superstring, JSc(z) = ψ(z)-dzX(z\ (where φ is a real world sheet fermion) to
J(z) = φl(z) dzX(z) proves to be inadequate [9]. Instead, the proposed "frac-
tional supercurrent" (FSC) is

JFSC(Z) = φl{z).dxX{z) + :φ1

0(z)φ1

0(z): . (1.6)

:φoφo'. (which vanishes for K = 2) is the first descendent field of φ J. JFSc(z) i s the
generator of a local "fractional" world sheet supersymmetry between ε(z) and X(z),
extending the Virasoro algebra of the stress-energy tensor T(z). This local current

4 For clarity, we use " x " to denote fusion of two fields or operators, in contrast to choosing "0
(or no operator at all) to denote a tensor product.
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of spin h(J) = 1 + 2/(K + 2) has fractional powers of l/(z — w) in the OPE with
itself, implying a non-local world sheet interaction and, hence, producing cuts on
the world sheet. The corresponding chiral "fractional superconformal algebra" [9]
is,

T(z) T(w) = 7 Γ4 + Γ2 + , (1.7a)
(z — w) (z — w)

Γ(z)JFSC(W) = Γj- + -, 7 + ' , (1.7b)
(z — w) (z — w)

— T(w)
j , w ( λ_ 1 c , λκ(c0)J¥SC(w)

J F S C ( Z ) J F S C ( W ) " ( z ^ ^ p + ( z w ) 2 h - 2 + Π ^ 1 ^ " "

( L 7 c )

where c = Dc0. D is the critical dimension, c0 = 3K/(K + 2) is the central charge
for one dimension, and λκ is a constant [8].

The relationship between critical dimension, D, and the level, K, of the parafer-
mion CFT may be shown to be

D = 2 + ^ , (1.8)

for K = 2, 4, 8, 16, and 00. (The K = 2 theory is the standard Type II superstring
theory with its partition function expressed in terms of string functions rather than
theta-functions, which implies a set of identities between these two classes of
functions.) In [16,7,10,6,9] the relationship (1.8) is derived by requiring a massless
spin-1 particle in the open string spectrum, produced by φo(z)μ (where μ is the
spacetime index) operating on the vacuum.

The purpose of this paper is to examine a number of issues relating to these
models: In Sect. 2 we derive the partition functions of the D = 6, 4, and 3 theories
(corresponding to K = 4, 8 and 16 respectively), using the factorization method of
Gepner and Qiu [18], as well as demonstrating a new approach to obtaining the
superstring partition function. In Sect. 3 we consider other necessary elements of
string theory. In particular, we propose a generalization of the GSO projection that
applies to the fractional superstring and we address the question of whether similar
theories at different Kac-Moody levels can be constructed. Additionally, in this
section, a comparison with the superstring is made and we attempt to elucidate its
features in the current, more general context.

Section 2: Factorization of the Fractional Superstring Partition Functions

We now construct the level-X partition functions of these theories from the well
understood characters of SU(2) primary fields. These closed string partition func-
tions Zκ have the general form

Zκ = aA\Aκ\
2 + aB\Bκ\

2 + ac\Cκ\
2 , (2.1)
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where aA,aB, and ac are integer coefficients. The Λκ term in Eq. (2.1) contains the
massless graviton and gravitino. These D < 10 fractional superstrings have a new
feature not present in the standard D = 10 superstrings (which correspond to
K = 2). This is the existence of the massive Bκ- and Cκ-sectors. These additional
sectors were originally derived by the authors of refs. [16,7,10] by applying
iS transformations to the Aκ -sector and then demanding modular invariance of the
theory. In this section, we will discuss (1) new aspects of the relationship between
the Bκ- and Cκ-sectors and the Λκ-sector, and (2) the presence of spacetime
supersymmetry (SUSY) in all sectors. (Specifically, these type II models have N = 2
spacetime SUSY, with the holomorphic and antiholomorphic sectors each effec-
tively contributing a n i V = l SUSY. Hence, heterotic fractional superstrings pos-
sess only N = 1 SUSY.)

We will demonstrate that spacetime SUSY results from the action of a twist
current used in the derivation of these partition functions. Only by this twisting can
cancellation between bosonic and fermionic terms occur at each mass level in the
Aκ- and Bκ-sectors. The same twisting results in a "self-cancellation" of terms in
the Cκ -sector (which exists only in the four- and three-dimensional models). This
self-cancellation may suggest an anyonic interpretation of the Cκ -sector states.
That uncompactified spacetime anyons can presumably exist only in three or less
dimensions would seem to contradict our claim that the K = 8 (D = 4) model may
contain spacetime anyons. We will argue shortly that one dimension of the K = 8
fractional string is probably compactified. Examination of the 5χ-sector in the
D = 4 model further suggests this. Anyonic interpretation of the Cκ -sector fields
was first proposed in ref. [16].

Before we systematically derive the fractional superstring partition functions
(FSPF's) for each critical dimension, we will review the character, Z(φj

m(z)), for the
Verma module, [</>i],5 containing a single (holomorphic) parafermionic primary
field φj

m(z) and its descendents. The form of the character is

(2.2a)

= η(τ)clUτ) , (2.2b)

where q = e 2 π τ (with τ the one-loop modular parameter) and η is the Dedekind
eta-function,

00

f = « 1 / 2 4 Π ( 1 - « " ) (2 3)
Λ = l

with q = e2πίτ-clJ

m is a string function [24,23] defined by

5 From here on, we do not distinguish between the primary field φJ

m and its complete Verma
module \_φΐn\. Thus, φ ~j can represent either, depending on the context.
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In this notation hJ

m = h(φj

m) and c(SU(2)κ) = . Also, as per standard conven-
K + 2

tion, the level of the string function is suppressed. These string functions obey the
same equivalences as their associated primary fields φj

m:
2j 2j K — 2j /r* Cn\

Additionally

cli = c2J2m . (2.5b)

Since the K = 2 theory is the standard Type II superstring theory,6 expressing
its partition function in terms of string functions rather than theta-functions can be
accomplished simply using the following set of identities:

2η2{c{)2 = S2/η

η2(c°o + Co)2 = $3/η ', (2.6)

n2(cl - Co)2 = 94/η .

For each spacetime dimension in these theories, a term in the partition function
of the form (2.2b) is tensored with the partition function Z(X) for an uncompacti-
fied chiral boson X(z). Since,

the η(τ) factors cancel out in Z(φj

m(z))xZ(X(z)). Similar cancellation of ή(τ)
occurs in the antiholomorphic sector. In the following partition functions, we
generally suppress the trivial factor of (Imτ)~ s / K contributed together by the D — 2
holomorphic and anti-holomorphic world sheet boson partition functions.

2.1. Derivation of the Partition Functions. By the string function equivalences, the
partition functions for the level-K fractional superstrings in refs. [16,7,10,11] in
critical spacetime dimensions D = 2 + 16/K = 10, 6,4, and 3 can be written (in
light-cone gauge as:

D = 10 (K = 2): Z2 = \Λ2\
2 , where

^ 2 — ~j\(C0 "I" C θ ) ~~ \C0 ~ Cθ) /boson ~ ^(CiJferjnion

= 8{(c°0)
Ίc2

0 + 7 ( 4 ) 5 ( 4 ) 3 + 7(c°) 3 (4) 5 + c°0(c2

0y}bosoa

- 8 ( c l ) f

8

e r m i o n , (2.8)

= 4): Z 4 = μ 4 | 2 + 3|β 4 | 2, where

A4 = 4{(c°0 + ctΠc2

0) - (el)*}

+ 4{(c°2 + c\f{c\) - {cl)x} , (2.9a)

6 The K = 2 parafermion model is a c = \ CFT that corresponds to a critical Ising (free fermion)
model.
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B4 = 4{(c°0 + ct)(c°2 + ct)2(c2

0) - (cl)\c2

2f)

+ 4{(c°2 + ct)(c°0 + ct)2(cl)2 - (clΠcl)2} , (2.9b)

D = 4 (X = 8): Z8 = \A8\
2 + \BS\

2 + 2\CS\
2, where

+ 2{(c° + 4)(4) - (4) - (4)2} , (2.10a)

= 2{(c°0 + cl)(c\ + cl) - (44)}

c6)c6

0) - (ctct)} , (2.10b)

+ 2{{c°2 + c\){c\ + c6

2) - (c4

2)
2} , (2.10c)

16): Zι6 = \A16\
2 + \Cl6\

2, where

4 4 )-Co} (2.11a)

+ cl4) - cl}

+ {(cl + cl4) - cl} . (2.11b)

The D = 10 partition function, written in string function format, was obtained
by the authors of refs. [16,10] as a check of their program, both by computer
generation and by the K = 2 string functions/Jacobi 5-functions equivalences. In
each model, the massless spin-2 particle and its supersymmetric partner arise from
the v4#-sector. The Bκ- and C^-sectors were obtained by acting on the ^-sector
with the SL(2, Έ) modular group generators, S: τ -> — 1/τ, and T : τ -* τ + 1. At
each level of K, the contribution of each sector is separately zero. This is consistent
with spacetime SUSY and suggests cancellation between bosonic and fermionic
terms at each mass level. This leads to the following identities [16].

A2 = A4 = BA = A8 = B8 = C8 = A16 = C 1 6 = 0 . (2.12)

The factorization method of Gepner and Qiu [18] for string function partition
functions allows us to rederive the above partition functions systematically. Gepner
and Qiu have shown that we can express any general modular invariant parafer-
mionic partition function,

Z = \η\2ΣN,.n.uc\,c[, (2.13a)

in the form

Z = \η\2Σ\LLτM^c'nc[, (2.13b)
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(with Cn = im = 0 unless I — ne2Έ since φj

m = 0 for j — mφΈ). This factorization of
Njnjΰ results from the transformation properties of cn under the modular group
generators S and T :

S:cι

n->—7= T, Σ exp <;-T7-> sin

Γ-n'e2Z

(2.14a)

(2.14b)

which are an effect of the definition of string function cn (at level-K) in terms of the
SU(2)K affine characters χt and the Jacobi theta-function &n,κ:

Ί

Xι(τ)= Σ Cn{τ)KΛτ). (2.15)

Gepner and Qiu proved that as a result of the factorization,

Nl,nj,ή = ~ LιJ,Mm,m , (2.16)

we can construct all modular invariant partition functions (MIPF's) for parafer-
mions from a product of modular invariant solutions for the (/, Γ) and (n, n) indices
separately. That is, Eq. (2.13b) is modular invariant if and only if the SU(2) affine
partition function

W= Σ LiΛMMτ), (2.17a)
/,Γ=o

and the U(l) partition function

1 κ

7 = ~ Y Mnή&nκ&*κ (2.17b)
\η{τ)\2

 n.= κ + x

are simultaneously modular invariant; i.e. Nhnj^ή = ̂ LjjMn>n belongs to a MIPF
(2.13a) if and only if Lu-and Mnή correspond to MIPF's of the forms (2.17a) and
(2.17b), respectively.

The proof of Gepner and Qiu can also be applied to show that for modular
invariance of a d-dimensional (where d = D — 2) parafermion tensor product theory,

(2.18a)

7 The associated relationship between the \evd-K Si/(2) primary fields Φj and the parafermionic
Φm is

φ J = ' ψ , Γ.

where ψ is the U(l) boson field of the SI/(2) theory.
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is necessary that there be affine x (7(1) factorization,

Z = | f / | 2 Σ ^ k r M ^ ^ 4 cic\c\ •••<£, (2.18b)

with L, and M corresponding to ^/-dimensional modular invariant generalizations
of Eqs. (2.17a) and (2.17b).

Due to the nature of a (7(1) CFT, it is obvious that a tensor M corresponding to
a MIPF for d-factors of U(\) CFT's can be written as a tensor product of
d-independent matrix M solutions to (2.17b) "twisted" by simple currents 5~.8

In the following pages we demonstrate that the factorization approach to
deriving the FSPF 's, suggests much about the meaning of the different sectors in
fractional superstrings, the related "projection" terms, the origin of spacetime
supersymmetry, and the significance of a special (7(1) twist current.

2.2. Affine Factor and "W" Partition Function. In the ^-sectors defined by Eqs.
(2.9a, 2.10a, 2.11a), the terms inside the first (upper) set of brackets, carry
"n = 2m = 0" subscripts and can be shown to correspond to spacetime bosons;
while the terms inside the second (lower) set carry "n = Kβn and correspond to
spacetime fermions. Expressing the Λκ -sectors in this form makes a one-to-one
correspondence between bosonic and fermionic states in the Aκ -sector manifest. If
we remove the subscripts on the string functions in the bosonic and fermionic
subsectors (which is parallel to replacing c[ with χt) we find the subsectors become
equivalent. In fact, under this operation of removing the "n" subscripts and
replacing each string function by its corresponding affine character (which we will

denote by ===> ), all sectors become equivalent up to an integer coefficient:

D = 6 (K = 4):

D = 4 (K = 8):

*, B4 = Af = (χ0 + χκγχ2 - ( χ κ / 2 ) 4 , (2.19a)

A89 B8 C8 = Af = (χ0 + Xκ)(X2 + Xκ-i) ~ (XK,2)
2 , (2.19b)

D = 3 (K = 16):

, C 1 6 ^> Af6 = (χ2 + χ x _ 2 ) - χκ/2 . (2.19c)

We see that the B- and C-sectors are not arbitrary additions, necessitated only by
modular invariance, but rather are naturally related to the physically motivated
^4-sectors: the corresponding affine partition function is the same for each sector.

8 A simple current, 3Γ^ is a primary field of a CFT which, when fused with any other primary field,
Φb (including itself) in the CFT produces only a single primary field as a product state:
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Further, the affine characters, Aψ in Eqs. (2.19a, 2.19b, 2.19c) all have the general
form

Af = (χo + XK)D~3(X2 + Xκ-2) ~ (XK-2)D~2 (2.20)

(with (χ2 + Xκ-i) replaced by χ2 for K = 16, since then χ2 = Xκ-i\ The corres-
ponding partition function is

Wκ = \Af\2. (2.21)

This class of partition functions (2.21) is indeed modular invariant and pos-
sesses special qualities. (Note that the modular invariance of W requires Aψ to
transform back into itself under S.) This is easiest to show for K = 16. The SU(2)16

MIPF's for D = 3 are trivial to classify since at this level the A-D-E classification
forms a complete basis set of modular invariants, even for MIPF's containing
terms with negative coefficients. The only free parameters in X = 16 affine partition
functions Z(SU(2)ί6) are integers a, b, and c where

Z(Sl/(2)κ = 1 6 ) = α(Z(A1 7) + 6Z(D 1 0 ) + cZ(E 7) . (2.22)

Demanding that neither a left- nor a right-moving tachyonic state be in the
Hubert space of states in the K = 16 fractional superstring when the intercept v,
defined by

L o I physical) = υ\ physical) , (2.23)

is positive, removes these degrees of freedom and requires a = — (b + c) = 0,
independent of the possible U(l) partition functions. These specific values for a, b,
and c give us (2.21) for this level:

W16 = Z ( D 1 0 ) - Z(E 7 ) = \A?6\
2 . (2.24)

The corresponding partition functions for K = 8 and 4 can also be expressed as
the difference of two known partition functions: W8 is the difference between
a D 6 (x) D 6 MIPF and an exceptional MIPF derived using the conformal embed-
ding

SU(2)%18 ® SΪ/(2)£L8 ® SO(8)2L4 cz £ 0 ( 3 2 ) ^ (2.25)

and the triality of 50(8). [17,29] W4 is similarly the difference between
D 4 (x) D 4 ® D 4 (x) D 4 MIPF and a simple current invariant of
D 4 (x) D 4 (x) D 4 (x) D 4 . Although it is not possible to create the needed simple
currents from SU(2)4 fields, this may be realized using those of SU(3)i. This is
possible because the D 4 invariant of Sl/(2)4 is equivalent to the diagonal invariant
of SU(3)ι. When rewritten in SU(3)X language, the [S£/(2)4]4 tensor product field
(Φo + φ*)3φ2(φκ/y becomes the simple current, (Φ^(3))3Φ|ι/%)(Φsl/3

(3))4 of
[S[/(3)!]4,_where Φ%(3) is the SU(3)ι identity field, and Φsuo) and Φsuo) denote
the 3 and 3 representation fields, respectively.

The parafermion partition function corresponding to Eqs. (2.20) and (2.21) is

Zκ(affine factor) = \(c°0 + cξ)°-3{cl + 4'2) - ( 4 / 2 ) β " 2 l 2 , (2.26a)

representing the states created by the fields

((Φ°o + Φll2)D~HΦl + Φt~2)l2) - (ΦκoΎ-2)
((Φ°o + ΦKO/2)D-3(ΦO + Φf'2)l2) - (ΦoΎ'2) (2.26b)
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acting on the parafermion vacuum. In "factoring" the parafermion partition
functions (2.9a, b), (2.10a-c), and (2.1 la, b), into separate partition functions for the
affine and (7(1) contributions we do not intend to imply that the string functions
can actually be factored into cj x c° = cι

n, nor do we imply that Zκ (affine factor)
above or ZK(U(1) factor) presented in the following subsection are modular
invariant. Rather, we mean to use partition functions (2.26a) and (2.30b, 2.32b,
2.34b) only as an artificial construct for developing a deeper understanding of the
function of the parafermion primary fields φj

0 and φ^ in these models. Though not
true for the partition functions, factorization is, indeed, valid for the primary fields,
Φm Φo ® Φm = Φίn (for integer , m).

2.3. (7(1) Factor and the " V " Partition Function. We now consider the (7(1) factor,
M, carrying the (n, ή)-indices in the FSPF's. Since all Aκ-9 and Bκ-, and Cκ-sectors
in the level-X fractional superstring partition function (and even the boson and
fermion subsectors separately in Aκ) contain the same affine factor, it is clearly the
choice of the (7(1) factor which determines the spacetime supersymmetry of the
fractional superstring theories. That is, spacetime spins of particles in the Hubert
space of states depend upon the M's that are allowed in tensored versions of Eq.
(2.17b). In the case of matrix M rather than a more complicated tensor, invariance
of (2.17b) under S requires that the components MnΛφm be related by

M _ *• V M piπnn'/Kpiπήή'/K t
Mn',ri — 1Z7? Z J 1V1n,nQ Q > V

1 K n,n

and T invariance demands that

- 2

, i f M M * 0 . (2.27b)
n2 - n2

At every level-X there is a unique modular invariant function corresponding to
each factorization [18], α x β = K, where α, β e Z. Denoting the matrix elements of
MΛ*β by M* ' | , they are given by

M*d=\ Σ δw + βyδ^-βy. (2.28)
1 x ε Έ2lί

By (2.28), MaJ = Mf>α. Hence, Ma-β and Mβ>« result in equivalent FSPF's. To
avoid this redundance, we demand that α ̂  β.

Thus, for K = 4 the two distinct choices for the matrix Ma-β are M 1 ' 4 and
M 2 ' 2 ; for K = 8, we have M 1 ' 8 and M 2 ' 4 ; and for K = 16, the three alternatives
are M 1 ' 1 6 , M 2 ' 8 , and M 4 ' 4 M 1 - K represents the level-K diagonal, n = ή, parti-
tion function. Ma'β=^ corresponds to the diagonal partition function twisted by
a Έa symmetry. (Twisting by Za and ΈKίa produce isomorphic models.) Our
investigations revealed that all possible simple tensor product combinations of
these Ma'β matrices are insufficient for producing fractional superstrings with
spacetime SUSY (and, thus, no tachyons). We have found that twisting by a special
simple (7(1) current (shown below) is required to achieve this. Of the potential
choices of M from a (7(1) MIPF that could be combined with L from an affine
MIPF, one can show (as indicated from string function identities) that the follow-
ing are the only ones producing numerically zero FSPF's:

D = 6 (K = 4):
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The M = M 2 ' 2 ® M 2 ' 2 ® M 2 ' 2 ( χ ) M 2 ' 2 model twisted by the simple [/(I)
current9

^ 4 = Φκ/4- Φκ/4 Φκ/4 Φκ/4- Φκ/4 </> 0 Φo Φo Φo (2.29)

has the following 1/(1) partition function:

F 4 = [(30,4 + $4,4)
4($0,4 + $4,4^ + ($2,4 + $-2,4)

4($2,4 + $_ 2 , 4 ) 4

+ ($0,4 + $4,4) ($2,4 + $-2,4) (i90,4 + $4,4) ($2,4 + $-2,4)

+ ($2,4 + $-2,4) ($0,4 + $4,4) ($2,4 + $-2,4) ($0,4 + $4,4) Juntwisted

+ ($2,4 + $-2,4) ($4,4 + $0,4) ($0,4 + $4,4) ($2,4 + $-2,4)

+ ($4,4 + $0,4) ($2,4+ $-2,4) ($2,4 + $-2,4) ($0,4+ $4,4) Juntwisted- (2.30a)

Writing this in parafermionic form, and then using string function identities,
followed by regrouping according to v44 and B4 components, results in

Z4(ϊ/(1)factor) = |((c^)4 + (c°2)%^ + \((c°0)
2(c°2) + (c°2)

2(c°0)
2\fBΔ , (2.30b)

which represents the tensor product primary fields

+ ί(Φo)2(Φi)2 + (Φ°o)2(Φ°i)2l ί(Φo)2(Φ°)2 + (ΦΪ)2(ΦOO)21 } (2.30c)

acting on the parafermion vacuum.

D = 4 (K - 8):

The M = M 2 ' 4 ® M 2 ' 4 model twisted by the simple (7(1) current

^8 = Φκ/4Φκ/4ΦθΦθ (2.31)

corresponds to

^8 — [($0,8 + $8,δ)($0,8 + $8,δ) + ($4,8 + $-4, β) ($4,8 + $-4, 8)]untwisted

+ [ ( S 2 t 8 + »-β,8)
2(52,8 + θ-6.8) + (θ-2,8 + 5 6 , 8 ) (9- 2 > 8 + 9 6 > 8 ) ] u n t w i s t e d

+ [($4,8 "+" $-4,δ) ($0,8 + $8,δ) + ($0,8 + $8,δ)($4,8 + $-4, 8/Jtwisted

+ [($6,8 + $-2,δ)($2,8 + $-6,δ) + ($2,8 + $-6,δ)($-2,8 + $6, β)Juntwisted

(2.32a)

9 Recall that the parafermion primary fields φ° have simple fusion rules, Φm®Φm' =
Φm + m'(modK) (f°r m? m' E %) a n (^ form a Zκ closed subalgebra. This fusion rule, likewise, holds for
the 1/(1) fields: exp{ί£φ}:. The isomorphism makes it clear that any simple current, έΓκ, in this
subsection that contains only integer m can be expressed equivalently either in terms of these
parafermion fields or in terms of U(l) fields. In view of the following discussion, we express all of
the simple twist currents, <TK, in parafermion language.
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Hence, we have

Z8(E/(1)factor) = \(c°0)
2 + (cl)%s) + \(c°o)(cl) + (cl)(c°0)\fBt) + 4|(cS)2 | (

2

C β ),

(2.32b)

with the related tensor product primary fields

+ (Φ0Φ2 + ΦzΦoKΦoΦl + ΦίΦo) + 4«>?)2(<??)} (2.32c)

D = 3 (K = 16):

The M = M 4 ' 4 model twisted by the simple [/(I) current

^i6 = ΦmΦo (2.33)

produces,

V(K = 16) = |(90,16 + 5 1 6 > 1 6) + ( θ 8 > 1 6 + 9-8,16)luntwisted

+ |(θ*.I6 + 5-4,16) + (θl2.16 + # - 1 2,1 6)lLwtoted (2.34a)

Thus, the corresponding parafermion partition function is

Z1 6([/(l)factor) = \c°0 + 4| (

2,, ( ) + 4|c°| (

2

C i 6 ), (2.34b)

and its primary fields are

{(φ°o + φl){φl + Φϊ) + HΦlKΦi)} (2.34c)

(In this case the twisting is trivial since 3Γ16 is already present in the initial
untwisted model.)

We wish to point out that the partition function for the standard D = 10
superstring can also be factored into aifine and 17(1) parts:

D = 10 K = 2;

af f ine ^ / ° \ / w / λ » _ , s

^2 = > L . l(Xo)uκ) -(Zκ/2) (2.35a)
iodd=l \ ι /

The accompanying (7(1) factor is

(2.35b)

This originates from the

M = M 2 1 ® M 2 J ® M 2 J ® M 2 ' ® M 2 1 ® M 2 1 (x) M 2 1 (g) M 2 J
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model being twisted by the simple U(l) current

? t ) 1 0 . (2.36)

The difference between the factorization for K = 2 and those for K > 2 is that here
we cannot define an actual parafermion twist current (φκ/4) since φ°KjAr = 0 for
K = 2. Relatedly, the effective Z2(U(1) factor) contributing to Eq. (2.8) reduces to
just the first mod-squared term in Eq. (2.35b) since cι

n = 0 for / — n φ 0 (mod 2).
All of the above simple twist currents for K > 2 are of the general form

2(Φo)D-2. (2.37)

(Note that FK = (φo)D~2(φ%4)D~2 is automatically generated as a twisted field
also.) We believe this specific class of twist currents is the key to spacetime supersym-
metry in the parafermion models. Without the twisting effects of ^~κ, numerically
zero modular invariant FSPF's in three, four, and six dimensions cannot be formed
and thus spacetime SUSY would be impossible. This twisting also reveals much
about the necessity of non-^4x-sectors. Terms from the twisted and untwisted sectors
of these models become equally mixed in the |^4χ|2, | # χ | 2 , and |Cχ | 2 contribution to
the level-X partition function. Further, this twisting keeps the string functions with
n φ O , K/2 (mod K) from mixing with those possessing n = 0, K/2 (mod K). This is
especially significant since we believe the former string functions in the Cκ -sector
likely correspond to spacetime fields of fractional spin-statistics (i.e., anyons) and the
latter in both Aκ and Bκ to spacetime bosons and fermions. If mixing were allowed,
normal spacetime SUSY would be broken and replaced by a fractional supersym-
metry, most-likely ruining Lorentz in variance for D > 3.

Since in the antiholomorphic sector £ΓK acts as the identity, we will focus on its
effect in the holomorphic sector. In the ylκ-sector the operator (φ%4.)D~2 trans-
forms the bosonic (fermionic) nonprojection8 fields into the fermionic (bosonic)
projection fields and vice-versa.

For example, consider the effect of this twist current on the represented in

A4 = Aloson - A{:rmion , (2.38a)

where

^4 e r m i o n = 4{(c 2) 4 - (c°2 + 4 ) 3 ( c 2 ) } . (2.38c)

Twisting by (φκ/2)
D~2 transforms the related fields as

(φ°0 + φlΫiφl) {Φl'£~* (φl + φί)3(φ\), (2.39a)

i φ l 2 . (2.39b)

1 0 We use the same language as the authors of refs. [11]. Nonprojection refers to the bosonic and
fermionic fields in the ,4£oson and ^^ermion subsectors, respectively, corresponding to string
functions with positive coefficients, whereas projection fields refer to those corresponding to string
functions with negative signs. With this definition comes an overall minus sign coefficient on
iχ r m i o n , as shown in Eq. (2.39a). For example, in (2.39b), the bosonic non-projection fields are
(Φo + Φo)3(Φo) a n d the bosonic projection is (φj)4. Similarly, in (2.39c) the fermionic non-
projection field is (φ\)4 and the projections are (φ° + Φl)3(φ\)
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Although the full meaning of the projection fields is not yet understood, the
authors of refs. [7] and [11] argue that the corresponding string functions should
be interpreted as "internal" projections, i.e., cancellations of degrees of freedom in
the fractional superstring models. (See also [14,15, and 13]). Relatedly, the authors
show that when the Λκ -sector is written as ^ | o s o n - Aκrmion, a s done above, the
g-expansions of both ^4^oson and Aψmion are all positive. Including the fermionic
projection terms results in the identity

D-2

Equation (2.40a) is the standard theta-function expression for D — 2 world sheet
Ramond Majorana-Weyl fermions. Further,

(2.40b)

Now consider the ^-sectors. For K = 4 and 8 the operator (φκ/4)D~2 trans-
forms the primary fields corresponding to the partition functions terms in the first
set of brackets on the RHS of Eqs. (2.9b, 2.10b) into the fields represented by the
partition functions terms in the second set. For example, in the K = 4 (D = 6) case,

(φ°0 + φl)(φh)(Φί + Φ\Ϋ (Φl£ 2 (Φl + Φϊ){φ\){φl + Φo)2 , (2.41a)

. (2.4ib)

Making an analogy with what occurs in the ^-sector, we suggest that
(Φ%4-)D~2 transforms bosonic (fermionic) nonprojection fields into fermionic
(bosonic) projection fields and vice-versa in the 2?x-sector also. Thus, use of the
twist current &~κ allows for bosonic and fermionic interpretation of these fields11:

£ 4 ΞΞ jB^ o s o n - # f

4

e r m i o n

 5 (2.42a)

where

? 4 4)(c2

0)(c°2 + c\f - {cDHcl)2} , (2.42b)

- (c° + ci)(c2

2)(c°0 + ct)2} . (2.42c)

What appears as the projection term, {cl)2(cl)2, for the proposed bosonic part acts
as the nonprojection term for the fermionic half when the subscripts are reversed.
One interpretation is this implies a compactification of two transverse dimen-
sions.12 Let us choose the compactified directions to correspond to the last

1 x Similar conclusions have been reached by K. Dienes and P. Argyres for different reasons. They
have, in fact, found theta-function expressions for the B^son- and jB^ermion-subsectors [15].
1 2 This was also suggested in ref. [7] working from a different approach.



Aspects of Fractional Superstrings 169

2 strings functions in a term. Thus, the spin-statistics of the physical states of the
D — 6 model as observed in four-dimensional uncompactified spacetime is deter-
mined by the (matching) n subscripts of the first two string functions (correspond-
ing to the two uncompactified transverse dimensions) in each term of four string
functions, c^c^c'!£cl£. (Assuming instead that the first two string functions corre-
sponded to the compactified dimensions, means interchanging the definitions of
#4 o s o n and #J; r m i o n above.) The B8 terms can be interpreted similarly when one
dimension is compactified.

However, the C#-sectors are harder to interpret. Under (φκ/4.)D~2 twisting,
string functions with K/4 subscripts are invariant, transforming back into them-
selves. Thus, following the pattern of Aκ and Bκ we would end up writing, for
example, C 1 6 as

C 1 6 = Cβ

16 - Cb

16 , (2.43a)

where,

Ca

16 = (cl + cl4)-d, (2.43b)

c; 6 = c2-(c2 + c i 4 ) . (2.43c)

The transformations of the corresponding primary fields are not quite as
trivial, though. (φ\ -f φl) is transformed into its conjugate field (Φ-2 + Φ-2)
and likewise φ\ into φt2, suggesting that Ca

l6 and C\6 are the partition functions
for conjugate fields. Remember, however, that C 1 6 = 0. Even though we may
interpret this sector as containing two conjugate spacetime fields, this (trivially)
means that the partition function for each is identically zero. We refer to this
effect in the Cκ -sector as "self-cancellation." One interpretation is that there are
no states in the Cκ sector of the Hubert space that survive all of the internal
projections. If this is correct, a question may arise as to the consistency of the
K = 8 and 16 theories. Alternatively, perhaps any on statistics allow two (interac-
ting?) fields of either identical fractional spacetime spins s 1 = s 2 = 2m/iC,
or spacetime spins related by Si = 2m/K = 1 — s2, where in both cases 0 < m <
K/2 (mod 1), to somehow cancel each other's contribution to the partition
function.

κ_
Using the φJ

m = φJ

m+κ = φ2 J

κ equivalences at level-X e 4Έ, a PCFT has K/2
m~2"

distinct classes of integer m values. If one associates these classes with distinct
spacetime spins (statistics) and assumes m and — m are also in the same classes
since (φmV = Φ°-m > t n e n the number of spacetime spin classes reduces to K/4 + 1.
Since m = 0 (m = K/4) is associated with spacetime bosons (fermions), we suggest
that general m correspond to particles of spacetime spin 2m/K, 2m/K + Z + , or
Έ+-2m/K. If this is so, most likely spin(m) e {2m/K,Z+ + Im/K) for
0 < m < K/4 (mod K/2) and spin(m) e Z + - 2m/K for - K/4 < m < 0 (mod K/2).
This is one of the few spin assignment rules that maintains the equivalences of the
fields φj

m under (7, m) -»(/c/2 —j,m — K/2) -• (j, m + K) transformations. Accord-
ing to this rule, the fields in the Cκ-sectors have quarter spins (statistics), which
agrees with prior claims [16,7,10].

Also, we do not believe products of primary fields in different m classes in
the #κ-sectors correspond to definite spacetime spin states unless some dimensions
are compactified. Otherwise by our interpretation of m values above, Lorentz
invariance in uncompactified spacetime would be lost. In particular, Lorentz
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invariance requires that either all or none of the transverse modes in uncompacti-
fied spacetime be fermionic spinors. Further, jB-sector particles cannot correspond to
fractional spacetime spin particles for a consistent theory. Thus, the D = 6(4) model
must have two (one) of its dimensions compactified. (This implies that the D = 6,
4 partition functions are incomplete: momentum (and winding) factors for the two
compactified dimensions would have to be added, while maintaining modular
invariance.)

Note that the B8 -sector of the D = 4 model appears for more reasons than
just modular invariance of the theory. By the above spacetime spin assignments,
this model suggests massive spin-quarter states (anyons) in the Cx-sectors,
which presumably cannot exist in D > 3 uncompactified dimensions. However, the
#£-sector, by forcing compactification to three dimensions where anyons are
allowed, would save the model, making it self-consistent. Of course, anyons in the
K = 16 theory with D = 3 are physically acceptable. (Indeed, no J3x-sector is
needed and none exists, which would otherwise reduce the the theory to zero
transverse dimensions.) Thus, K = 8 and K = 16 models are probably both al-
lowed solutions for three uncompactified spacetime dimensional models. If this
interpretation is correct, then it is the 2?κ-sector for K = 8 which makes that theory
self-consistent.

An alternative, less restrictive, assignment of spacetime spin is possible. Another
view is that the m quantum number is not fundamental for determining spacetime
spin. Instead, the transformation of states under (Φ°KIA)D~2 can be considered
to be what divides the set of states into spacetime bosonic and fermionic classes.
With this interpretation, compactification in the Bκ-sector is no more necessary
than in the Aκ -sector. Unfortunately, it is not a priori obvious, in this approach,
which group of states is bosonic, and which fermionic. In the ^x-sector, the
assignment can also be made phenomenologically. In the Bκ-sector, we have no
such guide. Of course, using the m quantum number to determine spacetime spin
does not truly tell us which states have bosonic or fermionic statistics, since the
result depends on the arbitrary choice of which of the two (one) transverse
dimensions to compactify.

A final note of caution involves multiloop modular invariance. One-loop
modular invariance amounts to invariance under S and T transformations.
However modular invariance at higher orders requires an additional invariance
under U transformations: Dehn twists mixing loops of of neighboring tori of
g>\ Riemann surfaces [26,2,4,1]. We believe neither our new method of
generating the one-loop partitions, nor the original method of Argyres et al. firmly
prove the multiloop modular invariance that is required for a truly consistent
theory.

Section 3: Beyond the Partition Function: Additional Comments

The previous discussion of the FSPF's in Sect. 2 does not fully demonstrate
the consistency of the fractional superstrings, nor does it sufficiently compare
them to the K = 2 superstring. In this section, we now comment further on these
aspects of potential string theories: we consider the analog of the GSO projection,
and then discuss the uniqueness of the "twist" field φ^/i for producing spacetime
fermions.
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3.1. Generalized Commutation Relations and the GSO Projection. One of the
major complications of generalizing from the K = 2 fermion case to K > 2 is
that the parafermions (and bosonic field representations) do not have simple
commutation relations [31]. What are the commutation relations for non-
(half) integral spin particles? Naively, the first possible generalization of standard
(anti-)commutation relations for two fields A and B with fractional spins seems
to be:

AB - Qm*spin{A)spm(B)]BA = Q ^.l)

(which reduces to the expected result for bosons and fermions). This is too simple
a generalization, however [30]. Fractional spin particles must be representations of
the braid group. Zamolodchikov and Fateev [31] have shown that world sheet
parafermions (of fractional spin) have complicated commutation relations that
involve an infinite number of modes of a given field. For example:

ϊ(ί)( ί)'+m o+hL +m (12a)

and

00

2^ C ( - 2 / 3 ) D 4 n - g / 3 - l ^ m + (2-g)/3 + l ~ ^m-q/3 -l^n + (2 -q)j3 + ί ]
1 = 0

= -(n - m)Al2-2q)/3+n+m , (3 2b)

where A is a parafermion field, and Ln are the generators of the Virasoro algebra.
λ is a real coefficient, n is integer and q = 0,1,2 (mod 3) is a Z 3 charge of
Zamolodchikov and Fateev that can be assigned to each primary field in the K = 4
model. The coefficients C^j are determined by the power expansion

(1 - xf = £ C^x1 . (3.3)
1 = 0

As usual, c = 2(K- ί)/(K + 2) is the central charge of the level-K PCFT.
These commutation relations are derived from the OPE of the related fields

[31]. (Hence more terms in a given OPE should result in more complicated
commutation relations.) Similar relations between the modes of two different
primary fields should also be derivable from their OPE's. The significance of these
commutation relations is that they severely reduce the number of distinct physical
states in parafermionic models. There are several equivalent ways of creating
a given physical state from the vacuum using different mode excitations from
different parafermion primary fields in the same CFT. Thus, the actual Hubert
space of states for this K = 4 model will be much reduced compared to the space
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prior to moding out by these equivalences.13 Although the fields in the parafermion
CFT do not (anti-)commute, but instead have complicated commutation relations,
some insight can be gained by comparing the D = 6, K = 4 FSC model to the
standard D = 10 superstring. We can, in fact, draw parallels between ε and the
standard fermionic superpartner, ψ, of an uncompactified boson X. In the free
fermion approach, developed both by Kawai, Lewellen and Tye and by Antoniadis,
Bachas and Kounnas, generalized GSO projections based on boundary conditions
of the world sheet fermions are formed [26,2,4,1]. Fermions with half-integer
modes (NS-type) are responsible for Έγ (trivial) projections; fermions with integer
modes (R-type) induce TL2 projections. In the non-Ramond sectors these Έ2 projec-
tions remove complete states, while in the Ramond sector itself, remove half of the
spin modes, giving chirality. Fermions with general complex boundary conditions,

xjj(σ = 2π) = - Qiπ^φ(σ = 0) , (3.4)

form in the non-Ramond sector 2b projections if a is odd and TLh projections if a is
even (with a and b coprime and chosen in the range — 1 ^ a/b < 1). For free-
fermionic models, the GSO operator, coming from a sector where the set of world
sheet fermions {φ1} have boundary conditions

ι/ίi(2π) = - e i π x > i ( 0 ) 5 (3.5a)

and acting on a physical state |phys}^ in a sector where the same fermions have
boundary conditions

(3.5b)

takes the form,

^ (3.6)

for states surviving the projection. Those states not satisfying the demands of he
GSO operator for at least one sector 3c will not appear in the partition function of
the corresponding model. In Eq. (3.6), F$ is the (vector) fermion number operator
for states in sector y. <5̂ is — 1 if either the left-moving or right-moving ^ s P a c e t i m e are
periodic and 1 otherwise. C(y\x) is a phase with value chosen from an allowed set
of order g^ = GCD(N^, N^\ where N^ is the lowest positive integer such that
Nyxy = 0 (mod 2).

Now consider the ε fields in the K = 4 parafermion theory. The normal
untwisted, (i.e., Neveu-Schwarz) modes of ε are ε+i and ε"i , where neΈ.

That is, untwisted ε = ε+ + ε~ has the following normal-mode expansions:

N-S Sector:

oo

ε + (σuσ2)= £ [ε«_ 1 / 3 exp{- i(n - 1 / 3 ) ^ + σ2)}

+ ε-2 / 3_nexp{- i(2/3 - n)(σ1 + σ2)}] , (3.7a)

1 3 These equivalence have subsequently been explicitly shown and the distinct low mass2 fields
determined in Argyres et al. [11].
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00

β~(σi,σ 2 )= Σ [ ε 1 / 3 _ n e x p { - i(l/3 -n)(σί + σ2)}
w = l

+ 6 B _ 2 / 3 exp{- ί(n - 2/3)(σi + σ2)}] , (3.7b)

(where εj = ε_r and έj = ε_r). The associated boundary conditions in this sector
are

ε + (σ1 + 2π) - e + ι2π / 3ε + (σ!) , (3.8a)

ε~(σί + 2π) = e + /2π / 3ε~(σ!) . (3.8b)

Like the standard fermion, the ε operators at level-four can be in twisted
sectors, where the normal-mode expansions have the following form:

General Twisted Sector:

GO

ε + (σι,σ2)= Σ [εn_1/3_α/2&exp{—/(rc — 1/3 — α/2b)(σ! + σ2)}

+ fi2/3-n-β/2&exp{-i(2/3 - n - a/2b){σι + σ2)}] , (3.9a)

00

ε~(σuσ2) = Σ [εi/3-«+/2&exp{-i(l/3 - n + α/2b)(σ! + σ2)}
n = 1

+ ε"" 2 / 3 + α / 2 bexp{ —ι(n — 2/3 + a/2b)(σ1 + σ2)}] . (3.9b)

The associated boundary conditions are

ε + (σί + 2π) - e^ 2 7 1 ^ 3 ^ 1 '™^ 4 "^) , (3.10a)

e-(ffi + In) = Q-^^^Q-^'ε-iσ,) . (3.10b)

From the analogy of free-fermion models, we suggest that in K = 4 parafer-
mion models the presence of a sector containing twisted ε fields with boundary
conditions (3.10a) or (3.10b) will result in Zb or Z2b GSO projections, depending on
whether a is even or odd respectively. (We assume a and b are relative primes and
— 2/3 ^ a/b < 4/3.)

Zero modes correspond to a/b = — 2/3. Thus, we conjecture that the presence
of these (twisted) zero models εΠ, n e Z in a model, result in a generalized Z3 GSO
projection. Admittedly, this is suggested with the hindsight of having the partition
function for this theory. Nevertheless, we mention this in attempting to give more
physical meaning to the partition function. Likewise for K = 8 and 16, one might
expect Z5 and Z9 projections, respectively. Such projections for K = 8 and 16
could be significantly altered though, by the effects of the non-Abelian braiding of
the non-local interactions.

One other aspect to notice is that within the range — 2/3 g a/b < 4/3 there are
actually two distinct N-S sectors, corresponding not just to a/b = 0, but also
a/b = 2/3. This corresponding to Z2 symmetry ε3<->ε~. Though this symmetry
may be obvious, it could explain the origin of the additional Z2 projection we will
shortly discuss.

For the K = 4FSC model, one expects a GSO projection to depend on
a generalization of fermion number. However, the naive generalization to parafer-
mion number, F(φo\ is insufficient. We find that we must also consider the
multiplicities of the other two "physically distinguished" fields, the twist field,
φ\ and the field φ°u which raises the m quantum number.
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In order to derive the MIPF we discovered that, indeed, a Z3 projection must
be applied to both the left-moving modes (LM) and right-moving modes (RM)
independently. Survival of a physical state, |phys>, in the Hubert space under this
TL3 projection requires

J) + FLM(RM>W>I)} = e

iπh |phys> , (3.11a)

or equivalently

+ ΣFi,LM(RM)(Φ\) = 1 (mod3)} |phys> , (3.11b)

where Fi{φJ

m)LM{RM) is the number operator for the field φJ

m along the / direction for
left-moving (right-moving) modes. One may note that this projection does not
prevent mixing holomorphic ,44-sector and antiholomorphic #4-sector terms.
However, it need not, for this is separately prevented by the standard requirement
that MLM = M R M , i.e., Lo = Lo, which here results in the RM factors in the
partition function being the complex conjugates of the LM, giving only mod-
squared terms in the partition function.

Prior to projection by this extended GSO operator, we consider all physical
states associated with the LM partition function terms in the expansion of
(c'o + Co + Co)4 or (el + c 4 ) 4 to be in the /44-sector. (The RM physical states in the
A sector have parallel association with the complex conjugates of these partition
function terms.) Similarly, we initially place in the £4-sector all the LM physical
states associated with the partition function terms in the expansion of
{c\ + c 4 ) 2 (c'o + CQ + Co)2 OΪ (c'o + c'o + Co)2(c2 -I- c 4 ) 2 . There is however, a third
class of states; let us call this the " D 4 " class. This latter class would be present in the
original Hubert space if not for an additional TL2 GSO projection. Left moving
states in the D 4 class, would have partition functions that are terms in the
expansion of (CQ + 4 + c'o)3(c2 + c 4 ) 2 or (c2 + c4)3(co + c 4, + c2

0). The thirty-two
D4 terms in the expansions (pairing Co and c4,, rather than expanding (C Q + c 4)" as
in Table 3.1) are likewise dividable into classes based on their associated
Z3 charges, Q3. Twelve have charge 0 (mod 3), twelve have charge 1 (mod 3) and
eight have charge 2 (mod 3). Without the 7L2 projection it is impossible to to keep
just the correct terms in the A4- and jB4-sectors, and also project away all of the
D4-sector terms. Simple variations of the projection (3.11a) cannot do the job. All
D4 terms can be eliminated, without further projections on the AA and B4 terms, by
an obvious Έ2 projection,

Σ^LM(RM)W>ί) + Σ î\LM(RM)(Φ±l) = 0 Hlθd 2 1 | phyS > . (3.11c)

(Note that for K = 2, φ\ is equivalent to the vacuum and φι

0 is indistinguishable
from the usual fermion, φι

0. Thus for K = 2 there is no additional 7L2 GSO
projection.)

Consideration of these D class states reveals some physical meaning to our
particular 2£3 charge and the additional 7L2 projection. First, in all sectors the
charge Q3 commutes with {φ%4)

D~2, which transforms between non-projection
and projections states of opposite space-time statistics in the A4- and 2?4-sectors.
Second, the values of this charge are also associated with specific mass2 (mod 1)
levels. Third, only for the A4- and £4-sector states does mass2 (mod 1) commute
with the same twist operator {φκ/4.)D~2. Recall, in Sect. 2 we suggested that twisting



Aspects of Fractional Superstrings 175

by this latter field was the key to spacetime SUSY. Without any of our projections
the mass2 levels (mod 1) of states present would be mass2 = 0, χ2>A, , TΊ When
acting on D4-sector fields, {φ%4)

D~2 transforms mass2 = i/12 (mod 1) states into
mass2 = (i + 6)/12 (mod 1) states. Thus, states in the D4-sector paired by super-
symmetry would be required to appear in different sectors (i.e., different mod-
squared terms) of the partition function, in order to preserve T invariance. As
a result, the paired contributions to the partition function cannot cancel, proving
that D4 terms cannot be part of any supersymmetric theory. Although mass2

(mod 1) commutes with (φκ/4)
D~2 in the A4(Q3 = 0), Λ4(Q3 = -1) , B4(Q3 = 0),

£4(63 = — 1) subsectors, within these subsectors (1) there is either a single bosonic
state or fermionic state of lowest mass without superpartner of equal mass, and/or
(2) the lowest mass states are tachyonic. (See Table 3.1.) Thus, our specific GSO
projections in terms of our TL3 charge projection and our Έ2 projection equal to
spacetimes SUSY.

Our assignments of states as spacetime bosons or fermions in the B4-sector,
uses an additional projection that we believe distinguishes between the two.
Following the pattern in Eqs. (2.8b) with bosonic/fermionic assignment of related
states defined in Eqs. (2.43a-c), we suggest that for these states the two primary
fields, φj^3 and </>ίί4 = m, (implicitly) assigned compactified spacetime indices must be

Table 3.1. Masses of K = 4 Highest Weight States (Represented by their associated characters)

Λ4-Sector

Boson

(4f(4)2

(ci)(4)(4)2

(cS)(C;)(4)2

(to)2 (Co)2

(co)2(cS)2

(4)(4)(4)2

i4){4)i4f
(4)2i4f

{Ci4)Si4)2

(co)2(c2)2

(Co)(Co)(Co)2

(c2)(c°)(c2)2

(c°0)(ct)(4)2

(4)2(4)2

Mass2

3f
3

2f
2i

2

if

H

1

2
3

1
3

Fermion

(c*)2(c*)2

(C2)(C2)(4)2

(^)2(4)2

2 2

(C 2)(C2)(C 2) 2

Survives
ρ3

0

1

0

- 1

1

0

- 1

1

0

- 1

cso

No

Yes

No

No

Yes

No

No

Yes

No

No

β4-Sector

Boson

(Co)2(c*)2

(c2)(4)(c*

(4)(4)(4
(4) 2 (c 2 ) 2

(c 2 ) 2 (4) 2

(4)(4)(4
(4)2(4)2

(ψctH4

(chk)'2

(4)(4)(4

(4)2(4)2

)2

)2

)2

)2

f
2

)2

Mass2

3i
2i
2 1

i !

) ϋ

5
6

1

5 2

1
6

1
6

Fermion

(4f(4f
(c2)(c*)(c*)2

(c*2)
2{4)(ci

0)

i4)2(4)2

( i ) 2 ( ? 2

2

(c2)(c*)(c2)2

ί c 2 ! 2 ( c o

( ) 2 ° ) ( C θ )

(C2)(C2)(C°)2

(c?)2(c°)2

(CoTίcV

Yes

No
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the same, i.e., j 3 = j 4 , or else must form a term in the expansion of (CQ -f c\)2. This
second case is related to φ% and φl producing the same spacetime fermion field, φl,
when separately twisted by φ%4. (Note however that φ\x φo

κtA. = φ°0 only.) Follow-
ing this rule, neither the states corresponding to (cl)(co)(cl)(ct) and
(cl)(ct)(cl)(co), (which transform between each other under twisting by
Φκ/^Φκ/^ΦκμΦκ/4. nor those associated with (cl)(c$)(cl)(ct) and {c2

2){c\){cl){c\\
survive the projections as either spacetime bosons or fermions. However, for
completeness we include the partition function in the £4-sector columns of Table
3.1. We define the associated states as either spacetime bosons or fermions simply
by the value of m3 = m4. This is academic, though, because the states do not
survive the Z3 projections.
(In Table 3.2, columns one and seven give the lowest mass2 of a state with center
column 7L3 charge in the appropriate sector. For the D4-sector states, under
{Φ°KIA)D~2 twistings, mass2 values in column two transform into mass2 values in
column six of the same row and vice-versa.)

In the K = 4 case unlike K = 2, we find that the Έ3 projection in the Ramond
sector wipes out complete spinor fields, not just some of the modes within a given
spin field. This type of projection does not occur in the Ramond sector for K = 2
since there are no fermionic states with fractional mass2 values in the D — 10
model. Note that our Έ3 GSO projections relate to the TL3 symmetry pointed out in
[31] and briefly commented on after Eqs. (3.2a, 3.2b).

For K = 8, a more generalized TL5 projection holds true for all sectors. For the
K = 16 theory, there are too few terms and products of string functions to
determine if a Έ9 projection is operative. In the K = 4 case, the value of our LM
(RM) Q3 charges for states surviving the projection is set by demanding that the
massless spin-2 state ε^ 1 / 3 έ v _ 1 / 3 | 0> survives. In the A, B, (and C for K = 8, 16)
sectors, these projections result in states with squared masses of 0 + integer,
j + integer, and | + integer, respectively.

3.2. The Unique Role of the Twist Field, φ^/t As Table 3.1 indicates for the
particular case of K = 4, the massless yl-sector space-time fermion in the fractional
superstring theory is created in light-cone gauge by a (D — 2)-dimensional tensor
product of (φκ/t) fields (with associated string function character (c^/t)02) acting
on the vacuum. In this section we examine whether other consistent models are

Table 3.2. Mass Sectors as Function of 2£3 Charge

Lowest M2 M2 mod 1 Sector Έ3 Charge Sector M 2 mod 1 Lowest M 2

-T2 ϋ D4

_2_ 1 0 D

12 12 D 4

- A A D* β 3 = l

~fi fl A,, β3=0

π T2 D 4 6 3 = - 1 ί>4 Ti

B4

A*

D4

B4

1 2

4
12

A

5
12

Ϊ 2

T2

A
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possible if one generalizes the twist field (as φ^/i is referred to in parafermion
models), to another that could fulfill its role of creating massless spacetime fermions
or if φκl/t uniquely qualifies for this task. When it is demanded that φ^/i a n d
the s = φo field of reference [16,7,10] be used, we can derive the critical dimen-
sions of possible models by observing that K = 2,4, 8, and 16 are the only levels
for which

HφD/h^beZ. (3.2.1)

If we assume (as in [16]) that the operator {φκf/i)μ acting on the (tachyonic) vacuum
produces a massless spacetime spinor vacuum along the direction μ, and (φo)μ

produces a massless spin-1 state, then for spacetime supersymmetry (specifically
N = 2 SUSY for fractional type II theories and N = 1 SUSY for fractional
heterotic) h(φl)/h(φκ!/t) must equal the number of transverse spin modes, i.e.,

Π 2 2)

Hence,

D = 2 + ^eZ. (3.2.3)

Thus, from this one assumption, the possible integer spacetime dimensions are
determined along with the possible levels K. Perhaps not coincidentally, the
allowed dimensions are precisely the ones in which classical supersymmetry is
possible. This is clearly a complementary method to the approach for determining
D followed in [16,7,10].

Demanding Eq. (3.2.1) guarantees spin-1 and spin-1/2 superpartners at

mass2 = mass2(vacuum) + h(φl) = mass2(vacuum) + (D — 2) x h(φψμ) . (3.2.4)

A priori simply demanding the ratio be integer is not sufficient to guarantee
spacetime supersymmetry. However, in the previous subsections it proves to be; the
masslessness of the (spin-1, spin-1/2) pair occurred automatically.

m2(spin — 1) = m2 (spin—1/2)

m2 (vacuum)

Fig. 3.1. Supersymmetry of Lowest Mass States of the Fractional Open String

In fractional superstrings, the primary field φg /t = Φ^κ/4- f° r ^ — 4, 8, and 16,
with related partition function Z^/t = f/ci/L is viewed as the generalization of
φl'il at K = 2. Are there any other parafermion operators at additional levels-K
that could be used to transform the bosonic vacuum into a massless fermionic
vacuum and bring about local spacetime supersymmetric models? The answer is
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that by demanding masslessness of the (spin-1, spin-1/2) pair,1 4 there is clearly no
other choice for K < 500.

The proof is short. We do not assume first that the massless spin-1 fields are
a result of the φι

Q fields. Rather, the necessity of choosing φ £ appears to be the result
of the uniqueness of f

Proof. Assume we have a consistent (modular invariant) closed fractional super-
string theory at level-K with supersymmetry in D dimensional spacetime, (N = 2
for fractional type II theories and N = 1 SUSY for fractional heterotic). Let the
massless left (right) sρin-1 field be (φΐ; i)

μ |vacuum>. This requires that φj^ have
conformal dimension

t) = ceff/24 = (D - 2) * + . (3.2.5)

Thus, the twist field φ%2 that produces the spinor vacuum along one of the D — 2
transverse dimensions must have conformal dimension

For K < 500 the only primary fields with dimension K/\β(K + 2)] are the series of
φκ/t for K e 2Z, and the accidental solutions φl for K = 48, φl for K = 96, and
φηβ for K - 98. With m = 0, it is clear that the K = 48 and 96 fields could not be
used to generate spacetime fermions. The K = 98 case could not be used because
there is no candidate field at that level whose conformal dimension is a multiple of
(3.2.6) (and thus no replacement for ε = φo). (A proof of the uniqueness of φf/4 for
all K is being prepared by G.C.)

Confirmation of φ^/t as the spin-1/2 operator, though, does not immediately
lead one to conclude that φo is the only possible choice for producing massless
boson fields. Table 3.3 shows alternative fields at new levels-K 4=2,4,8, or 16
whose conformal dimension is one, two, or four times the conformal dimension of
Φκf/t (Note that successful alternatives to φ J would lead to a relationship between
level and spacetime dimension differing from Eq. (3.2.3).) However, nearly all
alternatives are of the form φj^ι and we would expect that modular invariant
models using φ^ι to create massless bosons, would necessarily include tachyonic
(Φo)μμ I vacuum > states. That is, (although we have not proven this yet), we do not
believe valid GSO projections exist which can project away these tachyons while
simultaneously keeping the massless graviton and gravitino and giving modular
invariance. Further, the remaining fields on the list have m φ 0 (modK). Each of

1 4 Masslessness of at least the left- and right-moving spin-1 spacetime fields (whose tensor
product forms the massless spin-2 graviton in a closed string) is of course required for a consistent
string theory. Consistent two-dimensional field theories with

low mass of left- (right-)moving spacetime spin — 1 fields =

lowest mass of left- (right-)moving spacetime spin —1/2 fields = Mm i n > 0

may exist (as we discuss below) but, the physical interpretation of such models is not clear, (other
than to say they would not be theories with gravity.)
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Table
formal
with h

K

12

24

36

40

48

60

80

84

96

112

120

3.3. Fields φJ

n

Dimensions

(ΦKΊD

ΦL h

Φo

Φo

Φo

Φl
Φo

Φl
Φl
Φo

Φl
Φl
Φl
Φl
Φl

!h φ φo with Con-
in Integer Ratio

{φL)/h(Φκ//ί)

4

2

4

4

4

1

2

4

2

4

1

4

2

these would not have the correct fusion rules with itself, nor with φ^/t t° ^ e

a spacetime boson.
Lastly, we want to consider the possibility that there is meaning to (non-stringy)

two-dimensional field theories that contain neither supergravity nor even gravity.
Instead let a model of this type contain only a global supersymmetry. The lowest
mass spin-1 and spin-1/2 left- or right-moving fields, (φo)μ I vacuum) and (φm3)

D~2\
vacuum), respectively, would be related by

mass2(vacuum) + h(φl) = mass2(vacuum) + (D — 2) x h(φj^J . (3.2.7)

In parafermion CFT's there is only a very small number (12) of potential candi-
dates for (/>4\ (Like φκ/t these twelve are all of the form φj±m^) We are able to
reduce the number of candidates down to this finite number very quickly by
proving no possible candidate could have j 3 > 10, independent of the level-K. We
demonstrate this as follows:

Any potential level-K candidate φJ^ must satisfy the condition of

K ύK2/4. (3.2.8)

By parafermion equivalences (1.1), \m\ SjS K/2 can be required for any level-X
fields. The other half of the inequality, K/(K + 2) [ j3( j 3 + 1) - 2] ^ (m3)

2 results
from the weak requirement that the conformal dimension of the candidate spin-1/2
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field φjm3, creating the fermion ground state along one spacetime direction cannot
be greater than the conformal dimension of φl, i.e., h(φj^3) ^ h(φl).

From Eq. (3.2.8), we can determine both the minimum and maximum values of
K, for a given j , (independent of m). These limits are Kmin = 2/3 and
Kmax = int[2(j 3 ) 2 /(j 3 - 2 ) ] . Thus the number of different levels-K that can
correspond to the field φj^ is int [(5j3 —2)/(j3 —2)]. This number quickly de-
creases to six as j 3 increases to 10 and equals 5 for j 3 > 10. For a given j 3 , we will
express the levels-X under consideration as Kι = 2j3 + i. Also, we find that from
Kψin = 2/3, the weak constraint on m3 implies that we need only consider
Φm3=±h fields.

Thus, our search reduces to finding fields φ^3 whose conformal dimensions
satisfy

2 _

(3.2.9)

Ki + 2

It is easily shown that there are no solutions to Eq. (3.2.9) for ί = 0 to 4 and; 3 > 10.
As a result, we have reduced our search for possible alternative sources of fermionic
ground states to only φJ±h with 0 <j3 ^ 10. Within this range of;3, a computer
search reveals the following complete set of φJ+h fields that obey Eq. (3.2.9), as
shown in Table 3.4.

The sets of solutions for j 3 = \, 1, and 2 are related. The existence of a set of
solutions, {i = 1, 2, and 4}, for any one of these j 2 implies identical sets {i} for the

Table 3.4. Potential Alternatives, <

± m 3 K i h

K > t o Φ\

(Φl) h

κ/4 f o r Spin

D

Fields

h(Φl)
f 2

1/2 1/2 2 1 1/2 1/16 10**
3 2 2/5 1/15 8
5 4 2/7 2/35 7

1 1 3 1 2 / 5 1/15 8
4 2 1/3 1/12 6**
6 4 1/4 1/12 5

3/2 3/2 9 6 2/11 1/11 4

2 2 5 1 2 / 7 2/35 7
6 2 1/4 1/12 5
8 4 1/5 1/10 4**

5/2 5/2 25 20 2/27 2/27 3

3 3 9 3 2/11 1/11 4

18 12 1/10 1/10 3

4 4 16 8 1/9 1/9 3**

6 6 18 6 1/10 1/10 3

10 10 25 5 2/27 2/27 3
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remaining two j 3 as well. The known φ^/t solutions (marked with a **) correspond
to the ί = 1, 2, and 4 elements in the j 3 = i, 1, and 2 sets respectively. Whether this
pattern suggests anything about the additional related φj±J3 in these sets, other than
explaining their appearance in the above table, remains to be seen.

The set of distinct, physically relevant fields can be further reduced. There is
a redundancy in the above list. Among this list, for all but the standard
φ^-ft solutions, there are two fields at each level, with distinct values of 73. These
pairs are pairs are related by the field equivalences (1.1):

Φ%i a t K = 3 , (3.2.10a)

Φ%2 a t K = 5, (3.2.10b)

φ%2 a t K = 6, (3.2.10c)

Φ%3 a t K = 9, (3.2.10d)

φ%6 a t X = 18, (3.2.10e)

φ^10 a t K - 2 5 . (3.2.10f)

Because φJ

m and φLm have identical partition functions and φj-m = (φJ

mV we can
reduce the number of possible alternate fields in half, down to six. (Note that we
have not been distinguishing between ± on m anyway.)

If we want models with minimal super Yang-Mills Lagrangians we can reduce
the number of fields to investigate further. Such theories exist classically only in
^SUSY = 10, 6,4, 3 (and 2) spacetime. Thus we can consider only those φj+J3 in the
above list that have integer conformal dimension ratios of D s u s γ — 2 = ft(φj)/
HΦJ±j3)

 = 8> 4, 2, and 1. This would reduce the fields to consider to just the three
new possibilities for D = 4, and 3 since there are no new additional for D = 10 or 6.

Section 4: Conclusions

A viable and consistent generalization of the superstring would be an important
development. Our work has shown that the fractional superstring has many
intriguing features that merit further study. The partition functions for these
theories are found to have simple origins when derived systematically through the
factorization approach of Gepner and Qiu. Furthermore, using this affine/theta-
function factorization of the parafermion partition functions, we have related the
Aκ-sector containing the gravitation and gravitino with the massive sectors,
Bκ and Cκ. A bosonic/fermionic interpretation of the 2?x-subsectors was given.
Apparent "self-cancellation" of the Cκ-sector was shown, the meaning of which is
under further investigation by G. C. A possible GSO projection was found, adding
hope that the partition functions have a natural physical interpretation. Neverthe-
less, fundamental questions remain concerning the ghost system and current
algebra, which prevent a definite conclusion as to whether or not these are
consistent theories. However, even if the theories are ultimately shown to be
inconsistent, we believe that this program will at least provide interesting identities
and new insight into the one case we know is consistent, K = 2. In other words,
viewed in this more general context, we may better understand what is special
about the usual superstring.
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