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Abstract: This paper is devoted to a proof of a generalized Ray-Singer conjecture
for a manifold with boundary (the Dirichlet and the Neumann boundary conditions
are independently given on each connected component of the boundary and the
transmission boundary condition is given on the interior boundary). The Ray-Singer
conjecture [RS] claims that for a closed manifold the combinatorial and the analytic
torsion norms on the determinant of the cohomology are equal. For a manifold
with boundary the ratio between the analytic torsion and the combinatorial torsion
is computed. Some new general properties of the Ray-Singer analytic torsion are
found. The proof does not use any computation of eigenvalues and their asymptotic
expansions or explicit expressions for the analytic torsions of any special classes of
manifolds.
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Torsion invariants for manifolds which are not simply connected were introduced
by K. Reidemeister in [Rel, Re2], where he obtained with the help of such in-
variants a full PL-classification of three-dimensional lens spaces. These invariants
were generalized by W. Franz to multi-dimensional PL-manifolds in [Fr]. As the
result of this generalization he obtained a PL-classificaiton of lens spaces of any
dimension. (These torsions were the first invariants of manifolds which are not
homotopy invariants.) J.H.C. Whitehead in [Wh] and G. de Rham in [dR3] intro-
duced torsion invariants for smooth manifolds. G. de Rham in [dR3] proved that a
spherical Clifford-Klein manifold (i.e., the quotient of a sphere under a fixed-point
free action of a finite group of rotations) is determined up to an isometry by its
fundamental group and by its Reidemeister torsions. The Whitehead torsion for a
homotopy equivalence between finite cell complexes was introduced in [Wh] as
a generalization of the Reidemeister torsion invariants defined in [Rel], [Fr], and
[dR3]. (Its values are in the Whitehead group Wh(πi) of the funadmental group
πi.) The Whitehead torsion is connected with Whitehead's theory of simple ho-
motopy types ([Wh, dRMK], [Mi], Sect. 7). Some modifications of Reidemeister
torsions were considered by J. Milnor in [Mi], Sects. 8, 12, and by V. Turaev in
[T], Sect. 3. The scalar Reidemeister torsion is a global invariant of a cell decom-
position of a manifold and of an acyclic representation of its fundamental group.
It is an invariant of a PL-structure of a manifold. The Reidemeister torsion for an
arbitrary finite-dimensional unimodular representation of the fundamental group can
be defined as a canonical norm on the determinant line of the cohomology of a
manifold (with the coefficients in the local system defined by this representaion). It
is some kind of multiplicative analog of the Euler characteristic in the case of odd-
dimensional manifolds. (The Euler characteristic of a closed manifold is trivial in
the odd-dimensional case.) Formulas for the Reidemeister torsions of a direct prod-
uct of manifolds ([KwS]) are analogous to the multiplicative property of the Euler
characteristic.

The Ray-Singer analytic torsion was introduced in [RS] for a closed Rieman-
nian manifold (M, QM ) with an acyclic orthogonal representation of the fundamen-
tal group 7ii(M). It is equal to a product of the corresponding powers of the
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determinants of the Laplacians on differential forms DR*(M). These determinants
are regularized with the help of the zeta-functions of the Laplacians. (The scalar
Reidemeister torsion also can be written by the analogous formula, where Rieman-
nian Laplacians are replaced by the combinatorial ones.) The Ray-Singer analytic
torsion is defined with the help of a Riemannian metric gM but it is independent of
gM in the acyclic case. (This assertion was proved in [RS], Theorem 2.1) So it is an
invariant of a smooth structure on M. It has properties analogous to the properties
of the Reidemeister torsion ([RS], Sects. 2, 7). The Ray-Singer conjecture ([RS])
claims that for an acyclic representation p of the fundamental group of a closed
manifold M the Reidemeister torsion of (M,p) (which is defined for any smooth
triangulation of M) is equal to the Ray-Singer analytic torsion of (M,p). This con-
jecture was independently proved by W. Mϋller in [Mϋl] and by J. Cheeger in [Ch]
for closed manifolds. The Ray-Singer analytic torsion can also be defined for any
finite-dimensional unitary representation p of π\(M). In this case the Ray-Singer
torsion is the norm on the determinant line det//*(M,p). For instance, it is defined
for a trivial one-dimensional representaion. So the analytic torsion norm provides
us with a canonical norm on the determinant line of the de Rham complex of a
manifold. (The Ray-Singer formula for an arbitrary finite-dimensional unitary rep-
resentation p of 7i\{M) in the case, when M is a smooth closed manifold, claims
that the Ray-Singer norm on det//*(M,p) is equal to the Reidemeister norm on
det// (M,p).)

Let (M,gM) be a manifold with a smooth boundary dM and with the Dirich-
let and the Neumann boundary conditions independently given on the connected
components of dM. Let Z C dM be a union of the components of dM where the
Dirichlet boundary conditions are given. Let Fp be a local system with a fiber (Cm

defined by a unitary representation p : π\(M) —> U(m). Then the Ray-Singer tor-
sion norm Γ0(M,Z;Fp) is defined on det H*(M,Z;FP). It is independent of gM (if
gM is a direct product metric near dM) and it depends on a flat Hermitian metric
on the fibres Fp (for a general (M, Z)). A flat Hermitian structure on Fp defines a
norm on the line det (FX,M,Z) := ( g ^ ( d e t F x ^ M * ' z n a M ^ , where the product is over
the full set of representatives FXk of fibers of Fp over the connected components
Mk of M (with one such a fiber FXk for each Mk,xk e Mk,detFx := ΛmaxFx). The
tensor product of this norm and of TO(M,Z;FP) is a modified Ray-Singer norm on
det//*(M,Z; Fp) 0 det(Fx,M,Z) and it does not depend on gM and on a flat Hermi-
tian metric on Fp ([VI]). The Ray-Singer torsion norm for the Rham complex of
(M,Z) with the coefficients in the direct sum of any finite-dimensional local system
Fp and of the dual one F^ is defined in [V2]. In this case, the Reidemeister tor-
sion τ0 (M,Z;FpφF^) (i.e., the one for (M,Z) with the coefficients in FpφF^) is
well-defined, because the fibres of the line bundle det (Fp 0F^ V ) have the canonical
norm in accordance with the local system structure. In this case, the Ray-Singer
torsion differs from the Reidemeister torsion by an explicit factor (which is com-
puted in [V2]) but this torsion does not depend on g^ (if gM is a direct product
metric near dM). This definition of the Ray-Singer torsion norm does not use a
Hermitian structure in the fibers of Fp. In [Mϋ2] another Ray-Singer torsion was
introduced for the de Rham complex of a closed (M,gM) with the coefficients in
a local system Fp, defined by a unimodular finite-dimensional representation p of
π\(M). This torsion is defined with the help of an arbitrary Hermitian metric hp

in the fibres of Fp and it depends on this metric in general. (For a non-unitary
representation p there are no Hermitian metrics on Fp, which are flat with respect
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to the canonical flat structure.) It was proved in [Mu2] that in the case of an
odd-dimensional M the Ray-Singer torsion, defined with the help of a Hermitian
metric/jp, is independent of (hp,gM) and is equal to the Reidemeister torsion. (The
Reidemeister torsion is canonically defined for any unimodular finite-dimensional
representaion of π\. In the case of an odd-dimensional closed M it is independent
of a flat Hermitian metric on detFp, since the Euler characteristic in this case is
equal to zero for each connected component of M.) The Ray-Singer torsion, defined
with the help of hp, depends on (hp,gM) for a general even-dimensional M. The
definition of the Ray-Singer torsion for any finite-dimensional representation p of
π\(M) for a closed (M,gM) equipped with a Hermitian metric hp (on the fibres of
the corresponding vector bundle) is given in [BZ1, BZ2]. In [BZ2] the Ray-Singer
metric on the determinant line, corresponding to a finite flat exact sequence (F*,df)
of finite-dimensional flat vector bundles over M, is computed (in terms of gM and
of Hermitian metrics on Fj).

The Gaussian integral of exp(-(»Sx,x)), where S is a positive self-adjoint
operator in a finite-dimensional Hubert space H, dim H — n, is equal to
(2π)Λ//2(det S)~~1/2. The Ray-Singer torsion appears naturally in the computations of
asymptotic expansions for analogous infinite-dimensional integrals of exp(—ikI(A)),
where I(A) possesses an infinite-dimensional symmetry group G ([Sc, Wil, Wi2]).
For instance, the Chern-Simons action

I (A) := (47ΓΓ1/ Tr(A ΛdA+ 2/3AΛAΛA)
M

on a trivialized principal G-bundle PQ over a closed orientable three-dimensional
manifold (where G = SUN and Tr is the trace in the Λf-dimensional geometrical
representation of G, and where A is a connection form) is invariant under the gauge
transformations A —> gAg~ι — dg g~ι =: Ag for a smooth g : M —> G (where Ag

is the same connection but with respect to another trivialization of PQ, i.e., with
respect to another smooth section G —> PQ) Stationary points of I (A) are the flat
connections αα (i.e., such that the curvature F{Aa) is equal to zero). The asymptotic
of an integral of exp(—ikl(a)) as k —• -foo,& € %+, is computed by the stationary
phase method. The principal term of the contribution of a point Aa into this integral
(in the case when the flat connection Aa is an isolated one) has as its absolute
value the square root of the Ray-Singer torsion of M with coefficients in the local
system, defined by a flat connection Aa, with the Lie algebra g of G as its fibres
(see [Wil]; [Wi2], 2.2; [BW], 2).

The Reidemeister torsion was essentially used in [Wi2], 4, for the computation
of the volume of a moduli space Ji of the fundamental group representations for
a closed two-dimensional surface. In this case the Reidemeister torsion is a section
of I det \T*J%, i.e., it is a density on Jί.

This paper is devoted to a proof of a generalized Ray-Singer conjecture for
manifolds with a smooth boundary (and also for transmission boundary conditions
given on the interior boundaries). We suppose that the local system is trivial. The
proof of the Ray-Singer conjecture for non-unitary local systems and for manifolds
with corners will be the subject of a subsequent paper.

Let (M,gu) be a Riemannian manifold with a smooth boundary dM and let
the Dirichlet and the Neumann boundary conditons be independently given on the
connected components of dM. Let gM be a direct product metric near dM. Then
the Ray-Singer torsion of (M,gM) is defined as a norm on the determinant line
det//*(M,Z). (Here Z is the union of the connected components dM where the
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Dirichlet boundary conditions are given.) This norm is independent of gM (for direct
product metrics QM near dM). The Reidemeister torsion of (M,Z) is an invariant of
the PZ-structure of (M,Z) and it is a norm on the same determinant line. The torsion
norms are defined in Sect. 1. The Ray-Singer norm differs from the Reidemeister
norm on detHm(M,Z) for a general δMή=Φ. Their ratio is computed in Theorem
1.4 below.

Let {M,QM) be obtained by gluing two Riemannian manifolds ( M , , ^ ) along
the common component N of their boundaries, M := M\ UΉ M2 (where N is a
closed smooth manifold of codimension one in M). Let QM be a direct prod-
uct metric near N. Then, as it is proved in Theorem 1.1, the Ray-Singer torsion
norm 7b(M,Z) on det H*(M,Z) is equal to the tensor product of the Ray-Singer
norms T0(MuZιU N) ® T0(M2,Z2U N) ® T0(N) (Zk := Z nWk, where the line
detH*(M,Z) is identified with the tensor product of the lines detHm(M\,Z\ U
N) <g> det//*(M2,Z2 UN) <g> det H*(N) by the short exact sequence of the de Rham
complexes

0 -> DR\MUZX UN)ΘDR\M2,Z2UN) -> DR\M,Z) -> DR*(N) -> 0 , (0.1)

where DR*(M,Z) is the relative de Rham complex of smooth forms with the zero
geometrical restrictions to Z, the left arrow is the natural inclusion, and the right
arrow is \fl times a geometrical restriction. For the Reidemeister norm this assertion
is also true and the identification of the determinant lines is given by the analogous
exact sequence of cochain complexes. However in this case the right arrow is
the geometrical restriction of cochaίns (without additional factor y/l). Let (M,Z)
be obtained by gluing two manifolds (M\,Z\) and (M2,Z2) along the common
component N of their boundaries, M :— M\UN M2. Then the ratio of the square
of the Ray-Singer norm and the square of the Reidemeister norm for (M,Z) is
equal to the product of the same ratios for (M\,Z\ UN),(M2,Z2 UN), and for TV
with an additional factor 2~χ(N\ So the assertion of Theorem 1.1 claims that it
is possible to calculate the Ray-Singer norm by cutting of a manifold into pieces
which are manifolds with smooth boundaries. The main theorems of this paper are
consequences of Theorem 1.1. This theorem provides us with the gluing formula
for the Ray-Singer torsion norms. Such a gluing formula is a new one.

In the case of a manifold with a smooth boundary, the Ray-Singer torsion
7o(M,Z) is a function not only of (M,Z) but also of the phase θ of a cut of the spec-
tral plane C (because the zeta-functions ζj(s) for the Laplacians A} on DRJ(M,Z)
are defined for Res > (dim M)/2 as the sums Y^λ~s over the nonzero eigenval-
ues, and λ~s is defined as λ7θl := exp(—slog^ λ), where θ — 2π < Im log^ λ <
θ,θ£2πZ). In fact, TO(M,Z;Θ) (as well as ζ,(s)) depends only on [θ/2π]. The
zeta-function regularization of the det'(Δj) (i.e., of the product of all the nonzero
eigenvalues of AJ9 including their multiplicities) is defined as exp(—dsζj(s)\s=o). The
analytic continuation of ζj(s) is regular at zero. The zeta-function ζj(s m) depends
on m := [0/2π], θ £ 2πZ, as follows:

ζj(s;m + 1) = Qxp(-2πis)ζ(s;m),

det'(Δj;m + 1) = exp(2π/£7(0))det/(zl7;m).

The number C/(0) is independent of m, and the number C,(0) -f dimKer^ can
be interpreted as the regularized dimension of the space DR\M). This regularized
dimension depends not only on the space DRJ(M) but it also depends on a positive
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definite self-adjoint elliptic differential operator of a positive order, which acts in
DRJ(M). This dimension is a real number but it is not an integer in the case of
the Laplacians on DR*(M) for a general closed even-dimensional (M,gM). Hence,
det(Zly;m) depends on m for such ( M , # M ) The number ζ}(0) is an integer for a
generalized Laplacian on a closed odd-dimensional (M,gM), according to [BGV],
Theorem 2.30, or to [Gr], Theorem 1.6.1. It is equal to zero when M is closed,
dim M is odd, dim Kerzl7 = 0.

Even in such a simple case as for an interval (/, dl) with the Dirichlet boundary
conditions the dependence of To(M,Z;m) on m is nontrivial. The ratio of the torsion
To(M,Z;[θ/2π]) and the Reidemeister torsion norm is computed in Theorem 2.2.

The paper is organized as follows. In Sect. 1 we deduce a generalization of
the Ray-Singer conjecture from the gluing formula for Ray-Singer torsion norms.
This formula is proved in Theorem 1.1. The proof uses v-transmission interior
boundary conditions on N, where v = (α,j8) G IR2\(0,0). These interior bound-
ary problems give us a smooth in v family of spectral problems on M. Such
a problem for v = (1,1) coincides (in a spectral sense) with the spectral prob-
lem for a glued M. For v = (0,1) or for v = (1,0) it is a direct sum of spectral
problems on M\ and on M2, i.e., the two pieces of M are completely discon-
nected. So this family provides us with a smooth process of cutting (in a spectral
sense) of M in two pieces M\ and M2. Let M = M\ UN M2 be obtained by glu-
ing M\ and M2 along the common component N of their boundaries. Then the
Ray-Singer norm TO(MV,Z) on the determinant line det//*(Mv,Z) for the de Rham
complex DR*(MV,Z) with v-transmission conditions on N is defined. The short
exact sequence for DR*(MV,Z), similar to (0.1), has the same the first and third
terms as (0.1). The homomorphisms rv : DR*(MV,Z) —• DR*(N) are of the form
rv — (α/* + /?/£)/|v|, where i*cθj are the geometrical restrictions to N for the com-
ponents cύj of ω — (ω\,ω2) 6 DR*(MV,Z). Note that r ( U ) = y/ϊi*. (This is the
reason of the appearance of y/ΐi* in the exact sequence (0.1) connected with the
gluing formula.) In Lemma 1.2 we prove that the gluing property for analytic tor-
sion norms (Theorem 1.1) is equivalent to the independence of v of the norms on
det// (Afi,Zi UN) (Si det//#(M2,Z2 UN) ® det//*(7V) induced by ΓO(MV,Z). (Here
the identification of the determinant lines is defined by the short exact sequence for
DR*(MV,Z).) The latter assertion is proved in Sect. 2. First we prove that the norm
induced by the Ray-Singer torsion TQ(MV,Z) is locally independent of v in the case
when αjS + O (where v = (α,/?)). We do this in Sects. 2.3, 2.5, and 2.6 with the
help of explicit variation formulas for the scalar Ray-Singer torsion T(MV,Z) (if v
depends smoothly on a parameter). We define a family (in v) of homomorphisms
to identify finite-dimensional subcomplexes W*(y) of DR*(MV,Z). (The complexes
W*(v) are spanned by the eigenforms of the Laplacians with eigenvalues less than
a fixed number a > 0. We suppose that a is not an eigenvalue of Aj(Mv,Z) for
0 rg y ^ n.) Then we compute the actions of these homomorphisms on the determi-
nant lines. These identifications are not canonical; we choose some particular (quite
natural) identifications for v sufficiently close to Vo such that αoβoΦO.

Then it is enough to prove the continuity in v £ 1R2\(O,O) of the norm on
detH (MuZι UΛ0®det// (M 2 ,Z 2 UΛ0Θdet// (Λ0, which is induced by the
Ray-Singer norm TQ(MV9Z). We prove in Sect. 2.7 that the truncated scalar an-
alytic torsion T(MV9Z;a), corresponding to the eigenvalues λ of Aj(Mv,Z) which
are greater than α, is locally continuous in v. Then we prove that the norm, induced
by the analytic torsion norm TQ(W*(V)) of a finite-dimensional complex W*(v), is
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locally continuous in v. The latter assertion is proved in Sects. 2.2, 2.4, and 2.7
with the use of the cone of the homomorphism R*(a): W*(v) -* CΦ(XV,Z ΠX)
(where R*(a) is the integration of differential forms from W* over the sim-
plexes of a given smooth triangulation X of M, and Cm(Xv,Z Γ\X) is the cor-
responding cochain complex). This homomorphism is a quasi-isomorphism for any
v G R 2\(0,0) (Proposition 2.3). We can conclude that the analytic torsion norm
on the det//*. (ConeRv(a)) — C (for a fixed v) corresponds to an acyclic finite-
dimensional complex and is defined by the derivatives at zero of the zeta-functions
for self-adjoint finite-dimensional invertible operators. So these norms are locally
continuous in v. (This is proved in Sect. 2.7.) Then the local continuity of the norm
induced by T0(Wφ(v)) on det//*(M1?Zi ΠN) <8> d e t # (M2,Z2 UN) ® det H9(N)
follows from the continuity of the norm (on the same determinant line) induced
by TO(CΦ(XV,ZΓ)X)) and from the identity:

UK) = To(c\xv,znx))/\\ι\\%(Cone.Ma)).

This identity is proved in Lemma 2.4.
The use of the cone of R*(a) allows us to avoid difficulties connected with

the fact that some positive eigenvalues of the Laplacians AΦ(MV,Z) tend to 0 as
v = (α,/?) tends to v0 = (1,0) (or to v0 = (0,1)). The dimensions of HΦ(MV,Z)
essentially change when v,αβφθ, is replaced by v0. (Only the Euler characteristic
χ(//*(Mv,Z)) does not change when v is replaced by vo ) It is impossible to find
for a general N the precise asymptotic expressions for the eigenvalues λ, which
tend to zero as v —• v0, and especially to find the asymptotics of the corresponding
eigenforms ωA of AΦ(MV,Z). So the continuity of the norm induced by TQ(MV,Z)
(viewed as a function of v) at the point v0 cannot be proved for a general M
(obtained by gluing two pieces M\ and Mi along N) with the help of separate
computations of the asymptotic expressions for the scalar torsion T(MV,Z) and for
the measure on det//*(Mv,Z) defined by harmonic forms. The proof of the classical
Ray-Singer conjecture in [Ch] and the proof in [Mύ2] (in the case of unimodular
representations of π\(M)) are based on asymptotic computations of such quantities
for a manifold with boundary Mu :— M\SU, where Su is a tubular neighborhood of
an embedded sphere Sk c—> Mn as the radius u of the tubular neighborhood (in the
normal to Sk direction) tends to zero. (It is also supposed in [Ch] that Su is a direct
product on Sk x Dn~k and that #MU, is a direct product metric on Sk x Dn~k.)

To give a rigorous proof of the assertions above used in the proof of the gluing
formula, it is necessary to prove a lot of analytic propositions. We do it in Sects.
2.2, 2.6, 2.7, and in Sect. 3. The theory of ζ- and θ-functions in the case of
v-transmission interior boundary conditions is elaborated in Sect. 3. The precise
estimates of the corresponding ^-functions in vertical strips are obtained in Sect.
3.4. These estimates allow us using the inverse Mellin transform to derive the
information about the densities on M,N, and dM for the asymptotic expansions
as t -» +0 of θ-functions from the properties of the densities for appropriate ζ-
functions.

1. Analytic Torsion and Ray-Singer Conjecture

1.1. Analytic and Combinatorial Torsion Norms. The analytic torsion norm appears
in the following finite-dimensional algebraic situation. Let (A*,d) be a finite
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complex of finite-dimensional Hubert spaces. The determinant of (A*,d) is the
tensor product

where Λ™XAJ =: det^ί7 is the top exterior power of the linear space AJ and where
L~ι is the dual space Lv for a one-dimensional vector space L over C. The natural
Hubert norm || \\^QtA *s defined by the Hubert norms on AK

The determinant of the cohomology άctH*(A) of (A*,d) is also defined and
there is a natural norm on it (since HJ(A) is the subquotient of AJ). The differential
d provides us with the identification

f(d) : det(Λ ) ~ det H\A).

However in the general case this identification is not an isometry of the norms
II # lldetΛ a n c * II * WlQtH (A)) F° r f(d) to be an isometry it is necessary to multiply
|| ||det// (Λ) ky the scalar analytic torsion of a complex (Aφ,d), which is defined
as

T(A\d) = exp ( Z ( - l ) W 7 ( s ) U ) (1.1)

Here ζj(s) = Σ λ~~s is the sum1 over all the nonzero eigenvalues /ίφO (including
their multiplicities) of the nonnegative (i.e., if AφO then λ > 0) self-adjoint opera-
tor (d*d + dd*)\AJ. The derivative dsζjis)\s=0 is equal to -logdet'((<Γ</ + dd*)\A,)
(i.e., it is equal to the sum of (— log/I) G IR over all the nonzero eigenvalues A).

It is enough to prove the assertion (1.1) in the case of a two-terms complex
d : Fo ~F\, where dimFy = 1, e7 G F 7 , ofeo = μe\, μφO, and where | |βo||2 = 1 =
I \e\ 112. In this case the element βi 0 e^1 e det(F#) is of the unit norm and the square
of the norm of the corresponding element μ~x G C from C = detO = det//*(F) is
equal to Iμ" 1 ! 2 . If the norm \μ~x\2 is multiplied by the scalar analytic torsion for
F*, namely by exp(logdet(ί/*ί/)) = exp(logdet(dίΓ)) = |μ|2 then the isomorphism
between det(F#) and (C = detO (defined by d) becomes an isometry.

This finite-dimensional definition makes sense also for the infinite-dimensional
de Rham complex of a closed smooth manifold. In this case the analytic torsion is
the norm on the determinant of the cohomology of this manifold. Let (DRm(M),d)
be the de Rham complex of smooth differential forms (with the values in (C) on a
closed manifold M. The scalar analytic torsion for a closed Riemannίan manifold
(M,QM) is defined by the same formula (1.1), where d* = δ (relative to gM) and
(d*d -f dd*)\DRi(M) is the Laplace-Beltrami operator Aj. In this case the series,
which defines ζj(s), converges for Res > (dimM)/2. The analytic function ζj(s)
can be analytically (meromorphically) continued to the whole complex plane. It is
known that ζj(s) has simple poles and that it is regular at zero ([Se2]).

The cohomology H*{DR{M)) are canonically identified (by the integration of
the forms over the simplexes) with the cohomology H9(M) of M. This follows from
the de Rham theorem. The Hodge theorem claims that each element of HJ(DR(M))
has one and only one representative in the space of harmonic forms Kerzly. The
natural norm on Ker Λj (defined by the Riemannian metric gM) provides us with the
norm || | Idet// (Λ/) o n det//*(M). For an odd-dimensional M this norm depends
on gM.

The function λ s is defined as exp(—slog/) where log/ G IR for λ £ 1R+.
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Definition. The analytic torsion norm TQ(M) on det//*(M) is the norm

To(M) := || ||L//-(M) exp (Σ(-iyjdsζj(s)\s=0) . (1.2)

The main property of this norm is its independence of a Riemannian metric QM-
So it is an invariant of a smooth structure on M. Let us suppose that gM = 9M(J)
depends smoothly on a parameter y G R 1 . Then the variation formulas in [RS],
Theorems 2.1, 7.3 (or in [Ch], Theorem 3.10, (3.22)), claim that

d > . E ( - O W / , y ( a ) U o = Σ ( - l ) y (-Tr(exp(-ί4, y)α)° + Tr(j£),yα)) . (1.3)

Here Jf7T is the kernel of the orthogonal projection operator from DR\M) onto
YLsτΔj(M,gM(y)\ α := *713y(*y)(*y corresponds to gu{y)) and Tr(exp (—^/,y) α)°
is the constant coefficient in the asymptotic expansion as t —> +0 (n := dimM) :

Tr(exp(-*4, , y)α) = Σ™/,^~n/2+* + o (*') . (1.4)
k=Q

The existence of the asymptotic expansion (1.4) follows from [Gr], Theorem 1.6.1,
or from [BGV], Theorem 2.30. For a family of norms || ||2(y) on det//*(M)
defined by the harmonic forms Ker(zJ7(M,0M(y))) the following equality holds for
any fixed μ G det//#(M), μΦO ([RS], Sect. 7):

Hence, (1.3) implies the equality

dylogT0(M,gM) = Σ ( - 1 ) / + 1 ^ W 2 O 5 )

Since k in (1.4) are integers, we see that the right side of (1.5) is zero for odd n. For
even n, n = 2/, the right side of (1.5) is also equal to zero, since rrijj = — W2/-/,/.

This fact follows from the equalities

Sγ ( * 7 S ) = °> α = - * α *-1 ,

Tr(exp(-ίzly)α) = Tr ((*exp(-fc4,)*"~1) (-α)) = -Tr(exp(-ίJ w _ 7 )α),

(since they imply the equalities mj^ = —mn-hk, where n is even and k G Έ+ U 0).
The analytic torsion norm can be interpreted (in an intuitional sense) as the

norm, corresponding to an element v G det DR*(M) (v is defined up to a multi-
plicative constant c G <C, |c| = 1, and its "torsion norm" is equal to one). The space
άctDR*(M) and L2-norm on it are not defined but the space det//*(M) and the
analytic torsion norm JΌ(M) on it are rigorously defined. For a finite-dimensional
complex the analytic torsion norm on the deteminant of its cohomology corresponds
to the norm on the determinant of the complex defined by the Hubert structures on
the terms of this complex. The analytic torsion norm is (in some sense) a multi-
plicative Euler characteristic useful for odd-dimensional manifolds.

The same definition of TQ(M) makes sense also in the case when M is a compact
Riemannian manifold with a smooth boundary dM — UNj and with the Dirichlet or
the Neumann boundary conditions given independently on each connected compo-
nent Nt of dM. Let the metric QM be a direct product metric near dM. Then TQ(M)
is independent of QM as in the case of a closed manifold (this is proved below).
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Let X be a smooth triangulation of M and let (Cφ(X),dc) be a cochain complex
of X (with complex coefficients). Then each O(X) has the Hubert structure defined
by the orthonormal basis of basic cochains {δe}, where δe(e\) is 1 for e\ — e and
0 for e\ ή=e. Hence the scalar torsion T(C*(X),dc) is also defined.

The combinatorial torsion τ$(X) is defined as the following norm on the deter-
minant of the cohomology H9(C(X\dc) = HΦ(M) :

*o(X) := II H2

det// (C(X)) T(C\X\dc) (1.6)

(where HJ(C(X)) is the subquotient of CJ(X) and so it has the natural Hubert
structure induced from Cj{X)). The norm (1.6) is invariant under any regular sub-
divisions of X. So this norm is an invariant of the combinatorial structure of M
(which is completely defined by a smooth structure on M). This norm corresponds
to the Hubert norm on detC*(X) defined by the basic cochains.

Let M be a manifold with a smooth boundary dM = UNl9 where JVZ are the
connected components of dM. Let Z be the union of Ni where the Dirichlet bound-
ary conditions are given. Set V \—X Γ)Z. Then (1.6) (where H*(C{X)\dc) and
T(C\X\dc) are replaced by H*(C(X, V)) and by Γ(C#(X, V\dc)) provides us
with the definition of the norm TQ(X, V). This norm is an invariant of the combi-
natorial structure on (M,Z) ([Mi], Sects. 7, 8, 9).

1.2. Gluing Formulas. The Ray-Singer conjecture claims that for a closed smooth
manifold M the norms τo(M) and Γ0(M) on the same one-dimensional space
det//#(M) are equal2

τo(M) = 7b(Af) . (1.7)

How to prove such a formula in a natural way? It is necessary to find a general
property of the analytic torsion which implies the equality (1.7). Such a property can
be formulated as follows. Let (M,dM) be a Riemannian manifold with a smooth
boundary and with the Dirichlet or the Newmann boundary conditions given in-
dependently on the connected components of dM. Let a closed codimension one
submanifold N of M, N Π dM — 0, divide M in two pieces M\ and M2 (glued
along N), M — M\ U^ M2, and let a metric gM be a direct product metric near N
and near dM. Let To(Mk,N) be the analytic torsion norm for Mk (with the Dirich-
let boundary conditions on N), and let the boundary conditions on the connected
components of dM belonging to dMk be the same as for TQ(M). The following
assertion is central in this paper.

Theorem 1.1 (Gluing property). The analytic torsion norm T0(M,Z) is the tensor
product of the analytic torsion norms for (M\,Z\ UN), {M.2^2 UiV), and for N,

φanΓ0(M,Z) = T0(Mι,Zι UN)^T0(M2,Z2 UN)®T0(N), (1.8)

where Zk := Z Π dMk.

The identification φΆn (in (1.8)) of det//#(M,Z) with the tensor product of the
three one-dimensional spaces:

φ a n : d e t # (M,Z) -+deti/ (M1,Zi UN) (8) det/Γ(M 2,Z 2 UN) 0 det//#(JV)

=:Det(M,W,Z) (1.9)

2 The cohomology Hm(DR(M)) and H9(C(X)) are identified (according to the de Rham the-
orem) by the homomorphism of the integration of forms from DR*(M) over the simplexes of a
smooth triangulation I of M.
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is defined by the long eohomology exact sequence corresponding to the following
short exact sequence of the de Rham complexes:

0->Dfl#(Mi,Zi U N) Θ DRm(M2,Z2U N) -> DR (M] i,Z)-A DR*(N)-> 0.
(1.10)

The relative de Rham complex {DRm{Mj{,Zf< U N\d) (where d is the exterior
derivative of differential forms) consists of the smooth forms ω on M&, having the
zero geometrical restriction to TV : i*xo — 0 (where ik : TV C dMk °-> Mk) and also
having the zero restrictions to the components of dM Π Mk where the Dirichlet
boundary conditions are given (i.e., to Z/f). The complex (DR(M\j),d) consists of
the pairs (ω\,ω2) of smooth differential forms ω* G DRm{Mii,Zj<) (i.e., ω/ζ have the
zero geometrical restrictions to the corresponding components of dM Π Mk), which
have the same geometrical restrictions to TV:

i*O)\ = i~2OJ2 -

The differential d(ω\,ω2) in DR*(M\ \) is defined as (dω\,dω2). The left aiτow in
(1.10) is the natural inclusion of ®kDR (Mk,ZkUN) into DR*(MhuZ). The right
arrow r in (1.10) is not a usual geometrical restriction but is the one multiplied
by y/2:

r(o)U(o2) = \/2/>^ e DR\N) . (1.11)

To define φ a n , it is necessary to introduce a natural identification of
H\DR(M,Z)) with H\DR(MX i,Z)). (The short exact sequence (1.10) provides
us with the identification

φm : άetH*(DR(MhUZ)) ~Det(M,N,Z),

but not with the identification of det//•(£>#(M,Z)) with Όet(M,N,Z).) We show
in Proposition 1.1 (for any given metric QM) that not only all the eigenvalues with
their multiplicities but also all the eigenforms of the natural Laplacian Δ\Λ on
DRΦ(M\,i,Z) are the same as for the Laplacian on DRΦ(M,Z). Thus, the operator
Δ\,\(QM) m a v e r Y strict spectral sense is the same as A(CJM)-

The homotopy operator between the identity operator on DRΦ(M\\,Z) and the
projection operator from DR*(M\\,Z) onto Ker*z1u = Ker*zl is obtained with the
help of the Green function G\j for the operator A\j (Lemma 1.1). This homo-
topy operator provides us with the canonical identification of H*(DR(M\ \,Z))
with Kerzi^. So it defines the identification of H*(DR(MhUZ)) with KerzΓ =
H*(DR(M,Z)) (since KerzΓ is canonically identified with KerZl* j).

To prove Theorem 1.1 we introduce a family of interior boundary conditions on
N and show that the induced norm φ}

mTo(Mv,Z) on Det(M,7V,Z) is independent of
v (where v = (α,/?) G IR2\(0,0) are the parameters of interior boundary conditions
on N). Namely

φ*nT0(Mγ,Z) = c0T0(MuZ] U N) ® Γ0(M2,Z2 UN) (g) T0(N) (1.12)

with some positive Co which may depend on (M,gM,dM) and on the boundary
conditions on dM but does not depend on the parameters (α, β) = v. Suppose that
the formula (1.12) holds for any gluing two pieces M\ and M2 along a closed N,
M — M\ Ujsj M2, where the factor Co is independent of v. Then it is easy to conclude
that Co = 1 (Lemma 1.2). In (1.12) 7o(Mv,Z) is the analytic torsion norm for the
de Rham complex (D7?#(MV,Z), d). This complex consists of the pairs of smooth
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forms (ωi,ω 2 ) such that c% e DRm (Mk,Zk) has the zero geometrical restrictions
to Zk := Z Π 3M* 3 and that the following transmission condition holds for the
geometrical restrictions i%cθk of (Ok to N

0Li*a>\ = βi2ω2 (1-13)

The analytic torsion norm TQ(MV,Z) is defined for an arbitrary v = (α,/?)€
R 2 \ (0,0). There is a canonical identification of HJ(DRΦ(MV,Z)) with the space of
the corresponding harmonic forms Ker(zlv \ DRi(Mv,Z)) (Lemma 1.1). This iden-
tification (similarly to the case of DR*(M\}ι9Z)) is obtained by the homotopy
operator, which is defined using the Green function for the Laplacian Δv. (This
Laplacian is an elliptic self-adjoint operator by Theorem 3.1.) The boundary con-
ditions for Δv on N and dM are elliptic (and differential). The Green function
Gv for Δv exists (and depends smoothly on vφ (0,0)) according to Theorem 3.1
and to Proposition 3.1. This identification provides us with the natural norms on
H'(DR (MV,Z)) =: W(MV,Z) and on det H*(MV,Z). The scalar analytic torsion
T(MY,Z) is defined by ζv,j(s) := Σ K~S f°r ^ e s > (dim M)/2 (where the sum is
over all the nonzero eigenvalues Xt of the Laplacian Δvj := Δv \ DRJ(MV,Z) with
their multiplicities). These functions ζVJ can be continued to meromorphic functions
on the whole complex plane with simple poles and regular at zero. (This statement
is proved in Theorem 3.1 and in Proposition 3.1 below.)

The analytic torsion norm on det //*(MV,Z) is the norm

7o(M v,Z)= || . ||L// (Mv,z) e x p ( Σ ( - l ) W v > ) U = o )

The identifiaction φ*Ώ in (1.12) is_defined by the short exact sequence of the de
Rham complexes (where Zk := Z Π

0 -> DR\MUZX UN)ΦDRΦ(M2,Z2UN) -+ DR*(MΛβ,Z) -^ DR'(N) -^ 0 .
(1.14)

The left arrow in (1.14) is the natural inclusion and the right arrow r^β is

:= (α2 + β2γxl\βi\ωx + α z > 2 ) . (1.15)

For (α,/?) = (1,1) we have r\t\ = y/ΐi^ωk. This corresponds to (1.11). Hence, φ a n

is equal to φ™β for (a,β) = (ί, 1).
The complex DR*(MV,Z) for the values (0, 1) and (1, 0) of v is the direct sum

of the de Rham complexes of all the smooth forms (with the zero geometrical
restriction to Z^) on one of the manifolds M^ and of all the smooth forms with the
zero geometrical restriction to Zj U N on another piece Mj of the manifold M. Thus,
the two pieces of M are completely disconnected with respect to DR*(MV9Z) for
these special values of v. The family of spectral problems on DR*(MV,Z) for v G
IR2\(0, 0) provides us with a smooth deformation between a spectral problem on M
(without any interior boundary conditions) and the direct sum of spectral problems
on (Mi,Zi) and on (M2,Z2 UN). So this family of interior boundary problems is
(in a spectral sense) a kind of a smooth cutting of M in two disconnected pieces.

Let (M\,N) be a compact smooth Riemannian manifold {M\,QMX ) with a smooth
boundary dM\ and let TV be a union of some connected components of dM\. Let a
metric QMX be a direct product metric near the boundary. Then (as it follows from

Z is the union of the components of dM where the Dirichlet boundary conditions are given.
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the equality (1.8)) the analytic torsion norm TO(MUN) on det Hm(DR(MuN)) does
not depend on QM\ To prove this, it is enough to take as (M, g^) a closed manifold
M = M\ UN M\ with a mirror symmetric (with respect to TV) Riemannian metric gM

which coincides with gu] on each piece M\ of M (gM{ is a direct product metric
near N and so gM is smooth on M). Since the torsions T0(M) and T0(N) are
independent of gMχ and of gN = gMχ \TN, we see that TQ(M\9N) does not depend
on gMχ.

It follows from the equality (1.12) with CQ = 1 that 7Q (MV,Z) does not depend
on 0jtf. Indeed, TQ(MJ,ZJ UN) and TQ(N) are independent of gM, and the identifica-
tion φ^n is also independent of Qw (Here M is a manifold with a smooth boundary
3M, N Π <3M = 0, the Dirichlet boundary conditions are given on a union Z of
some components of dM, the Neumann boundary conditions are given on dM\Z,
and gu is a direct product metric near dM and near JV, Zk '.— Z C\ dMk )

Since DR*(M0Λ,Z) is the direct sum DR9(MuZχ)φ DR9(M2,Z2 UN) of the de
Rham complexes (Z# :— Z Π dM^\ we see that the analytic torsion norm T§{M^\)
is canonically equal to the tensor product of norms:

7o(M>,i,Z) = ToίΛ/^ZO (8> Γ0(M2,Z2 UN). (1.16)

The determinant line in (1.16) is the tensor product

deti/ (M0,i,Z) = detif ( M i , Z i ) 0 d e t ^ (M2,Z2 UiV)

(where H*(M\,Z\) and Hm(M2,Z2 UN) are the relative cohomology).
The formula (1.8) claims for v = (0, 1) that

φ^Γ 0(M 0,i,Z) - 7o(Mi,Zi UiV)^ Γ0(M2,Z2 UiV)0 Γo(iV). (1.17)

It follows from the definition of the exact sequence (1.14) that φ™λ is the identity
on the component det//*(M2,Z2 U N) of deti/*(Mo,i,Z). The following theorem
is an immediate consequence of (1.16) and (1.17). Let N be a union of some
connected components of dM\, let M\ be a compact Riemannian manifold with a
smooth boundary dMi and let Z\ be a union of some connected components of dM\
not belonging to N. Suppose that the metric g^x is a direct product metric near
dMλ.

Theorem 1.2 (Gluing of Boundary Components). The equality holds

φanT0(MuZ1) = T0(Ml9Zι UN)® T0(N) . (1.18)

The identification of the determinant lines in (1.18),

φ a n :det i/ ( M i , Z 0 - detHm{MuZλ UN) 0 dεtH\N) , (1.19)

is defined by the short exact sequence of the de Rham complexes:

0 -> DR9{Mλ,Zχ UN)-^ DR\MuZλ) -> DΛ (JV) -> 0 , (1.20)

where the left arrow is the natural inclusion, and the right arrow is the geometrical
restriction.

Example 1.1. Formula (1.18) contains the Lerch formula ([WW], 13.21, 12.32) for
the derivative at zero of the zeta-functions of Riemann ζ(s) (defined for Re s > 1
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a s Σ^i""*):

Indeed, let M be an interval (0,Z>] C IR with the Dirichlet boundary conditions
at 0 and the Neumann conditions at b. Let TV be the point b. Then the formula
(1.18) claims in this case that

7o((O,ft]) = Γo((O,i))ΘΓ o (i). (1.21)

The cohomology H0((Q,b]) = Hm([0,b],0) are trivial. The scalar analytic torsion
Γ((0,6]) is equal to exp(—dsζι(s9M)\s=o), where ζ\(s;M) is the zeta-functions for
the Laplacian on DRι((0,b]). This zeta-function for Res > 1/2 is defined by the
series

Ci(s;M)= £ (((π/2b)(2n+l))2ys .

So ζi(,s;Λ/) = (π/26)-2 5(l -2~2s)ζ(2s) for Res > 1/2, where ζ(s) is the zeta-
function of Riemann. Hence, the latter equality between the analytic continuations
of ζχ(s M) and of ζ(2s) holds for all s G <C, and dsζι(s)\s=0 = 2ί(0)log2.

The determinant line άetH*(M) on the left in (1.21) is canonically isomorphic
to C, and the T0(M)-norm of the element 1 G C is equal to

|7b(M) = exp(-CKθ M)) = exp(-2f(0)log2) = 2 .

(Note, that the function 2ζ(2s) is the zeta-function for the Laplacian A = (—d2/dx2)
on functions on the circle of the length 2π. As the circle is odd-dimensional, then
the value of 2ζ(2s) at zero is equal to — dimKerzl = — 1. Hence, 2ζ(0) = — 1.)

The scalar analytic torsion T((Q,b)) is equal to exp(—dsζι(s;M9N))9 where
ζι(s;M,N) for Res > 1/2 is defined by the series

ζλ(s;M,N) = Σ (((π/b)n)2ys - (π/b)-2sζ(2s).

Hence, this equality holds for all s G (C, and the scalar analytic torsion is equal to

)) - exp(-2£'(0) + 2ζ(0)log(π/*)) - exp(- log(π/i) - 2

The identification of the determinant lines on the right and on the left in (1.21)
is defined by the cohomology exact sequence

0 -> H\b) -» Hl((0,b)) -> 0 . (1.22)

The element 1 G H°(b) (of the norm 1) is mapped by (1.22) to the element (dx/b)
of the norm ||dx/fc||2 = b~ι. The element h = I " 1 0 (dx/b), corresponding to the
element l e C = det//#((O,Z?]), has the norm b~ι. So the equality (1.21) claims
that

log 2 - - I o g 6 - log(π/A) - 2^(0) .

Thus the equality ζ'(0) = — 2~ι log(2π) is a particular case4 of Theorem 1.2.

4 In this paper the proofs of the equality (1.18), of Theorem 1.1, and of the equality (1.12)
with Co = 1 do not use the Lerch formula. So we have obtained (by the way) a new proof of the
Lerch formula.
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The natural L2-norra on φ DR'(Mj) is defined by

/ Λ * t ? i ) , (1.23)
M

where (y>\ Λ *ϊ;i) is a real density on M corresponding to v\ A *ϋ\.

Lemma 1.1 The Green functions Gv for the Laplacίans A* provide us with the
homotopy operator in the complex DRm(Mv,Z)

Kv\=δGv (1.24)

between the orthogonal projection operator p^e : DR*(MV,Z) —> Ker(zl*) and the
identity operator on DR*(MV,Z). The following equality holds in DR*(MV,Z) :

dKv + Kvd = id - p.ye ,

Proof The Green function for A* maps the L2-completion (DR*(M))2 of DRΦ(M)5

into the Dom(zl*) (Theorem 3.1). The Dom(zl*) is defined as the domain of defini-
tion D(AΦ) for A* in DR*(MV,Z) completed with respect to the graph topology norm
l|ω| |^ph := \\ω\\2

2 + \\Δ yω\\2

2 for ω e D{Δ'V) (where | | ω | | | := (ω,ω) is the L2-norm
(1.23)). The Green function Gv maps DR'(MV,Z) into D(Δ') (since, by Theorem
3.1, A* is a nonnegative elliptic differential operator with elliptic boundary condi-
tions). The definition of the Green function claims that

A*vGv = id-pjr, (1.25)

on (DR*(M))2 (where A*ω for ω 6 Dom(zlJ) is defined as lim, A*ωι for ωt G
D(Am), \\ω — ωz||graph —> 0). In particular, this equality holds on DR'(MV,Z)
C {DR\M))2.

The D(A') C (DR*{M))2 is defined as follows. The adjoint to dv operator <5V in
@ DRm{Mj) is defined on elements υ2 — (ω\,ω2), where ω^ are smooth differential

forms on Mk and the linear functional

lU2(v\) = (dvι,v2) = f(dv\ A *v2)
M

in continuous in DR*(MV,Z) with respect to the L2-norm (1.23) of v\ G DR*(MV,Z).
For such an element v2 — (ωi,ω2) the form *v2 = (*ω\,*ω2) has the zero geomet-
rical restriction to dM\Z, and the following transmission condition has to hold on
Λ̂  for v2:

where i^k N C dMk c—»M .̂ (These boundary conditions for v2 are consequences
of Stokes' formula.)

The domain D(A') C DR%MV,Z) is defined as the set of ω G DRm(Mv,Z) such
that

ωeD(δv), dωeD(δv), δω G DRm(Mv,Z). (1.27)

Note that dGvω = Gvdω for ω G DR*(MV,Z) (this equality follows from Stokes'
formula). Hence the identity (1.25) can be represented on DR*(MV,Z) as

Kd + dK — id — pye

Thus the lemma is proved. D

5 (DR*(M))2 coincides with the L2-completion of DR*(MY,Z) and with the /^-completion of
0 DR (M,).
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Corollary 1.1 The homotopy operator (1.24) defines a canonical identification be-
tween the cohomology H*(DR(MV,Z)) and the space of harmonic forms Ker*(zlv).

Let for simplicity QM be a direct product metric near N. Let the Dirichlet boun-
dary conditions be given on a union Z of some connected components of dM and
the Neumann conditions be given on dM\Z. Then the following holds.

Proposition 1.1 The eίgenforms of A(M,Z;gM) are the same as the eigenforms of

Proof Let v be equal to (1,1). The conditions (1.27) for (ωuω2) G DR%(MιuZ)
are equivalent on N to the following ones:

^ , = / ^ 2 ( * ω 2 ) , (1-28)

= CN2(*dω2\ ^ , i (*^ * ωi) = i^s2(*d * ω 2) > (1-29)

where * is the star-operator for Riemannian metric gM
The equalitites (1.28) claim that the restrictions to N of the forms ωi and ω2

are the same (i. e., they are the same sections of Λ*T*M\N). The equalitites (1.28)
and (1.29) are equivalent to the assertion that the following pairs of forms have the
same restrictions to N (as the smooth sections of Λ*T*M\N)'.

{dω\,dω2}, {δω\,δω2}, {001,002} . (1.30)

Any eigenform for Aφ(M,Z',gM) belongs to D(A* { ) . So it is an eigenform for A\λ.
Let co = (coi,G02) 6 D(Δ\ λ) be an eigenform for A\ λ :

Δ\Λω = (ΔφωuΔ
9ω2) = λ(ωuω2). (1.31)

Then6cθ£ are C°°-forms on Mk and (as it follows from (1.30), (1.31)) the restric-
tions of the following pairs of forms are the same as the sections of Λ*Γ*M|ΛΓ (for
* = 0,1,2...):

{ΔkωuΔ
kω2}, {dAkωudΔkω2}, {ΔkωuδΔkω2} . (1.32)

So ω — (001,002) is a C°°-form on M = M\ UN M2. In fact, it follows from (1.28)
and from the identity of the restrictions to TV of Δω\ and Δω2 that (A/ <g) id)ω^
have (for k — 1,2) the same restrictions from M^ to N. (The Laplacian A is equal
to id/ & AN + Δj <8> id^ with respect to the direct product structure / x N in the
neighborhood ofN = 0xNc-^IxNc-^M, 0 G I\dl.) Hence, according to (1.28)
and (1.29), the 2-jets of ωi and of ω2 are the same on N. The identity between
the (2k + l)-jets of oo# on N follows (by induction) from (1.32). Thus, ω is an
eigenform for ΔM '• AMco = λω. The proposition is proved. D

1.3. Properties of Analytic and Combinatorial Torsion Norms. One of the main
properties of the analytic torsion norm is as follows. Let M be a manifold M\ x M2

with a direct product metric. One of these Riemannian manifolds, for instance M\,
can have a nonempty boundary dM\. In this case let g^x be a direct product metric
near dM\, and let the Dirichlet boundary conditions be given on the components

6 All the eigenforms of Δ* (for v e IR2\(0,0)) are C°°-smooth on Mk, as it follows from
Theorem 3.1
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Z = Z\ x M2 of (βM\) x M2 — d(M\ x M2). Let the Neumann boundary conditions
be given on d(Mx x M2)\(ZX x M2) = (dMx\Zx) x M2.

The Kunneth formula for the cohomology claims that

HJ(M9Z)= ®Hι(MuZx)®Hk(M2). (1.33)
i+k=j

So the determinant of the cohomology of DRm{M,Z) is the tensor product

det//#(M,Z) = (det//#(Mi,Zi)) χ ( M 2 ) 0 deti/ # (M 2 )* ( M l ' Z l ) . (1.34)

Proposition 1.2. 77ze identification (1.34) induces the isomorphism of the analytic
torsion norm To(M,Z) with the tensor product

T0(M,Z) = TO(MUZX)^M^ <g> Γ 0 ( M 2 ) ^ M ' ' Z ' ) , (1.35)

where χ(Mι,Z\),χ{M2) are the Euler characteristics.

Remark. 1.1 It is shown above that the analytic torsion norms T0(M,Z), TO(MX,ZX),
and TQ(M2) are independent of Riemannian metrics gM,9Mk which are supposed to
be direct product metrics near ΘM,dMx. So, if the equality (1.35) holds for a direct
product metric on (Mx, dMx) x M2 (where QMX is a direct product metric near dMx),
then this equality holds for any metric QM (which is supposed to be a direct product
metric near dM).

Proof. The scalar analytic torsion T(M) for a direct product metric on M — Mx x
M2 is equal to

T(M,Z) = T(Mx,Zx)
χiM2)T(M2y

{M^z^ . (1.36)

This statement is proved in [RS], Theorem 2.5, in the case of an acyclic local
system over Mx. In the general case, (1.36) follows from the proof of Theorem 2.5
in [RS] and from the following equality (where λΦ0,m(i,λ,M2) is the dimension
of the Λ-eigenspace for AM2,U W2(/,05MI) := dimKerZlMi,^, )

Σ ( - l ) I + ' ( / + y > ( U , M 2 ) m O \ 0 , Λ ^

which holds, since the alternating sum over / of m(i,λ,M2) is equal to zero (for
any nonzero λ).

For such a metric on M the following canonical identifications are the isometries
bewteen the natural Hubert structure on the space of harmonic forms KerZl 7(M,Z)
and the tensor products (and the direct sums) of the Hubert structures on harmonic
forms for A9(MX,ZX) and A9(M2) :

M2). (1.37)
i+k=)

These Hubert structures induce the norms on

detH*(M,Z) = detKerA.(M,Z;gM), άetH\MuZx) = detKeτA.(Mx,Zx;gM.)
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and on det//*(M 2 ) = detKerzU(M 2 ,0M 2 ) such that the identification (1.34) of the
determinant lines is an isometry:

II * lldetKerzlM

 = (Jl * lldetKerzlMh Z{ J \\\ " lldet Ker ZlΛ/2 J (1.38)

The equality (1.35) follows from (1.36), (1.34), and (1.38). D

The following lemma makes it possible to use the variations in v in the proof
of Theorem 1.1. Let (M,gM) be a compact Riemannian manifold with a smooth
boundary dM and let TVc—> M\dM be a smooth closed codimension one submanifold
of M with a trivial normal bundle {TM\N)/TN such that M — M\ UM M2 is obtained
by gluing two its pieces M\ and M2 along N. Let gM be a direct product metric
near dM and near N. Let Z be a union of some connected components of dM
where the Dirichlet boundary conditions are given and let the Neumann boundary
conditions be given on dM\N.

Lemma 1.2. Let us suppose that the norm φ™To(Mv,Z) is independent of v e
IR2\(0,0) for any such (M,gM,N,Z)Ί (where the identification φ™ is defined by
the exact sequence (1.14) of the de Rham complexes and by Lemma 1.1). Then
the factor CQ in the gluing formula (1.12) for φlnTo(Mv,Z) is equal to one.

Remark. 1.2. Theorem 1.1 is a direct consequence of Lemma 1.2 and of the asser-
tion that φ™T0(Mv,Z) is independent of v £ R2\(0,0). Indeed, T0(MhuZ) coincides
with Γo(M,Z) (according to Proposition 1.1) and the identifications φ*n and φ a n are
the same. Hence the formula (1.12), where Co is equal to one and v = (1,1), is the
gluing formula of Theorem 1.1.

Remark. 1.3. The assertion that the norm φ^n7o(Mv,Z) does not depend on v is
equivalent to the independence of v of the factor c0 in (1.12).

Proof The factor c0 in (1.12) lies in 1R+. If co is independent of v for (M,gM,N,Z)
then

φ%QTo(Mliθ9Z) = Φ5\7O(M O , I ,Z) . (1.39)

It follows from (1.39) and from (1.16), (1.19), and (1.14) that there are the equal-
itites with the same positive constant c0 as in (1.12) for (M,gM,N,Z) (where
Zk :=ZΠdMk):

Zi) = coTo(MuZι UN)®T0(N), (1.40)

φMM2,Z2) = coTo(M2,Z2UN)®To(N) . (1.41)

We can conclude from (1.40) and (1.41) that the factor Co = co(N,gw) is defined
by N,gN and that it does not depend on M\,M2,M, gu (it is independent also
of v).

Let M\ in (1.40) be a manifold M\ — N x / with a direct product metric. Then
dM\ = N UN and (1.40) claims in this case that

/) = co(N,gNfTo(N x /, Nxdl)® T0(N)®2 , (1.42)

7 The equivalent formulation is as follows. Let M be obtained by gluing along N, i.e., M =
M J , U Λ ' M 2 , and let it be equipped with a Riemannian metric g^, which is a direct product metric
near dM and near N. Then it is supposed that the norm φJn7o(M v,Z) is independent of v e
R 2 \(0,0) .
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where the identification φ a n is defined by the exact sequence (1.20). It follows from
(1.42) and from the multiplicative property (1.35) that

T0(N)χ{I) <g> T0(iy{N) = c2T0(N)χ{m) (g) T0(hdI)χ{N) <g> T0(N)2 , (1.43)

where c0 := CQ(N,CJN) depends on N and gN only. Then the following equality
is a consequence of (1.43) and of the identification (1.19) (defined by the exact
sequence (1.20)):

T0(I)χ(N) = co(N9gN)2To{I,diγ(N) <8> Γ 0 ( δ / ) ^ ) . (1.44)

Note that To(dJ) is the standard norm on det//*(δ/) which is canonically iden-
tified with (Γ (up to a possible factor ( — 1) in the identification). Namely \\\\\2

Γ = 1
for 1 G (Γ. An immediate consequence of the equality (1.41) for M\ —I, N — cl
and of (1.44) is the following:

co(N,gN)2=co(diy*N). (1.45)

Hence, it is enough to prove that CQ(CI) = 1, and it will be done now.
Let / be an interval fθ,«]. The scalar analytic torsions for / and for (/,δ/) are

equal, T(I) = 1(1,31), since

ζx(s;I) = ζQ(s;I9dI), (1.46)

Ci(s;/,δ/) = ςoC*;/,3/) (1.47)

(where ζj(s;M,Z) is the ^-function of the Laplacian on (DR1 (M,Z),gM)). The
equality (1.47) follows from the identification of the eigenforms, defined by the
exterior derivative d, and the equality (1.46) follows from the identificaiton of
the eigenforms defined by the Riemannian * on /.

The cohomology exact sequence for the pair (/,cl) is

0 -> H°(I) -> H\cl) -> H\l,dl) -> 0 . (1.48)

The complex (1.48) is acyclic and so the determinant D of its cohomology
is canonically isomorphic to (Γ. The components of (1.48) are equipped with the
natural Hubert structures (because they are the spaces of harmonic forms on the
interval / C IR with the standard metric). Hence, there is the induced norm || | |D on
D = (Γ. We have to prove that \\\\\2

D = 1 for 1 e (Γ = D. This equality is equivalent
to the assertion that cQ(dI) is equal to one.

The norm of the element a~x'2 -1 £ DR0^) is equal to 1. (It is a harmonic form
and it represents an element from H°(I)). Its image in H°(dl) is as follows:

-cΓι>'2 [0]+a-{'2 [a]e

The norm of the element cΓX!1 dx G DRι(I,dI) is equal to 1 in Hι(I,dI) and an
element — a112 [0] is mapped by the differential of the exact sequence (1.48) to
the harmonic form cΓ{^2dx G H](I,dI). (The arrows in (1.48) are of the topological
nature. So the latter statement is obtained using

a
ι/2 = j a-ι/2a-ι/2dx = (a-ι/2dx,(l,dl)) ,

where (I,dl) is the fundamental class of H\(I, dl).)
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The corresponding volume element (-a~ι/2[0] + a~ι/2[a]) Λ (-α1 / 2[0]) = [0] Λ
[a] in detH°(dl) is an element with the norm one. Hence, co(3/) = 1. The equality
co(N,gis[) = 1 (for a union N of some connected components of dM\) follows from
the equality co(dl) — 1 and from (1.45). The lemma is proved. D

Let M — M\ ON M2 be obtained by gluing M\ and M2 along N (as in Theorem
1.1), and let X be a smooth triangulation of M such that Mk and N are invariant
under X. Namely X — X\ Uψ X2, where Xk is a smooth triangulation of a manifold
A/* with a smooth boundary dM^ = TV U (dM ΠMk). (Here N C M is a smooth
closed manifold of codimension one in M such that N divides M in two pieces M\
and M2 as in Theorem 1.1, NΠdM = 0, and FT : = I έ Π i V . )

Let Z be a union of the connected components of dM where the Dirichlet
boundary conditions are given. Set V := X ΠZ, Zk := dMk Γ\Z, Vk := (ΊZ^. The ex-
act sequence of cochain complexes

0 - ^ 0 C (Ai, WUVk)-+ C9(X, V) -^U C ( ^ ) -^ 0 (1.49)

(where the left arrow is the natural inclusion and the right arrow is the geometrical
restriction of cochains) provides us with the identification

φc : detH9(X, V) ~ detH*(Xu W U V{) 0 det//*(X2, W U V2)

By the definition of the combinatorial torsion norm on the determinant line
(determined by the preferred basises of the basic cochains) the following statement
holds.

Proposition 1.3. Under the conditions above, the combinatorial torsion norms are
equal:

φcτ0(X, V) = τo(Xu W U Vx) 0 τo(X2, W U V2) 0 τo(W) . (1.50)

This combinatorial equality is analogous to the gluing formula of Theorem 1.1. But
it is necessary to note as follows.

Remark. 1.4. The formulas (1.50) and (1.8) correspond to the different identifi-
cations φc and φan = φψx between one pair of the canonically identified8 one-
dimensional spaces

det Hm(X, V) = det H\M,Z),

and the triple tensor products of three other pairs of the canonically identified spaces

det H*(Xk, WUVk) = det H9(Mk,N U Zk), det H\W) = det H\N).

(Note that φc is defined by the exact sequence (1.49), where the right arrow iN

is the restriction of the cochains. However, in the exact sequence (1.10), which
defines φ a n , the right arrow is equal to \fΐiN for the common geometrical restriction
ίN to N of pairs ω = (ω\,ω2) of smooth differential forms ωk on Mk such that
i*NΛωι =i*Nilω2.)

8 The cohomology are identified according to the de Rham theorem by the integration over the
simplexes of X of the corresponding differential forms. The spaces of harmonic forms Ker A9(M,Z)
and KeτΔm(M\\,Z) are canonically identified by Proposition 1.1.
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Let X be a smooth triangulation of a compact manifold with boundary (M, dM).
Let Z and Y be disjoint unions of some connected components of dM such that
Z Π Y = 0. Let F = l n Z , F = l Π F . Then the exact sequence

0 -+ C*(X, F U F ) - > C*(X, F) -> C # (F) -> 0

(where the left arrow is the natural inclusion of cochains and the right arrow is the
restriction of cochains) defines the identification

φζ : det Hm(X, V) - det H*(X, VUF)® det Hm(F).

The following assertion is an immediate consequence of the definition of the
combinatorial torsion norm.

Proposition 1.4. The combinatorial torsion norm of (X, V) is equal to the tensor
product of the following combinatorial torsion norms:

φcτ0(X, V) = τQ(X, V U F) 0 τ o(F) .

This combinatorial equality is similar to the gluing formula of Theorem 1.2.
Let e(M,Z) be the logarithm of the ratio between the analytic and the combi-

natorial torsion norms:

e(M,Z) := log2(70(M,Z)/τo(X, V))

(where Γ0(M,Z)/τ0(X, V) := \\l\\2τoiM,z)/\\l\\2τo(xv) f o r a n arbitrary nonzero element
/ of the determinant line det H9(M,Z) = det H*(X, V)).

Remark. 1.5. It is proved above that e(M,dM) does not depend on a metric gM, if
QM is a direct product metric near dM.

Lemma 1.3. 1. Let (S,gs) be a closed Riemannian manifold. Then the following
identity holds, if gMxs is a direct product metric near d(M x S) = dM x S:

e(M xS,Z xS) = χ(M,Z)e(S) + e(M,S)χ(S) (1.51)

(χ(M,Z) is the relative Euler characteristic of M modulo Z c dM).
2. Let Y be a union of some connected components of dM\Z. Then

e(M,Z) = e(M9 F U Z ) + e(Y). (1.52)

Proof The equality (1.52) follows from Theorem 1.2 and from Proposition 1.4.
(In this case, φc = φm.) The equality (1.51) follows from Proposition 1.2 and
from the multiplicative property of the combinatorial torsion norms. Namely let K
be a smooth triangulation of S and let V = X Π Z. Then the identification of the
determinants of the cohomology defined by (1.33) and (1.34) is an isometry of the
combinatorial torsion norms:

τo(X xK,V xK) = τo(X, V)χ{K) 0 τo(K)χ{X>V) .

The same identification of the cohomology is the isometry (1.35) of the analytic
torsion norms, if the metric guxs is a direct product metric near d(M x S). Hence,
the identity (1.51) holds for such metrics guxs- Π
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Remark. 1.6. It follows from (1.52) and from Remark 1.5 that e(M,Z) does not
depend on QM for any union Z of the connected components of dM (in particular
for Z = 0).

1.4. Generalized Ray-Singer Conjecture.

1.4.1. Properties of the ratio of the analytic and the combinatorial torsion norms.
Lemma 1.2 claims that Theorem 1.1 follows from (1.12) with CQ independent of v.
So it is enough to prove that the norm φ™To(Mv,Z) is independent of v G 1R2\(O,O)
(under the same conditions on M, gM, N, and Z as in (1.12) and in Lemma 1.2).
The latter assertion is proved in Sect.2. In the remaining part of Sect.l we prove a
generalization of the Ray-Singer conjecture for manifolds with boundary (and with
the transmission condition (1.13) on the interior boundary) using the gluing formula
of Theorem 1.1. This formula has the following consequence.

Let M = M\ UN M2 be obtained by gluing M\ and M2 along N.

Lemma 1.4. Under the conditions of Lemma 1.2, on (gM,N,Z) the following holds:

e(M,Z) = e{MuZx UN) + e(M2,Z2 UN) + e{N) - χ(N) .

Proof. This identity is an immediate consequence of Theorem 1.1 and of the fol-
lowing commutative diagram:

an

det H (M9Z) <Pan-̂ u Det(M,Z,AO

AH

Det(X, V9W) - ^ Όet(X,V,W) (1-53)

det C (X, V) ^ DetC (X, V, W) ^ DetC#(X, V, W)

Here

Det(M,Z,ΛO:= ( (g) άsXH%(MkyN UZk)

Det(X, V9 W) := ( (g) det// (^, ^ U K*)
^ = 1 , 2

(1.54)

DetC#(X5 V9 W) :=
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Aψ is the induced by A ψ operator on the determinant of the cohomology, R is the
identification induced by the integration of differential forms over the simplexes of
X (by the de Rham theorem). φc and φ a n are the identifications induced by (1.49)
and by (1.10) in a view of Proposition 1.1.

The commutativity of (1.53) follows from the commutativity of the diagram

0-> φ DR (Mk,NUZk) -> DRm(MuuZ) ^ DR*(N) -> 0
£=1,2

l
0 C (Xk,WUVk) -> C (X,V) -^Uc (W)^ C*(W)

The induced action of y/liά on lw G detC#(JF) is lw ->2~χ(W)/2lw (where
χ(W) — χ(N) is the Euler characteristic). So the induced action of Aψ and of Aψ
on / G Det(M,Z,Λ0 = «g)^ 1 ? 2 det C#(X^? Γ̂ U FΛ)) 0 det C*(FF) is

I -+2~χ{N)/2l. (1.55)

(The identification of the determinant lines is defined by R and by dc in the right
column of (1.53).)

For an arbitrary nonzero m G Det(M,Z,7V) the following equality is deduced
from (1.55) and from the commutativity of (1.53):

(φa n70(M,Z))(m) - 2-*<">(φcΓ0(Af,Z))(m) . (1.56)

Theorem 1.1 and Proposition 1.3 claim that

φa nΓ0(M,Z) = TO(MUN U Zx) 0 Γ0(M2, Â  U Z2) <g> Γ0(7V) ,

φcτ0(Z, V) = τo(Xu W U Vx) (g) τo(X2, ^ U K2) 0 τ o ( ^ ) . (1.57)

The isometries (1.56) and (1.57) imply the equality

e(M,Z) =log2(7o(M,Z)/τo(X, V))

= ~ X(N) + ( Σ log2(Γ0(M,,7V UZk)/τ0(Xk, W U K,)) J

+ \og2(T0(N)/τ0(W)).

Thus the lemma is proved. D

Let v = (a,β) G R 2\(0,0) and let (C*(XV, V),dc) be the complex of pairs of
cochains (c\,c2), ck G C*(Xk, V/c), with the v-transmission boundary condition (sim-
ilar to (1.13)) on W C dXk between their geometrical restrictions

<xi*WΛcλ = βfw^c2 (1.58)

The integration over the simplexes provides us with a quasi-isomorphism of the
complexes:

Rv : (DRm(Mv,Z),d) -* (C9(XV, V\dc)

(i.e., Rv induces an isomorphism between the corresponding cohomology).
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The morphism of complexes rv>c : (Cm(Xv, V),dc) —• Cφ(W,dc) is defined by
analogy with the definition of rv. Its value on each element (ci,c2) € Cm(XV9 V) is

rv,c(ci,c2) - (α2 + j S 2 ) " 1 7 2 ^ ^ ! + α/^2c2) .

The vertical arrows in the following diagram of complexes are quasi-
isomorphisms9

0 - ^ 0 DR*(Mk,NUZk) -* DR (MV,Z) - ^ DR (N)
k=\,2

l (1.59)

C (XV, F) - ^ (
Λ:=l,2

This diagram is commutative. The left horizontal arrows in it are the natural inclu-
sions. Let φc

v be the identification

φc

v : det//#(C(Xv, V)) = det//*(Mv,Z) -^ Det(M,Z,iV), (1.60)

defined by the bottom row of this diagram.

Remark. 1.7. The equality

φc

v = φ? (1.61)

follows from the commutativity of (1.59). But φ\ x^φc (in contrast with the identity
φ™λ — φ a n ). According to (1.56) it holds that

The space CJ(XV, V) is a subspace of ® £ = 1 2 C7(^c? PίO The Hubert structure
on CJ(X/c, Vjc) is defined by the orthonormal bases of cochains {δe} (parametrized
by y-dimensional simplexes e of Xk\Vk) So the Hubert structures on C#(XV, V)
and on detC*(Xv, V) are defined. The scalar combinatorial torsion is defined as in
(1.1):

T(C9(XV, V\dc) := exp

where ζ\v{s) := Trr ί (^/>v) j is the sum X^'/l"5 over all the nonzero eigenval-

ues λ of the finite-dimensional operator Δc

 v = (d*dc -f dcd*\CJ(Xv, V)) (with their

multiplicities), d* is adjoint to <ic in CJ'(XV9 V) with respect to the Hubert structure

in C (XV9 V).
The combinatorial torsion is the following norm on detH*(C(Xv, F)) 1 0 :

τo(Xv,Z) := || \\lιH.{C(Xv,V)) • T(C(XV, V),dc), (1.62)

where the norm on det#(C(Xv, V)) is defined by the Hubert structures on the sub-
quotients W(C(XV, V)) of the Hubert spaces Cj(Xv, V).

Remark. 1.8. For each v = (α,/?) G 1R2\(O,O) the combinatorial torsion τo(Xv,V)
is an invariant of the combinatorial structure defined by a smooth triangulation of

9 Rv is a quasi-isomorphism according to Proposition 2.3.
10 It is isomorphic to det//*(Mv,Z) under the quasi-isomorphism Rv.
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the triplet [(M, dM);Z;N]9 where M is a manifold with a smooth boundary dM, Z
is a union of some connected components of dM, and N is a smooth codimension
one closed submanifold of M with a trival normal bundle (TM\N)/TN.

Proposition 1.5. The combinatorial torsion norm τo(Xv,Z) is isometric under the
identification (1.60) to the tensor product of the combinatorial torsion norms:

φcMXv, V) = τo(Xι, WUV,)® τo(X2, W U V2) 0 τo(W) .

Proof. Under the identification (1.60), the Hubert space C*(XV,V) is isometric
to the tensor product of the Hubert spaces detC*(X^, W U Vk) (for k — 1,2) and
detC (fF). ( τ h e Hubert structures on C # ( I V , F ) , C # ( 4 ^ U F O , and on C\W)
are defined above.) Indeed, let ρvc : CJ(W) —• CJ'(XV, V) be linear maps defined for

Pv,c(w) = (α2 + β2yι/2(βw,ocw) e σ(XV9 V). (1.63)

Then rXiCpViC = id on C*(W), pVyC is an isometry between CJ\W) and Impv>c, and
Impv>c is the orthogonal complement in C*(XV9 V) to the image of the natural in-
clusion j : φ ^ ! 2 C*Wb W U Vk) "-* CΦ(XV, V) (where j is an isometry onto Im/).
So the identification φ^ is the isometry of the combinatorial torsion norms. D

The number e(Mv,Z) G IR is defined as the logarithm of the ratio between the
analytic and the combinatorial torsion norms:

e{Mv,Z) := log2(Γo(Mv?Z)/τ0(Xv, V)).

Corollary 1.2. Under the conditions of Lemma 1.2, the equality holds:

e(MV9Z) = e(MuZx UN) + e{M1,Z1 UN) + e(N), (1.64)

where Z is a union of some connected components of dM and Z^ = Z Π δM^.

Corollary 1.3. e(Mv,Z) is independent of v e 1R2\(O,O).

Corollary 1.4. For an arbitrary v G 1R2\(O,O) the equality holds:

e(Mv,Z)-e(M,Z) = χ(N). (1.65)

This equality follows from Lemma 1.4 and from (1.64).

Remark. 1.9. Even for v = (1,1) the number e(Mγ,Z) differs from e(M,Z) in the
case χ(AΓ)φ0.

1.4.2. Ratio of the analytic torsion norm and the combinatorial torsion
norm for spheres and disks. Spherical Morse surgeries. The values of e(M) and
e(M,dM), where M is a sphere Sn or a disk Dn (with a direct product metric near
dDn = Sn~ι) are deduced now from Lemma 1.4.

Lemma 1.5. I.For all the spheres, e(Sn) is zero.
2. For even-dimensional disks, e(D2n) and e(D2n,dD2n) are zero.
3. For all odd-dimensional disks, e(D2n+ι) and e(D2n+ι, 3D2n+ι) are equal to one.
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Proof. A closed interval Dι is obtained by gluing two intervals Dι — Dι \Jpt D
ι in

their common boundary point. Lemma 1.4 claims in this case that

e(Z)1) = 2e(D\pt) + e(pt) - χ(pt). (1.66)

Since e(pt) = 0, we see that (1.52) implies the equalities

e(Dι) = e(D\pt) = e(D\dDι). (1.67)

Hence (1.66) implies e(Dι) = χ(pt) = 1.
A circle Sι is obtained by gluing two intervals, namely Sι = Dx U5Di Dι. So,

according to Lemma 1.4 and to (1.67), we have

e(Sι) = 2e(Dι) + e(dD1)- χ(dDι) = 0 . (1.68)

Suppose (by the induction hypothesis) that e(Sm) = 0 for m ^ n— 1. The
sphere Sn (for n ^ 2) is the union (D"" 1 x Sι)\Js^2χSι(D2 x .S""2) = 5". Indeed,

Sn = {(jci,...,jcn+i) G R*+ 1 : ̂ / = 1}» t h e d i s k D l i n ^ 2 x s"~2 i n t h e decom-
position above corresponds to {(x\,X2) ' x\ +x\ S ε} and Sn~2 — {(x7) e Sn, x\ —
x2 = 0}. Lemma 1.4 claims in this case that (since χ(Sn~2 x Sι) = 0)

e(5 / I) = e(Zy1""1 xS\Sn~2 xSι) + e(D2 x S"'2^1 x Sn~2) + e(Sn~2 x Sι).

The equalities below are deduced from the induction hypothesis, from Lemma
1.3 ((L52), (1.51)), and from (1.68):

e(Dn~ι xS\Sn~2 xSι) = e(Dn~ι xSl)-e{Sn~2 x Sι),

e(D
2
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~
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~
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). (1.69)

Hence the combinatorial torsion norm is equal to the analytic torsion norm for
all odd-dimensional spheres S 2 w + 1 .

e(S2m+ι) = 0, Γo(S2 w + 1) = τ o 0S 2 m + 1 ) . (1.70)

It follows from Lemma 1.3 and from (1.68) that e(D2) = e(D2,δD2). It is de-
duced from Lemma 1.4 and from (1.68) that e(S2) = 2e(D2). According to (1.69)
the equality e(S2m) = 0 for all even-dimensional spheres is a consequence of the
equality e(S2) = 0.

Let (M>QM) be any closed Riemannian manifold of even dimension 2n. Then
the scalar analytic torsion T(M,gM) is equal to 1. (This equality was proved in
[RS], Theorem 2.1, with the help of the equality

where λ is an arbitrary nonzero eigenvalue of Aj on DRJ(M) and m(λj) is its
multiplicity. The latter assertion follows from the symmetry relation m(λj) —
m(λ,2n—j), which is obtained applying the operator * for a Riemannian metric
QM to the A-eigenforms for Δf.) So (in particular) the torsion norm TQ{S2) is equal
t o II # Hdet// (.s2)' w ^ e r e m e n o r m o n H*{S2) is the norm defined by QM on the
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harmonic forms KerzJ*. (The induced norm || | |^e t / / (5-2Λ does not depend on the
metric gS2, as it follows from the invariance of TQ(M,g^) with respect to QM,
proved above.)

Let ϋ b e a volume of S2 relative to a Riemannian metric gsi. Then the element
h e det//*(S2) defined below is of the norm 1:

h = („-!* . h2y
x

 Θ (.r^ei*))"1, 11

(here 1̂ 2 is the constant 1 G DR°(S2) and *152 is the gsi-volume form).
The sphere S2 has a cell decomposition11 Xsi : X := D2 UdD2 pt. Hence the

element hc £ detC*(XS2) defined below is of the norm 1:

hc = (δpt)-l®(δϋ2)-1, |NidetC (X52) = 1

(For this cell-decomposition dc = 0, and so detCm(XS2) is the same as det//*(52)
without the dc-identification. The cochains δpU δD2 are the basic elements in H°(S2),
H2{S2).)

The integration homomorphism R : DRΦ(S2) —» C'(Xs2) maps 152 to δpt and
*152 to v ' δD2. So R(h) — hc and we have

e(S2) = 0, e(S2m) = 0. (1.71)

The equalities below follow from Lemmas 1.3, 1.4, and from (1.70), (1.71):

0 = e(Sn) = 2e(D\dDn) + e(Sn~1)- χ(Sn~ι),

e(D\ dDn) = e(Dn) - e(Sn~ι) = e(Dn),

eφ\dDn) = 2~lx(Sn'1) = e{Dn).

Lemma 1.5 is proved. D

The equality e{Dm+λ x Sn) = e(Dm+ι x Sn,d(Dm+ι x Sn)) holds by Lemmas 1.3
and 1.5.

Corollary 1.5. For arbitrary n,m ^ 0 the equality holds:

e(Dm+ι x Sn) = e(Sm x Dn+ι). (1.72)

(According to Lemma 1.5, each side of (1.72) is equal to 2 in the case of a pair
of even numbers (rn,n) and it is equal to zero for other pairs (m,n).)

Let M be a compact maniifold with a smooth boundary dM and let Z be
a union of some connected components of dM. Let M be obtained by some
spherical Morse surgery (with a trivial normal bundle) of M (i.e., there exists
a manifold {MudMχ) C M\3M, Mi - J ) m + ^ x Sw,m + w -f 1 = dimM, with dM{ =
Sm xSn, M = Mi UdM M2, such that M = M\ Ud~ M2 is obtained by gluing Mx =

Sm x Dn+X and M2 by a diffeomorphism / : dM^dM2).

11 This CW-complex (cell stratification) has a subdivision which is a C * -triangulation of S2.
So as the combinatorial torsion is defined also for C^Γ-complexes and as it is invariant under
subdivisions, τ(S2) can be computed from this cell stratification ([Mi], Sects. 7,8,12.3).
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Let the metrics QM and g~ be direct product metrics near dM and dM. (It is

proved above that the numbers e(M,Z) and e(M,Z) do not depend on the metrics

QM, g^ supposed to be direct product metrics near dM and near dM.)

Lemma 1.6. The number e(M,Z) is invariant under spherical Morse surgeries with
a trivial normal bundle, i.e., the equality holds

e(M,Z) = e(M,Z). (1.73)

Proof. The metrics gM and g~ can be replaced by Riemannian metrics on M and

M which are direct product metrics on dM\ x / and dMx x / near dM\ C M and

near dMx C M\ (and which are direct product metrics near dM and dM). Lemma

1.4 claims in this case that

e(M,Z) = e{Mx,dMx) + e(M2,dMxUZ) + e(dMx) - χ(dMx),

e(M,Z) = e(MudMx) + e(M2, dMx U Z) + e(dMx) - χ(dMx). (1.74)

The smooth closed manifolds dMx and dMx are diffeomorphic. Hence

e(dMx) = e(dMx), χ(dMx) = χ(dMx), e(M2, dMx U Z ) = e(M2, dMx U Z ) .

Corollary 1.5 and Lemmas 1.3 and 1.5 claim that e(Mx,dMx) — e(Mx,dMx). So the
equality (1.73) follows from (1.74). D

1.4.3. Proof of the generalized Ray-Singer conjecture.

Theorem 1.3 (Classical Ray-Singer Conjecture). For any closed Riemannian
manifold (M,gM) its analytic torsion norm is equal to the combinatorial torsion
norm

T0(M) = τ o ( M ) .

Proof. There is a smooth Morse function / on a direct product M x I (i.e., a
function with the nondegenerate isolated critical points with different critical values)
such that the following holds. Its minimum value is equal to zero, / - 1 ( 0 ) = M x
dl, and the zero is not a critical value of / . Its maximum value max^x// equals 1
and the maximum value level is the only one point. Namely f~ι(l) is an interior
point of M x (/, dl).

As f~~ι(\ — ε) (where ε > 0 is very small) is a sphere Sn («=dim M), there
exists a sequence of spherical Morse surgeries (given by transformations of levels
f~ι(x), x e (0,1 — ε) for x divided by critical values) such that their composition is
a transformation of a manifold12 M U M = M x dl = f~ι(0) into Sn = f~l{\ - ε).

As a consequence of Lemma 1.6 in this case we get

2e(M) = e(MUM) = e(Sn) .

Lemma 1.5 claims that 0 = e{Sn) = e(M). Thus, the Ray-Singer conjecture is
proved. D

1 2 The manifold M is not supposed to be orientable.
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Let (M,gM) be a compact Riemannian manifold with a smooth boundary dM.
Let Z be a union of some connected components of dM and let QM be a direct
product metric near dM. The following two theorems are generalizations of the
Ray-Singer conjecture.

Theorem 1.4. Under the conditions above, the following equality holds for a man-
ifold with a smooth boundary.

T0(M,Z) = 2χm)/2τ0(M,Z) . (1.75)

Proof Lemma 1.3 claims that e{M,Z) = e(M,dM) + e(dM\Z). According to The-
orem 1.3, e(δM\Z) is equal to zero. Hence e(M,Z) = e(M,dM). In the case of
dM φ 0 there is a mirror-symmetric closed Riemannian manifold P — M USM M
obtained by gluing two copies of (M,gM) along dM. According to Lemma 1.4, we
have

e(P) = 2e(M9 dM) + e(dM) - χ(dM).

Theorem 1.3 claims that e(dM) = 0 = e{P). Thus, we get

e(M,Z) = e(M,3M) = 2~lx(dM),

which is equivalent to (1.75). D

Let (M,Z,gM) be as in Theorem 1.4. Let TV be a codimension one in M two-
sided in M closed submanifold N C M\dM. Let M be obtained by gluing M\ and
Mi along N. Let g^ be a direct product metric near N and let the v-transmission
boundary conditions (1.13) be given on N (where v = (α,β) C IR2\(0,0)).

Theorem 1.5. The analytic torsion norm is expressed by the combinatorial torsion
norm {in the case of the v-transmission interior boundary condition on N) as
follows:

TO(MV,Z) = 2χ(dM)/2+χ{N\0(Mv,Z).

Proof The equality (1.65) claims that e(MV9Z) = e(M9Z) + χ(N). So the assertion
of the theorem follows from Theorem 1.4 and from the equality (1.65). D

Remark. 1.10. This proof of the generalization of the Ray-Singer conjecture does
not use any explicit expressions for the scalar analytic torsions of any special classes
of manifolds. The proof in [Mϋl] of the classical Ray-Singer conjecture essentially
used the explicit expressions for the scalar analytic torsions for spheres and lens
spaces. (The latter expressions were obtained by D.B.Ray in [Ra]. He computed
there the scalar analytic torsion for lens spaces and spheres with homogeneous
metrics by explicit calculations of the ^-functions for the corresponding Laplacians
using Gegenbauer's polynomials.) The proof in [Mϋl] used precise estimates of
[DP] for the eigenvalues of the corresponding combinatorial Laplacians. In our
proof we don't use the Lerch formula for the derivative at zero of the zeta-function
of Riemann [WW], 13.21, 12.32. (Its new proof is obtained here.) Our proof of
the generalized Ray-Singer formula is based on a gluing property for the analytic
torsion norms. This property is proved here for a general gluing two Riemannian
manifolds by a diffeomorphism of some connected components of their boundaries.
It is proved without any computations of asymptotics of eigenvalues and eigenforms
for the corresponding Laplacians.
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2. Gluing Formula for Analytic Torsion Norms. Proof of Theorem 1.1

2.1. Strategy of the proof. In Sect.l the generalized Ray-Singer conjecture for
a manifold with a smooth boundary is deduced from Theorem 1.1. Namely it is
deduced from the gluing formula

φ a n Γ 0 ( M , Z ) = TQ(MUZX UN) <g> TQ(M2,Z2 UN) <g> T0(N), (2.1)

which holds under the conditions of Theorem 1.1 (where Zk := Z Π dMk). The
identification φ a n in (2.1) is defined in (1.9) with the help of the exact sequence
(1.10) of the de Rham complexes. It is proved in Lemma 1.2 that the equality (2.1)
follows from the assertion that under the conditions of Theorem 1.1, the induced
analytic torsion norm13 φ™T0(Mv) does not depend on a parameter v of the interior
boundary conditions. The latter statement means that the equality

φ™T0(Mv,Z) = c0T0(MuZι UN) ® TQ(M2,Z2UN) 0 T0(N) , (2.2)

holds with a positive constant c$ which is independent of v G IR2\(0,0). (However,
it is not supposed in Lemma 1.2 that c0 is independent of M, N, gM, and Z.)

The strategy of the proof of the equality (2.2) is as follows. First we prove that
Co is constant on each of four connected components

Uj C U := {(α,j8) G IR2 : αβΦO} . (2.3)

Then it is enough to prove that co(v) is continuous as a function of v for
v G 1R2\(0,0). These two assertions provide us with a proof of the equality (2.2).

Let v0 G U and let a > 0 be a number not belonging to the spectrum S(v0) :=
\Jt SpccAi(MVQ,gM) C 1R+ of the Laplacians on DRΦ(MV,Z). This spectrum is dis-
crete according to Theorem 3.1. In particular, each eigenvalue is of a finite mul-
tiplicity. Let Wι

a(v) be a subspace of DRι(Mv,Z), spanned by all the eigenforms
ωχ for AVj := Aj(Mv,gM) with their eigenvalues λ g a. Then dWι

a(y) C W^+ι(y).
So (W*{y\d) is a finite-dimensional subcomplex of (DR°(MV9Z),d) equipped with
the natural Hubert structures on W*(v) -̂> DR9(MV,Z) (defined by gM)-

Let || Hdetr (v) ^ e the induced norm on detJ^(v). For v very close to Vo
it holds also that a £ S(v) (Proposition 3.1). By the definition of W*(v), its co-
homology W(W*(v)) are canonically identified with the space of harmonic forms
KerAj(Mv,gM). The differential d in W*(y) induces the identification

dw : det^;(v)-detKerZl # (M v ,# M ) . (2.4)

According to Lemma 1.1 there is a canonical identification between the harmonic
forms and the cohomology of the de Rham complex (the latter one is independent
of 0M):

K e r 4 ( M V , 0 M ) = H\DR(MViZ)). (2.5)

So there is the induced canonical identification of the determinant lines:

detKerJ#(Mv,#M) = detH\DR(Mv,Z),d). (2.6)

^ e t II # Ildeti/ (MV) ^ e a norm on det//*(Mv,Z) := dQtH*(DR(Mv,Z),d) induced
by the identifications (2.5) and (2.6) from the Hubert structure on the harmonic
forms Ker J # ( M V , 0 M ) . (This structure is defined by the Riemannian metric gM.)

1 3 The identification φ™ is defined by the short exact sequence (1.14).
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The identification (2.4) is not an isometry of the norms || ||det// (Mv)
 a n c*

II ' Hdet̂  (v) i n β e n e r a L T h e n o r m II ' Hdet// (MV)
 h a s t 0 b e multiplied by an ad-

ditional factor for the identification (2.4) to become an isometry. This factor is the
scalar analytic torsion of a complex (W*(v),d), defined by the general formula
(1.1). We can conclude that the analytic torsion norm TO(MV,Z) on the determi-
nant of H*(DR(MV,Z)) is isometric (under the identifications (2.4) and (2.6)) to
the norm

T0(Mv,Z;a) := || ||2det^<v)exp ( Σ ( - O W v j ( s α ) U ) (2.7)

The zeta-function ζvj(s;'a) is defined for Re s > (dimM)/2 by the series ^2λ>0λ
 s,

where the sum is over all the eigenvalues λ of Aj((Mv,gM)) (including their multi-
plicities) such that λ > a. This ζ-function can be continued meromorphically to the
whole complex plane C and it is regular at zero. The latter assertion follows from
Theorem 3.1 and from the equality (which is obvious for Re s > (dimM)/2):

L,Vj\s,a) — ςvjv v ~~ L-J A <Λ°;

(The series for ζvj(s), Re s > (dimM)/2, is the sum over all the nonzero eigen-
values of Aj(Mv,gM) with their multiplicities, where λ~s := exp(—slog A) and
logA G 1R for λ > 0).

The identifications dψ (2.4) and φv

an (the latter one is defined with the help of
(1.14)) provide is (under the conditions of Lemma 1.2) with the identification:

φ^{a) : det W*{v) - Det(M,iV,Z), (2.9)

(Det(M?J/V,Z)14 is defined in (1.19)). The assertion that co(v) is independent of v on
each connected component Uj of U (2.3) is equivalent to the following one. The
analytic torsion norm To(Mv,Z;a) is transformed (under the identification (2.9))
into the norm on Det(M,7V,Z):

φ™(a)oTQ(MV9Z;a) = co(v)Γo(M1,Z1 UN) (8) T0(M2,Z2 UN) 0 T0(N) , (2.10)

where Co is constant on each connected component Uj.
The action of φln(a) is as follows (by its definition):

φlΏ(a)T0(Mv,Z;a) = T{Mv^a)φv

m{a) o || . \\2

άQtW.{v) ,

where the scalar analytic torsion T(Mv,Z;a) is defined as the scalar factor in (2.7):

Γ(Mv,Z;β) := exp (Σ(-iyjdsζVj(s;a)\s=o) . (2.11)

Let v(y),7 G (ε,ε) C 1R, be a smooth curve on U (2.3) and let v(0) = v0. Let
Π ; (

v o? α ) be an orthogonal projection operator from (DRJ(M))2 onto fFj(vo) (with
respect to the natural Hubert structure (1.23) in (DRJ(M))2). Let p\ be a linear
operator in (DRm(M))2, mapping (ω\,ω2) G (DR*(M))2 to (coj,0). (Respectively
p2 maps (ω\,ω2) to (0,ω2).)

Let v and v0 be arbitrary points from U. Then the following isomorphism of
the de Rham complexes is defined (where kv := ot/β for v = (α, β) G U):

vv = vVVQ : DR*(MVQ,Z)~ DR*(MV,Z), vv(ω\,ω2) := (ωi,(^v/A:Vo) ω2). (2.12)

14 To recall, Z is the union of the connected components of 5M, where the Dirichlet boundary
conditions are given. The Neumann boundary conditions are given on dM\Z.
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Thus the induced isormorphism is defined:

vv* : H (DR(MVQ9Z)) -> H\DR{MV9Z)).

Let a be a positive number from IR+\S(vo). Then for v very close to vo the num-
ber a is also from IR+\5(v) (Proposition 3.1). The complexes W*{v) and W*(VQ)
are isomorphic as abstract finite-dimensional complexes (and (2.12) provides us
with a natural but not canonical isomoφhism of these complexes). We have to
compute the action of φv

an on the norms || I l̂ et PF (V) ^ o r v v e r ^ c ^ o s e *° vo How-
ever || ||detfF (v) a r e m e n o r m s o n different complexes. So it is necessary to define
some isomoφhism between W*{VQ) and W*(y) and then to compute its action on
|| Hdet̂  ίv ) a n c * o n t n e s P a c e Det(M,7V,Z). The choice (2.13) of such an identi-
fication is done below.

For v very close to VQ the subspaces W*(v) and W*(VQ) are very close in the
L2-completion (DR\M))2 of DR*(MV,Z) =:DR (v), according to Proposition 3.1.
So the following isomoφhism of these finite-dimensional complexes is well-defined:

gv = ΠΦ(v;α) vVVQ jVQ :

^ {v\d), (2.13)
Π (v a)

where jVQ is the natural inclusion of W*(VQ) and Π*(v;a) is the orthogonal projec-
12
IdetίF (vo)tion operator onto W*(y). Its action on the norm || | |^ e t ^ (V \ is computed by the

following lemma.

Lemma 2.1. Let I be an arbitrary nonzero element o/det W*(\Q). Then the equality
holds for any smooth variation v(y) of VQ — v(0):

3ylog||flfv/||it»7(v)ly=o = -2S ylog(* v) | y = 0 ( Σ ( - l ) 7 T r (p2lP(vo;a))) . (2.14)

In (2.14) the rank (i.e., the dimension of the image ) of the operator p2Π
J(vo;a)

is less or equal to άimW*(vo). This operator acts in (DR'(M))2.
Then the following lemma provides us with the variation formula for T(MV,Z; a).

Lemma 2.2. For γ — 0 the equality holds:

dy\ogT(MV9Z;a) = 2

where kv := a/β for v = (α,jβ) G U. Here b\^(MVo,Z;a) is a constant coefficient
(i.e., t°-coefficient q0) in the asymptotic expansion as t —> +0 of the trace of the
operator below {acting in (DRJ(M))2):

Tr(Pl{exV(-tAVoJ)(\-W(vo;a))}) - q-nΓ
n/2 + ^ _ π + 1 r ( π - 1 ) / 2 + + qot° +

(2.15)

Remark. 2.1. The operators exp(—tΔVQj) and Π^(vo a) acting in the ^-completion
(DRJ(M))2 of DRJ\MVQ,Z) (which coincides with the L2-completion of (DR*(M))
have their images in the domain of definition of the Laplacian D(ΔVQJ) C
DRi(MVo,Z). The existence of the asymptotic expansion (2.15) follows from The-
orem 3.2. The coefficients qm with m ^ —1 in (2.15) are independent of a. The
coefficients qm of the asymptotic expansion for Tr(/>iexp(—£dVθj/)) are equal to the
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sums of the integrals over M\ and over dM\ D N of the locally defined densities
on M\ and on dM\ (by Theorem 3.2). However, in the general case we cannot
represent Tr(pιIIJ(vo;a)) as an integral of a locally defined density (because there
are no universal local formulas for the eigenforms ωA of AVQJ). Hence there is no
universal local formula for a coefficient qo in (2.15) but there are such formulas
for qm = qm with m < 0.

Corollary 2.1. For an arbitrary nonzero I G det^*(v 0 ) the equality holds

dylog\\gvl\\2

To{MY,z) = 2d y (logMy=o(Σ(-υ y (6i,,(M V o ,Z) - d i m ^ ) ) , (2.16)

where b\j(MVQ,Z) is a constant coefficient (i.e., the t°-coefficient) of the asymp-
totic expansion o/Tr(p\Gxp(—tAVQj)) relative to t —> +0 and p\exp(—tAYoj)) is
the operator acting in (DRJ(M))2.

Remark. 2.2. Note that in the right side of (2.16) there are the Euler characteristic
χ(Mv,Z) := Σ(—l)JdϊmWί and the alternating sum of the integrals b\j(MVQ,Z)
(over M\ and over dM\) of the locally defined densities (Remark 2.1). (Here Z
is the union of the connected components of dM where the Dirichlet boundary
conditions are given). The number χ(Mv,Z) is also equal to the sum of the integrals
over M, N, and over dM of the locally defined densities.

Let v(γ) be a smooth variation of a point vo G U (2.3). Let l(y) G det W*(vo) be
a variation of an arbitrary nonzero element / G det W*(VQ) such that φ™y)(a) o l(y)
is a fixed (nonzero) element of Det(M,iV,Z). Then the equality (2.10) (where the
factor CQ(V) is constant on each connected component of U (2.3)) is equivalent to
the assertion that for any such a variation l(y) its analytic torsion norm is indepen-
dent of γ:

2 ^ ) l y = o = 0 . (2.17)

Corollary 2.1 provides us with the formula (2.16) for a variation of the ana-

lytic torsion norm ||όfv(y)^||r ^ χ-a) ( w n e r e / G det JFα

#(vo)). The assertion (2.17)

is equivalent to the following identity:

Z;a\y=0 = 3ylθg||0v*/H2|y=O , (2.18)

where / is an arbitrary nonzero element of Ώet(M,N,Z) (for instance, / =
φ™(a)ol) and gv* = φ™(a) o gv o (φ™(a))~λ is defined by the following
commutative diagram, where v G U is very close to vo:

Όet(M,N,Z) —> Det(M,7V,Z)
9Y*

The norm on the right in the equality (2.18) is an arbitrary Hubert norm in one-
dimensional space Det(M,iV,Z). The value of the expression on the right in (2.18)
is independent of such a norm.

The action of the isomorphism gv — gVVQ : W*(VQ) —• W*(v) on Det(M,AζZ) is
described by the following lemma.



34 S. M. Vishik

Lemma 2.3. For an arbitrary element f G Det(M,JV,Z) the equality holds:

3ylog||gfv*/||2 |y=o = -2dy(\ogkv)\y^Σ(-iyb2J(MVo,Z) , (2.19)

where b2j(MVQ.Z) is the constant coefficient (i.e., the t°-coefficient) in the asymp-
totic expansion (relative to t —> +0) for the trace of the operator p2exρ(-tAVQj)
acting in DRj(M))2.

Here p2 is the operator p2 : (co\,ω2) —> (0,ω2) for ω^ G (DR(Mk))2.

Remark. 2.3. Note that Tr exp(-tAVoJ) = Σ , Tr(/?/exp(-ίzlw)). So we have

- Σ ( - 1 ) ; M M V O , Z ) = Σ ( - l ) ^ i j ( M V 0 , Z ) - χ(MV 0,Z).

Hence the equality (2.18) follows from (2.16) and (2.19).
Thus Lemmas 2.1-2.3 provide us with a proof of the assertion that the factor

co(v) is independent of v on each connected component Uj of U (2.3).

2.2. Continuity of Analytic Torsion Norms. To prove that co(v) is independent of
v G IR2 \ (0,0), it is enough15 to show that the norm φf o TO(MV) on Ώet(M,N,Z)
is continuous in v G 1R2 \ (0,0). The following norms on Όet(M,N,Z) are the same
for an arbitrary a ^ 0:

φf(α) o Γ0(Mv,Z;α) = φ™ o TO(MV,Z) . (2.20)

Let us prove the continuity of φ™To(Mv,Z) as a function of v at a point vo G
IR2 \ (0,0). (The series of lemmas above provides us with the proof of this assertion
in the case when v 0 G ( / (2.3). But now this will be proved at an arbitrary v0 G
IR2 \ (0,0), for instance, at v0 G IR2 \ (U U (0,0)).) By (2.20), it is enough to obtain
the continuity in v at v = Vo of the norm φ*n(a) o To(Mv;a) on Det(M,7V,Z) for
a fixed a > 0 such that a 0 *S(vo) := U7Spec(z1V()j). Since a 0 S(v0), we see that
a ^ S(v) for v very close to vo. (The latter assertion follows from Proposition 3.1. It
claims that the resolvents G*(v) := (A* — λ)~~ι for λ £ Spec(zlv?#) form a smooth in
(λ, v) family of bounded operators in (DR*(M))2, and that Spec(Zlv>#) is discrete.
As G*(VQ) is bounded in (DR*(M))2, the operator G*(v) is also bounded for v
close to v0, and so a ̂  Spec(Zlv?#) for such v.) The assertion below claims that the
truncated scalar analytic torsion (2.11) is a locally continuous function.16

Proposition 2.1. The scalar analytic torsion T(Mv,Z;a) is continuous in v at vo

Thus, the continuity of φlnTo(Mv,Z) (as a function of v) at vo is equivalent to
the condition that the norm on Det(M,7V,Z)

^ » o | | Hdet^W (2.21)

is continuous in v at vo The continuity of the norm (2.21) is deduced from the
following finite-dimensional algebraic lemma. Let

f:(A ,dA)-+(V,dv) (2.22)

15 The factor Co(v) is constant on each connected componenet Uj of U (2.3), and U is dense
in R 2 \(0,0).

16 This truncated scalar analytic torsion is a continuous function on the set of v G IR2 \ (0,0)
such that a £ U7Spec(zlv,/).
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be a quasi-isomorphism of finite complexes of finite-dimensional Hubert spaces. Let
/ * : dQtHm(A)^*dQtH*(W) be the induced identification of the determinant lines.
Let TO(AΦ) and T0(V9) be the analytic torsion norms (1.2) on the determinant lines
identified by / * : deti/ (Λ) = det//#(F). Let (Cone#/,rf), Cone7"/ = A>~λ θ F>,
be a simple complex, associated with the bicomplex (2.22):

Ĉone : Cone7 -* Cone7 + 1, dCθm(x,y) = (-dAx,fx + dvy) (2.23)

(for (x, y) G AJ+ι 0 F 7 ). Then Cone*/ is an acyclic finite complex of finite-
dimensional Hubert spaces (Cone 7/ is the direct sum of Hubert spaces AJ+ι and
F 7), //*(Cone/) = 0. Hence det//#(Cone/) is canonically identified with C and the
analytic torsion norm for Cone*/ is a norm on (C. The ratio TO(V)/TQ(A) G R+ is
defined as the ratio between the two norms on the one-dimensional spaces det// (F)
and dz\H*(A) identified by /*.

Lemma 2.4. Under the conditions above, the equality holds:

I|l!ir0(cone /) = Γ 0(F )/Γ0(^ ) , (2.24)

where the left side is the analytic torsion norm of I G (C = det//#(Cone / ) .

Let a > 0 be a number from R + \5(vo). Then there exists an open neighbor-
hood UVQ(ά) of vo G C/Vo(fl) C IR2 \ (0,0) such that a £ S(v) for v G i/Vo(a) (Propo-
sition 3.1). The family of complexes (W*(v),d) of Hubert spaces is continuous on
UVQ(a) in the following sense.

The operator Πj

a(y) := ΠJ\v;a) is a finite rank projection operator in (DRJ(M))2

with its image WJ

a(v)\

Πi(v) : (DR\M))2 -> ^ ( v ) C DRJ(MV,Z) C (DR\M))2 .

Proposition 2.2. The family of operators Π*(v) is continuous in v for v e UVo(a)
with respect to the operator norm in {DR9{M))2. The same is true for the families

dΠ (v) : (DR*(M))2 -> DR*+ι(Mv) C (DR*+ι(M))2 .

δΠm

a(v) : (DR\M))2 -> DR—ι(Mv) C (DR—ι(M))2 .

These are the families of finite rank operators.

Proof It follows from Proposition 3.1 that if a $ S(F 0) then there exists an ε > 0
such that (a — c,a + ε) Π S(v) = 0 for v sufficiently close to v0. Hence {2 : a - ε <
\λ\ < a + ε} Π ιS(v) = 0 for such v (since S(v) C IR+ U 0 by Theorem 3.1). Thus,
according to Proposition 3.1, the operators

Π:(v)=±fGUv)dλ

form a smooth in v (for such v) family of finite rank operators in {DRm(M))2 (where
the circle Γ — {λ : \λ\ = a} is oriented opposite to the clockwise). The operators
dΠm

a(y) : {DRm(M))2 -> (DR*+ι(M))2 form (for such v) a smooth in v family of
finite rank operators (according to Proposition 3.1.) D
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Corollary 2.2. For v sufficiently close to VQ the family of operators Π*(v) identifies
the graded linear spaces W*(VQ) :— Im i7*(vo) and W*(v). Such an identification
nearly commutes with d in the following sense.

\\dΠ'a(v)w - Π'a
+\v)dw\\2 ^ c(v, v o ) |M| 2 (2.25)

(for any w E W*(vo))> where c(v,vo) —> +0 as v —> vo This identification also
nearly commutes with δ :

\\δITa(v)w-ITa-
ι(v)δw\\2 ^ φ,vo) | |w | | 2

for w e J¥ (v0) (|| | |2 is the L2-norm in (DRm(M))2).

The estimate (2.25) follows from the continuity (in v) of the families dΠ*a{y)
and 77*+1(v) since the following operator norms tend to zero as v -+ v0:

-* +0, | |Π: + 1 (v) - Π a

Indeed, for an arbitrary w e W*(VQ) we have dΠ'w = dw. Hence the estimates

| | i j ;+ 1(v)-i7;+ 1(vo)l |2 \\M\i

are true because the differential d : W*(VQ) —> W*+l(vo) °f a finite complex of finite-
dimensional spaces is bounded (with respect to the Hubert norm induced from
(DR (M))2).

For each v 6 1R2 \ (0,0) the combinatorial cochain complex (Cm(Xv, V),d) (with
V :—X ΠZ) is defined by the v-transmission condition (1.58). A homomorphism
of the integration of forms from W*(v) over the simplexes of X

Rv(a) : (W;(v),d) - (C'(XV, V\d) (2.26)

is also defined for all v G IR2 \ (0,0). For every such v the following variant of the
de Rham theorem holds.

Proposition 2.3. Rv(a) is a quasi-isomorphism.

Proof 1. Let Rv : (DR*(MV9Z),d) -> (C9(Xv,V),d) be the integration homomor-
phism of pairs of forms (ω\,ω2) G DR*(MV,Z) over the simplexes of Xj \ Vj. Then
Rv is a quasi'isomorphism}1

Indeed, in the commutative diagram (1.59) the left and the right vertical arrows
are quasi-isomorphisms according to the de Rham theorem for a closed manifold
N and for manifolds M\ and M2 with smooth boundaries. (The proof of the latter

17 This assertion claims that the analogy of the classical de Rham theorem is true in the case of
the v-transmission interior boundary conditions. The classical de Rham theorem for smooth closed
manifolds was proved in [dRl] (see also [dR4], Ch. IV, [W], Ch. IV, Sect. 29). The explicit
isomorphism between the Cech cohomology for a good cover of a smooth closed M and the de
Rham cohomology of M is defined with the help of the de Rham-Cech complex ([BT], Ch. II
Sect. 9).
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one is given in [RS], Proposition 4.2.) The cohomology exact sequences provide us
with the commutative diagram

dΆ H*( 0 DR (Mk,NUZk)) -> H*(DR (MV9Z)) -> H*(DR'(N)) ->
\k=l,2 ) (M*

I Λ* I (J?v)* i #*

(2.27)

with the exact rows, where the vertical arrows R* on the left and on the right are
isomorphisms (according to the de Rham theorem) and where do — δc under the
identifications R*. Hence (Rv)* is also an isomorphism.

The exactness of the top row in (2.27) can be inteφreted and proved as follows.
The sheaf F v := DR (v - (α,jβ) € JR2 \ (0,0)) of germs (ωuω2) of pairs of C°°-
forms ω7 on M ; such that18 oci*ω\ — βi^i (here /* are the geometrical restrictions
from Mj to N c-> dMj) is a c-soft sheaf. (The latter notion means that the restriction

Γ(M,Fί) —> Γ(K,ίχlFi) is surjective for any compact iχ : K^-* M, [KS], Definition
2.5.5.) The sheaf Fv is c-soft since appropriate smooth partitions of unity exist on
M. The sequence of complexes of global sections

o -> ΓC{M\N,F;)

(here zV : N <—> M) has the terms which possess the following properties:

2) Γc(M\NyF*) is a subcomplex of @k=l2DR'(Mk,N UZk) and its natural inclu-
sion is a quasi-isomoφhism. Indeed, if ω e DR*(Mk,N ΌZk) is a closed form then
ω = (if in a neighborhood of JV in Mk (where v is a smooth form with the zero geo-
metrical restriction to N). So ω - d(φv) — 0 in some neighborhood of N in Mk(φ
is an appropriate cutting function). We have ΓC(M \N,F*) = Γ(M,j\j~ιF*), where
j : M\N<-* M and j\ is the direct image with proper supports, j~λF* ~ DRΦ\M\N.
The sheaf j\j~~xF* is c-soft according to [KS], Proposition 2.5.7.

3) Γ(M,iNy*iχlF*) has a natural homomoφhism qv := rv o (i*,i%) onto DR*(N)
(where rv is defined in (1.15)) and qv is a quasi-isomoφhism. In fact, if the form
u — dtt\ ω^it) on / x N is closed then it is exact because then dNωN(t) — 0 and
so u — dfoωN(τ)dτ. (Here t is the coordinate on / and t — 0 is the equation of
N — 0xNΐ—^IxN, 0 E / \ 3/.) Hence qv is a quasi-isomoφhism. (This assertion
follows also from the Poincare lemma.) The sheaf IN,J^1F* is c-soft by [KS],
Proposition 2.5.7.

For a compact manifold M the category of c-soft sheaves on M is injective with
respect to the functor of global sections Γ(M; ) ([KS], Proposition 2.5.10). The
complex F* is a c-coft resolvent of a constructible sheaf ([KS], Chapter VIII) (Cv

on M, which is isomoφhic to <EM\N on M \N and to (CN on TV (where <£χ is a con-
stant sheaf on X), and the gluing map for C v is |v|~1 / 2(α,β) : CAT —» I^1J^M\N =
Cjv Θ (TV (i.e., c -+ lϋ^^jβ^αc)). The complexes j\j~ιF* and ΪN,JN1F* are c-soft
resolvents of constructible sheaves j\j~ι<Lv — J'\<DM\N a n d of IN,JN1^V (The latter
one is isomoφhic to IN,*&N under rv.) So the exactness of the cohomology sequence
in the top row of (2.27) follows from [KS], (2.6.33), Remark 2.6.10.

It is supposed that ω, has the zero geometrical restriction to Z* (at points x € Zj- C



38 S. M. Vishik

2. The projection operator p# : DR'(MV,Z) <-> (DRm(M))2 -> Ker(zi ) pro-
vides us with the isomorphism p^^ : H*(DR(MV,Z)) —> Ker(zl*) (by Lemma 1.1).
So the inclusion ia : (W*(v),d) <-+(DR*(Mv,Z),d) is a quasi-isomorphism and
(ia)*:Keτ(AΪ)->H (DR(Mv,Z)) is equal to (p^)~λ (since /?^/α = id on

Ker(zl*)). From an obvious equality i?v(α) = Rvia it follows that Rv(a) is a quasi-
isomorphism. D

Thus the assertion of Lemma 2.4 can be applied to the bicomplex (2.26). The
result is as follows.

Corollary 2.3. The equality holds:

TO(C\XV, V))/\\ 1 | | 2

r o ( C o n e . β v ( α ) ) = 7 Ό T O . (2.28)

The identifications (p*n(a) (for an arbitrary a > 0) and φf1 are defined such that
the following norms on Όet(M,N,Z) are equal:

^ ( ) (2.29)

Hence, as it follows from (2.28), (2.29), we have

L 2 ^ ( C o n e . ( Λ v ( f l ) ) ) . (2.30)

Proposition 2.4. The factor ( | | 1 | | | (Cone ^v^))))"1 z n (2.30) is a continuous function
ofve UVo(a).

Proof The complex Cone"(Rv(a)) is acyclic according to Proposition 2.3. Its scalar
analytic torsion

:= exp (Σ,(-l)%(.θή (2.31)

is defined as in (1.1) by the (-functions of the "Laplacians" Lv := d*dv + ί/vd* of
the complex (Cone*(7?v(α)),ί/V).19 Since the complex Cone*(i?v(α)) is acyclic, we
see that these Laplacians are positive definite. (So they have the zero kernels.) Their
determinants det(z1*) are continuous positive functions of v on UVQ(a) (and so the
expression on the right in (2.31) is a continuous function of v G UVQ(a)). The latter
statement is derived as follows.

Proposition 2.5. Let m e Z+ and m ^ m0 := 1 + min{A: € Έ+ : 4k Ξ> dimM}.
Then there exists a positive constant C = C(M,N,Z,gM) independent of v €
JR2 \ (0,0) (and of m also) such that the following estimate holds uniformly with
respect to x e M\ UM2 :

m

ω(x)\2 < CΣKωlβ (2.32)

19 The spaces W*v) are equipped with the Hubert structure from ((DR*(M))2,gM) The spaces
C ( I v , F ) c C ( I i ) φ C ( I 2 ) are equipped with the Hubert structure defined by the basic
cochains in ΘC*(XA) and Cone*(Λv) = W*'](v) Θ Cm(Xv,V) is the orthogonal direct sum of
Hubert spaces.
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for all ω such that20

ω G DR*(MV,Z), ω G D{Δ*\ Δvω G D(Δ*,),..., Δ™ω G D(Δ') . (2.33)

(Here |ω(x)|2 is the norm at f\*TxM defined by QM and || \\\ is the L2-norm in
(DRm(M)2.).

Corollary 2.4. If ω G W*{y) then w G D(Δ™) for an arbitrary m_e7L±. So the
following estimate holds uniformly with respect to x e M\UM2 and to v G
IR2\(0,0)

\w(x)\2 < Q H w l l 2 , (2.34)

where Cx = C{(M,N,Z,gM) > 0.

The graded Hubert space C*(XV, V) is isomorphic to the direct sum

C (XY9 V) = Cm{X,Nχ U F ) Θ C {NX), (2.35)

where V := X ΠZ, Nx := X Π7V, C*(X,NX Π V) is a graded linear subspace of
C#(XV, K) (with respect to the natural inclusion), and the inclusion j γ : C

m(Nχ) °->
C#(XV, F) C Φ Z C (X?) is defined as j v := (α2 -f jg2)"Hi?id,aid). The space on the
right in (2.35) is independent of v. Hence (2.35) provides us with the isometric
identification of the graded Hubert spaces

pr:C (XV0,V)ZC {Xv,V). (2.36)

Corollary 2.5. Let v G UYQ(a) be sufficiently close to VQ. Let W*(v) be identi-
fied with W (v0) by Π9

a(v) : W'(v0) -> W'(v). Let Cm(XVQ, V) be identified with
C*(XV, V) by pv (2.36). Then the estimate (2.34) implies that for such v the family
of homomorphisms of the integration over the simplexes of X

R*v(a) : (Wa\v\d) -> (C#(XV, V\dc)

is a continuous in v family of quasi-isomorphisms between finite complexes of
finite-dimensional Hubert spaces.

Let fγ : (F*(v),df(v)) —» (Km(v),dχ(v)) be a family of homomorphisms be-
tween finite complexes of finite-dimensional Hubert spaces. Let the trivialization
of these two families of complexes be defined by the identifications of the graded
linear spaces

Πv : F (v<>) -+ F (v), pv : K*(vQ) -> K\v).

Let these identifications be chosen such that fv becomes a continuous family of the
homomorphisms

fv:(F\dF(v))->(K ,dκ(v))

between the continuous families of complexes with the fixed underlying graded
linear spaces F* := F*(v0) and Kφ := i£*(v0). Let the Hubert structures of FJ and
K} are continuous functions of v for all j . In this case, fv is called a continuous
family. Then the following assertion is true

Proposition 2.6. Let fv be a continuous family. Then the determinants det(L*) of
the Laplacians L* = d*dY +dvd* on (Cone # / v ,J v ) are continuous functions of v.

The domain of definition of D(A') for A* is defined by (1.27) and (1.26).
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Proof. The operator d* adjoint to the differential dv of Cone#/V (with respect
to the Hubert structure Cone*/V = Fφ~ι ®K*)21 is defined on the whole finite-
dimensional space Cone#/V. Since dv tends to dVQ (for instance, in the operator
norm2 2) as v —* vo, we see that d* also tends to d*Q. Thus L* —» L*o as v —> vo and
detL* —• detL*o (since the space Cone*/V is finite-dimensional). D

Corollary 2.6. The functions det(Z, ) of v for fv = R*(a) are continuous and
positive.

The positivity of det(Z*) is equivalent to the acyclicity of (COΏG*Rv(a),dv) (where

dv : = dcone(Rv(a)))

Proposition 2.4 is proved. D

Remark. 2.4. Propositions 2.2, 2.5, and Corollary 2.5 claim that under the identifi-
cations (2.36) and /7*(v), the Hubert structures on det Cone*(Rv(a)) and the dif-
ferentials dγ in Cone*(Rv(a)) are continuous in v at vo. Hence the analytic torsion
norms || \\2

T (Cone (/?,.(«))) o n ^ — det//*(Cone(i?v(α))) = detO are also continuous
in v at vo.

According to (1.61) we have φ*n = φc

v, where φc

v is defined by the
bottom row of the commutative diagram (1.59). So the continuity of the norm
φ™(a)o\\ - \\Ίetw ,v) on Det(M,N,Z) can de deduced from (2.30) and from the
following lemma.

Lemma 2.5. The norm φc

vT$(C(Xv,V)) on Όet(M,N9Z) does not depend on v e
UVo(a).

The continuity in v of the norm φfyTo(Mv,Z) on Όet(M,N,Z) follows from
(2.20), (2.21), and from the continuity of the norm φf(a) o || \\2

άetW (vy (The lat-
ter assertion is proved above.) The equality (1.12) holds with co(v) which is con-
stant and positive on each connected component U, of U (2.3). Because the norm
φ™T0(Mv) on Det(M,7V,Z) is continuous in V G R 2 \ ( 0 , 0 ) , the equality (1.12)
holds for all such v with c0 independent ofv. Theorem 1.1 follows from (1.12) and
from the assertion of Lemma 1.2. D

Remark. 2.5. It is not important for the proofs of Theorem 1.1 and of (1.12)
that the family of finite-dimensional complexes (C*(XV, V\dc) in (2.30) is of a
combinatorial nature. It is enough for the proof to have a family of finite-dimensional
complexes (F*,dF) which are defined locally in v (i.e., for v in a neighborhood of
an arbitrary vo G IR2 \ (0,0)) together with the data as follows. Continuous families
of quasi-isomorphisms fv(a) : (W*{y\d) —» (F*,dp) and of Hubert structures hv on
F* are defined. A family (F*,hv) may depend on a and on VQ but it has to possess
the property as follows. The norm φ^n o (fv(a)*)~ι o To(F*,hv) on Όet(M,N,Z) is
continuous in v at v0. (Here fv{a\ : det//#(Mv,Z)^det//*(Fv,i/F) is the induced
identification.)

2 1 Cone*/ is the direct sum of Hubert spaces F*+] Θ K* (with the Hubert structures on F * + 1

and K* depending continuously on v).
2 2 As Cone#/V is a finite-dimensional space, the weak convergence of the operators acting in it

is equivalent to the convergence with respect to the operator norm.
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Proof of Lemma 2.5. Let ψv be the identification of the determinant lines defined
by the bottom row of the commutative diagram (1.59):

φγ : detC#(Xv, F ) q (g) detC*(Xk, W U Vk) ) 0 detC#(JF) =: ΌetC*(X, V, W)

(where V is the induced smooth triangulation Z ΠX of Z C 3M, F"̂  := F Π dMk and
JF : = X ΠiV = Nx). The following diagram is commutative:

detC

dc

detH

1

1
deti/

i '
(Xv,

(My,

V)

V)

Z)

dc[l

Όet(X,V,W) ( 2 3 7 )

(The determinant lines on the right in (2.37) are defined by(1.54). The identification
dc on the right in (2.37) is a triple tensor product of the identifications induced
by dc on C*(Xk,WU Vk) and on Cm{W). The identification R is defined by the
integration over the simplexes of X.) The commutativity of the diagram (2.37) is
equivalent to the definition (1.60) of φc

v. Since the identification dc on the right in
(2.37) is independent of v, we see that the statement of Lemma 2.5 is a consequence
of the following proposition.

Proposition 2.7. The identification φv in (2.37) is an isometry between the com-
binatorial norm || | |de t C (χv F> and t n e triple tensor product of the combinatorial
norms on detC#(X^, W U Vk) (k = 1,2) and on detC ( ^ ) .

(The Hubert structures on Q)k=l2C*(Xk,Vk) and on C*(W) are defined by the
orthonormal basis of the basic cochains.)

Proof Let pVjC : C\W) -* C\XV, V) be defined by (1.63). Then rv,cpv>c = Id and
p v ? c is an isometry onto Im(pv ? c) (relative to the Hubert structures, defined above).
The subspace Im(pV)C) is the orthogonal complement to Im j(Q)k:=l2C

m(Xk,W U
Vk)) in O(XY, V) and j is an isometry onto Im j . (Here, rVjC and j are the same
as in the bottom row of (1.59).)23

Thus Lemma 2.5 is proved. D

2.2.1. Uniform Sobolev inequalities for v-transmission interior boundary condi-
tions. Proof of Proposition 2.5. Let / x N C M (where / = [—1,1]) be a neigh-
borhood of7V = O x 7 V c M and let gM be a direct product metric on / x N. Propo-
sition 2.5 is a consequence of the assertions as follows.

Proposition 2.8. The inequality (2.32) holds uniformly with respect to v e
R 2 \ ( 0 , 0 ) for all ωeDR'(Mv) of the class (2.33) and such that suppωC
[-4/5,4/5] xN CM.

This proposition is essentially equivalent to Proposition 1.5, Sect. 1.
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Proposition 2.9. The inequality (2.32) holds for all ω G DR*{M,Z) such that
suppω C M \ ([-1/3,1/3] x N) and such that24

ω G D(AM,Z),Aω G D(AM,Z\...,Amω£ D(AM,Z). (2.38)

The last assertion is well known ([Ch], Sect. 5).
Let / be a smooth function on M,0 ^ / £ 1,/ ΞΞ 1 on [-1/2,1/2] x N and

/ ΞΞ 0 on M \ ([-3/4,3/4] x N) The 2m-Sobolev norm on the right in (2.32), de-
fined as

()

is equivalent uniformly in v e R 2 \ (0,0) (i.e., with constants cz,ca, > 0 independent

of v and of ω) to the norm25 | |ω | | 2

2 r a ) ; / := Σ Z o ( M ί ( / ω ) H i + IM*((1 - /)ω| | 2

2) :

C3lMI(2«) < l|o>ll(2mu ^ c4lMI(2») . (2.39)

It is enough to verify the upper estimate (with C4 independent of v) for fω. It
is true for m = 1, since the estimate holds:

|K(/ω||2 ^ d (|Mvω||2 + ||co||2 2 2

where C\ depends on / but it is independent of v. Hence the following estimate
holds for ω G D(Δk

v) (with C2 independent of v and of ω):

\\Δk

v(fω)\\i s c2. (iMίωiii + II4" 1 - ω|ii + + IMI2)

The upper estimate is done. Thus Proposition 2.5 follows from (2.39) and from
Propositions 2.8 and 2.9.

Proof of Proposition 2.8. The form ω on / x TV is the sum ωo 4- ωi, where ωz

is an /-form in the direction of / (where / = [—1,1]). It is enough to prove the
inequality (2.32) separately for ω 0 and for ω\. Let us prove it for ω0. For v =
(α,β) G R 2 \ (0,0) the Green function G(v) for the Laplacian Avj on functions on
/ with the v-transmission boundary condition at 0 G / and the Dirichlet boundary
conditions on δl — {—1,1} is given by the kernel

" V ^ I Λ f o r x ! , x 2 G ρ i - [ - l , 0 ] ,
or

a2-β2

UX2 = gXuX2 + tf-nμ9-χuχ2 for xux2 G Q2 = [0,1] ,

- α ^ -x x for xux2 from different Qk . (2.40)
2 ,

2 4 For ω with supp ω CM\N the conditions (2.33) and (2.38) are equivalent. The domain

D(ΔM,Z) of ΔM,Z consists of smooth forms on M with the Dirichlet boundary conditions on Z and

the Neumann ones on dM \ Z.
25 The lower estimate with c3 in (2.39) is obvious. Note that supp((l - f)ώ) CM\ ([-1/3,1/3]

xN). Then the upper estimate with a constant c'4 for ||(1 — /)ω||(2,») by ||ω||(2OT) is well known

([Ho], Appendix B and Proposition 20.1.11).
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Here, gXuX2 is the Green function for the Laplacian on functions on / with the
Dirichlet boundary conditions on dl\

c ( 2 ) ( 0 , g 2 g ! S ,
( 2 4 1 )

(xi + 1)(1 - * 2 ) , - 1 ^ xi ύ X2 ^ 1 ,
where cφO is a constant.

It follows from (2.40) and (2.41) that G/(v) has a continuous kernel on Q x

Qri and that it is estimated uniformly with respect to v e IR2 \ (0,0) and to xi,X2*

s u p \ ( G j ( v ) ) X u X 2 \ <c2. (2.42)
X\,X2,V

Since supp ωo C (/ \ 5/) x TV and since the Laplacian zdv>/ has the zero kernel
on functions with the Dirichlet boundary conditions on δ/, we have

ω 0 - (Id/ ® /70 (ΛO)ω0 + G/(v) 0 ^ 2 ( ( z l v , 7 Θ z l" 2 )ω 0 ) , (2.43)

where G^ is the Green function for Δ^ and where Π*(N) is the orthogonal projec-
tion operator in (DR*(N))2 onto Ker Δ^. The operator G^2 on a closed Riemannian
manifold (N,gχ) has a square-integrable kernel (relative to the second argument) for
πi2 > (n — l)/4 (where n— \ — dimΛ^) and it has a continuous on N x N kernel
for m2 > (n- l)/2.

The following estimate holds uniformly with respect to vG IR2 \ (0,0) for any
m2 G Z + , m2 > (n — l)/4. From (2.43), (2.42), and from the Cauchy inequality we
have

|ωo(x)| 2 ^ C5(||ωo||^ + | |(^v,/Θid)ωo^ + | | (z lv,/0^ 2 )ωo| |^) . (2.44)

Indeed, the following two Banach norms on the finite-dimensional space Kerzl^

Pill := max|*(*)|2 and \\h\\iN

are equivalent. So we get (where x = (x\,xN) € I x N and / = [—1,1]):

Π'0(N))ω0)(x)\2 ^ ||(iT (JV)ωo(JCi, * ) ) | | | S c6 | |ωo(x,,*)||2

2,w , (2.45)

^ 2supp|(G/(v))x,,X2 |
2 \\(ΔvJ

X2

^2c2

2\\(AvJ®id)ω0\\2

2. (2.46)

The following estimate is obtained by the similar method:

Hence the estimate (2.44) holds for ωo (even without the first term on the right
in (2.44)), as it follows from (2.43), (2.45), (2.46) and (2.47).

Since Δv = id/ 0 ΔN + ΔV(I) 0 id^ and since ΔN and Δvj are nonnegative self-
adjoint operators, we have for m2 G 7ί+\

(2.48)
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The inequality (2.32) for ωo follows from (2.44) and (2.48). For a>\ the ana-
logous to (2.43) equality holds:

ωx = (Πι

0(Iv) Θ (iάN - lΓ0-\N)))ωx + ((id/ - Πι

Q(Iγ)) <8> Π -\N))ω{

+ (7Jj(/v) Θ ii;-1(ΛΓ))ωi + (G7(v) 0 Gβ 2)(J v > / 0 Δm

N

2ωλ), (2.49)

where Πι

0(Iv) is the projection operator of (DRι(I))2 onto the one-dimensional space
c flfjci and G/(v)i is the Green function for the Laplacian Δvj on DRι(Iv) (with the
Dirichlet boundary conditions on dl — {—1,1} and with the v-transmission boundary
conditions at 0). The kernel G/(v)\ is continuous on Q x Qri because it can be
written in a form similar to (2.40). It is written through the Green function Q\ of
Δj on DRι(I) with the Dirichlet boundary conditions on dl (the kernel (g\)Xhχ2

of g\ is continuous on / x /) . Hence the second term on the right in (2.49) is
estimated similarly to (2.45) and to (2.46). The kernel ΠQ(IV)XUX2 is expressed in a
form analogous to (2.40) through the kernel 2~xdx\ ®_dx2 on_/ x / (corresponding
to ΠQ(I\J)). SO the kernel of ΠQ(IV) is continuous on Q x Qn, and it satisfies the
estimate (2.42) (with the upper bound c). The first and the third terms in (2.49)
are estimated as follows:

\(Πι(Iv)®(idN - /70

\(x)f ^ 2c2

C(,\\ωx\\2

2M .

Hence the estimate (2.44) holds uniformly with respect to V G 1 R 2 \ ( 0 , 0 )
for any m E Z + , m ^ m0 := 1 -f min{& G Z+,4k ^ n}. Thus Proposition 2.8 is
proved. D

23. Actions of the Homomorphisms of Identifications on the Determinant. Proof
of Lemma 2.3. The most simple method to compute the action of #v,* on
Ώet(M,N,Z)26 is to obtain the expression for the action of υ^ on the determi-
nant line DetC#(X, V, W) (1.54), induced by the identifications of the correspond-
ing cochain complexes vc

v = υc

VVQ : C*(XVo, V) —> Cm(Xv, V) (where t^(ci,c2) := (c\,
(kv/kVQ)c2) for v,vo G U (2.3)), and then to use Proposition 2.10 below. The ac-
tion of vc

v* is defined by identifications ψv and φVQ, where ψv : detC*(Xv,V)7Z
DetC#(X, V,W) are defined by the exact sequence in the bottom row of the dia-
gram (1.59). The following diagram of the identifications is commutative:

detC (XVo,Π 4? detC (Zv,F)

ΌetC*(X9V9W) •% ΌetC (X,V,W).

Proposition 2.10. Under the conditions of Lemma 2.3, the equality holds:

g» = *4 (2.50)

This action is multiplying by a nonzero factor.
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The proof of the equality (2.50) is done just after the end of the proof
of Lemma 2.3. The expression for the action of v^ on the determinant line
can be obtained as follows. Let v e U and let j be the natural inclusion j :
θ ^ i , 2 C * ( X ^ W®Vk)-> C (XV, V). Then vc

v acts on C%XU W U Vx) as the iden-
tity operator and it acts on CΦ(X2,W UV2) as the operator (kv/kVQ)id. Proposi-
tion 2.7 claims that the identification φv is an isometry between the combinatorial
norm on detC*(Xv, V) and the triple tensor product of the combinatorial norms
on the components of DetC*(X, W, V). It is enough to compute the action of v%
on the component det CΦ(W) of the tensor product DetC#(Z, W9 V). The inclusion
pV}C : C*(W)c-^ C*(XV, V) (defined by (1.63)) is an isometry onto orthogonal com-
plement to Im j and rVjCpv<c = id on C*(W). So the action of υc

v on this orthogonal
complement (Im j)1- (identified with C*(W) by rVQiC and by rViC) can be expressed
as the composition

me C*(
' PvOf V " "/ v v ' V <• V" "

/ / \ / / / , \

eC\W). (2.51)
V

(Here, the signs are written for positive β and βo.27) The expression for vc

v^ follows
from (2.51) and from the assertion that vc

v acts on C*(X2,WU V2) as (£v/A:Vo)id.
Namely.

υc I _ ίjς/jς Λ-X(^2>^U^2)ίί\ _j_ Jς2)/(\ -|- £ 2 Λ\~X(N)/2l Π 52)

for / G DetC#(X, F, FF). It follows from (2.52) that the equality holds (for / + 0):

3ylog | | ί4/| | 2 - -2χ(M2,NUZ2)dy\og (kv)-2χ(N)(\ +k-2yιdy\og (kv).
(2.53)

Proposition 2.10 claims that the same identity holds also for the action of gVQ on
Det(M,7V,Z).

The right side in the formula (2.19) (i.e., in the assertion of Lemma 2.3) is
defined in analytic terms while the right side in (2.53) is defined in topological
terms. Each b2j(MVQ,Z) on the right in (2.19) is the sum of integrals over M2 and
over N of the locally defined densities, according to Theorem 3.2. So it is enough
to compute (in topological terms) the expression on the right in (2.19) in the case
of a mirror-symmetric M = M2UN M2 with a mirror-symmetric metric g~ (which is
a direct product metric neat dM and near N) and with mirror-symmetric boundary
conditions on the connected componenets of dM. In this case, the expression in
(2.19) is the same as for a general M (if the piece M2 of M, ^M|ΓM2?

 a n d the
boundary conditions on dM Π M2 are the same as in the mirror-symmetric case on
each piece M2 of M). It is supposed from now on in the proof of Lemma 2.3 that
M and all the data on M are mirror-symmetric relative to TV. In this case the kernel
E*xy(v) (v G 1R2 \(0,0)) of the operator Qxp(-tA*) with the Dirichlet boundary
conditions on Z = Z2 U Z2 C dM and with the Neumann conditions on dM \ TV is

2 7 The signs are not important for the transformations of the norm on the determinant line under
the actions of vc

x^.
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expressed through the fundamental solution E*^y for dt + Δ* on DR'(M,Z) (with

the same boundary conditions on 5M) 2 8 as follows29:

E^y(v) = E^y + ((a2-β2)/(a2 + β2))(σ*ιE*\x,y for x e M2,y e M2 , (2.54)

i s ^ ( v ) = (2α£/α2 + £ 2 ) 2 ^ for x e Mu y € M2 . (2.55)

Note that the kernel (is, + σ\Et)x>y =: ^ ^ for x j G M2 is the fundamental so-
lution for dt + Δ*Mi, where Δ*Mi is the Laplacian on DR*(M2,Z2) with the Neumann
boundary conditions on N and the kernel (Et — σ\Et)x^y =: Efx

τ

y is the kernel of
exp(—tΔ*M iN), where Δ*M^N is the Laplacian on DR*(M2,N UZ 2) (i.e., with the
Dirichlet boundary conditions on N). It follows from (2.54) that the alternating
sum of zero-order terms (in the asymptotic expansions of the traces of the heat
equation operator relative to t —> -j-0) on the right in (2.19) can be represented in
the following form (where mVQ := 2~1(1 - £~2)/(l + ^ ~ 2 ) ) :

M2

M

M2

(2.56)

Hence the expression on the right in (2.53) is equal to the right side of
(2.19), and the assertion of Lemma 2.3 follows from Proposition 2.10. The
zero superscripts in (2.56) denote the densities on M,,N,dM, corresponding to
the constant terms (i.e., the ^-coefficients) in the asymptotic expansions as ί->
+0 for Tr(j97exp(—tΔ*)\ where Δ* is the Laplacian with appropriate boundary
conditions. In (2.56) j M tr( . )° denotes the sum of the integrals over Mj,N9 and

over dMj \ N of the corresponding densities. We use the following equalities to
produce (2.56):

M

X ) ( - i y J tr(^/;Λ>JC )υ = χ(M 2 ,Z 2 ),
M 2

Σ ( - O y 7 t r ( ^ ) ° = Z(M2,iVUZ2) . (2.57)
M 2

These equalities are consequences of the analogous equalities without the zero
superscripts and of the existence of asymptotic expansions in powers of t for the

28 It is proved in Proposit ion 1.1 that A* on DR*(M,Z) for M obtained by gluing two pieces,
M = M\ UN M2, has the same eigenvalues ( including their multiplicities) and eigenforms as A* ,
in DR*(M\\,Z). The analogous assertion is true for the operators exp(— tA\ , ) and e x p ( — t A 9 ) in
(DRΦ(M))2 and for their kernels.

29 These formulas are analogous to (2.40).
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corresponding traces as t —> +0 ([Se2], Theorem 3, or Theorem 3.2 below). D

Proof of Proposition 2.10. The identifications

DetC*(X, F, W) -^ Όet(X, F, W) J^ Όet(M,N,Z) (2.58)

do not depend on v (the determinant lines in (2.58) are defined in (1.54)). So the ac-
tions of t;J#on Det(X, F, W) and on DetCm(X, F, W) are the same (i.e., they multiply
by the same number). To prove (2.50) it is enough to show that the corresponding
operators on Det(M,N,Z) are the same (i.e., that gv* = f^on Όet(M,N,Z)).

The proof of Proposition 2.10 uses the following assertion.

Proposition 2.11. Let φ : (Fζ,dpQ) —> (F*,dF]) be an isomorphism of finite com-
plexes of finite-dimensional linear spaces. Then the diagram is commutative:

det// (F 0)

detFΓ

detif (Fi)

(2.59)

Proof This identifications detF* ~ det//*(F7) are defined with the help of differ-
entials d = dF . Hence the commutativity of (2.59) holds. D

The commutativity of the following diagram of the identifications (for v suffi-
ciently close to vo such that vv is an isomorphism) follows from (2.59):

deti;v(Fβ (vo))
Πn

d\l

det//#(MV0,Z) deti/ (Afv,Z) =

\ld

det//#(Mv,Z)

(2.60)

where the identification j * : H*(vv(W*(v0))) -^ H*(DR(MV,Z)) = H*(MV9Z) is de-
fined by the natural inclusion j : vv(W*(vo)) <-+ DR*(MV,Z) of a quasi-isomorphic
subcomplex. The commutativity of the left square in (2.60) follows from (2.59).
The commutativity of the right square in (2.60) also follows from (2.59) because
the operator induced by the projection operator Πa on H*(DR(MV,Z)) is the identity
operator.

The commutativity of the following diagram is a consequence of the commuta-
tivity of the diagram (2.60):

det^fl (vo)

I

Όet(M,N,Z)

- άctW

d

* (vo)

I

det// (MV0,Z)

= Ώet(M,N,Z)

<

detϋ v(»; (vo))

d

det// (Mv,Z)

Det(M,iV,Z)

(2.61)
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The action of vv* : Hm(MVQ,Z) —> H*(MV,Z) coincides with the combinatorial
action v^ : H*(XVQ, V) —> HΦ(XV, V) under the identification of the cohomology
R : //#(MV,Z) —>• HΦ(XV, V) induced by the integration R of closed differential forms
over the simplexes of X. Hence the commutativity of (2.60) implies also the com-
mutativity of the diagram:

det//'(MV0,Z)

^=< | I

Όet(M,N,Z)

= det//* (MV0,Z)

dc\l

detC (XV0, V)

uetc\lv,w)
(2.58)1?

= Det(M,iV,Z)

i f

deti/ (M v,Z)

ΌetC%X,V,W)

Όet(M9N9Z)

(2.62)

The equality (2.50) follows immediately from the commutativity of the right
bottom square in (2.61) and from the commutativity of (2.62). Proposition 2.10 is
proved. D

2.4. Analytic Torsion Norm on the Cone of a Morphism of Complexes. Proof of
Lemma 2.4. Lemma 2.4 is a particular case of the following assertion. Let / be
a morphism (2.22) of finite complexes of finite-dimensional Hubert spaces.30 Then
Cone*/ is defined by (2.23). The exact sequence of complexes:31

Cone*/-^^*[1] - > 0 , (2.63)

(where the left arrow maps y £ V° into (0,y) G Cone*/ and p(x,y) =x for
(x,j>) eA'+ι Θ Vj) defines the identification of the determinants of its cohomol-
ogy:

: deti/#(Cone / )^det//*(K) 0 ( d e t / / * ^ ) ) " 1 . (2.64)P

F ; + 1 of the HubertLet the Hubert spaces Cone 7 / be the direct sums AJ

spaces.

Lemma 2.6. The analytic torsion norm on the determinant of the cohomology of
Cone*/ is isometric under the identification (2.64) to the tensor product of the
analytic torsions norms2'1:

\ - i (2.65)

Remark. 2.6. Let A G det//*(Cone / ) be identified by (2.64) with h\ 0 A

det//*(F) and A2 G detJ^ (^). Namely φcone fh = h{ ® I where

for A! G

"] is an

3 0 The m o r p h i s m / is not supposed to be a quasi-isomorphism.
3 1 A9[I] is a complex with components A[\]J = AJ+ι and with d

ical identifications: deU#[l] = (deU ) " 1 and det// (Λ[l]) =
3 2 The analytic torsion norm on deti/ (Λ[l]) = det//*^)" 1 is the dual norm

= —UA There are the canon-
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element of the dual one-dimensional space άQ\H*(A)~x such that h^1^) = 1. In
this case, the equality (2.65) claims that

Pliocene-/) = P Π I W I N I W ) (2 6 6 )

Remark. 2.7. The identity (2.65) (Lemma 2.6) and the equality (2.66) also hold
under weaker assumptions. Let the Hubert structures on A*, V*9 and on Cone*/ be
such that the identification

: det C o n e * / ^ det F* 0 (deU*)" 1 (2.67)

(induced by the exact sequence (2.63)) is an isometry. Then the equality (2.66)
holds.

Corollary 2.7. Let f : Am -» V9 be a quasί-isomorphism. Then H9(Concf) = 0.
Hence det//*(Cone/) is canonically C and 1 G C = det// (Cone/) zs identified
by (2.64) with h\ 0/^Γ1. Here, f*h^ — h\ under the identification induced by f :

/* : det// μ)^det//#(F). (2.68)

In this case, the equality (2.66) claims that

imi2r0(cone /) = I h l l 2 w ) / Ί N I W ) = To(V)/To(A ) , (2.69)

where TQ(V9)/TQ(AΦ) is the ratio of the two norms on the same determinant line
{since det//*(F) and detH*(A) are identified by (2.68)).

The equality (2.69) is the assertion of Lemma 2.4.

Proof of Lemma 2.6.The identification (2.67) is an isometry of norms on the de-
terminant lines. Let u be a nonzero element of det Cone*/ and let

ΦCone fU = Uχ®U^\ (2.70)

where u\ G detF* and «2 £ detv4*. Let h,h\,h2 be the images of u9u\,U2 under the
identifications (definied by the differentials of the corresponding complexes):

det Cone*/ ̂ * ' deti/*(Cone / ) ,

deU # ^ det//*(^)? detF* ^ det//*(F).

Then by the definition of Ψcom f we have φ^onQ fh = h\ ̂ /22"
1.

The analytic torsion norm on the determinant of the cohomology of a finite-
dimensional complex is the norm, corresponding to the L2-norm on the determinant
of this complex defined by the Hubert structures on its components. Hence the
equalities hold:

ll̂ llr0(Cone /) — IMIdet(ConeV) >

\\hl\\τ0(V) = H«lHdet(r )> Wh2\\2T0(A ) = ll^Hdet^*) (2'^Ό

Since the identification (2.67) is an isometry, we see that the equality

Pliocene-/) = Il^llroί^/ΊNIW) (2.72)

follows from (2.71) and from (2.70). D
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The equality (2.24) in Lemma 2.4 is a particular case of (2.72) (by Corollary
2.7) corresponding to the case of a quasi-isomorphism / . Lemma 2.4 is proved.
D

2.5. Variation Formula for Norms of Morphisms of Identifications. Proof of
Lemma 2.1. The assertion (2.14) of Lemma 2.1 can be deduced from the defi-
nition of gγ and from the following proposition.

Proposition 2.12. There is a neighborhood UYQ,VQ e UVQ c IR2 \(0,0), such that

a family of finite rank projection operators ΠJ

a(v) := Π,(v;a) in (DRj(M))2 is

smooth on UVo 3 v.

Its proof follows just after the proof of Lemma 2.1. Let / £ detJ^ (vo), /=t=0,

and let / = ®,l{~l)'+ , where I, e det^(vo),/ 7 +O. Then we have

log Hflfv/iiLt̂  ίv) = Σ ( - υ / + 1 i o g ibv//iι^^(v). (2.73)

Proposition 2.13. For every j the following equality holds {under the conditions of
Lemma 2.1):

dΛog\\gvl\\'ι(vΛ =237log(* v) Ίτ( PlΠ'a{v,)\ . (2.74)uάetW('l(v) y=0

Thus the assertion (2.14) of Lemma 2.1 is a consequence of (2.74) and of (2.73).

Proof of Proposition 2.13. It is enough to prove the equality (2.74) in the case
when ||//|ldet^ (v ) ~ ^' *<e<> w n e n I — e\ Λ ... Λeffl, where {e}} is an orthonormal
basis in W*(VQ) (VO = v(0)). In this case, we have

α,7(v))) , (2.75)
y-0

where α(v) = (alf(v)) is a matrix of scalar products in (DRi(M \) 0 Zλft;(M2), #M)
of the images of the basis elements

The formula (2.75) is deduced as follows. Since \\qvl\
 2 , — detα(v), we have

v y I I J ' d e t ^ ( v ) V J

dΛog detα(v)|7 = 0 = tr(dya a~\v))\y==0 = tr(dya)\y=0

The family of the operators Π}

a{v) is smooth in v for v £ UYQ (Proposition 2.12).

Hence the operator dyΠ'a(v) exists. Since ΠJ

a(v) are projection operators, we have

Π2

a = Πa, dyΠa Πa = (id ~ Πa)dyΠa .

So eι are orthogonal to dyΠa\y=Qe} and we get

dyaη(v)\y^ = dy(ΠagveI9Πagγe,)\y=:Q

= 3v(log kv)\y=o((p2eι,eJ) + (enp2e,)) . (2.76)
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Since {ez} is an orthonormal basis in W*(vo)> w e n a v e

tr((p2ehej)) = tτ(p2ΠUvo)) . (2.77)

Hence (2.74) follows from (2.75), (2.76), and (2.77). Thus Proposition 2.13 and
Lemma 2.1 are proved. D

Proof of Proposition 2.12. Let UVQ C 1R2 \ (0,0) be the set of v € IR2 \ (0,0) such
that the Laplacians Avj on DRJ(MV,Z) (for all j) have no eigenvalues λ from
(a — ε, 1 + 2ε) C IR+ (where ε > 0 is small enough). Then for v G UVQ the projec-
tion operator ΠJ

a(v) from (DRJ\M))2 onto a linear space PFα(v) (spanned by the
eigenforms of Avj with the eigenvalues λ from [0, a]) is equal to the contour
integral

ili(v) = //2π / G[(v)dλ,

where CJ{(V) = (AVJ — λ)~λ is the resolvent for the Laplacian Avj and Γa+ε is
a circle Γa+ε = {A : |A| = a -f- β} oriented opposite to the clockwise. For λ G Γ β + ε

and v G t/Vo the operators CJ (V) form a smooth in (A, v) family of bounded operators
in (DR\M))2 (It is an immediate consequence of Proposition 3.1 below. Indeed,
Spec(^v,/) is discrete and it is a subset of IR+ U 0, according to Theorem 3.1. Thus
if (a - ε,a + 2ε) C Spec(zlVJ) = 0 then Γa+ε Π Spec(J v J ) = 0 and Gj

}{v) form a
smooth in v G UVQ and in λ G Γα + ε family of bounded in (DR;(M))2 operators by
Proposition 3.1.) Proposition 2.13 is proved. D

2.6. Variation Formula for the Scalar Analytic Torsion. Proof of Lemma 2.2. First
the lemma is proved in the case when a > 0 is less than 4~1X\(VQ) (where ^i(v) is
the minimal positive eigenvalue of the Laplacian Av on ( φ Z)i? y(M v,Z),^)). Let
U\(a) be a neighborhood of VQ,VO G U\(a) C U (2.3), such that for v G U\(a) we
have a < 2~ιλ\(v). (Such a neighborhood exists according to Theorem 3.1 and to
Proposition 3.1.)

Let v(y) be a smooth local map (IRΛO) —»(U(a),vo).

Proposition 2.14. For t > 0 the following variation formula holds33

ίJV o,/ ) ) , (2.78)

where kv := α/jβ/or v = (a9β)eU (i.e., /or αβφO).

Proposition 2.15. Let Res > (dimM)/2 and let 0 < a < λι(v0). Then the follow-
ing equalities hold:

3 3 The operator Gxp(—tΔγ>/) acts from (DRJ(M))2 into the domain D(ΔV]) of AYJ defined by
(1.27). The operators exp(—tΔY}J) and p\ exp(—tΔVtJ) are of trace class. Their traces are equal
to the integrals over the diagonal of the traces of their kernels restricted to the diagonals (by
Proposition 3.8).
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oo

d Γ(s)~ι ff-ιΣ(-l)jJ(J™xp(-tAvj) - dimKerAvj)dt
0

i w ) - n{(vϋ)))dt

OO

x ff-ιTr(Pι(exp(-tAV0J) - Πi(vo)))dt. (2.79)
o

Proof of Proposition 2.15. To produce the second row of (2.79) from (2.78), it is
enough to prove ([Bo], 11.26, Proposition 7) that for Res > (dimM)/2 the integral

oo oo

Jts(-dt)Ύr(Pι exp(-tAVJ)) dt = JtsTr(PlAVJ exp(-tAYJ))dt (2.80)
0 0

converges uniformly in v for v from a small neighborhood UVQ of vo and to prove
the convergence of the integral

/ ^ - ' ( T r C e x p C - ^ ) ) - dimKerΔV(jJ)dt (2.81)
0

t o g e t h e r w i t h t h e u n i f o r m c o n v e r g e n c e in v for a n arbitrary vi G UVQ ( a s v —> v\) o f
t h e funct ion

(2.82))
for / from any closed finite interval t G / C (0, +00). (To apply the theorem from
[Bo], quoted above, it is useful first to do the transformation 1R+ 3 t —• h — log t e
JEL,dt-*tdh.)

The following estimates are satisfied

\Ύτ(pιAvJejφ(-tAVJ))\ ^

S \\AvJ exp(-ίZlv,//2)||2(Tr(exp(-/zlv,//2)

- d i m K e r J v J ) ) , (2.83)

\\AvJ exp(-ίJv,//2)||2 ύ max(Aexp(-d/2)) = 2/(te) , (2.84)

(where || | |2 are the operator norms in (DRJ(M))2). The first estimate in (2.83)
follows from the Mercer Theorem. (Applying this theorem here is similar to its
application in the proofs of Propositions 3.8 and 3.9 below.)

Let to be any positive number. Then for t ^ 2t$ and for v sufficiently close to
vo we have the following uniform with respect to v estimate

Trexρ(-ίΛv>y/2) - d i m ^ ( v ) < C zxp(-cλt), (2.85)

where C and c\ are positive constants. Indeed, according to Theorem 3.2, for any
to > 0 there is a constant L > 0 (depending on to) such that the inequality

Tr exp(-Mv,,-/2) ύ L
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holds uniformly with respect to v G IR2 \ (0,0). So for all v G U sufficiently close
to vo and such that λ\(v) > 2α, the estimate (2.85) is true for / ^ 2/Q with C =
L and c\ = a/4:

Tr exp(-tAvJ/2) - d i m ^ ( v ) ^ Lexp(-ta/4). (2.86)

The uniform convergence (with respect to v) of the integral (2.80) for Res >
(dimM)/2 follows from the asymptotic expansion (2.15) in powers of t as t —* +0
and from the estimates (2.83), (2.84), and (2.85). The convergence of the integral
(2.81) for Res > (dimM)/2 follows from (2.85) and from the existence of the
asymptotic expansion of the trace at t —» -f 0 (by Theorem 3.2):

Tr exp(-ίJVo,,) =/-dimA/r ( d i m A / ) / 2 + / N i m M ί ( N i r a M ) / 2 + • +

+ / / 2 + O ( ^ 1 ) / 2 ) , (2.87)

where k G 7L+ and fι := /,(v;y) are smooth in v G ]R2 \(0,0). This asymptotic
expansion (2.87) is differentiable with respect to v, according to Proposition 3.2.

The uniform convergence of (2.82) for / G / C (0, oo) (if s is fixed and RQS >
(dimM)/2) follows from Proposition 3.8 and from the uniform convergence (with
respect to v) of the functions of t

A/, Mλ

for t G /. (The latter assertion follows from Proposition 3.2 and from Theorem 3.2.)
The last equality in (2.79) is true for Res > (dimM)/2 according to the asymp-

totic expansion (2.87), to the estimate (2.86), to the absolute convergence of the
integral (2.80), and to the following estimates (where 0 < a < /i(vo)):

0 < Tr(/?i(exp(-/JV0%/) - i7Ϊ(v0))) ύ Tr(exp(-^V o, ;) - i7ί(v 0)). (2.88)

(These estimates are deduced from the Mercer theorem the same way as in the
proofs of Propositions 3.8 and 3.9.) Thus Proposition 2.15 is proved. D

Proposition 2.16. For 0 < a < /ι(vo) the assertion of Lemma 2.1 is true, i.e., it
holds:

a.logΓ(Λ/v,Z)|..=0 = 23 v log(* v ) |^oΣ(-l) / Tr(pi(exp(-^ V θ ϊ / ) - /7i(vo)))° .
(2.89)

(The zero superscript denotes the constant coefficient in the asymptotic expansion
as t —> +0 for the operator trace.)

Proof. The equality (2.79) claims that for Res > (dimM)/2 and for 0 < a <
we have

- Πί(vo)))dt . (2.90)
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The final expressions in (2.90) and (2.79) are analytic functions of s for Res >
(dimM)/2 according to (2.88), (2.86), and to (2,15). The meromorphic continuation
to the whole complex plane (C 3 s of this function of s can be produced with
the help of the asymptotic expansion (2.15) (or of the expansion (2.91) below
for Tr(/?i(exp(-£dv0,/) - ΠJ

a(v0)))) using the estimates (2.88) and (2.86). Let the
asymptotic expansion as t —> +0 for the trace of the operator below be as follows
(n \— dimM):

tAV0,j) - Jlΐ(vo))) = ? - Λ r n / 2 + + qot° + q{t
ι/2

(2.91)

where rkJ(t) is O(t(k+ι)/2) as t -> +0 and rkJ(t) is a CW2]-smooth functions of
t G [0,1].34 Then the analytic continuation to Res > — (k + l)/2 of the integral
on the right in (2.90) is given by the expression

oo

Jts-ιΎτ(Pι(exp(-tΔVoj) - Π'a(v0)))dt
o

=q-n/(-n/2 +s) + ?_„+,/(-n/2 + 1/2 - s) + • • • + qφ

+ qJ(\/2 + s)+ + qk/(k/2 +s) + Jf-ιrkJ(ί)dt
0

oo

+ JY-1Tr(p1(exp(-//!V 0 < /) - Πi(vo)))dt. (2.92)
1

The latter integral in (2.92) is an analytic function on the whole complex plane
€ e s (according to (2.88) and (2.86)). The integral of rKj in (2.92) is an ana-
lytic function of s for Res > —(k+ l)/2. The asymptotic expansions (2.87) for
Tr Qxp(—tAvj) can be differentiated with respect to v according to Proposition
3.2. They provide us with the analytic continuation of Σ(—iyjζvj(s) to Res >
-(k+ l)/2 as follows:

Σ(~l)yXv,y(j) =Γ(s)-ι(F-n/(-n/2 + s) + 4- Fk/(k/2 + s)

1 oo
+ jf-χmKv{t)dt + Jts-ιΣ(-nJJTr(cxp(-tΛVJ)

0 1

- d i m KerAvj)dt), (2.93)

where Fk :=Σ(—1)Jj(fk(v,j) — δojedim KerAvj) and the functions mk,v{t) are

C[k/2]-smooth in t G [0,1] and in v (for v G 1R2 \ (0,0)) and are such that mKv =

#(/(*+O/2) uniformly with respect to v as t —> +0.
The latter integral in (2.93) is an analytic function of s G C We obtain its

derivative with respect to y taking into account (2.78), (2,86), and (2,88):

This asymptotic expansion exists and is differentiable with respect to t by Proposition 3.2.
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oo
(—tAVJ) — dim KeτAVtj)dt\y=o

1 j

1 j

-dvo,;) - J7i(v0)))} ,

where 0 < a < λ\{yϋ)?5 Using (2.87), (2.93), and (2.92), we get the equali-
ties (where <?*(./, v<j) '•= Ik for k ^ 0, qk(j>vo) '•= 4k for & > 0 and qkAk a r e fr°m

(2.91)):

dyF,\γ=0 = 2dy\og(kv)\y=0(-l/2)Σ(-iyqιU, v0),

/ (2.94)

Hence the equality (2.90) holds on the whole complex plane (C 3 s. In particular,
we obtain

Thus Proposition 2.16 is proved. D

Remark. 2.8. A consequence of (2.94) is as follows. For any smooth local map
v(y) : (RΛO) -> (C/,0) (where U is defined by (2.3)) the identity dyF0 = 0 holds
according to (2.94). Hence the function on U

FQ(V) = X^(—l);y(/o(v>y) "~ dim KerΔvj)

is independent of v. The dimension of K e r J v j is independent of v for v £ U as it
follows from the cohomology exact sequence in the top row of (2.27). Indeed, for
v e U the dimension of Imd/> (where dD : H^NX) -> ®k=ι;zH

i+ι(Mk,Zk\JN;<C)
is a differential in this exact sequence) is independent of v because for different
v = v0 and vi from U the maps δA*(v) : H\N, <C) -* Hi+ι(Mk,N U Zk; C) for fixed
A: = 1,2 (and for a fixed /) differ by the nonzero scalar constant factor (depending
on vo and vi). Hence Σ(—l)Jjfo(v,j) is a constant function on U.

Proof of Proposition 2.14. Let EJ

t^y(y) (where t > 0) be the heat kernel of the
operator exp(—tΔvj). By the Duhamel principle, a variation in v of E*x y(v) can be
written as follows. Let (E? (vλ),EΪ (v))M =: fE*>X] z(vλ) Λ *ZE* ZX2(v) be a

M

scalar product (1.23) (with respect to the variable z). We have

t—ε

t-ε

= lim / dτ[(-4*£ χ>,(v),.E;_w(vo))

(2.95)

3 5 For such a the operator i7/,(vo) is the projection operator from (DRJ(M))2 onto the space of
harmonic forms Keτ(AYoJ).
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Stokes' formula claims that for any two smooth forms ω\,ω2 EDRJ(M\) on a
manifold M\ with boundary we have

(dωuω2)M] - (ωi,(5ω2)M, = (rωuAω2)δMχ := / rω\ Λ *dM]Aω2 , (2.96)

where the density rω\ Λ *QMACU2 on dM\ =: TV and the operators r and A are defined
as follows. Let any local orientations be chosen on TM\N and on 77V. Then the
following forms on TV are locally defined:

rcoi := [TV : Mi] f ^ ω i , Aω2 := ^ ^ M , *M, ω 2 , (2.97)

where /^M i : DR9(Mλ) -> DR*(N) is the geometrical restriction to TV (and [TV : Mi]
= 1 if TV is locally oriented as δMi and [TV : Mi] = — 1 in the opposite case). The
locally defined form rω\ Λ *ΰMχAω2 is a globally defined density on TV = dM36. So
the equality (2.95) can be written in the form

E (v) -E^y(v0) = lim Tdτ Σ ([{-(rδ).E'(v),A,E'_τ^y(v0))aUk

Λ Ϊ _ τ < t ι y ( v 0 ) ) m t \ , (2.98)

where r — r^ A = A^ are the corresponding operators for pairs (M^dM^).
Let any local orientations be chosen on TM\N and on 77V. Then the conditions

(1.27) for the domain D(A*) claim that for the kernels E*(v) and Eφ(vι) (where
v = (α, jδ) and vi = (cc\,β\) are from R 2 \ (0,0)) the following equalities hold on
TV:

αrz(Mi,TV) o δzE*xz(v) = —βrz(M2,N) o δzE*xz(v),

βAz(MuN) o dzE*txz(y) = aAz(M2,N) o dzE
m

txz{v) . (2.99)

The analogous equalities hold for E*(vχ) (where (α,/?) are replaced by (oc\,β\)).
Hence the equality (2.98) for v e U(a) C U can be written in the form

t—ε

- (1 - (kv/kΛ.0))(rtElx^v),A*dtE;_τ^Jv0))m]. (2.100)

3 6 It does not depend on a local orientation on TM and if a local orientation on 77V changes to
the opposite then this local form changes its sign.
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The kernel E*xy(v) is smooth in v e IR2 \(0,0) as a smooth double form on

Mrχ x Mr2 (where the limit values on N C dMr are taken from the side of Mr)

according to Proposition 3.2. So we can conclude from (2.100) that

(2.101)

where the limits of the kernels are taken from the side of M\.
By Proposition 3.8, we have the equality

= Σ /^A,χ 2 (vo) , (2.102)

where the exterior product of double forms on the diagonals ΪM, > Mr

 c-^ Mr x Mr

are implied.
We deduce from the semigroup property for the kernels of the operators

ί4V ( h/) t h a t

M

^ (2-103)

where QiZι are differential operators acting on differential forms, U > 0 and the
integration is with respect to the variable x. We deduce the following variation
formula from (2.101) using (2.102) and (2.103):

+ (A2ι(Ml9N)r22(Ml9N)δ22E}9ZltZ2(vo))N] , (2.104)

where the summands are the integrals of the densities on N (as it is defined in
(2.96) and (2.97)). For instance,37

(AZχdZιrZ2ElZuZ2(v0))N : = J(AZιdZι Λ * Z 2 ^ r Z 2 ^ Z l j Z 2 ( v 0 ) ) . (2.105)

The local forms Fx = (i^ *Z2 dZ]dZ2E'ZiZ2(v0)) and F2 = (i^ *z2 δZ]dZ]E*+]Z2(v0))
are smooth on the diagonal iMχ '. M\ ^ M i x M\. (The limit values on N C dM\ of
these double forms are taken from the side of M\ and the exterior product of these
double forms is implied). The local form i^ *AΓZ2 AZ]dZ]rZ2E*Z]jZ2(vo) is a smooth
density on the diagonal N C dM\, /# : N <-* N x N. Hence we can apply Stokes'
formula (2.96) to the expression on the right in (2.104). The result transformed
with the help of the equality dxE*x (v) = δyE*^y{v) is as follows:

We assume (but do not write) the restriction to the diagonal N <—> N x N in (2.105).
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dyΎτ exp(-tAvJy=0 =2dγ\og(kv) *[-(&, ^ X ^ O Ό ) ) * , + (dz,δZ]E
J

t^Z2(v0))Ml

+ (dZ2δzχZuZ2(vo))Mι ~ (δZ2dZ2Ei-]Z2(v0))Mι] , (2.106)

where the summands in (2.106) are the integrals of the densities of the type:

(2.107)

(and the exterior product of double forms is implied in (2.107) and (2.106)).
The formula (2.78) is an immediate consequence of (2.106) if we take into

account the equalities

and use the formula (3.67) in Proposition 3.8. Thus Proposition 2.14 is proved.
Hence Lemma 2.2 is proved in the case of a < 4~ιλ\(vo). D

Let now a > 0 be an arbitrary number such that a 0 U7 Spec(zlVoJ). Then for
any nonzero element / e det^*(v 0 ) we have by Lemma 2.1 that

3ylog||fifv/||detFr (vo)ly=o = -2δ y log(^ v ) | y = 0 Σ(- ! ) / T r (P2Π J

a (v 0 )) ,

where gv — Π*vv is defined by (2.13). We know that under the identifications
(2.4) and (2.6), the analytic torsion norm T0(Mv,Z;a) on det W*(v) is trans-
formed into the analytic torsion norm T0(MVrιZ) on άeίHm{Mv,Z),\\gvl\\2

τ^MγZ.a) =

IK v̂O/Hlη̂ My.z)- (Here> (QVI)H ^ det//#(MV )Z) corresponds to gvl under these iden-
tifications.) Let (gvl)π be fixed. Then the analytic torsion norm of gvl £ d e t ^ (v)

\ L ;a) (2.108)

is independent of a > 0. Let v0 = (αo,jβo) £ U (i.e., αojSoΦO). Then using (2.108),
(2.89) we obtain (μ := δylog(λv)|y=o):

^ylog T(Mv,Z;a)\y=Q = lim δ^log T(Mv,Z;ε)\y==Q
ε—>+0

+ 2 μ ( - l i m Σ ( y
+0

(2.109)

Note that for arbitrary c > 0, α > 0 we have

Σ(-iyTrJlί(v0) = X(MVO;Z) = Σ(-iyTr((p, + Λ)77i(v0)).

So the final expression in (2.109) is equal to

23 r log(M 7 = oE(- l ) / Tr(Mexp(- ίz l V o , / ) - ΠJ

a(y0))).

Thus Lemma 2.2 is proved for an arbitrary a > 0 such that a $ U,Sρec(zlVo>/). D
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2.7. Continuity of the Truncated Scalar Analytic Torsion. Proof of Proposi-
tion 2.1. Taking into account the definition (2.11) of the truncated scalar analytic
torsion Γ(Mv,Z;α), we see that Proposition 2.1 is a consequence of the assertion
as follows. For Res > (dimM)/2 the truncated (-function (2.8) for Avj is defined
by the integral38

oo

JY-1Tr(exp(-ίzl ϊ,,-)(l - ΠJ

a(v)))dt. (2.110)
0

Proposition 2.17. For a > 0 the truncated determinant for the v-transmission in-
terior boundary conditions

d e t ( ^ α) := exp(-d/dsζv,.(s;a)\s=0)

is a continuous function of v for v G 1R2 \ (0,0) such that a £ Spec(zl ).

Proof Let E*xy(v), t > 0, be the kernel of exp(—tΔ*). According to Proposi-
tion 3.8 we have

Trexp(-^v ) = Σ !H*χ2fkElXuX2)9 (2.111)

where / : Mk

 c-> Mk x Mk are the diagonal immersions. (The exterior product of
the restriction to the diagonal of double forms is implied in (2.111).) Set / =
[—1,1]. Let / x N C M be the inclusion of the neighborhood of N — 0 x N into
M and let gM be a direct product metric on / x N. Let A* 0 be the Laplacian on
DR*(1 x N) with the v-transmission boundary conditions on N = 0 x N and with
the Dirichlet boundary conditions on dl x N. Let E*x y(v;0), t > 0, be the kernel
of exp(—tΔ*.o). The equality analogous to (2.111) holds also for Trexp(—ίJ .o)
(where Mk is replaced by Qk x N, Qx := [-1,0], Q2 := [0,1]).

Let voΦ(0,0) and let a $ Spec(J*o) be a fixed positive number. Then from
Theorem 3.2, Proposition 3.1, and from the estimate (2.86) it follows that for an
arbitrary ε > 0 there are a neighborhood Uo(ε) of vo and T > 0 such that for v G
UQ(C) and for t Ξ> T the estimate holds

|Tr(exp(-ίJ v )(l - i7 (v)))| g εoxp(-at/2). (2.112)

To prove the continuity of det(J ) in v at v = vo, it is enough to obtain the follow-
ing estimate.39 For a given b, 1 > b > 0, and for an arbitrary ε > 0 there exists a
neighborhood Uε 3 v0 such that the estimate holds for v e Uε,— (1 — b) < s < 1 :

/|Tr(exp(-ίZi:)(l - / 7 f l ( v ) ) ) - T r ( e x p ( - ^ ; χ i - ^ ( v o ) ) ) ! ^ 1 ^ < ε. (2.113)
o

38 The analytic continuation of this integral from Re 5 > ( d i m M ) / 2 to the whole complex plane
coincides with the meromorphic continuation of ζYf/(s;a).

39 The integrals (2 .110) for the values vo and v of the transmission parameter have the analytic
contunuations from Res > ( d i m M ) / 2 to the whole complex plane. It follows from the estimates
(2.113) and (2.112) that the difference of these integrals multiplied by Γ(s) is an absolutely
convergent integral for Re s > — 1 . Hence this difference is an analytic function of s for such s
and it is equal to the difference of the analytic continuations of the integrals (2 .110) for v and v 0.
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The spectrum Spec(zl*) is discrete and it depends continuously on v (by Propo-
sition 3.1). Since a £ Spec(ΛJ), we see that Tr/7*(v) = TrJJ (vo) (= rk/7*) in a
neighborhood of Vo and that the following estimate is satisfied uniformly with re-
spect to s, — 1/2 < s < 1, and to v for v sufficiently close to VQ:

/|Tr(exp(-^;)/7a (v)) - Ίr(exp(-tΔ;,o)Π:(vo))\ts-ιdt < ε/2 . (2.114)

0

The inequality

T
ι

^ ; ) | ^ - ι J ί < ε/2 (2.115)
o

for v sufficiently close to Vo and for —1/2 < s < 1 is obtained as follows. According
to Proposiion 3.1, Trexp(—tA*) is equal to the integral over UMj of the density
defined by the restriction to the diagonal of the corresponding kernel. So it is
enough to estimate in (2.115) the integrals of the difference between the densities
defined by exp(—A*) and by exp(—tA*Q) separately over a fixed neighborhood U
ofN = 0xN^M and over M\U. The estimate of the integral over U C N
is obtained with the help of the kernel is* (v O) of exp(—ίJ*0). Set e*xy(v) :=
E^y(v) - E^y(v; 0) for χ9 y9 e I x N.

Proposition 2.18. For an arbitrary m e Z+ there is a neighborhood of vo such
that for all x,y G M[-ιj2i\/2] '-= [-1/2,0] x N U [0,1/2] x N^ Mi UM2 and for
t £ (0,1] the estimate is satisfied uniformly with respect to v e 1R2 \ (0,0)

| ^ , , ( v ) | Scmtm, (2.116)

(where cm is independent of t and of v).

Proposition 2.19. The following estimate holds uniformly with respect to s for
—(1 — b) < s < 1 and to v for v sufficiently close to VQ

T

0
/

^t-1/2,1/2]

<c/4. (2.117)

Remark. 2.9. For x,y G [ - l , l ] x i V the equalities hold (analogous to (2.54), (2.55),
(2.40)):

( Kχ,y + (β2 ~ a2/β2 + #yσ*χEm\χ,y for x,y e Qx x N,

E^y + (a2-β2/β2 + a2)(σ*xE*\x,y for x9yeQ2xN9 (2.118)

(2α^/α2 + β2)E χy for x9y from different Qk x N .

Here, E*xy is the kernel of exp(—tA*) on / x N with the Dirichlet boundary con-
ditions on δl x N and σ\ is the mirror symmetry with respect to Λf = 0 x JV acting
on the variable x of the kernel. So we get

/ H*χ2iΐ<Xι,X2(.v))= I H*χ2ιi:(ElXuX2(v) - E χuXi)). (2.119)
^[-1/2,1/2] M[-\/2,\f2]



Generalized Ray-Singer Conjecture 61

From this equality and from the estimate (2.117) it follows that the integral over
f̂-i/2,i/2] of the difference between the kernels for v and for vo gives the term in

(2.115) which is less than ε/4.

Proposition 2.20. The following estimate holds uniformly with respect to s,
—(1 — b) < s < 1, and to v for v sufficiently close to v0:

/I / * ( V ^ W v ) ) - tx{*XlfEluX2{v,)) dt < ε/4 . (2.120)
0 'itfW

The estimate (2.115) is a consequence of (2.117), (2.119), and (2.120). The
estimate (2.113) follows from (2.114), (2.115). The estimate (2.115) together with
(2.112) gives us the continuity of Aφ(v;a) in v at VQ. Thus we get the proofs of
Propositions 2.17 and 2.1. D

Proof of Proposition 2.18. The following equality is obtained similarly to (2.98)
by using of (2.99):

ε-^+0 ε

 dIχN

 τ'*'* ' τ ' * ' 7

Λ ι t y N ] , (2.121)

where the operators r and A correspond to the pair (/ x N,dl x N). So the estimate
(2.116) follows from the analogous estimates for the kernels

rzE?ΛZ(v), (rδ)zEΪΛZ(v), AzE^y(v;0), (Ad)2E^y(v;0), (2.122)

where x j G M[-1/2,1/2] and z G dl x N — {—1,1} x N<—> M. Such estimates are
derived with the help of Proposition 2.5 for A* and A*.Q as follows.

Let m e Z+ be taken large enough. Then there is an approximate fundamen-
tal solution P# ( m )(v) for (3, + A*x) which is the sum of an interior term P*n

(

t

w)

and of terms, defined near the boundaries dM and N. The kernel Pm^m\v) is a
good approximation for E*xy(v) for small / > 0. Its interior term is defined as fol-
lows. For any closed Riemannian (M,gM) there is a locally defined parametrixp]^
(i.e., an approximate fundamental solution for (dt + A*M)) such that the difference
(pφ(m) — E*)t^y (where E*x y is the fundamental solution for (dt + A*M)) is a C°°-
double form for t > 0 and such that the following estimates hold uniformly with
respect to (x, y) G M x M and to ί G (0, Γ] :

\(A-X)
k(dt + Δm

M)p^y\ < c{m,k)Γ
n^m-k (2.123)

([RS], Proposition 5.3, [BGV], Theorems 2.20, 2.23, 2.26, 2.30). Such a parametrix
can be represented in the following form (n := dimM):

m

'U /2 f ^ , ( x , y ) , (2.124)
ι=0



62 S. M. Vishik

where d(x,y) is the geodesic distance between x and y, f G C Q ° ( 1 R + ) , / ( T ) = 1
for 0 ^ τ :g ε and / = 0 for τ > 2ε. The injectivity radius i(M,gM) is supposed
to be greater than 2ε, i.e., the exponential map expxi?2ε is a diffeomorphism on its
image for any x G M (where B2ε := {£ G TXM, \ξ\ ^ 2ε}). The coefficients Φt(x,y)
in (2.124) are smooth double forms o n M x M whose germs on the diagonal M^->
M x M are unique. The principal term ΦQ(X, y) is the kernel of the parallel transport
in ί\*TM along the geodesic line exp ξ —x from y into x (and it is defined for
d(x,y) < ί(M,gM))- Each Φt{x,y) is determined through Φz~i(x, >>) in differential
geometry terms and it is well-defined for d(x,y) < i(M,gM) ([RS], Sect. 5, [BGV],
Theorem 2.26, Lemma 2.49).

Let OxN^IxN^M be a neighborhood of N = 0 x N ̂ -» M, where the
metric #M is a direct product. The fundamental solution for (dt + A*) on I x N
(with the Dirichlet boundary conditions on dl x N) is

ί=0,l

where i^(v) is defined by the formulas completely analogous to (2.40) and (2.118).
(Here, E^t is the fundamental solution for (dt + A^). The operator corresponding
to the kernel Eι

It(v) ® E^ acts on DRι(I,dJ) (g)Z)i?*~z(7V). The kernel ^ ( v ) corre-
sponds to the Laplacian on / with the Dirichlet boundary conditions on dl and with
the v-transmission boundary conditions at 0 G /. The term in (2.125) with / = 1 is
equal to zero for = 0.)

The parametrix P * ^ ( v ) for (dt + A*) on M is defined by

Pfffr) = *&Uy(y)<P + ΨiP?$(l ~ Ψ) (2.126)

Here, φ — φ(y\\ψ — Φ(x\) (in the coordinates (x\,x') = x and (yι,yf) = y of
points in / x N\ φ9φ G C0°°(/,δ/); φ,ι^ ^ 0, φ(>^) = 1 for 1̂ 1 ̂  2" 1 + ε,
φ(^i) = 0 for | j i I ^ 5/8, ψ = 1 in a neighborhood of supp φ, and φ = 0 for
|JCI| = 3/4, ^ ! G C0°°(M\7V), ^ i = l in a neighborhood of supp (1 - φ) C

M\ M[_ i/2,i/2] Hence the parametrix P*,™y is equal to zero for y G Λ/[_i/2, i/2]» χ ^
M\ ([-3/4,3/4] x N). The term i/M/?#(m)(l - φ) in (2.126) is defined from now on
as P^™\ (In the case of 3M=)=0 the terms, completely analogous to ̂ *(v) for v G
{(0,1), (1,0)} have to be added to Pm{m\ Their supports are in ([0,1] x δM)2 <-+
M x M and QM is a direct product metric on [0,1] x dM.)

Proposition 2.21. 1. The boundary condition for P*}x

My(v) on N and on dM and the

boundary condition for (A*)kP*x

my(v) (k G Έ+) are the same as for E*x y(v) and

for (Δ*tX)
kEZXty(y). Namely Pt^)(v) is a smooth in t > 0 and in (x,y) e Ήjλ x

Mh kernel, Δ\xP\m

x]y(v) C D(AΦ

VX) for fixed y,t > 0, and for any k G Z+ U 0.
Here D(A*x) c DR (MV,Z) is the domain of definition of A*x on pairs (ω\,cθ2)
of smooth forms on M) . It is defined by (1.27)).

2. The following estimates {analogous to (2.JL23)) hold for t G (0, T] uniformly
with respect to v G IR2 \ (0,0) and to (x,y) G M y i x M7 2 (with Cm,Cm^ indepen-
dent of t):

|(3, + J ; X ) P ^ ( V ) | < Cmt-n'2+m , (2.127)

\(Δ:J(δt + zlv%)P^(v)| < CmJcΓ
nl2+m-k . (2.128)
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The kernel r^" }(v) := {dt + A χ)P^n

λ

}{v) is smooth in (x,y) G M xΉ, and its

Cll-norm on M x M7 /s estimated through cmjt~n^2+m~ι. For any linear differential

operator F of order d = d(F), acting on double forms on M x Mf, and for any

T > 0 ί/zβ kernel F o r*[m^(v) satisfies the estimate as follows when t G (0,7"]. It

holds uniformly with respect to (x,y) G M x M;- #/?<i to v e IR2 \ (0,0),

1^ ° ^χWv(v)| < c ( F ) r ( / ? + ί / ) / 2 + w . (2.129)

3. For 0 :§ k rg [—n/2] -f m — 1 the following condition is satisfied uniformly
with respect to v G IR2 \ (0,0) and to (x,jθ G M/, x Λ//2 :

^ l i m ^ j * ^ - P ( w ) ) M , r (v) - 0 . (2.130)

Corollary 2.8. 1. For k G 2£+, 0 ^ ^ ^ [~«/2] -h /w - 1, rAe following estimates
of L^-norms {with respect to the variable x) of the kernel (P^m\v) — E9{v))t x γ

hold for t G (0, T] uniformly in y G UJ=\^Mj and in v G IR2 \ (0,0), where Cm and
Cmjk are the same as in (2.127) and (2.128):

| |(£ ( v ) - P (m>(v)),,,,,.||2 ύ Cm(-n/2 + m+\ΓιΓ"'2+" +ι , (2.131)

\\Δk

v,t(E (v)-P lm)(v))^y\\2 g C,,α(-«/2 + /»+ 1 - * Γ 1 r < l / 2 + ι n + 1 - * . (2.132)

2. 772(? following estimate for E*x v(v) holds for t G (0, T] and for an arbi-

trary q G Έ+ uniformly with respect to v G JR2 \ (0,0), to x G M \ ([-3/4,3/4] x

TV), and to y G M[_i/2,i/2] :

I^Λ,V(V)I ^ C , r π ^ . (2.133)

// /ioW,s' according to (2.131), (2.132), and (2.32). {Indeed, for such x,y and for
an arbitrary m G ΊL+ we have E*x r(v) = (^*(v) — P*{m^{v))t,χ, v Hence m can be
chosen large enough to get (2.133).)

The estimate (2.131) is a consequence of (2.127) and of the following equality:

(Em - P (IW)),,A, v(v) = lim JLdτdτ(EΪ_τ r *(v),(£ # - P # ( w ) ) τ , , , v(v))M

+0
t — ε

= lim f dτ{E*_τx^{v\{dτ + A^){Em - Pm{m))τ^v{v))M .

(2.134)

This equality follows from the assertions that (Em - P*(m))tix,v(v) —> 0 as / —> +0

and that {E* — /?#(w))τ,λ-,v(v) G D(zi*x.) with respect to the variable x.
The estimate (2.131) is a consequence of (2.134), (2.127), and (2.135), since

the operator exp(—ίJ ) for ί > 0 is bounded in {DR*{M))2 and its operator norm
is less or equal to one:

| |exp(-/zi;)| |2 ^ 1 . (2.135)

(This inequality follows from Theorems 3.1 and 3.2. They claim that A* is a non-
negative self-adjoint unbounded operator in (Z)i?#(M))2 and that exp(—tA*) is a
trace class operator.)
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The inequality (2.132) for 1 :§ k ^ [—n/2] + m — 1 is a consequence of (2.127),
(2.135), and of the following equality (which is a generalization of (2.134)):

This equality holds since Ak

vx(Em - P # ( / H ) ) M , v(v) -> 0 as / -+ +0 (for 0 ^ A: ^
[ - « / 2 ] + J W - 1 ) and since (A*x)

k(E*-P*m)\x,v(v)eD(A*x) for fixed y and
f > 0.

The proof of Proposition 2.21 is preceded by the proof of Proposition 2.18.
The estimates analogous to (2.133) (with t G (0, T] and q G 2£+) hold also for

the kernel E*^ v(v; 0) = ^*A. v of exp(-/zl ; 0 ) , where x G (/ \ [-3/4,3/4]) x N, y G
M[_i/2j/2] Indeed, such estimates are true (n is replaced by 1) for (E'ί((v))XhV] with

xi G / \ [-3/4,3/4] and yx G [-1/2,1/2], and the kernel {Em

N~ι)x> v, is O(Γ{n-χ)/2)
for ^G (0,7].

The desired estimates for (rδ)Em(v) and AdE*(v; 0) are obtained from the esti-
mates (2.131), (2.132), and from the generalization of the inequality (2.32) as fol-
lows. Let K be an arbitrary first order differential operator acting on DR'(Mj). Let
ω G DR*(MY,Z) obeys the conditions (2.33) with m\ = 1 4- min{/ : 4/ ^ dimM +
1}. Then the inequality is satisfied uniformly with respect to ω and to x G M\ U M 2:

\Kω(x)\2 <CκYJ\\Δ'M\\, (2.136)
/=0

where Cκ > 0 is independent of v G IR2 \(0,0). The proof of (2.136) is exactly
the same as the proof of (2.32) given above except the kernel (G/(v) & G^ 2 ) Y V has
to be replaced by Kx(G/(v) (8) G™2)M,. Thus Proposition 2.18 is proved. D

Proof of Proposition 2.21. 1. For x from a neighborhood of TV = 0 x TV <-+ M,

where φ] ΞΞ 0, the parametrix P ^ V ) is equal to ^ * ( v ) φ ( * ) . So P*(

x^(v) G

Z)((zj γ / ) with respect to the variable x, since ^ ^ ( v ) ̂  ^((zi*^/) for k G Z+.

2. The estimates (2.127) and (2.128) hold for the term ψ#*(v)φ of P*(lM)(v)
with an arbitrary m G Z + , since (^ -f- Zl Λ.)^#(v) = 0 (for x G (/ \ 3/) x N) and
since minrie^minvlGsUpp^(|xi -y i | , | x i + yx\) > δ > 0 (where Λ := supp(δv,ι^) and
the number δ > 0 is fixed). For x} G A and j i G supp φ the estimate (2.133) (/? is
replaced by 1) holds with an arbitrary q G Z + for the fundamental solution (Zs*,)AiV

of (3/ + zl*) with the Dirichlet boundary conditions on dl. The same estimate for
such x\,y\ holds for the kernels ( σ * ^ ) ^ , , V] and (Eft(v))X] V l. So this estimate
holds also for the kernel (^*(v)) ( X | λ / ) ( V l v/) (defined by (2.126)), since the ker-
nel (Eχt)xfy is O{Γ{n~X)l2) uniformly with respect to (x 7 ,/) ([RS], Proposition
5.3, [BGV], Theorem 2.23). By the analogous reasons, for such x\,y\ the estimate
(2.133) with an arbitrary q G Z+ holds for the kernel (F o ̂ m(v)\XuX/)χVhYf), where
F is a linear differential operator of finite order d(F) on M x M, acting on double
forms on M -n x M / 2, and « in (2.133) is replaced by n Λ- d(F).

So the estimate (2.133) with an arbitrary q G Έ+ is satisfied by (dt + zl* x) (\j/3?Φφ)

and by (zJ χ ) A ( ^ + z l * x ) ( ^ » with J t e Z + .

The estimates (2.127) and (2.128) hold for ψιp

 {m)(\ - φ) =: p (

t

Λ/), since they

hold for p^™l and since the distance on M between the closure B of B (where



Generalized Ray-Singer Conjecture 65

B := {x : dxφ\ ΦO}) and the support supp (1 — φ) is greater than a positive number
δ. Hence the uniform with respect to (x, y) G B x supp (1 — φ) estimate (2.133)
(with an arbitrary q e Z+) is satisfied by pf}™}. ̂ m s e s t i m a t e holds also for the
kernel Fp^y, where F is a linear differential operator of finite order d(F)9 acting
on the smooth kernels, defined on M x M. (For instance, the function f(d(x,y)) in
the definition (2.124) of p*^™y can be chosen such that f(τ) = 0 for τ ^ (5. These
estimates follow also from [RS], Proposition 5.3, estimates (5.5), and from [BGV],
Theorem 2.23(2).)40

3. The difference (Em — Pm("m)\x,y(v) can be written as the Volterra series (ana-
logous to [BGV], 2.4):

where Δ} = {(σo,...,σ/) : 0 ^ σ} ^ 1,£> = 1} and r£J(v) := (zlv?JC + 3 0 ^ 0 0
(a scalar product tr(ωi Λ*<x>2) with its values in densities on M is assumed in
(2.137)). The assertion (2.130) follows from the convergence of the series (2.137)
in the topology of uniform convergence of smooth kernels on Mn x MJ2 together
with their partial derivatives of orders ^ 2k on Mn x M / 2 (i.e., in the C2Λ-topology
on M y ] x MJ2).

Indeed, the definition of P * ^ (2.126) implies that the kernel r$y(v) is

equal to zero for x from a fixed (independent of t,v, and m) neighborhood of

TV = 0 x N ^ M in M. So ^ ^ ( v ) is a smooth kernel on M x My, and the in-

equalities (2.129) claim that the C2*-norm of r$y(v) is O(rnl2+m-k) for t G (0,Γ]

uniformly with respect to v G IR2 \ (0,0). It is O(0 for 0 ^ k g [-n/2] + m - 1,

and the series (2.137) is convergent in the C2A^-topology for such k, since the

volume of A/ is ( / ! ) - 1 and since the following assertion is true. For any T > 0

the parametrix P*^™y(v) defines a family of bounded operators from the space of

smooth forms DR*(M) (equipped with a C2k-r\oxm) into the space 0 Λ = 1 2DR%(Mj)

(equipped with a C2/:-norm on DR*(Mj)). These operators are bounded uniformly

with respect to t G (0, T] and to v G IR2 \ (0,0). This assertion for the opera-

tors, corresponding to P*^, is proved in [BGV], Lemma 2.49. It is also true

for the operators corresponding to \l/0*t'(y)φ. Indeed, it holds for the opera-
tors exp(—tΔ*N) in DRm(N) (equipped with a C2k-norm and for the operators ψ
cxp(—tAj)φ in DR*(I) equipped with a C2k-noπn. (Here Δ* is defined on forms
with the Dirichlet boundary conditions on dl.) It holds also for the operators with
the kernels \j/{x\){σ\E*t)x^yχφ{y\), acting from smooth forms on / into smooth
forms on [0, ±1] (where the Dirichlet boundary conditions are assumed on dl and
σ\ is the mirror symmetry with respect to 0 G /) .

The C2*-norm of the kernel (P^ - E^t) on N x N is 0(f"-(«-i)/2-*) for t e

(0, T], where P^ and E^t are the parametrix of the type (2.124) and the funda-
mental solution for (dt + Δm

N) ([BGV], Theorem 2.30). The operators in DR*(N)
corresponding to P^™ are uniformly bounded for t G (0, T] with respect to a C2k-
norm ([BGV], Lemma 2.49). So the operators exp(-ίzJ^) in DR*(N) are uniformly

For the sake of brievity the proof of Proposition 2.21 is written in the case of dM = (
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bounded for t G (O.Γ] with respect to a C2Λ-norm. The convergence of the series
on the right in_(2.137)^ with the respect to C2k-norms (k S [-n/2] + m- 1) for
the kernels on MJ] x Mj2 implies also a proof of the equality (2.137) (in the case
of m ^ -[-n/2] + 2). Indeed, we have41

(3, + Δlx)(P?m))ttXίy = (r ; ( w ) 4- r ^ ) , , , , , , (2.138)

where(-l) m P* ( w ) is the term with the number / in the right side of (2.137),

(_l)mr (») i s t h e s a m e t e r m in w h i c h p («) i s ^placed by rffi,P?m) := P# ( m ) . For

any fixed y and ί > 0 and for any k G Z+ U 0 we have ( ^ ; X ) ( P * ( m ) );,*,>> C £>(^*x).

The series P ; = Y,ι^{-\)mP]{m) f o r m = [-n/2] + 2 is the fundamental solution

for (dt + A*) since(3/ -f A*x)Pf = 0 for ί > 0 and since the operator correspond-

ing to ppm> tends in a weak sense to the identity operator in (DR*(M))2 as t —> +0

(i.e., P ; ( w ) ω -> ω as ί -> +0 for ω G (DR*(M))2). The latter assertion holds for

P ' ^ O - φ)ω and for ^ # ( m ) φ ω . Proposition 2.21 is proved. D

Proof of Proposition 2.19. Proposition 2.18 implies the following conclusion. For
any ε > 0 there exist a 5 > 0 and a neighborhood U := C/(vo,ε) C
1R2 \ (0,0) of vo such that the estimate holds uniformly with respect to v G U and
to 51, — 1 < s < 1:

/ Σ tr(*ίίe?(v))
1-1/2,1/2] Λ

< ε/20 .

So it is enough to prove the existence of a neighborhood U\ of v0 such that for
any v G U\ the following estimate holds uniformly with respect to s for — (1 — b) <
s < 1 (6,0 < b < 1, is fixed):

Σ < ε / 1 0 . (2.139)

For β(v) and e(vo) the equalities (2.121) hold. So the estimate (2.139) takes
place for v sufficiently close to vo since the convergence

E^y(v)-^E^y(v0) (2.140)

is uniform with respect to t G [δ\, T] (where δ\ > 0 is fixed), to x G M \ ((—3/4,
3/4) x N), and to y G Λ/[_i/2,i/2]. The convergence of the kernels

dxEl^) -> dxElXty(v0), δxE;xJv) -+ δxE^y(v0) (2.141)

is a uniform one for such (t,x,y). All the double forms in (2.140) and (2.141) are
uniformly bounded on the set of such (t,x,y) and their norms at (t,x,y) satisfy the
upper estimate for t G (0, δ{\ (obtained in Proposition 2.18 above) through cmtm with
an arbitrary m G ΊL+ and with cm independent of v. The uniform convergence of the
kernels in (2.140) and (2.141) on the compact set of (t,x,y) defined above follows

4 1 The proof of (2.138) is analogous to the one given in [BGV], Lemma 2.22. It follows from

the formula for dtjf(x,t)dx.
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from the continuity in t,x, y and v for (x, y) £ Mj] xMj2 of the corresponding
double forms. (See Proposition 3.2, where it is proved that these double forms are
C°°-smooth in t,x,y and v for Reί > 0 and vφ(0,0).) D

Proof of Proposition 2.20. If (oto >βo) = VQ E U (i.e., if αo βoΦO) then we can
suppose that v G U in (2.120). In this case, the identity (2.100) holds for the
difference

(£ ( v ) - £ ( v o ) W 2 . (2.142)

Let v0 G R 2 \ (U U (0,0)). For example, let v0 := (αo,O),αoφO. Then the iden-
tities (2.98) and (2.99) claim in the cases of v0 and of v := (α,/J) that (2.142) is
equal to

- lim / dτ[~(r^dM2δElXι^v),A^dM]E*_τ^2(v0))N

2 l u ι W 2 (2.143)

The factor k~ι = β/a in (2.143) tends to zero as v tends to v0. The factors
(1 - kv/kVQ) and (1 — kVQ/kv) in (2.100)) also tend to zero as v —» v0 in the case
vo,vG U. The estimate (2.120) follows from (2.143) and (2.100). Indeed, there
are the uniform with respect to v upper estimates (analogous to (2.116)) for the
kernels (2.122), where x j G M \M[_1/2,i/2] a n d z G N = 0 χ j V c dMj. These es-
timates follows from (2.32) and their proofs are completely analogous to the proof
of (2.116). The main step in these proofs is using the parametrix p(m) 4 2 and the
estimates (2.127), (2.128), and (2.132) for t G (0,Γ). D

2.8. Dependence on the Phase of a Cut of the Spectral Plane. Analytic Torsions
as Functions of the Phase of a Cut. Gluing Formula for Analytic Torsions. The
scalar analytic torsion (2.11) depends not only on (M,gM,Z,v) but also on the
phase θ of a cut on the spectral plane C 3 λ. A zeta-function ζv>m(s;θ) is defined
for Res > n/2 (n := dimM) as the sum of absolutely convergent series Yjn{λj)λ~Q,
where the sum is over nonzero λj G Spec(J ) and m(λj) are the multiplicities of
λj. The function λ~Q := exp(—s log^λy), θ > Im(log^^Ay) > θ — 2π, is defined
for θ 0 arg λj + 2πΈ. (For positive self-adjoint operators this condition means that
θ $:2πΈ.) All the results for the analytic torsion norm are obtained above in the
case of 0 < θ < 2π (for instance, for θ = π).

The zeta-function ζv>m(s;θ) does not depend on θ ^ 2πZ, if [θ/2π] does not
change. However we have

ζv,.(s; θ + 2π) = Qxp(-2πis)ζVj.(s; θ) for Res > n/2 . (2.144)

Since ζVi9(s; π) can be meromorphically continued to the complex plane C 9 s (The-
orem 3.1 below), we see that ζVfφ(s;θ) for 0 $• 2πΈ also can be meromorphically

4 2 The parametrix P(/">' (v) for E*(v) can be chosen such that ^ '"^(v) = 0 for x £ [-1/3,1/3] :

N^M and zG [-1/6,1/6] xN<->M.
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continued to (C with at most simple poles at Sj := (n — j)/2. The continuation of
ζVt.(s;Θ) is regular at Sj for (-sy) GZ+UO. SO the equality (2.144) holds for all
θ £ 2πZ, 5 G C . Hence for such 0 we have

ίv,.(j; 0) = Cv, (ί)exp(-2πww), (2.145)

where CV, CO := £v, (s;π) and m := [0/2π],0 £ 2πZ. From now on this ζ-function
will be denoted as ζViΦ(s;m) with m = [0/2π]. The value ζv>#(0,m) is independent
of m (according to (2.145)).

The dependence of the scalar analytic torsion (2.11) on m is given by

T(Mv,Z;m) = Γ(Mv,Z)exp(-2π/mF(Mv,Z)), (2.146)

where43 F(MV,Z) := £(-l)7Cv,.(0)(mod Z) and T(MV,Z) := Γ(MV,Z;O), i.e.,
T(MV,Z) corresponds to 0 = π and it is the scalar analytic torsion defined by (2.11).
Here Z is the union of the connected components of dM where the Dirichlet bound-
ary conditions are given. The Laplacian A* is defined on ω € DR*(MV9Z) with the
v-transmission boundary conditions (1.27) on N, with the Dirichlet and the Neu-
mann boundary conditions on Z and on dM\Z. The equality (2.146) is obtained
by using

dsζVi.(s;m)\s=o = -2πimζVi9(0) + dsζv^(s)\s=o .

The number F(M,Z) is defined also in the case of a manifold M without an
interior boundary N. In this case, £v, (0) in the definition of F(M,Z) is replaced
by C (O) for the Laplacians on DRΦ(M,Z). The dependence of T(M,Z;m) on m
is given by (2.146) with F(MV,Z) replaced by F{M,Z). In particular, F{M) is
defined for a closed M and also in the case 3MΦ0, Z = 0. Let M be obtained by
gluing two pieces M\ and M2 along the common component N of their boundaries,
Λf = M\ UJV A/2, where N C A/ is closed and of codimension one. Then F(M,Z) =
F(Mιj,Z)9 according to Proposition 1.1.

The class of F(MV,Z) in C/Z is the same as the class (modZ) of the number
Fi(Λfv,Z) e C, where

F!(MV,Z) := E(-l)y7(Cv,;(0) + dimKer(zlVJ)) .

The Laplacian Avj(Mv,Z) with its domain Dom (Δvj) C (DRJ(M))2 is self-
adjoint according to Theorem 3.1. For Res > 2~1dimM the zeta-function ζv,j(s)
is defined by the absolutely convergent series Yjn(λk) exp(—5 logA^) ([0/2π] =
0,0 φ 0), where the sum is over λk G Spec(zlVJ), λk Φ 0, and with the branch of log-
arithm —π < Imlogvi < π. Because log λ^ £ IR for λk > 0, the function ζvj(s)
is real for real s. Hence F\(MV,Z) e IR. It is supposed from now on that a metric
QM on A/ = Mi UJV A/2 is a direct product metric near JV and near dM.

Proposition 2.22 1. For a closed manifold M the number F\(M) is an integer.
2. Let M = M\UN M2 be obtained by gluing two its pieces M\ and M2 along

the common component N of their boundaries. Let the v-transmission boundary
conditions (1.27) be given on N, the Dirichlet boundary conditions be given on
a union Z of some connected components of dM and the Neumann boundary

By the definition, F(Mγ,Z) e C/Z but it can be also defined as Σ(-l)ιjζY,j(O) G C.
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conditions be given on dM \ Z. Let L be a closed Riemannian manifold. Then the
following holds. 4 4

F{(MV x L,Z x L) = χ(L)Fι(Mv,Z)+Fι(L)χ(Mv,Z). (2.147)

3. Let K c dM \Z be a union of some connected components of dM. Then the
following holds under the conditions on M above:

Fι(MV9Z) = FX(MV9ZUK) + FX(K) + 2~ιχ(K) . (2.148)

4. Under the conditions on M above, the number F\(MV,Z) obeys a gluing
property analogous to the gluing property (2.1) for the analytic torsion norms.
Namely the following holds:

(2.149)

where Zk := Z Π dM^.

Corollary 2.9. 1. For a closed M the scalar analytic torsion T(M,[θ/2π]) is
independent of θ φ. 2πΈ.

2. Under the conditions of (2.147), (2.148), and (2.149), the following holds in
R / Z :

F(MV xL,Z xL) = χ(L)F(MV9Z) ,

F(MV,Z) = F(MV,Z U K) Hh 2~ιχ(K),

UN) + F(M2,Z2 UN) + 2~ιχ(N).

Example 2.1. The number F\(Sι) is equal to —/o,i = —/o O 4 5 The latter one is
equal to zero because the asymptotic expansion for Ίrexp(-tAo(S1)) as t —> +0
(where AQ is the Laplacian on functions) is /_i;oί~1//2 + fi-ot1^2 H- /3;o^3//2 + ...

Example 2.2. The number F\(l,dl) is equal to — /o,i(Λδ/) = — /o;θ(^) Since Ŝ1

has a mirror symmetry relative to its diameter, we have, taking into account (2.54)
and (2.118),

1 ) = /o;o(/) + /o oίΛδ/) = 0 . (2.150)

Since /O;o(/,δ7) - /0;i(7,δ7) = χ(7,S7) = 1 and (2.150) holds, we see that

Fi(7,37) = -/ 0 ;i(7,δ7) = -/O ;o(/) = /θ θ(Λ^) = - 2 " 1 . (2.151)

Remark 2.10. The equality (2.151) means that the analytic torsion T(I,dI; [θ/2π])
is multiplied by the factor exp(—2π/ ( - 2 " 1 ) ) = - 1 , if θ is replaced by θ +
2π (θ £ 2πZ).

It is necessary to note the following. The scalar analytic torsion 7F(7,δ7):=
T(l,dl; π) is the factor in the analytic torsion norm. But the latter one is the square

4 4 The Euler characteristic χ(Mv,Z) : = J ^ ( — 1 ) ' d i m / / ' ( M V , Z ) is equal to the Euler characteristic

of the complex (C*(XY,X Π Z),dc) (as it follows from Proposit ion 2.3). Hence it is equal to

χ(M,Z) and is independent of v G 1R2 \ ( 0 , 0 ) .
4 5 The coefficients /Άw := fk,,{M,Z) are the coefficients in the asymptotic expansion y^fk,/tk2

{k ^ -ή) for Trexp(-iJ;(Af,Z)) as t - * +0 for the Laplacian on DRf(M,Z) (n := dimM).
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of the norm on the determinant line άQtHι(I,dI). So the factor, corresponding to
the norm itself, is multiplied in the case of (M,Z) = (I,dl) by the factor

o) = exp(-π//2) = -/ ,

if θ is replaced by θ 4- 2π, θ £ 2πΈ. Indeed, we have

- 2 - 1 = FK/,3/) = -(dim//1 (7,3/) + Ci(/,3/)||f=o),

and so ζι(l,dl)\\s=o =-2'1 =-F(I,dI). For M = Sι it holds that -F(Sι) =
ζ\(Sι)\s=o = - 1 , and so exp(-πiF(S1)) = - 1 .

It follows from Proposition 2.23 below that F(MV,Z) and F(M,Z) have a form
(1/2) + Z, if the numbers /? := dimM and χ(M,Z) are odd. So in this case the
factors exp(—πiF(Mv,Z)) and exp(—πiF(M,Z)) are equal to {±/}.

Proo/ o/ Proposition 2.22. 1. Theorem 3.2.1 claims that the number ζ V J (0)+
dimKer(zlv?7) is equal to the constant term fo-j(Mv,Z) in the asymptotic expansion
(2.87) for Trexρ(—tAvj) as t —• +0. So according to Theorem 3.2.1, the number
F\(MV,Z) is equal to the sum of the integrals over M\,M2,N, and dM of the locally
defined densities. Then we have

F,(MV,Z) = E(-l)7y/o;XM v,Z) . (2.152)

If {M,QM) is a closed Riemannian manifold then fo-j(M) — /o j W_ ; (M). Hence
taking into account (2.152) and (2.57), we get (for even n :— dimM)

Fχ{M) = Σi-nΊUAM) = (rc/2)Σ(-l)Vθ;. ;(M) = (n/2)χ(M). (2.153)

Let n be odd. Then /o ; /(M) is equal to zero since the asymptotic expansion
for trexp(—tΔj(M,gM)) (as t —• +0) is t~nl2γ^tιf2i-n;j(M,gM), where the sum is
over / G Z+ U 0 ([Gr], Theorem 1.6.1; [BGV], Theorem 2.30). Hence F\{M) = 0 =
(n/2)χ(M) for an odd n also.

This number (n/2)χ(M) is an integer for any closed M. (The assertion that
F\(M) is an integer follows also from the equality which holds for any closed
even-dimensional Riemannian {

iyζj(M,s) = ΣA-l)Jίn-j(M,s) = (n/2)Σ(-iyζj(M,s) = 0 ,

because ζj(M,s) = ζn-j(M,s).)
2. Let λ e Spec(Avj(M,Z)), μ e Spec(zl,(L)) and let mλ(j;MV9Z),mv(i;L) be

their multiplicities. If λφO and μφO then we have

Σ(-1)'"+ IC/ + i)mλU;Mv,Z)mμ(i;L) = 0 , (2.154)

since the subcomplexes (V?(Mv,Z),d)--* (DR (Mv,Z),d) and (V'(L%d)-->
(DR*(L),d), corresponding to the /l-eigenforms for AV^(M,Z) and to the μ-
eigenforms for Δ.(L), are acyclic. If λφO but μ = 0 then the right side of (2.154)
is equal to
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So under the conditions of 2, by using (1.37), we have

o , (2.155)

^(-iyydimKer(J V i / (Mv x 7,,Z x L))

= z(I)Σ(-0 y 7dimKer(z1 v J (M v ? Z)) + X(Mv,Z)^(-\yjaimKQv(Aj(L)),

(2.156)

The equality (2.147) follows now from (2.155) and (2.156).
3. The numbers FX{MV,Z) and FX(MV,Z UK) are the sums of the integrals over

M\,M2,N, and dM of the locally defined densities (as it follows from (2.152) and
from Theorem 3.2). The densities, corresponding to the pairs (MV,Z) and (MV,ZU
K), differ only on K. So the difference F\(MV,Z) — FX(MV,Z UK) depends only on
K and on gM near K. Thus taking into account that g^ is a direct product metric
near K, we get

2(FX(MV,Z) - FX(MV,Z U K)) = FX(K x /) - FX(K x (7,5/)) (2.157)

for any fixed metric on K in all the terms of this equality.
According to (2.147) we have

FX(K x 7) = Fx(K)χ{I) + Fx(I)χ(K),

F^tf x (7,37)) - Fx{K)x{I9dI) + Fλ(I9dI)χ{K),

FX(K x 7) - FK* x (7,57)) - 2FK*) + tftfXFK/) - Fx{I9dI)). (2.158)

Since Ci(^;7) = ζ\(s;l,dl) (on the same 7) we have

Fx{I)-Fx(I,dI) = -ζi(7)Uo + Ci(7,aoμ0 + dim7/1(7,a7) = 1 .

By (2.157) and (2.158) we get

F{(MV7Z) = FX(MV,Z UK)+ Fλ{K) + 2 1

4. The number Fi(M v,Z) is the sum of the integrals over M\,M2,N, and over

dM of the locally defined densities. (It is a consequence of Theorem 3.2). So the

densities on Mj,N, and on dM ΠMj are the same as for the number F\(MJV\ZJ ),

where My

 2 ) := M7 ΓV MJy Zy

(2) := Z7 Π Z7, and ^M(2) are mirror symmetric with re-

spect to N (the v-transmission boundary conditions are given o n i V ^ M} ') and

9MW\MJ = ^M|M 7. Thus we have

2FI(ATV,Z)= E ^ i ( ^ ( v U f } ) .
7=1,2

Since pairs (MJ ,ZJ )̂ are mirror symmetric with respect to N, it follows from
(2.54) and (2.55) that

= Fx{Mf\zψ) = FύMj^ + Fύλf ZjUN) . (2.159)

Z) = 2-1Σ(FI(MJ,ZJ) + FX(MJ,ZJUN)). (2.160)
7=1,2
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The equality (2.149) follows from (2.148) with M = Mh Z = Zy, K=N, and
v = (1,1) and from (2.160), because Fι(MnZj) = Fλ(MJiZjUN) + Fχ(N)
+2~xχ(N). Thus Proposition 2.22 is proved. D

The analytic torsion To(Mv,Z;m) (where Z C dM is a union of some connected
components of dM,m := [θ/2π], θ <£ 2πΈ) is defined as the product of the norm
II lldet// (Mv,z) (given by the natural norm on harmonic forms for A*(MY,Z)) and
of the scalar analytic torsion T(Mv,Z;m):

7b(Mv,Z;m) := || | | L / / W , z ) W . Z m). (2.161)

The analytic torsion Γo(M,Z;ra) is the norm || \\^QtH.^MZ^T(M,Z;m), where

the norm on the determinant line is given by the harmonic forms for Δm(M,Z).
(If N is the interior boundary and if gM is a direct product metric near N then

To(M,Z;m) — T§(M\\,Z\m) according to Proposition 1.1.)

Theorem 2.1. 1. Let M be obtained by gluing two pieces along N, M — M\ UN M2,
where N is a closed of codimension one submanifold in M with a trivial normal
bundle TM\N/TN and gM is a direct product metric near N and near dM. Then
for v G 1R2 \ (0,0) the following gluing formula holds:

φ?T0(MV9Z;m):=

= {-\)mχ{N)T^MuZx UN m) 0 TQ(M2,Z2 UN m) ® T0(N;m), (2.162)

where the identification φ™ of the determinants lines is defined by the shorty exact
sequence (1.14) of the de Rham complexes and by Lemma 1.1, Z^ := Z Π dMk The
factor T0(N;m) := 7o(iV) is independent of m (according to Proposition 2.22.1).

2. Let K c dM \Z be a union of some connected components of dM. Then
the formula holds for gluing K and (MV,ZU K):

φ^T0(Mv,Z;m) = (-\)mχiκ)T0(Mv,ZUK;m)^T0(K;m). (2.163)

Here the identification φan is defined by the short exact sequence (analogous to
(1.20)) :

0 -» DR (MV,ZUK) -+ DR*(MV,Z) -> DR*(K) -> 0 (2.164)

(the left arrow in (2.164) is the natural inclusion and the right arrow is the geomet-
rical restriction) and by Lemma 1.1. The factor T0(K;m) := T0(K) is independent
of m. The analogous formula holds for gluing K and (M, Z U K):

(2.165)

where φan is defined by the short exact sequence (2.164) with Mv replaced by M.

Proof 1. For Γo(Mv?Z) := 7b(Mv,Z;0) the following gluing formula holds (ac-
cording to (1.12) and to Lemma 1.2):

< Γ O ( M V , Z ) = 7b(Mi,Zi UN)® T0(M2,Z2 UN)®T0(N) . (2.166)

By the definition of F(MY,Z) we have

Γ0(Mv,Z;m + 1) = exρ(-2πzF(Mv,Z))Γ0(Mv,Z;/w).
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(Analogous equalities are true for TQ(M/,ZJ UN m). The differences F\(MV,Z) —
F(MV,Z), Fι(Mj,ZjUN)-F(Mj,ZjUN\ and FX(N)-F(N) are integers and
F\(N) is an integer (according to Proposition 2.22.1). Hence (2.162) is consequence
of (2.149) and (2.166).

2. The gluing formula holds for T0(M,Z) := Γ0(M,Z;0) according to (1.18)
(Theorem 1.2): φanTQ(M,Z) = T0(M,ZUK) <g> 7b(A:). SO the gluing formula (2.165)
follows from (2.148) since T0(M,Z;m + 1) = exp(-2π/F(M,Z))Γ0(M,Z;m) and
since the difference F\(M,Z) — F(M,Z) is an integer.

Let iV C M be a disjoint union ΛΓi U N2 of two closed codimension one subman-
ifolds of M with trivial normal bundles and let the v7-transmission interior boundary
conditions be given on Nj. Let M — M\ UN] M2 and let N2 C M\. Under these con-
ditions, the equality (1.12) and the assertion of Lemma 1.2 are also true. Their
proofs are similar to that given above. The resulting formula is

^ V 2 , Z ) = 7b(M1,V2,Z1 UNi) 0 T0(M2,Z2 \JNλ) <8> T0(N{). (2.167)

(Here Z c dM is a union of some connected components of dM, Zk = Z Π dMk

and ^M is a direct product metric near N} and 5M.) As a consequence of (2.167)
(obtained by the same method as Theorem 1.2 is obtained from (1.16) and (1.17))
we get the following equality

Φan7b(Mi,V2,Zi) = T0(MhV2,Zι UM)7b(#i) . (2.168)

The equality (2.163) follows from (2.168) (where M\iV2,Z\,N\ are replaced byMv,
Z9K) and from (2.148) since Γ0(Mv,Z;m + 1) = exp'(-2π/F(Mv,Z))Γ0(Mv,Z;m).
Theorem 2.1 is proved. D

Proposition 2.23. Let M = M\UN M2 be obtained by gluing along N and let the v-
transmίssion boundary conditions (v £ 1R2 \ (0,0)) be given on N. Set n := dimM.
Then the number F\(MV,Z) for the scalar analytic torsion T(Mv,Z;m) is expressed
by

FX{MV9Z) = 2~lnX(Mv,Z) = 2~ιnχ(M,Z) . (2.169)

The number F(MV,Z) :== ^2(—\);'j'ζv,j(fl) is as follows:

F(MV,Z) = Σ ( - l ) ' ( - . / + 2-}n)άi

Proof 1. Propostion 2.3 claims that χ(Mv,Z) (i.e., the Euler characteristic £](— I ) 7

x dimHJ\DR(Mv,Z))) is equal to the Euler characteristic for the finite-dimensional
complex (C9(XV9ZΠX),dc). Note that dimCj(X,Z ΠX) is equal to dimCj(Xv,ZΠ
X). Hence χ(Mv,Z) = Σ(-iydimCj(X,Z Π I ) . This sum is equal to χ(M,Z) by
the de Rham theorem ([RS], Proposition 4.2). Thus χ(Mv,Z) = χ(M,Z).

2. According to (2.149), the gluing formula holds:

For the Euler characteristics the analogous formula holds:

χ(MV9Z) = χ(M,Z) = χ(MuZι UN) + χ(M2,Z2 UN) + χ(N). (2.170)

The number Fχ(N) for a closed manifold TV is equal to χ(N)(dimN)/2 by
(2.153). So Fi(N) + 2~ιχ(N) = nχ(N)/2. Let (M,^M) be a closed Riemannian
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manifold, mirror symmetric with respect to N — dM\, M — M\ U^ M\. Let QM be
a direct product metric near N. Then the equality F\(M\,N) — 2~ιnχ(M\,N) fol-
lows from (2.153), which claims that FX(M) = 2~ιnχ(M), and from (2.170). So
(2.169) holds for pairs (M,Z), where Z = dM. For any union Z of some connected
components of dM the equality (2.169) follows from (2.148) for K = dM\Z,
as FX(K) + 2~lx(K) = nχ(K)/2, according to (2.153). The equality (2.169) for
F\(MV,Z) follows from its particular cases for F\(M;,Zj\JN) by using (2.149)
and (2.170). •

Corollary 2.10. 1. The analytic torsion T0(Mv,Z;m) (defined by (2.161)) is the
following function of m = [0/2π] (θ £ 2πΈ):

T0(Mv,Z;m) = (- l) m ^ ( M ' Z ) Γ 0 (M v ,Z) . (2.171)

Here TQ(MV,Z) := Γ0(Mv,Z;0),« := dimM.
2. The analytic torsion To(M,Z;m) is equal to T(MVQ,Z;m) for vo = ( l , l )

according to Proposition 1.1. The formula (2.171) holds also for To(M,Z;m), where
TO(MV,Z) is replaced by T0(M,Z) := Γ0(M,Z;0).

Let (M,QM) be obtained by gluing two Riemannian manifolds M\ and Mi along
a common component N of their boundaries, M = M\ UM M2. Let gM be a direct
product metric near N and near dM and let Z C 5M be a union of some connected
components of dM. The following main theorem is an immediate consequence of
Theorems 1.4, 1.5 and of Corollary 2.10.

Theorem 2.2 (Generalized Ray-Singer Conjecture). 1. The analytic torsion
To(Mv,Z;m) is expressed through the combinatorial torsion norm (1.62) as follows:

T0(Mv,Z;m) = 2χidM)+χ(N)(-l)m ^ ( M ' Z ) / 2 τ 0 (M v ,Z)

(where m = [θ/2π], θ £ 2πZ is the phase of a cut of the spectral plane C 3 λ and
n — dimM).

2. The analytic torsion To(M,Z;m) is expressed through the combinatorial
torsion norm:

T0(M,Z;m) =

Remark 2.11. The combinatorial torsion norms τo(M,Z) and τo(MVo,Z) (where
vo = (1,1)) on the determinant line detH*(MVQ,Z) = detH*(M,Z) are different,
if χ(7V)φ0 (by Remarks 1.7 and 1.9). The canonical identifications H*(MVQ,Z) =
Ker(J*o) = Ker(zl*) = H*(M,Z) are given by Proposition 1.1 and by the de Rham
theorem.

3. Zeta- and Theta-Functions for the Laplacians with v-Transmission Interior
Boundary Conditions

3.1. Properties of Zeta- and Theta-Functions for v-Transmission Boundary Con-
ditions. Let M be a compact manifold with boundary obtained by gluing man-
ifolds M\ and M2 along a common component N of their boundaries, M —
M\ Utf M2 (TV C M is a closed codimension one submanifold of M with a trivial
normal bundle TM\N/TN). Let QM be a direct product metric near N = 0 x Nc-^
1 x N c-^ M. Let the Dirichlet boundary conditions be given on a union Z of some
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connected components of dM, the Neumann ones be given on dM \ Z and the
v-transmission interior boundary conditions (1.27) be given on N.

The operator A* is originally defined^n the set D(Δ') of all the pairs of smooth
forms ω — (ω\,ω2) e DR*(M\) ζ&DRm(M2) such that the Dirichlet boundary con-
ditions hold for ω o n Z , the Neumann boundary conditions hold on dM \ Z and
the interior boundary conditions (1.27) hold for ω on N. Let Dom(A') be the
closure of the.D(J ) in (DR*(M))2 in the topology given by the graph norm 4 6

||ω||2 + | | ^ v ω l l 2 = : IIωIIgraph- The closure of the operator A* (with respect to the
graph norm) is an operator with the domain of definition Dom(zl*). If ω7 —-> ω in
the graph norm topology, ωj £ D(Δ'), then Δ*(ω) is defined as \imjAvcθj in the
L2-topology in (DR*(M))2.

Theorem 3.1. 1. The operator A* with the domain Dom(zl*) is self-adjoint in
(DR (M))2. Its spectrum Spec(JJ) C IR+ U 0 is discrete. 4Ί

2. Its zeta-function is defined for Res > (dimM)/2 by the absolutely convergent
series (including the multiplicities) ζVy (s) := Σ; eSΌQc(Δ )\oKS' This series con-
verges uniformly for Res ^ (dimM)/2 -f ε (for an arbitrary ε > 0). The zeta-
function Cv, can be continued to a meromorphic function on the whole complex
plane with at most simple poles at the points Sj := (j — dimM)/2, j — 0,1,2,....
It is regular at s = 0,1,2,....
3. The residues VQss=Sjζv^(s) and the values ζVy.(m) + Sm$dimKer(A*) are equal
to the sums of the integrals over M, dM, and N of the densities locally defined on
these manifolds.

Proposition 3.1. 1. Let λ £ Spec(Jv

#). Then the resolvent G*(v) := (A* - λ)~\
G*(v):(DRm(M))2~Όom(Δ )<->(DR9(M))2, is the isomorphism (in algebraic
and topological senses) onto the closure Dom(zl*) of D(Δ') with respect to the
graph norm. 4 8 The operators G*(v) for pairs (λ,v) such that λ ^ Spec (A*) form
a smooth in (λ,v) family of bounded operators in (DR*(M))2.

2. The families d o GJ(v) and δ o G*(v) for λ £ Spec(Z)*) form a smooth in
(λ,v) family of bounded operators (DR9(M))2 -> (DR*±ι(M))2.

Theorem 3.2. 1. The operator exp(—tA*) in (DR*(M))2 for an arbitrary t > 0 is
of trace class. For its trace the asymptotic expansion (2.87) (relative to t —> +0)
holds. The coefficients f-dimM+j of this expansion are the sums of the integrals
over M, dM, and N of the locally defined densities. If j φ dimM + 2m, m e Έ+ U 0,
the densities on M, dM, and on N for /_dimM+j cire the same as for

If j = dimM + 2m, m G Έ+ U 0, these densities are the same as for

2. Let px : (DRm(M))2 -> (DRm(Mx))2 ^ (DR (M))2 be the composition of the
restriction to M\ and of the extension by zero of L2-forms. Then the operator

4 6 The L 2 -completion (DR9(M))2 of DR (M) coincides with the L 2 -completion of DR (M\)e>
DR (M2).

4 7 A spectrum is discrete if it consists entirely of isolated eigenvalues with finite multiplicities.
4 8 The topology on (DR*(M))2 is given by \\ω\\\, and on D o m ( z l * ) it is given by | | ω | | 2

 h.
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p\Qxp(—tΔ*) in (DR*(M))2for t > 0 is of trace class. For its trace the asymptotic
expansion relative to t —> -1-0 holds

Tr(/>iexp(-fO) = q-nΓ
n/2 + + qot° + <7iί1/2 + + $wiw / 2 + rm(t) , (3.1)

rm(ί) w O(ί ( m + 1 ) / 2 ) uniformly with respect to v and it is smooth in t for t > 0
(n \— dimM). The coefficients_qι are equal to the sums of the integrals over M\
and over dM\ = N U (dM ΠM\) of the locally defined densities. The coefficients
qj in (3.1) depend only on {J,M\,QM\TMVZ Π dM\,N,v) and do not depend on M2

and ZΠdM2,gM\TM2.
3. For any t > 0 the traces of exp(-tA') are bounded uniformly with respect

to veR2\(0,0):
|Trexp(-^)| < C(t). (3.2)

The traces Tr(/>7exp(—tΔ*)) are also bounded uniformly with respect to v for
any t > 0.

Proposition 3.2. 1. The kernel E*X]X2(v) for exp(—tΔ*) {where t > 0) is smooth

in Xj e Mrj9t, and in v G R 2 \ (0,0).
2. The asympttotic expansions (3.1), (2.87) are differentiable with respect to

VG1R 2\(0,0).

3.2. Zeta-Functions for the Laplacians with v-Transmission Interior Boundary
Conditions. Proofs of Theorem 3.1 and of Proposition 3.1. Let A be an ellip-
tic differential operator on a manifold with boundary (M,dM). Let the differential
elliptic boundary conditions be given for A on dM such that A with these bound-
ary conditions satifies Agmons condition (formulated below) for λ from a section
θi < arg/ί < θ2 in the spectral plane C 3 λ. Properties of zeta-functions for A with
these boundary conditions can be investigated with the help of the parametrix for
(A — λ)~ι. The analogous statement is true also for elliptic interior boundary condi-
tions. 4 9 The parametrix P™ for (A* — λ)~ι is defined locally in coordinate charts.
Namely

Ψj, (3-3)

where φ ; is a partition of unity subordinate to a finite cover {(//} of M by coordi-
nate charts, φjψj = φh^ G Q°(C/7 ). If Uj Π (3M UN) = 0 then the operator PΨV

is a pseudodifferential operator (PDO) with parameter λ ([Sh], Chapter II, Sect. 9)
and its symbol is equal to θ(ξ,λ)s(m)((Δm — λ)~ι)(x,ζ,λ). This symbol is defined
as follows. Let s(Δm - λ) = ((b2 - A)id + b\ )(x, ξ) be the symbol of Δm — λ (where
Δm is the Laplacian on DR*(Uj)) and let

be the symbol of (Δ* — λ) ι as of a PDO with parameter (α_£ is positive homoge-

neous of degree - * in (ξ,λι'2)\ Set s(m)((A* - A)"1) := Σ%o*-2-j(x,ξ,λ). The
condition s(Δ* — λ) o s((Δ* — λ)~ι) = 1, where o is the compositon of symbols

4 9 Theorem 3.1 is analogous to the results of [Sel, Se2] with modifications connected with the
v-transmission interior boundary conditions. In [Sb], Ch. II, the theory [Sel. Se2] of the zeta-
functions is written in detail in the case of a closed manifold.
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with parameter ([Sh], Sect. 11.1), is equivalent to the system of equalities

α_3 = —{b2 — λ) [b\a-2 + ΣDξfad^a^] •>
i

(3.4)

The sum in the last equation of (3.4) is over (y,/,/) such that y = (y\,...,yn) G
(Z+ U Of, |y| := y i + . . . + yw, 0 ^ |y| ^ y for Z>7, |y| + i ^ 1 (D := r ' 5 ) . The
function 0(6 A) (in the symbol of P ;

m) is smooth, θ(ξ,λ)= 1 for \ξ\2 + |A| ^ 1,
and θ is equal to zero for \ξ\2 + |λ| ^ ε.

Let C/y (Ί7VΦ0. Then the term PfJι

u of the parametrix is the sum of the interior
term (which is a PDO with parameter and its symbol is defined with the help of
(3.4)) and of the correction terms. (Here U := Uj.) The latter terms correspond to
the v-transmission interior boundary conditions on N and to the Dirichlet and the
Neumann boundary conditions, given on the connected components of dM. First of
all we'll verify that these v-transmission boundary conditions are Agnon's conditions
on any ray arg λ = φ in the spectral plane not coinciding with IR+.

Let (t9 y) e I x UN be the coordinates on U := Uj near N = 0xNc-+IxN^->
M, I = [—2,2], and let t > 0 on M\. From now on it is supposed that ψj{t,y) =
(pjj(t)(pj,N(y) and that ψjj(t) = 1 for \t\ ^ 1. It is supposed also that ψj(t,y) =
ψjjiOφj^Niy) ^nd that φjjyφjj are even functions: φj,i(—t) — ψjj{t\ φjj(—t) =
φjj(t). The forms dyc and dtdyf (where c = (c\ ...,cn-\), f = ( / i , . . . , / « - i ) , c I ?

// £ {0? 1}) provide us with a trivialization of A9TM\jxuNm Namely ω 7 = ^ I C I = #

a>j,cdyc + Σ\f\+ι=m

ωj,(ij)dtdyf. Let ω — (ωj,ω 2) G D(Δ*) C DR*(MV). Then on
UN = 0 x UN ^ I x UN the conditions ω G £>(^*) c a n ^ e written as follows. Set
|v| = (α2 + β2)ι/2. Let if be the transformation (t ^ 0)

vUc(t9y) := \v\~ι(aωιiC(t,y) -

,y)

y)H-j8ω2,(i,/)(-ί,^)),

j)(-t9y)). (3.5)

Then the conditions ω G Z)(^1*) are equivalent on U^ to

dtv2yC\t=o = 0, 3ίW2,(i,/ )|/=o = 0 . (3.6)

The inverse to (3.5) transformation if"1 is

VΪ (

α
Agmon's conditions on a ray / := {arg λ — φ} in the case of v-transmission

boundary conditions claim that for (ξ\λ)ή=(0,0) and λ G / the equation on R + 3 t

(-dj + b2(y, ξf) - λ)v(t) = 0, v(t) -> 0 for t -> +cx) , (3.8)
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has a unique solution for each of the initial conditions vt=o = vo or dtv\t=o = v\.
(Here ξ' are dual to y and b2(AN) = b2(y, ξ')id is the scalar principal symbol of
Δ^f on UM ) Agmon's conditions for the v-transmission boundary value problem
are satisfied on each ray argΛ = φ not coinciding with IR+ because eq. (3.8) with
each of the initial conditions given above has a unique solution for any λ φ. IR+,

It is convenient to compute the contribution to P™v from v-transmission bound-
ary conditions in the coordinates vJίC(t,y), Wj,(ij)(t,y) defined by (3.5) with
t ^ 0. (Then the v-transmission boundary conditions are transformed into the
conditions (3.6).) These contributions are defined with the help of the symbol
d — Σ ez [jς)d-2-j{t,y,τ, ζ',λ)9 which is the solution of the equation 5 0

(-3? + (b2(y, ξ') - λ)\ά + bx{y, ξ')) o d(t,y, τ, ξ', λ) = 0 (3.9)

(with the composition o of symbols of (y,ζ') in it). Equation (3.9) holds for tή=O.
The boundary conditions for (3.9) are: d^k —> 0 as |*| -^ oo and

(3.10)

Here the transformation 5£ acts on the columns of the matrix-valued functions
d, a (depending on t and on τ). 5 1

Equation (3.9) is the recurrent system

-d]d_k + (b2 - λ)d_k + Σ^DlWyd-n = 0 , ( 3 . 1 1 )

w h e r e the s u m is over m < k a n d y such that m + \y\ + 2 — / = k, 0 :g \y\ ̂  / for

For t = 0 the symbol d-k over My Π UN is positive homogeneous of degree (-k)

in (τ,ξ\λ {/2). The boundary contribution to Pr^u is an operator Q)m corresponding

to 5 2 θλ(ξ,λ)Σn}^d^2_j(t,y,τ,ξ',λ). This operator acts on / e DR*(W.t

such that supp/ Π (0 x IR^Γ1) = 0 as follows:

J
o

(3.12)
(where (.Wf)(τ,ξ') = ffexp(-i(tτ + (x,ξ')))f(t,x)dxdt is the Fourier transform
of / ) . The term of the parametrix, corresponding to U (if U ΠNΦ0) is defined
by

nu=PZat-®n,, (3.13)
5 0 Here b2(y,ξ')id + b\(y,ξ) is the symbol s(A*N) on C/v of the Laplacian on DR'(N) for the

components ωtan,/v(^.y) and on DR*~](N) for ωnorm^(t,y). The variable τ is dual to ί.
5 1 Note that the function α_ 2-,(ί,y,τ,ξ',λ) is continuous in N and nonsingular for λfc IR+

and (τ, ξ7,/) ^ (0,0,0). (It is also independent of t for |/| small enough.) So the right sides of
(3.10) can be simplified for a-k In (3.9)-(3.11) it is used that gM is a direct product metric on
I xN^M.

5 2 θ λ ( ξ ' 9 λ ) e COG(W-] x < £ l θ ι = 0 f o r \ξ'\2 + μ | < ε a n d θ} = 1 f o r \ξf\2 + μ | ^ \ ; n : =

dimM.
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where P^int is the PDO with the symbol S(m)(t,y,τ, ξ', λ) defined by (3.4) (x is
replaced by (7, y) and ζ = (τ, £')).

For Uj Π dM φ 0 the boundary term in Pfv for the Dirichlet or the Neumann

boundary conditions on the connected components of dM is defined similarly.
The following assertions are true:

1. For m ^ n the operator (A* — λ)P™ — id (where (A* — λ) acts on the restric-
tions of forms to M\ and to M2) has a continuous on MJχ x Mj2 kernel which is
0((1 + \λ\ι/2)n~m) for λe Λε := {λφθ,ε < arg2 < 2π - ε}, where π > ε > 0 is
fixed ([Sel], Lemma 5, p. 901). This estimate is satisfied uniformly with respect
to v since the families d^2-j a r e smooth in v G 1R2 \ (0,0) and since the estimates
for ^d-2-j by [Sel], (29), p. 900, are uniform with respect to v + (0,0).

2. Let m ^ n and v = (α, β) G IR2 \ (0,0). Let Aj := A(MJ9N) be the same as
in (2.97) and (2.99) and Rj be the geometrical restrictions to N C dMj of forms
on Mj. Then the operators

\v\"\βAxd -

have smooth kernels on N x Ήj which are <9((1 + \λ\ι/2)n~m) for λ G Vί:, where
π > ε > 0 and ε is fixed ([Sel], Lemma 6). These estimates are uniform with
respect to v G IR2 \ (0,0). _

3. Set Bhv := I v l " 1 ^ ! - βR2) : φ.DR (Mj) -> DR (N). Let p{ : [0,1] x
N -^ N, p2 : [-1,0] x Λf -> Λ̂  be the natural projections. The operator

,v : DR\N) -> ΘDR\M;X qhv(ωN) := |vΓV(0(α^ίω^-j8^ω^) (3.14)

(where φ(ί) G C£°(/), φ(0 Ξ 1 for t G [-1/2,1/2]) is the right inverse to 2?1)V since
B\,vq\,v = id. The analogous right inverse operators q^v are naturally defined for Bk,v

- βR2δ),

B4tV := IvI-^jS^iίί-^rf),

^i,v^ ,v = <% id (3.16)

For instance, q3>v o ω ^ : = ε l v ^ V ί O ^ ί ^ ^ Λ P\&>N, —βdt Λ p2ωN), ε = ± 1 . Set
i?v : = (BjV), qv : = (^7>) ? and ^ V J β v : = (qj^vBjV). For m ^ n the operator is defined53

B% := P? - q&P? . (3.17)

It maps (according to [Sel], Lemma 12, p. 912) C°°-forms ω G DRm(M)9 suppω Π
N = 0, to C°°-forms on M7 . Moreover RJ : Z>Λ*(M \ N) -> D ( j ; ) .

4. For m ^ n and /I ̂  1R+ U 0 the operator /^ can be continued to a bounded
operator in (DR*(M))2, Rλ : (DR*(M))2 -> Dom(zi ).

Indeed, for any fixed differential operator F of order d = d(F) g 2 the operator
FRλ is bounded in (DR*(M))2 with its norm <9((1 + \λ\]/2)d~2) in a sector A G
Λε (π > ε > 0 and ε is fixed) according to [Sel], Lemmas 7, 13, 14. This estimate
is uniform with respect to v G IR2 \ (0,0). The continuation of Rχ to (DRm(M))2 is

53 For simplicity we'll suppose from now on here that dM = 0. For the Dirichlet or the Neumann
boundary conditions on the components of dM the appropriate terms have to be added to RJ.
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as follows. If coj G DR*(M \N) and cϋy —> ω in (DR*(M))2 then l^ω, converges
in (DR*(M))2 and i?;,ω is defined as its limit. We see that Rχ(θj G D(A9) and
(A* - λ)Rλωj converges in (DRm(M))2. Hence Rλω G Dom(zJ^).

5. The operator G?(v) := (A* - λ)~ι : (DRΦ(M))2 -* Dom(JJ) exists 5 4 for
1 G Λε := {Λ + 0 : ε < arg/ί < 2π — ε} and |A| sufficiently large. Its operator norm
is Od^l" 1 ) for such λ uniformly with respect to v G IR2 \ (0,0) ([Sel], Lemma 15).

6. The Laplacian A* is a closed unbounded operator in (DR*(M))2 with its
domain of definition Όom(A*). Actually, if {wj c D o m ( J ) and if the limits
lirriiW/ =: u and limz ((A* — λ)ut) =: i; exist in (DR*(M))2 then for sufficiently large
λe Λε we have u = lim,-G*(v)((^ - Λ,)w/) = C?A(V)I; G Dom (JJ) . Hence
(zl* — λ)u — (A* — λ)(G*(v)v) = v, i.e., the operators A* — λiά and A* are closed
in (DR*(M))2. The operator J is defined on Dom(J ). It is a self-adjoint un-
bounded operator in (DR*(M))2. Indeed, the domain of definition Dom((zJ* — λ)*)
of the adjoint operator (A* - A)* in (DR*(M))2 is the set of v G (DRm(M))2 such
that the linear functional ((A* — λ)ω,v) is continuous on Dom(^ ) 3 ω in the
L2-topology of (DR*(M))2. If v G Dom(J ) then for any ω G Dom(J ) we have
((J — λo)ω,υ) = (ω,(J — A0)y) for Ao € 1R-. Indeed, for each ω and v from
Dom(zl*) there exist sequences {cθj} and {ι;7} of elements D(A*) whose limits in
the graph norm topology are ω and v. Hence we have

\im(Av(Dj,v)2 = limlirn(J vω / ,ι;I )2 = limlim(ω/,-dvι;I)2 = (ω,Avv)2 .
J J i J i

So ((A* — λo)u,v) is a continuous linear functional on Όom(Aφ) 3 u with re-
spect to the L2-topology of (DR*(M))2 for any υ G Όom(Am). Hence Όom(Am) C
Dom((zi; - Ao)*) and (Av - λo)*υ = (Av - λo)v for v G Όom(A ).

Let /ί0 G IR- and |/lo| be sufficiently large. Then for any w G Dom((J* - ^o)*)
there exists an element i; G Dom(J ) such that (A* — ̂ o)*w — (A* — XQ)V = (A* —
λoγv (since Im(A'v - λ0) = (DR'(M))2). So w - v G Ker(CdJ - λ0)*) and for
any u G Dom(zi ) we have 0 = (w,(JJ - λo)*(w - t;)) = ((^dj - λo)u,w - v). Then
w-v = 0, as I m ( j ; - Ao) = (DRm(M))2. Hence Dom((JJ - Λo)*) =
Dom(zJ ) = Dom((zl*)*), and Zl* is a self-adjoint unbounded operator in
(DR*(M))2.

The operator A* is nonnegative, (zl*ω,ω)2 ^ 0 for any ωG Dom(zlJ),
since there exists a sequence {ωy},ωy G Z)(Zl*), such that its limit in the
graph norm topology is ω. So we have limy(zl*co7,cOy)2 = limy((ivωy,ίivω/)2 -f
limy((5vωy, ^vω7)2 ^ 0.

7. The spectrum Spec(zl*) of the operator A* is discrete because the operator

K - λ)(A; - λoy
ι = id + (^ - loΓ1 (λ0 - λ)

differs from the identity operator in (DR*(M))2 by a compact operator. Here, λo G
Λε and |^o| is large enough. The assertion 5 above claims that (A* — λo)~ι exists
for such λo. The operator Gχo(v) := (A* — λ§)~λ is compact since it is bounded
in (DRΦ(M))2 and since the operators I - (A* - h)R™Q (for m ^ ή) and R^ are
compact in (DRΦ(M))2 ([Sel], Lemmas 4,5,9 (iv)). So the operator

K - λoΓ1 = Ri + (zi; - λoΓ 1^ - (A; - λo)Ri)

5 4 This means that A* - λ maps Dom*(zlv) one-to-one to (DR*(M))2. It is equivalent to the
existence of (A* - λ)~] : (DR (M))2 -> Dom(zl ), ( j ; - Λ) O (A* - λ)'] = id on (DR (M))2.
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is compact in (DR*(M))2. Since Gχo(v) is a compact operator for λ0 G Λε, \λo\ > 1,
and since Δ* is a closed operator in (DR*(M))2, it follows that A* is an operator
in (DR*(M))2 with compact resolvent. So (according to [Ka], Ch. 3, Theorem
6.29) its spectrum Spec(zl*) consists of isolated eigenvalues with finite multiplicities
(i.e., Spec(zJ ) is discrete) and the operator G*(v) is compact in (DR*(M))2 for
λ G (C \ Spec(zl*). The operator A* is nonnegative. Hence Spec(J ) C 1R+ U 0.

If λ0 £ Spec(zlv

#) then Ker(zd; - λ0) = 0 and lm(A* - λ0) = (DR\M))2. Hence
ind(zl* — λo) is equal to 0 (as the index of the operator from (Dom(Zl*), || ||graph)
into ((DR*(M))2, | | \\2

2)). The operator (λo - λ)iά from Όom(A*) into (DRm(M))2

is compact (since GJ (v) is a compact operator in (DRΦ(M))2 and since it is a
topological isomorphism Gλo(v) : (D^ (M)) 2 ^Dom(zί;)) . So ind(A* - λ) = 0 for
an arbitrary 2 G € (according to [Ka], Ch. 4, Theorem 5.26, Remarks 1.12, 1.4).

8. The operator (A*)~s for Re s > 0 is defined by the integral

— fλ-s(Δ*v - λ)~ιdλ =: T-S(v), (3.18)

2ττ p

where the contour Γ is

{λ = reιπ,oo > r > ε} U {λ = εe/(/),π > φ > -π} U {λ = re~iπ,ε < r < oo} .

Here the number c > 0 is such that Spec(/4J)n(0,e] = 0. The integral (3.18) is
absolutely convergent (with respect to the operator norm || H2 in (DR*(M))2)
because the estimate | | ( ^ * ~~ ̂ )~1 | |2 = G|A| - 1 is satified as λ —> —00 for λ G 1R-.
So T-S(v) is a bounded operator in (DR*(M))2 for Re s < 0.

For —k ^ Res > — (k + 1), k G Z + , the operator Γ_s is defined as
Γ_(s+£+1). Its domain is Dom(Γ_^) = {ω G φ i ? (M)) 2 ,Γ_^ + / t + i )ω

GDom((Λv )*+ 1)}, where

D o m ( ( j ; / + 1 ) := {ω G Dom(zl*),zl*co G Dom(zl*),. ..,(z] / ω G Dom(zl*)} .

The restriction T^s of Γ_5 to the orthogonal complement Lo of Ker(zl*) in
(DR*(M))2 is defined on Dom(Γ^) :=D(T-S)ULO, T°_s := T^S\LQ. Then T-s is
the direct sum55 of 7̂ ° and of the zero operator on Ker(J ). Theorem 1 in [Se2]
claims that the family T°_s of operators in the Hillbert space Lo for Re s2 > 0 satis-
fies the equation T^S{T^S2 = T°_^S]+S^ and that the same is true for — s\ G Έ+ and
for each s2. This theorem claims also that

Γo = id on Z,o, Γ̂ ./ = ί (z l*)" 1 !^ j , for / G Z+, and Γf = Δ*\ι0

(the domain of Γj0 is Dom(zJ ) Π L 0 ) and that T°_s for Res > 0 is a holomorphic
function 5 6 with its values in a Banaeh space B(LQ) of bounded operators in LQ9

where the Banaeh norm is the operator norm (as the norm on B(LQ)).

55 If v e Lo and Res > 0 then we have T-Sv G Lo since for h G Ker(J ) and λ e Γ it holds
0 = (v,h) = ((zl - A)G;(V)U,A) = -Λ(G;(V)U,/Z) and since the integral (3.18) is absolutely con-

vergent. For h G Ker(J ) and for Res > 0 we have T-Sh = 0 because for such s the integral
$Γλrs~xdλ is absolutely convergent and is equal to zero. Since T-Sh — (Z1 ) A + I Γ _ ( 5 + A + ])A = 0
for -k ^ Res > -(k + 1), we get Γ_5/z = 0 for all s.

56 A function with the values in a Banaeh space is holomorphic in a strong sense if it is weakly
holomorphic ([Ka], Ch. 3, Sect. 1, Theorem 1.37, p. 139).
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9. For Res > n/2 the kernel of T-S(y) is continuous on My, x Mn and analytic
in s ([Se2], Theorem 2(i)). For Res > n/2 the zeta-function Cv, C?) is equal to
the sum of integrals over the diagonals Mj <—>• Mj x Mj {j — 1,2) of the densities
defined by the restrictions to these diagonals of the kernel T-S{y\ according to
Proposition 3.9 below. So ζv,.(s) is holomorphic for Res > n/2.

The operator G*(v) — P™ for m ^ n (where P™ is the parametrix (3.3)) is a
bounded in (DRm(M))2 operator with a continuous on Mjχ x MJ2 kernel (r™)X]rK2

which is

( 1/ 2^^) (3.19)

as μ| —> ~hoo, λ £ Λε ([Sel], Theorem 1, or also the assertions 5, 1, 2, 7 above).
So the operator

^ / r s ( G (v)-FΓ)^ (3.20)

for Res > (n — m)/2 is of trace class and its kernel is continuous on M 7 l x Mj2

and analytic in s.
The trace of the operator (3.20) is holomorphic in s for Res > (n — m)/2.

Let us denote by K£*(s) the kernel of the operator (i/2π)JΓλ~sP™inidλ (where

MVJ i s a t e r m o f (3 3 ) a n d ptufM
 i s a ^ D 0 w i t h

defined by (3.4)). This kernel is continuous on Mjχ x MJ2 for Res > n/2. Off
the diagonals M7 <—> Mj x M7 it extends to a kernel which is an entire function
of s G C equal to zero for (—s) G 2 + U 0 . The density on U7My defined by the
restriction of this kernel to the diagonals also can be continued to a meromoφhic
in s G (C density. This density has at most simple poles at s} — (n — j)/2 for (—Sj) £
7ί+ U 0, 0 ^ j S m> and it is regular at Sj for (— Sj) G Z+ U 0.

The residue at s = sj is completely defined by the component a-2-j(x,ζ,λ)
of the symbol s((zl# - λ)~ι) ([Se2]), Lemma 1, or [Sh], Theorem 12.1). These
components are given by (3.4). The value of this density at s — Sj for (—Sj) G
7L+ UO is completely defined by a-2-j (by the formulas (11), (12) in [Se2] with
changing of the sign in (11) to the opposite one). Here, j — n + 2m, m G Έ+ U 0.

The kernel K^y(s) of the operator57 (i/2π)JrX~s9m^dX for Res > n/2 is con-
tinuous on My, x Mj2 and analytic in s ([Se2]), Lemma 4). Let (x,y) be off the
diagonals or let either x or y be not from UjdMj D N. Then K% (s) is an entire
function of s G (C and it is equal to zero at s for (—s) G Z+ U 0 ([Se2], Lemma 4).
For Re s > n/2 the densities defined by the restriction K^(s) of K^y(s) to the diago-
nals Mj are integrable over the fibers of the natural projections p\ : [0,\] x N —> N
and p2 : [—1,0] x N -* N. These integrals are densities on N. They can be con-
tinued 5 8 to meromoφhic in s G C densities (on N) with at most simple poles
at Sj = (n — j)/2, 1 ^ j g m, such that (—Sj) ^ %+ U 0. Their residues at Sj for
1 ^ j ^ / n + 1 are completely defined by a term d-2-/+ι in ί/ ([Se2], Theorem

5 7 H e r e ^O T i; = Yj\tjQ)nh{j{λ^)φ}. T h e opera tor ^ m > ι / from ( 3 . 1 3 ) is defined for C / n 7 V φ 0 b y

(3.12), (3.9), and (3.10).
5 8 Let &@mfU(λ,v) be an operator acting on J^ω as y(@nuU(λ,v)ω) (for any ω eDR*(R")

such that suppωDlR'7"1 = 0, where IR""1 are local coordinates on N). All the assertions about
the kernels analogous to K^γ(s) in the case of J£Θnhu(λ,v), and about the corresponding densities
in this case, are proved in [Se2]. Thus the transformation (3.7) provides us with all the assertions
about the kernel K^v(s) (and about the corresponding densities) connected with S)y^{y).
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2(iv), formula (//)). The values of these densities at sj for (—Sj) G 2£+ U 0 (where
n rg j ^ m + 1 are also completely defined by d-2-1+1 ([Se2], Lemmas 2, 3, 4,
Theorem 2(iv), formula (//') with changing of the sign to the opposite one).

10. The kernel of the operator (3.20) is the difference of the kernels

(T.s)λιy - (K%(s) - < v ( ί ) ) . (3.21)

For Res > (n — m)/2 it is holomorphic in s and continuous on Mlχ x M / r The term
(A:int - Kdχy(s) is equal to zero for x^y and (s) G %+ U 0. The term (T-s)XfV is
equal to zero for x 4= y and (s) G 2£+ (according to the assertions of 8 above, since
Δγ is a differential operator). We have (7o)χ,v = ~ ^ * v , where Jf * is the kernel of
the orthogonal projection operator in (DR*(M))2 onto Ker(zJ ) (the assertion 8).
The properties of ζv, ( s) 5 9 formulated in Theorem 3.1, follow from the assertions
of 9 and 10. The theorem is proved. D

Remark 3.1. The kernel (3.21) of the operator (3.20) is holomorphic in s and
continuous in (x, y) G My, x M/ 2 for Res > (n — m)/2. It is equal to zero for xφjμ
at s = —k, k G 2£+, and to — Jf* v(v) at s = 0. So the analytic continuations of the

densities on Mf and on N defined by the kernels (T^s)xv and (Kmt(s) — KίΊ(s))XyV

have the same residues at s = Sj, 0 ^ j g m, (—Sj) £ Z+ u 0, and the same values
at s — Sj, (-Sj) G Z + , n + 2 g 7 ^ m. They differ at s = 0 (i.e., for j = n) by
the densities on M / 5 defined by — Jf^γ(v). Hence the densities on M7 and on
N, corresponding to the residues and to the values at s = Sj, 0 g j ^ m - 1, of
(A:n%v) - ^ ί Ί(s)) x v c are the same for all the parametrixes Pf defined by (3.3) (with
different covers {£//}, partitions of unity {φ7} subordinate to {£//}, and {ι/̂ })

And back, the values and the residues of the analytic continuation for the integral

fjΰ tr(i*(Γ_Λ)) + .̂V,O/Λ/ t r (z*^ (v)) at sy, 0 g 7 ^ w, are defined by an arbitrary

parametrix P™.

Proof of Proposition 3.1. Let m ^ n \— dimM, w G ^ f , and / G Λε. Then
the parametrix R™ for G*(v) 6 0 (defined by (3.17)) is a bounded operator 6 1 in
(DR\M))2 with its norm estimated by <9((1 + |^ | ι / 2 )~ 2 ) for λ e Λε. It holds
that R,.: (DRm(M))2 —> Dom(zl*). For a linear differential operator F of order
ί/ = ^(Z7) ^ 2 the operator T7/?; is defined on smooth forms ω G DR*(M\N) and
its closure in (DR'(M))2 is a bounded operator in (DR*(M))2 with its norm es-
timated by O((l + \λ\ι/2)d~2) for λ G Λ (All these estimates are uniform with
respect to v G IR2\(0,0).) The only terms of R™ depending on v are the terms
91 - qYBvP™(v), where 6 2 9> = ^(v) := -ΣΨι®m,u,φ, has the kernel with support

-9 The values of ζv,m(s) at (—5) G Έ+ and the residues of ς κ # at s = s, can be also expressed
in terms of noncommutative residues ([Wo] or [Kas]). The density on M whose integral over M

is equal to a volume term in Ress^S/Cv. (^) can be written as 2~'res ίx, Δ{}Jn \. Here res is a

noncommutative residue for the symbol of PDO Δ{)^π. This symbol is defined with the help of

the symbol Σa-2-/(x>L^) oί (Δ* — λ)~] (LShJ, 11.2). The boundary term in Res s = S / ς v # (s) for

is,) ί Έ+ U 0 is expressed similarly.
6 0 The statement that G*(v) :(DR (M))2-> Dom(A*) is an isomorphism for λf

Spec(zl*) is proved in Theorem 3.1.
6 1 The terms P{'"JΛV ψ,@mφn and qγBχP

ι" in R'" are bounded operators with the same estimate

of their norms in (DRm(M))2 for λ G Λ, (the proof of Theorem 3.1). For the sake of brevity the

proof of Proposition 3.1 is given in the case of cM = 0.
6 2 Qm = c$mλ i s defined b y ( 3 . 1 1 ) , ( 3 . 1 0 ) , and ( 3 . 1 2 ) .
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in the neighborhood / x TV of the interior boundary N ' °-» M'. 6 3 The parametrix
PΨ(v) := P™int - 9{y) is defined by (3.13)). We need the following assertion now.

Proposition 3.3. The operators <2)(v) and qvBvP™(v) depend smoothly on v e
R 2\(0,0) as bounded operators in (DR*(M))2. For a C°°-map v = φ(y) : [-a, a]
—>IR2\(0,0) the operator dy@(v) is a bounded operator in (DR*(M))2 whose
norm is uniformly with respect to γ estimated by O({\ + |ΛJ1/2)~2) for_λ G Λε.
Let F be a linear differential operator of order d — d(F) ^ 2 from DR*(Mj) into
DR9+k(Mj\ keΊL. Then F3f(y\ Fdy2(y) are bounded operators from (DR*(M))2

into (DR*+k(M))2 whose norms are estimated by <9((1 + \λ\ι/2)d(F)~2) for λe
Λε. The operator dy(qvBvP™(v)) is uniformly with respect to y estimated by

Proof The kernel of the operator &\fa2mtUj(pj&-1 (where <$? = Jδf(v) and

are defined by (3.5) and (3.7)) has a support in ((Uj ΠN) x [0,1])2. The operator
SfmiUj is defined in (UjΠN) x IR+ by (3.11) and (3.10). The right sides of the
boundary conditions (3.10) depend on v only by their dependence on Z(v) (where L
is the matrix defined by (3.7)). Since QM is a direct product metric near N, a mirror
symmetry (relative to N) acts as the identity operator on the symbol Y^a-2-j(x,ξ)
of the Laplacian Δ* on M for x — (t,xf) from the neighborhood I x N of N. The
symbol Y^a-2-j(t,x\τ,ξ\λ) is independent of t for t G /.

So the symbol i?]Γα_2_/ (for t e I) is expressed as LaL~\ where L and L~ι

act on the components of a matrix-valued functions α-2-/ in the coordinates ω ; >c

and cθj,(\j) as follows (according to (3.5)):

(La),,*, = |v |- '(α - /?Xα)c,», (La)ulJ> = \v\~\-β + α ) ( α ) ( i , m ,

' ' . (3.22)

The boundary conditions (3.10) (according to (3.22)) depend on v only by the
matrix transformation whose coefficients are independent of (ί,x;) and smooth in v.
This transformation acts separately on each homogeneous component α_2-/ The
right sides in (3.22) are nonsingular in (x',τ,ζ',λ) for b2(x',τ,ξr) — λή=0 (where b2

is the principal symbol of the Laplacian on M for (t,xf) G / x N). Hence Lemma 2
in [Sel] holds also for the symbol dy(JS?(v)]T//_2-/)- Thus the desired estimates
for the norm of dy2f{\) in {DR\M))2 and for the norms oϊF2{v) and of Fdy9(v)
are consequences of [Sel], Lemma 7.

The operators q^v (1 S j ύ 4) from (3.14) and (3.16) (for φ(t) even on t) can
be defined such that 6 4

where / e C0°°(7), f(t) = 1 for t G [0,1/2] and f(t) = 0 for ί > 3/4. The oper-
ators Bj and g7 are independent of v e 1R2\(O,O) and correspond to BJyV and q^

63 In the case dM Φ 0 the terms connected with the Dirichlet and the N e u m a n n boundary condi-
tions are added to 9d{y). Then the corresponding kernel has its support in a neighborhood of dM
in M.

64 The operator BvP"'(v) has a continuous on Mn x Mn kernel which is estimated uniformly
with respect to (JCI,JC2) G (NΠMh ) x Ml2 and to v e I R 2 \ ( 0 , 0 ) by O ( ( l + \ λ \ υ 2 ) " - m ) for λ e ΛH

( [ S e l ] , L e m m a 6) . Such an estimate holds also for the kernel of qYBYP™(v).
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from (3.15), (3.16). (Here B\, B2, #3, B4 are the operators (3.6) acting respectively
on v\yC9 w2,(i,/), wi,(i,/), W2,c ) These operators are such that Bxq} = <5i;id.

The operator ΣqjBj&(dγF?(v))f&-1 is equal to-1 is equal to Σ<!jBj&
(since P™int is independent of v). The operator BjJ£(dy@(v))Jif~l is defined
on smooth forms ω E DR*((Q, 1) x TV) and its Z2-norm is estimated by O((l -f
l/ll1/2)""1) for A G Λ ([Sel], Lemma 7). The operators dy(qvBv)P^M are defined
on smooth forms ω E DR'(M\N) and their operator L2-norms are estimated by
O((l + \λ\ι/2)~ι) for λeΛε uniformly with respect to v (according to [Sel],
Lemma 7). The proposition is proved. D

Let λ E Λε and \λ\ be large enough. Then the Green function G*(v) can be
represented by the series

'. ( 3 2 3 )

where (ZJ) := id - (zlv

# - λ)R% is a bounded operator in (DR\M))2 for /I E Λε.
The norm of L™ in (DR\M))2 is 0((1 + |A| 1 / 2)"-m + 2) (where w := dimM) be-
cause the norm of (id - (zΓ - λ)P%) is O((\ + \λ\V2)"-m) and the norm of
(/d - λ)qvBvP? is 0((1 -I- μ | 1 / 2 )"- m + 2 ) (according to the proof of Theorem 3.1).
Hence if m > n -f 2 and if A £ Λε with |A| large enough then the series (3.23) is
convergent with respect to the operator norm in (DRΦ(M))2. The operator L™ de-
pends smoothly on v E R 2\(0,0). The norm of dyL% is estimated by 0(1 -f |A|1/2)
(according to Proposition 3.3). Let v : [—a,a] —* IR2\(0,0) be a smooth map. Then
the series for dyG*(v) is convergent (in the operator norm) if λ E Λc and \λ\ is large
enough. Hence for such λ the resolvent CJ*(V) := (Δ* — λ)~ι depends smoothly on
7. So the family G*(v) of bounded operators in (DR9(M))2 is smooth in (v,λ) for
such λ. Their operator norms are estimated by Od^l" 1 ) uniformly with respect to
v E IR2\(0,0). Let F be a linear differential operator of degree d(F) ^ 2. Then
the operators FGJ(v) for such λ are bounded in {DRm{M))2 with their operator
norms estimated by O(|/l| ( ί /"2 ) / 2) uniformly with respect to v. These operators de-
pend smoothly on v for such λ and we have

dyFGUv) = FdyGXy). (3.24)

Hence for a given vo E IR2\(0,0) there exists λ\ E Λc such that G* (v) depends
smoothly on v for v sufficiently close to v0. For λ E C\Spec(/d*0) the resolvent
G*(VQ) can be represented as follows:

σj(vo) = - α - My1 ~(λ- λ{y
2R((λ - MΓ^G^VO)) , (3.25)

where R(η, GJ (vo)) := (G* (vo) — z?)"1 is the resolvent of a bounded operator
G ^vo) in (D/J (M)) 2 ([Ka], Ch. IV, (3.6), Ch. Ill, (6.18)). The bounded operator
R(η,B) is an analytic function of a bounded operator B and of η for η £ Spec2?
(i.e., near (ηo,Bo), η0 £ Spec#o> it is locally defined by a convergent double power
series in (η — η$) and (B — BQ)). The operator G* (v) depends smoothly on v for v
sufficiently close to v0. Then it follows from (3.25) that G*(v) depends smoothly
on v for λ E (C\Spec(J*) and for v sufficiently close to vo

Let F : ^;DRm(Mj) -> φjDR +k(Mj), k E Z, be a linear differential operator

of degree d(F) g 2. Then for λ e Λε and |2| large enough the operators
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FGJ(v) : (DR (M))2 -» (DR*+k(M))2 are defined, bounded, and smooth in v G
IR2\(0,0). (It is proved above.) For example, dG*(v) and δGJ(v) are smooth in v.
According to (3.24) we have dy(dG*(v)) = ddyG*(v\ dγ(δGf(v)) = δdyG

m

λ{y).
The operators rfGJ(v) are defined for λ £ Spec i f ) . From"(3.24) and (3.25) we

get

γ=0

for a C°°-local map ( R j , 0 ) -> ( R 2 \ ( 0 , 0 ) , v 0), where λx G Λ£ with |Ai| large enough
and λ £ Spec(zl*o). Proposition 3.1 is proved. •

3.3. Theta-Functions for the Laplacίans with ^-Transmission Boundary Condi-
tions. Proofs of Theorem 3.2 and of Proposition 3.2. Let ε be fixed, 0 < ε < π/2.
The operator exp(—tA*) is defined for Reί > 0, π/2 — ε > argί > —(π/2 — ε), by
the integral

exp(-fci ) =^-f exp(-λt)G (v)dλ , (3.26)

where ΓLfi = Γ|?£ U Γ 2

£, Γj?£ = {A = -L +xexp(/ε),-foo > JC ̂  0}, Γ | ε = {A =
-L+xexp(—/ε),0 g x < H-oo},L > 0. The integral (3.26) is absolutely conver-
gent because the operator norm in (DR*(M))2 of the operator GJ(v) (which is
bounded in (DR*(M))2) is estimated by Od^l" 1 ) for λ G ΓL}C9 according to The-
orem 3.1. 6 5 This integral is independent of L > 0 and of ε, π/2 > ε > 0, for
t such that |argί| < π/2 — ε, since the spectrum of A* is discrete and since
Spec(zi ) C IR+ U 0. With the help of the inverse Mellin transform f -> M~ιf,

( M - 1 / ) ( 0 : = ( 2 π i ) " 1 / Γ(s)Γsf(s)ds,
Res=c

it is possible to obtain the results about the asymptotic expansion for Tr exp(—tA*)
as Rot —> -fO (when π/2 — ε > |argί|) from the results about ζVi.(—m), rn £ Z+U
0, and about ress=SjζVί9(s) obtained in Theorem 3.1. The integral (3.26) can be
transformed as follows:

exp(-ί j ;) = j r # ( v ) + ^ - / exp(-tλ)Gl(v)dλ,
zπ p

where Jf?#(v) is the kernel of the orthogonal projection operator of (DR*(M))2

onto KerZl* and where δ > 0 and p, p ^ δ, is such that Spec(zl*) Π (0,p] = 0.
The operator exp(-ίJ ) for |arg t\ < π/2 — ε can be represented as follows (where
Γ is the same as in (3.18) and c > 0):

(v)+-^- / exp(-tλ)G*(v)dλ

( v ) + J . f (2π/Γ1GJ(v)f / (λtysΓ(s)ds)dλ
Γ-ό, \Res=c /

The constant factor in this estimate depends on ε.
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^- / λ~sG'λ{v)dλ)ds

(3.27)

Here, the integration is over Res = c from c — zoo to c + zoo (where c > 0). The
operator Γ_iV(v) for Res > 0 is defined by the integral (3.18). The transformations
we apply in (3.27) are correct by the Fubini theorem since the estimate

| |G (V) | | 2 < c • \λ\~\

is satisfied by the operator norm of G*(v) in (DR*(M))2 and since for Res > 0
the gamma-function can be estimated as follows. We have

CO CO

Γ(s) = Jf~ι exp(—t)dt = jf~x exp(zφs)exp(—ίexp(iφ))dt
o Ό

for Res > 0 and for an arbitrary φ 6 1R such that π/2 > |φ | . So the estimate holds
for any c\, 0 < ε\ ^ π/2 and for Res > 0:

g (sinc 1 )- R e T(Res)exp (- (- - cΛ |Ims|) . (3.28)

The kernel of (Γ_tV(v)).Xh.T2 is continuous in (xi,X2) £ My, x ^/ 2 f° r ^ e ^ > ^/2
(according to Theorem 3.1). The equality (3.27) holds also for c = Res > n/2.
For such s the integral fRQs_cΓ(s)t~~s(T^s(v))X]X2ds is absolutely convergent (by
Proposition 3.5 below and by (3.28)). Hence it defines a continuous on Mn x Mh

kernel. So the kernel E*X] X2(v) of exp(—tΔ*) is continuous on Mn x MJ2 because
we have

£/%,.Λ,(V) = ^"(v),,, Λ 2 + ( 2 ^ ) - ' / Γ( ί ) r i (7 '_ i (v)) ϊ l , ί 2 Λ , (3.29)
Re.s-=c

where c > n/2. (The integral in (3.29) converges uniformly with respect to x\,X2
for any fixed c > n/2 by Proposition 3.5.)

From the functional equation Γ(s) = s~ ι(s + 1)~ ! (s + / - l)~ ! Γ(s + /) it
follows that |Γ(s)| for Res > —/ is also estimated by exp(—(π/2 — c\ ) |ίms|) as
11msI —̂  oo (with any fixed ε\, 0 < c\ ^ π/2). The operator exp(—tΔ*) for Rot >
0 is a trace class operator. Namely its kernel is continuous on Mn x M / 2 (as it
follows from (3.29)). Hence it is a trace class operator and its trace is equal to the
sum of the integrals over the diagonals M} of the corresponding densities (according
to Proposition 3.8 below).

The theta-junction 0v, (O f° r ^* ^s defined as the trace of exp(—tΔ') for Reί >
0. The analogous theta-function 0V9(t; pf) is defined as the trace Tr(/?7exp(—tΔ*))
for Re/ > 0 (where pf: (DR*(M))2 -> {DHm(M]))2 ^ (DR*(M))2 is the composi-
tion of the natural restriction and of the prolongation by zero). Proposition 3.8 claims
that 0v^(t; fj) is equal to the integral over M} of the density tr(* r 2 /^ Efx^2(v)).

The zeta-function Cv, (^) is defined by (2.8) for Res > n/2 (n := dimM). It is
equal to TrΓ_s(v) for Res > n/2 (accroding to Theorem 3.1 and to Proposition 3.9).
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The zeta-function ζ(s; Pj) := Ύτ(pjT-s(v)) is equal for such s to the integral over
the diagonal i(Mj) ̂ -> Mj x M} of the density, corresponding to the restriction of
the kernel T-S(v) to ί{Mj). The integral of this density over M7 can be represented
as the sum of the integrals of densities on Mj and on dMj (they are defined by
the parametrix (3.3) and can be continued to meromorphic functions on the whole
complex plane (C 3 s) and of a density on Mj, which is holomorphic for Res >
(n — m)/2. (This assertion follows from the proof of Theorem 3.1.) The contour
of the integration in (3.27) can be moved to Res = a for an arbitrary a such
that (—2a) <£ %+ UO (according to the estimates of \Γ(s)\ as \Ims\ —* -t-oo and to
Proposition 3.4 below). Then it follows from (3.27) that

+ (2πι)-! / ΓsΓ(s)ζv,.(s; Pj)ds + Tr(Pj^ (v)), (3.30)
Res=α

where the sum is over k such that Sk := (« - &)/2 > α. The estimate of the integral
over Res — a in (3.30) is obtained with the help of (3.28) and (3.40) as follows. For
Re/ > 0, |arg/| < π/2 — ε (ε,0 < ε < π/2, is fixed) and for Res = a the estimate
is satisfied:

ΓsΓ(s)ζx,.(s;pj)\ < (sin-) \Γ(a)\ |ίΓaexp( - -|Im

Σh-a\~1)}, (3.31)

where the sum is over k < n — 2a. The constants C(a,ε/4),cε/4 in (3.31) and the
function Γ(u\x) are as in Proposition 3.4, (3.40). The latter estimate is a conse-
quence of (3.28) and (3.40)), where &\ and ε are replaced by ε/4. We see that

Res=a

ΓsΓ(s)ζv,.(s;Pl)ds (3-32)

where Reί > 0, |arg/| < π/2 - ε, π/2 > ε > 0, a < 0, and (-2α) £ Z+. The as-
sertions of Theorem 3.2 about the asymptotic expansion (3.1) for ΘVf9(t; Pj) (relative
to t —> +0 when |argί| < π/2 — ε) follow from the equality (3.30) and from the
estimate (3.32). The estimates analogous to (3.40) below and to (3.32) are satisfied
also by the analytic continuation to C 3 s of the densities (on Mj and on dMj) de-
fined by the parametrix P™(y) (as in Proposition 3.5 below). Thus we see that the
equalities between the densities in the integral representation for the coefficients of
the expansion (3.1) and the corresponding densities for the residues and the values
of ζv^(s\pj) are satisfied.

The uniform with respect to v e I R 2 \ ( 0 , 0 ) estimate (3.2) for the traces of
exp(—tΔ*) (for a fixed t, Ret > 0) follows from (3.30) and (3.31) because for
a — —m — 1/4, m G Z+, mpl, the integral over Res = a on the right in (3.30) is
absolutely convergent. The estimate 6 6 (3.31) and the equality (3.30) provide us with
the uniform in v upper estimate for Tr(/?7exp(—tΔ*)\ v G IR2 \ (0,0). Indeed, the
estimate 6 7 dimKerzl* < C is satisfied uniformly with respect to v. The formulas

6 6 For a < 0 the function Γ(2(l - a\crMρι/2) tends to Γ(2(l -a)) as p -> +0 and so it is
bounded for 0 < p < 1.

6 76 7
It follows from the exact sequence (1.14) (where Z, :=ZΠdMj) and from Lemma 1.1 that

= dim//*(Mv,Z) ̂  ]Γ) dimH*(Ml9N UZ,) + dimH*(N) .
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q-n+k = res5==5A. (Γ(s)ζv,.(s; /?,)) + δnλΎr(pfje
φ(v)) for the coefficients q-n+k of

the asymptotic expansion (3.1) are consequences of (3.30) for a = —m — 1/4, where
m G Z+. For a — —m — 1/4 the absolute value of the integral over Res — am
(3.30) is estimated (with the help of (3.31)) by C|ί | m + 1 / 4 uniformly with respect to
v G IR2 \ (0,0) (where Reί > 0, |argί| < π/2 - ε, π/2 > ε > 0 and ε is arbitrary
but fixed). So it holds

0V,.C; P;) = n+2£~\-n+kr
("-k)/2 + {q-n+2mtm + O(|ίr+ 1/4)} . (3.33)

k=0

The latter two terms in (3.33) are O(\t\m) relative to t —> +oo uniformly with
respect to vΦ(0,0) (for |argί| < π/2 — ε). The statements about the structure of
the values and the residues of ζv, (s; Pj) (Theorem 3.1) provide us with the desired
information about coefficients q~n+k m (3.1). These values and residues (up to
δnjcΎτ(pJJ^#(v))) are the sums of the integrals over MJ9dM, and N of the densities
which are defined by the absolutely convergent integrals of the components a-i-k
and d-2-k+ι ([Se2], Theorem 2, and the proof of Theorem 3.1 above). The latter
symbols are defined by (3.4), (3.11), and (3.10). These integrals are smooth in
v G IR2 \ (0,0). Hence the coefficients q-n+k in (3.1) are smooth in vφ(0,0) (and
are invariant under v —> cv, cφO). Theorem 3.2 is proved. •

Remark 3.2. The coefficients q~n+k of (3.1) for 0 ^ k ^ m are completely defined
(according to (3.33) and to Remark 3.1) by an arbitrary parametrix PJ*(v) (3.3) for
(A;-λ)-K

Proof of Proposition 3.2. The parametrix 6 8 P * ^ ( v ) for E*xy{v) (defined by

(2.126)) is such that it is smooth in (x,y)e~MJ] x M / 2 and in vGlR 2 \(0,0) .

The v-transmission boundary conditions (1.27) are satisfied for (A*^)k P*^(v)
(i.e., the image of (DR*(M))2 under the action of the operator with the kernel
P*™y(y) belongs to D((A*)k) for an arbitrary k G Z + ) . The uniform with respect
to v G IR2 \(0,0) estimates (2.127), (2.128) are satisfied and for x from an ap-
propriate neighborhood [ Z o f i V c M w e have (dt -f J*^)P*^(v) Ξ 0 (where U is
independent of v).

Set r^y(v) :— (δt -h Δ*^) P*x y(v). Then the estimates are satisfied for any k G
Z+ U 0,

\ti/£y(y)\ < CmJcΓ
n/2+m~k , (3.34)

where Cmλ is independent of v G R 2 \ (0,0) and of t G (0, T)(n := dimM).
The kernel E*x y(v) can be represented as the Volterra series 6 9

(3.35)

6 8 The properties of such a parametrix are summarized in Proposit ion 2.21. For the sake of brevity

the proof of Proposit ion 3.2 is given in the case of dM = 0. The terms of P , (v), connected with

the Dirichlet and the N e u m a n n boundary conditions on the components of dM, are independent

of v and the proof in the case of dM Φ 0 does not contain any additional difficulties.
6 9 This series was used in the case of a closed manifold M in [BGV], 2.4, 2.7. See also the

formula (2.137) above.
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where Ak = {(σ0,.. .,σk) : 0 ^ σ t ^ 1,ΣV; = 1} (and the scalar product
tr(ωi A*o>2) with the values in densities on M is assumed in (3.35)). The proof
of (3.35) (or of (2.137)) is given in the proof of Proposition 2.21.

Let ψ : / -> IR2 \ (0,0), v = φ(y), be a C°°-map (where y G [-a,a] =: /) . Then

the only term in P*f ,u , ,/Λv) depending on y is

Em Θ ̂ (xi )£/,,(v)φϋ>i) =: £j^(v) , (3.36)

but it does not depend on m. (Here E/j corresponds to Aj with the Dirichlet bound-
ary conditions on dl,φ,φ G CQ°{I \ dl\ φ = 1 in a neighbourhood of supp φ C
/ \ dl, φ(x\) = 1 for xi G [—1/2,1/2] and φ , ^ are even: φ(-xi) = φ{x\\φ{—x\) =
φ(x\).) So, as it follows from the explicit formulas (2.40) for (G/(v))x^V{ (and from
the analogous formulas (2.54) and (2.55) for (E^t(v))XuV]), the uniform with respect
to y estimates are satisfied for any k,q G ΈΛ

I4^°v(v)| < c{q,k)Γ
nl2+q , (3.37)

because they are true for (dt -f Axt + AX[ ){(EN4)x>γι 0 φ(x\)(Eu(v))XhV[ φ(*vi)} and
for {dt 4- /lλ-/ + ̂ x, HCEwA'y ^ ^ i X c T ^ ί v ) ) ^ , ; , , φ(^i)} (where σ\ is the reflec-
tion of 1 = [—1,1] with respect to 0 G / which acts on the variable x\). The kernels
dk,Eχj{v) are the linear combinations of these two kernels with the coefficients in-
dependent of x and y. (These coefficients are smooth in y). The estimate (3.37)
is satisfied for t £ {0,T) and for an arbitrary q £ Έ+ uniformly with respect to y,
because if dX[φ{x\)ή=0 then p(xi,suppφ) > δ > 0.

Let DR*M{1) be the space of forms on M of a class Cι (i.e., of forms with

/ continuous derivatives on M) equipped with a C^norm. 7 0 Let DR*MN{1) : —

DR*l){M\)(BDR*^{M2) be the space of pairs {ωuω2) of forms ω7 of a class Cι

on M, with a C'-norm. The operators with the kernels P* (^(v) for v G IR2 \ (0,0)

and the operators corresponding to δί^P*^;.(v(y)) (for a fixed £ G Z + U 0) are fam-
ilies of uniformly (with respect to v and to t G (0, T]) bounded operators acting
from DRm

M{l) into DRlί^{l). For the operators corresponding to the interior terms

in P*x

nlγ{v) this assertion is proved in [BGV], Theorem 2.29, Lemma 2.49. This
proof uses that this statement is local in x G M (for a closed M) and it uses also
the explicit definition of P[^ over a geodesic ball expx.# C M (where B is a ball
||i;|| S c in TX,M and expτ is the exponential map for {M,QM) from TXM).

The kernel (3.36) (i.e., the term of P*x

my{v) corresponding to the interior bound-
ary N) is equal (up to the factor φ{x\)φ{y\)) to a linear combination given
by (2.54) and (2.55) of the kernels E* for N x I and σ*Ef {σ\ is the mirror
symmetry with respect to N x 0). 7 1 its coefficients depend on (71,72, v), where
(x, y) G MJχ x M)Ί. These coefficients and their derivatives of a fixed order on y
are uniformly bounded.

7 0 This norm corresponds to a smooth partition of unity {φ,} subordinate to a finite cover {U,}

of Έ\ and of M 2 by coordinate charts (i.e., φ, e C^°(t/,)). For v G DR*!N(l) its C'-norm ||y||/

is equal to ]Psup λ G L / sup | α | </!£>"(φ,u)l i e ^ to the sum of the suprema of partial derivatives of

orders ^ /. The C'-norm for an arbitrary smooth finite cover {U'} and for a partition of unity

{φ\} subordinate to {£//} is equivalent to the one defined by {U,} and by {#>,}.
7 1 The operators d?..P(/")(v) = dkEt\j(v) for k G Ίί+ are expressed similarly.
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For a closed N the operators defined by (P™)t '.= Cπntjv)* a r e uniformly
bounded for 0 < t :§ T with respect to a C'-norm in the space DRm

N(l) of Cι-
smooth forms on N. The equality (3.35) is satisfied by E^^P^™' and r™t . Since
the estimate (3.38) below (as well as the analogous estimate (3.34)) is satisfied
by rjyj\ (where n is replaced by n — 1) we see that the series of operators on
the right in (3.35) is convergent for m ^ (n + / — l)/2 with respect to a C'-norm
in DRχ(l). Hence the sum of this series defines a family of the operators E^t in
DRχ(l) bounded uniformly with respect to t G (0, T]. The analogous assertion is
also true for a family of operators defined by the kernels φ(x\)(Ejt)Xuy]φ(y\) act-
ing on smooth forms with compact supports on (I,dl) (with respect to a C'-norm).
So the kernels E^(v\{xχtKl)λyuyf) and dq

yE^J(v(y)\(X]yUy]y) (for a fixed q G Έ+)
define collections of uniformly (in t G (0, T] and v or in t and y) bounded with
respect to a C^-norm operators from DR^l) into DR*M^{1).

The kernel r\m

xy(y) is smooth on M x Mj according to the definition (2.126) of

P*xy(y) The C^-norm of rtxy(v) on each M x Mj satisfies the estimate (analogous
to (3.34))

WiΛm) /iiMI <r" f~* -f—n/2-\-m—1/2 /o OQ\

ll'ί,Jt,jΛv/||/ = W Γ ^J.JOj

uniformly with respect to v G IR2 \ (0,0) and to t G (0, T]. The estimates analogous
to (3.37) an to (2.129) are satisfied uniformly with respect to v and to t G (0, T]
also by the Cι-norms of δ*r£/J/y(v) on each M x M} for any k,q G Z + :

HSίr^/v)!!, ^ c(qMΓn/2+q • (3.39)

Leibnitz's rule claims that P^yy(v(y)) is a bounded operator from the space of

C^-maps ω : [—a,a] —> DR*M(l) (equipped with the norm Y^f=osupye[_aa]\\dι

yω\\ι)

into Cp([—β,fl],Z)i?jJfjV(/)). Indeed, the kernel 3*P^(v(y)) depends smoothly on

y G [—a, a] on M 7 l x M / 2 for k G Z + U 0, since P^y(y) := ( P ^ )/5χ,̂  -h£'^>/(v) and

since Eχj(v) is smooth in v G IR2 \ (0,0). For 0 < t ^ Γ the operators (Λ ( m )(v(y)))
from C^ίt—a,a\,DRm

M{l)) into C 7 ^—α,α],D/?^(/)) are uniformly bounded be-
cause dyPt (for a fixed A: G Z + U 0) are the operators from DR^l) into DR^^l)
bounded uniformly in γ and t, 0 < t ^ Γ, with respect to a C^-norm. Hence, ac-
cording to (3.38), (3.39), and to the fact that the volume of Δk is equal to (k\)~ι,
the series (3.35) for the derivative dPEt^X]yX2(v(y)) is convergent in the Cz-norm on
U(M7l x MJ2) for m > (n + /)/2. (The number m in the definition P ( m ) is greater
than (n + /)/2.) _ _

This proves that dyEfx (y(y)) is C°°-smooth on MJλ x MJ2. (For instance, for

^ = 0 this proves that E*x (v) is C°°-smooth on M 7 | x Mj2.)

So the restrictions i*E*xx(v(γ)) to the diagonals /; : Mj ^ Mj x Mj are C°°-
smooth double forms on Mj which are C°°-smooth in y. Since rm(ί,v) in (3.1)
are O(t{m+λ)l2) uniformly with respect to vGlR 2 \(0 ,0) and since qt are C°°-
smooth in v we see that the asymptotic series (3.1) can be differentiated on y.
Actually, the equality (3.35) holds for £ ; ( V ) , P ; ( M ) ( V ) , and r,(w)(v). The kernel
r,(m)(v) satisfies the estimates (3.34), (3.37), and (3.39) and the kernel P?(m\v(y))
defines a family of uniformly with respect to t G (0, T] and to y bounded opera-
tors from Cp([-a,alDRl[(l)) into Cp([-a,a],DR*MJV(l)). Hence the power terms
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t(-n+j)/2^ o ^ j ^ 2m, in the asymptotic expansion of JM tr iJdyE*(v) as ί -* +0

are equal to the appropriate terms in the asymptotic expansion of JM /*dyP*(m)(v).

(The kernel dy(E {v) - P*{m\v))x^2 is O(Γn/2+m+ι), according to (3.35).) But

the coefficients ql9 0 S i ^ 2m, in (3.1) are completely defined by i*P^m\v), be-

cause the kernel (E*(v) - P*{m\v))X]ίX2 is O(ί~ w / 2 + w + 1 ) uniformly with respect to

ipcuxi) 6 M 7 l x M / 2 and to t G (0, Γ], according to (3.35). Thus Proposition 3.2 is

proved. D

3.4. Estimates for Zeta-Functions and for the Corresponding Kernels in Vertical
Strips in the Complex Plane.

Proposition 3.4. The meromorphic continuation of the zeta-functίon ζv,m(s; pj) :=
Ύΐ(PjT-s(v)) for Res > n/2 is estimated by C(ε)exp(ε|Imιs |) as \lms\ —> +oo for
any fixed ε > 0. Namely for any ε > 0 and for an arbitrary a £ IR the following
estimate is satisfied if Res §: a:

\ζv, (s; pj)\ ^

x (cfRQS-ι)Γ(2(l - Res\cεp
ι/2)

R Σ > - ^ | - 1 ) ) , (3.40)

where p > 0 is such that Spec(zJ ) Π (0,/>] = 0 and the sum is over Sj :=
(w ~~ y)/2? — ̂ j ^ Z + U 0, Sy ^ α. 77/β constants C(a,ε) and cε are positive and
independent of v e ΊR2 \(0,0), αnrf Γ(w,x) := f™tu-ιexρ(-t)dt for x > 0.

Proposition 3.5. i w Res > n/2 (« := dimM) απ<i /or β^j ε > 0 the following
estimate is satisfied (where p > 0 is such that Spec(ZJ ) Π(0,p] = 0):

(3.41)

Proof of Proposition 3.4. It is proved in Theorem 3.1 that the operator norm
||G (v)||2 in DRΦ(M))2 of the Green function G*(v) for the Laplacian Δ* is esti-
mated by Cεl/ll"1 for λ e Λε := {λ e <C,ε g arg/l ^ 2π - ε}, where ε, 0 < ε fg π
is fixed. The spectrum Spec(zl*) is a discrete subset of IR+ U 0 by Theorem 3.1.
So the operator T^s(v) defined by the integral (3.18) is equal to the same integral
with the contour Γ replaced by Γ(ε) := i \ ε U Γε

p U Ti^

Γu = {λ=xexp(iε),oo > x ^ p}, Γε

p = {λ = ρexρ(/φ),c > φ > -ε},

Γ2>ε = {/ί = jcexp(-/c),p ^ x < oo} . (3.42)

There is a constant c > 0 such that the principal symbol (62(x, O — λ)iά of
A9 — λiά on M is invertible for

|ξ | 2 > c\λ\ (3.43)

in the coordinate charts Uι (of the same finite cover {£//} of M as in (3.3)). The
integral (3.18) over the contour Γ(ε) (the latter one is defined by (3.42)) does not
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depend on p for all p > 0 such that (0,p] Π Spec(J ) = 0. We suppose from now
on that

0 < p < (2c + I ) " 1 (3.44)

and that (0,p] Π Spec(Zlv*) = 0.
The kernel (^f)jclrr2 °f m e operator r™ := G*(v) — PΨ form^n is continu-

ous on Ήjλ x M/2) for λ e Λε \ 0. (The parametrix PJ is defined by (3.3).) It
is estimated for \λ\ ^ p,λ e Γε (according to (3.19)) uniformly with respect to
v e I R 2 \ ( 0 , 0 ) by

for any εi > 0. Since (3.45) is satisfied for all λ £ Γ(ε), we have for Res >

7 p

(3.46)

The estimate (3.46) claims that for the proof of (3.40) in the domains Res ^ a
it is enough to prove the analogous estimate for the analytical continuation of the
densities on Mj,N, and on δM, corresponding (for Res > n/2) to the kernel of

— / λ-sP?dλ , (3.47)
Γ ( . ' )

where m = m(a) £ ΊL+ is sufficiently large. (These densities were introduced in the
proof of Theorem 3.1, and the sum of their integrals is equal to the trace of (3.47).)

Let Res > n/2 and ps^t(x) be the density on M7 , corresponding to the restric-
tion to the diagonal z7 : M7 <—» M} x Mj of the kernel Ps

i^t(x\,X2) of the operator
JΓ ^'(PjΣ.iΦiPnnt u,cP^dλ ( w h e r e ^Γint i s d e f i n e d bY ( 3 13) and by (3.4)). Then
ps^t(x) can be continued to a whole complex plane (C 3 s as a meromorphic density
([Se2], Lemma 1, or [Sh], Theorem 12.1).

Proposition 3.6. The density ps^t(x) satisfies the following estimate for any ε > 0:

\pl£t(x)\ < Cεmax(p~Res, l)exp(ε|Ims|)^|s — sk\~l , (3.48)

where the sum is over 0 ^ k ^ m such that (—sk) £ Tί+ U 0.

Proof The density ps^t(x) for Res > n/2 corresponds to the sum of the integrals

i m

'T- I λ~SΘ(-ξ>λ)Σ"-2-j(x, ξ,λ)dλ , (3.49)

where a-k is a positive homogeneous of degree (—k) in (ξ,λι/2) component of
the symbol s((A* — λ)~ι) in the coordinate chart £// defined by (3.4). The integral
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(3.49) is the sum of the integrals JQ ε(x) + Jf ε(x) + J% ε(x) o v e r the three corre-
sponding domains:

KQ:={(ξ,λ):\ξ\2 g l-p,λeΓ{t),\λ\ g ( 1 - | £ | 2 ) } >

Iι:={(ξ,λ):\ξ\2 ^ l-p,λeΓiε),\λ\ > ( 1 - \ξ\2)} ,

h : = { ( ξ , λ ) : \ξ\2 >l-p,λ€ Γ ( ϊ ) } . (3.50)

Since KQ is compact and since λ~sβγ^a-2-j(x, ζ, λ) is continuous on M7 x KQ,
the density JQ£(X) is holomorphic i n ^ G C and it is estimated by

m

\Jξt(x)\ g Cecxp(ε\lms\)meix(p-Res, 1) max Σ φ,(*)0Σ«-2-;(*> &*) . (3.51)
M ; x £ 0 z Q

The latter factor on the right in (3.51) does not depend on s and p. Hence it is
estimated by a constant.

Set Js

k{x) :=J£ε(x) from now on. For Res > n/2 the density J | (x) does not
change if the interior integral in (3.49) is replaced by the integral over

Γ{e)M:=\ξ\2(l-prιΓ(ε)9 (3.52)

because θγ^a-2-j is holomorphic in λ in the domain between the contours Γ(ε) and
Γ( ε ) |φ Indeed, this symbol is holomorphic in λ for (ξ,λ) such that \ξ\2 + \λ\ > 1
and \ξ\2 > c\λ\ (where c > 0 is the same as in (3.43) and (3.44)). Since 0 < p <

1

 (ε)(2c -f I ) " 1 we have for λ between Γ(ε) and

P ύ \ λ \ S\ξ\2p(l-pΓ\ c\λ\ ^c\ξ\2p(l-p)-1 <2~ι\ξ\2 <\ξ\2,

and \ξ\2 + \λ\ > 1 for(ξ,λ)€/2.

The density J|(x) is represented as the sum J | p(
x) + X)/=i2^2 /(x) ' wriere J|y

and 7 | p correspond to (3.49), with the interior integral replaced by the integral over
Γ / , i ί i : = l ^ 2 ^ - pylΓM a n d o v e r ΓUc\ := \^λ - p)~iΓP τ h e d e n s i t y J ί ( χ ) i s

equal to the sum Y2i=\2^ι /(̂ )» w n ^ r e the interior integral in (3.49) for the term
J(j is over the contour Γ/?ε \Z)1_|^2 (£>r := {λ,\λ\ < r}).

Set /I := exp(/e(-iy + 1 )ί 2 on Γε

m (for \ξ\2 > 1 - p) and on Γ/?ε \A-|ξ |2 (for

\ξ\2 ^ 1 — p), where ί > 0 is a new variable. Then we have

Vίj +Jί,X<) =2(2πΓ<"+ 1>/exp((-iyiε(ί - 1))

x Σφι(x)Jt-2s+ιHΣma-2-k(x,ξ,λe(t))dtdξ , (3.53)
/ F 0

where λt(t):— exp((-l)^+ 1/ε)ί2, Res > n/2, and F is the domain

{(ξ,t):\ξ\2+t2 ^ l,\ξ\2 ί \-p,t^pι/2}U{(ξ,t):\ξ\2 £ I - p ,

t g: |ξ|p^ 2/(l - PΫ/2} •
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Since a-k(x,ξ,λ) are nonsingular for λ G Γ/?ε and since r (ξ,t) G F for (ξj) G
F and r ^ 1, we see that (3.53) can be written as follows:

Vϊj +^2,,)W =2(2πΓ(π+1)fexp((-iy*ε(ί - 1))

(3.54)

where Fi = F Π {(£, 0 : £2 + 1 2 = 1} and ωn+\ is the volume form on the unit
sphere in RJΓ}"1. The integral over the compact F\ in (3.54) is an entire function of
s G C So the right side of (3.54) realizes the analytic continuation of the density
(J{ j + y | /) ( x ) to a meromoφhic in s G C density with no more than simple poles
at the points Sk = (n — k)/2, 0 g A: ^ m.

Since Λ = p(l — />)"~1|ξ|2exp(zφ) on Γε,«. (where ε ^ φ ^ — ε), we have

< l > f / γ (3-55)

where the integral is over {ξ : \ξ\2 ^t \ - p} and

:= fcxp(-iφ(s - l))a-2-k(x,
— ε

:= \ξ\2p+exp(iφ), p+ := p(l - p Γ 1 . (3.56)

The symbol (3.56) is positive homogeneous of degree (—2s — k) in ξ. It is
analytic in s G C and nonsingular. So (3.55) realizes a meromorphic continuation
of Jp(x) to the whole complex plane <C 3 x. Namely

(3.57)

where ωw is the volume form on the unit sphere in IR". The formulas (3.54) and
(3.57) provide us with a meromoφhic continuation of the density ps^t(x). Together
with the estimate (3.51) they provide us with the estimate (3.48). (However, with
the sum in it over all Sk, 0 ^ k ^ m.) The analytic continuation of the density
defined by the sum of the integrals (3.49) with the interior integral over the contour
Γ(π) (i.e., with ε = π) is regular in s — s^ for (—Sk) G Z + U 0. (This assertion is
obtained in the proof of Theorem 3.1.) For \ξ\2 > 1 — p the interior integral over
Γ(ε) in (3.49) is equal to the integral over Γ(π). So the estimate (3.48) is satisfied,
where the sum is over Sk> 0 g k ^ m, such that (—Sk) ί %+ U 0. D

Let Res > n/2 and let psfd(x) be the density on M-} corresponding to the term

in (3.47) determined by the v-transmission interior boundary conditions. 7 2 It is

7 2 From now on we'll suppose that dM = 0. Estimates of the contributions into ζv,m(s; pβ) from

the Dirichlet and the Neumann boundary conditions on the components of dMj \ N are analogous

to the estimates for the contributions from the v-transmission interior boundary conditions.
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defined by the restrictions to the diagonal M; <-» Mj x Mj of the kernel for the
operator

^f (3-58)

where 9m = @m(λ,v) is defined by (3.9), (3.10), and (3.12).
The operator Q)m is defined by the symbols ]Pd_2_A:, 0 :§ k ^ m, in a co-

ordinate chart (x',0, ^i C IR""1 x 1R1 (where NΠUi = (1R"""1 xO)Π Ut and the
structure IR""1 x IR1 corresponds to the direct product structure of the metric g^
near N). Its action on / , / G D^^IR"" 1 x (IR+ \ 0)), can be represented for t > 0,
tλ > 0, as follows ([Sel], (26)-(28)):

k=0 0

dZ2-k(x',t,ξ',tl9λ):=-
r_

where Γ_ = r_(^,A) is a simple contour in the half-plane Im τ < 0 which once
goes round (in the direction opposite to the clockwise) the only zero of the principal
symbol (b2(x\ ξ',τ) - λ)iά of the Laplacian (A9 - Aid). 7 3 Lemmas 2 and 3 of [Se2]
and Lemma 2 of [Sel] claim that the integral over IR+ (where Uj Π (1R""1 x IR+) =
UiCλMj) fdZ2-k(χf>t>ζf>t>^dt is a symbol of (x',ξ',λ) positive homogeneous of
degree (-2 - k) in (ξ\λι/2). They claim also that the kernel on IR""1 defined by
the integral over [Γ,oo) C 1R+ (for an arbitrary T > 0)

oo

/ e x p C ί ί ^ j c ' - y'))dξfJdλjdtθλ{ξf,λ)λ-sd^k{xf,t,ξ',t,λ)
Γ T

is an entire function of s G (C smooth in x',y',s and vanishing at s for (— s) G 71+ U
0. The latter assertion is an immediate consequence of the estimate ([Sel],(29)) for
d-2-k

dZ2-k(x',t,ξf

9tl9λ)\

fg Ciexρ(-c ε(|ί | + | ί i | )( | ί | + |A|1/2))(1 + \ξ\ + |/i|1 / 2)~

(3.59)

with positive constants C\(ε) and cε independent of v G IR2 \ (0,0).

Proposition 3.7. The analytic continuation to the whole complex plane C 3 s of
the integral over Mj of ps'εd(x) (which is defined for Res > n/2) is estimated by

<ci?εmax(p~Re*, l)exp(ε|Im.s|)5^|,si — ^ | - 1

e\\)), (3.60)

where the sum is over 1 ^ k ^ m -f 1 ŵc// ί//α/ (—5 )̂ ^ Z + U 0.

The whole symbol of A* does not depend on t in the neighborhood of N.
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Proof The trace of the operator (3.58) for Res > n/2 is given by the integral

(2πynΣfdx'dtφι(x', t)jdξf ( — Jλ~sdλθι (ξf, λ)ΣdZ2_k(xf, U ξ', U λj\ .

(We suppose that ψι{x',t) are independent of / for 0 ^ \t\ ^ 1). It follows from
the estimate (3.59) that the density on N corresponding to the integral

j dt(ψι(xf,t) — φι(xf,O))fdξftr(— J λ~sdλ 0i^i/I2_^
R + Γ(,:)

has the analytic continuation which is an entire function of s G C and which satisfies
the estimate

Cε/njlιexp(ε\lms\)hp(cε,RQs)J(l + \ξ\)~n^xp(-cε\ξf\)dξf , (3.61)

hp(cε,Res) := /°°exp(—cεt
ι^2)t~Resdt + πpmax(p~R e i y, 1)

- Res),cεp
ι/2)

where n\ G 7L+ is sufficiently large.
The density on Â  is defined by the integral

psfjd{x') := (2πr«φ(x'90)fdtfdξ'tr(^- J λ~sdλθxf:dZ2_k)) , (3.62)

which is absolutely convergent for Res > (n — l)/2. Hence it is analytic in s for
such s. The integral over t G IR+ of dZ2-k ^s a positive homogeneous of degree
(-2 - k) in (ξ\λ1/2) symbol, which is smooth in (x\ξ\λ) and analytic in λ for
c\λ\ < \ξ'\2 (where c is the same as in (3.43) and (3.44)) and in λ G Λε/2 := {λ :
ε/2 < argA < 2π - ε/2} for (ξ',λ) + (O,O) ([Sel], Lemma 2, [Se2], Lemma 2). So
the proof of Proposition 3.6 is valid also for the density (3.62) (where (x,ξ,n)
are replaced by (xf,ξf,n— 1)). We conclude that this density has a meromorphic
continuation psήd(xf) with no more than simple poles at the points s\,...9sm+\. This
proof provides us with the estimate

Ps(hd{x') (3.63)

where the sum is over 1 g k S w + 1. The analytic continuation of the density
on N defined by the sum (over /) of the integrals (3.62) for the interior integrals
over the contour Γ(π) (i.e., with ε = π) is regular at s = s* for (— Sk) G Έ+ U 0. (It
is proved in Theorem 3.1.) For \ξ'\2 > 1 — p the integral over Γ(εj in (3.62) is
equal to the integral over Γ(π). Hence the estimate (3.63) is satisfied if the sum
is over k,l ^ k ^ m -+- 1, such that (—Sk) ̂  Z+ U 0. The estimate (3.60) follows
from (3.63), (3.61). D

The estimate (3.40) follows from Propositions 3.6, 3.7, and from (3.46). Thus
Proposition 3.4 is proved. D

Proof of Proposition 3.5. The estimate (3.46) in the proof of Proposition 3.4 is
satisfied by the integral of (r™)X]yX2. So it is enough to obtain the estimate (3.41)
for the kernel of

— f λ~sPfdλ ,
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where Res > n/2. The term ps^t(x\,X2) in this kernel has the same form as in
(3.49) but with the addition factor exp(iξ(x\ — xi)) under the integral sign (where
x and ψf(x) are replaced by x\ and by xjj ,(x\)φj{x2)) The integration over the
domains (3.50) in the integral corresponding to (3.49) represents this kernel as the
sum (Jo% +J{iE +^2%) (χi>χ2), where Jfε corresponds to the integration over the
appropriate domain in (3.50). The term JQF(X\,X2) satisfies the estimate (3.51) if
Res > n/2. (In this estimate max (p~ R e ί , 1) can be replaced by p~ R e s since Res > 0
and since 0 < p < 1.)

The contour Γ(β) of the interior integral in (3.49) for y | f can be replaced by
the contour Γ(,;) jςj defined by (3.52). The sum of the integrals over the straight
line pieces of Γ(ε) and of Γ^ξ\ in the kernel (̂ fε + </f ε) (χi>χ2) has the same
form as (3.53) (but with the factor exp(/(xi — X2)ζ) under the integral sign). The
integral over the circle part of Γ(ε),|ς| for the kernel J|e(xi,X2) is also completely
analogous to (3.55). This provides us with the estimate for the kernel p^t(x\,X2)
(where Res > n/2):

\ps£(xux2)\ < C£exp(φms|)p-R e Λ(Res - nβyx . (3.64)

The proof of (3.41) for an arbitrary closed manifold M follows from the estimate
(3.64) together with the estimate (3.46) for (rf)X]yX2. (They also give us the proof
of (3.41) for a part p^t(x\,X2) of the kernel (T-s)X]yX2 defined by a local parametrix
Σ V^Γint^/ ) If (M,QM) is mirror symmetric with respect to (N,g^) (and the v-
transmission interior boundary conditions are given on N) then the kernel (T-s)XιJC2

for Res > —n/2 can be represented by the formulas (analogous to (2.54), (2.55),
and to (2.118)), where v = (α,/?)φ(0,0) and T^s corresponds to a closed manifold
{M,QM) (or to Vo = (1,1) that is equivalent according to Proposition 1.1):

ol 2

(T-s)X],X2 = (TM

S)XUX2 + L^L(σ*τ"s)x^2 for χl9χ2 e Mx ,

~β2 M
——ψ;(σx Γ_4.)Λ ,,V, for x u x 2 e M2 ,

2*,β

+ β2'
(T-s)X]a2 = ? α

 oΛTMs) for χux2 from different Mk , (3.65)

where σ\ is the mirror symmetry on M with respect to N, acting on the variable
x\. The kernel (TA4

S)X]^2 can be analytic (meromorphic) continued to the whole
complex plane C 3 s (separately on the diagonal x\ = x2 and off the diagonal ). It
follows from [Se2], Theorem 1, or from the proof of Theorem 3.1. Hence (3.65)
is true for all s G C So the estimate (3.41) is satisfied also in the case of the v-
transmission interior boundary conditions on N if (M, QM ) is mirror-symmetric with
respect to N.

The boundary term 7 4 ΣΨj^mμψj of the parametrix Pm can be identified with
the same term in the mirror-symmetric case (as it is defined in a neighborhood
7Vx7 of yV = N x 0, / = [-2,2]). The estimate (3.46) for the integral over Γ(fc)

of (r™)X] jc-y is satisfied for the mirror-symmtric case also. So the estimate (3.41)
is satisfied by the kernel p°fj2(s) of the operator Yj\j}92mjj\\j}. This estimate for

7 4 The operator 6lm = ®nu/{\) is defined in the coordinate chart IR""1 x IR1 3 (χ\t) by (3.12),

(3.11), (3.10).
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Pxf^2(s) together with the estimates (3.64), (3.46) for ps^t(x\,x2), and with the
estimate (3.46) of the integral of (rf)XlyX2 over Γ(ε> provides us with the estimate
(3.41). D

5.5. Appendix. Trace Class Operators and their Traces. A bounded linear operator
A acting in a separable Hubert space H is a trace class operator if the series of
its singular numbers (i.e., of the arithmetic square roots of the eigenvalues for the
self-adjoint operator A*A) is absolutely convergent. If A is a trace class operator
then its matrix trace exists for any orthonormal basis (βf) in H:

and this sum is independent of the orthonormal basis ([Kr]). It is called the matrix
trace of A. The Lidskii theorem ([Li]) claims that if A is a trace class operator then
the series of its eigenvalues is absolutely convergent: Σ 1̂ /04) I < °° an<^ ̂ s trace
ΎrA := J2λj(A) is equal to its matrix trace: ΎrA = SpA.

Proposition 3.8. For t > 0 the operators exp(—^dV0)/ ) and p\exρ(—tAVQj) are
trace class operators in the L2-completion (DRj(M))2 of DRj(M) 7 5 and their
traces are equal to the integrals of the densities defined by the restrictions to the
diagonals of their kernels:

^ V O J ) = Σ /tr(VM,£Wvo)), (3.66)

Tr(/>iexp(-ίJV0>/)) = pr^X2i^EiX]^(v0)). (3.67)

Here pk : (DRJ(M))2 -> (DR\Mk))2 ^ (DRj(M))2 is the composition of the re-
striction to Mk of differential forms and_of their prolongation to M by zero on
another piece of M, IM,.,'- Mr

 e—» Mr x Mr is an immersion of the diagonal and
the exterior product of the double forms {restricted to the diagonal) is assumed.

Proof The operator At := exp(—tAVoj) is positive definite on (DR\M))2 and for
an arbitrary / e (DRJ(M))2, / φ θ , it holds (Atf9f) > 0 (where the scalar product
on (DRJ\M))2 corresponds to (1.23)).

The operator Bt := p\exp(—tAVQj) is positive definite on the subspace
(DRJ(Mι))2 of (DRJ(M))2. Namely (Btm,m) > 0 for m G (Z)7?/(M1))2, mφO, and
it is a non-negative operator on (DR*(M))2 : (Btf,f) ^ 0 for / € (DR\M))2.

The operator exp(—tAVQj) is self-adjoint on (DRj\M))2 by Theorem 3.2. Its
kernel A(xux2) is smooth on Mr] x Mn (as it is proved in Proposition 3.2) and
its trace is equal to

Trexp(-ίΛ0,y) = Σ Tr(^exp(-/zlV ( K /)) = Σ T r (/ 7 *exp(-ίA 0 , ./)#ϋ ( 3 6 8 )
A:=l,2 Aτ=l,2

(The matrix trace for exp(—tAVoj) in (DRJ(M))2 =: H can be computed with the
help of an orthonormal basis (ez (l)),(e z (2)) in H, where (e,(£)) is an orthonormal
basis in /4 := {DRj(Mk))2.)

DR'(M\)®DR<(M2) C
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The operator Ak := pkexp(—tAVQ>J)pk acting in H = H\ ® H2 has a continuous
kernel Ak{x\,x2) = ^ X l j X 2 (vo) on M^ x M^ (and it has the zero kernel on Mkχ x
Mk2 for ^ Φ ^ ) The operator Ak is a self-adjoint operator acting in the Hubert
space Hk and it is positive definite, (Akf,f) > 0 for / £ //*, / φ θ . So according
to the Mercer theorem [GG], IV.3, [RiN], Sect. 98, the Fourier series for the kernel
of Ak by the eigenforms of Ak

Ak(xux2) = ΣμjCDjixi) ® CUJ(X2) , (3.69)

(where μ7- ^ 0 are the eigenvalues of Ak) converges absolutely and uniformly with
respect to Mk x Mk. Hence integrating this series over the diagonals in Mk x Mk

(for k = 1,2) we obtain the equality (3.66):

Trexp(-/zJVo/) = ΣΎrAk= £ j tr(iLAk(xux2)) .
k=l,2 k=l,2Ήk

The equality (3.67) is obtained similarly

T r ί ^ e x p ί - ^ v ^ ) ) = Tr(/7iexp(-ίJV0f/)/?O = pr(ί*M]Aι(xux2)).

The proposition is proved. D

Proposition 3.9. For RQS > n/2 the operator Γ_5 defined by the integral76 (3.18)
and the operators pj{Δ*)~s are trace class operators (n := dimM). The traces of
these operators for Res > n/2 are equal to the integrals over the diagonals of the
densities, defined by the restrictions of their kernels to these diagonals.

Tr((A;ys= Σpτi^MjsixiΛ)), (3.70)

A;ΓS= _ftr(*X2i*MT-s(xl9x2)) (3.71)
M,

Proof The kernel T-S(x\,x2) for Res > n/2 is continuous on M ; i x Mj2 (Theorem
3.1). The operator T-s for such s is nonnegative, (T-Sf9f) ^ 0, and self-adjoint. It
is a trace class operator (Theorem 3.1). For Res > n/2 the equality holds (analogous
to (3.68))

.7=1,2

The operator pjT-spj is self-adjoint in the Hubert subspace DR*(Mj))2 of
(DR*(M))2 and its kernel coincides with the kernel K-Sj of T_s on M; x M}.
So for Res > n/2 its kernel is continuous and, according to the Mercer theorem,
the series on M} x Mj for K-Sj expressed by the eigenforms of pjT-spj (anal-
ogous to (3.69)) is absolutely and uniformly convergent on Mj x Mj. Hence for
such s the integral over the diagonal of the density, defined by the restriction of
the kernel AΓ_ 7̂, is equal to Ίx(pjT-spj). Thus the equalities (3.71) and (3.70) are
proved. D

7 6 The operator 7T_5 for such s is defined on (DR*(M))2 and it is equal to the direct sum of the

operator (A*)~s on the orthogonal complement to Ker(zJ ) and of the zero operator on

by Theorem 3.1.
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