Erratum

On the Spectra of Randomly Perturbed Expanding Maps

V. Baladi¹, L.-S. Young²

¹ Mathematik, ETH Zürich, CH 8092 Zürich, Swtizerland. (On Leave from UMPA, ENS Lyon (CNRS, UMR 128), France). E-mail address: baladi@math.ethz.ch

² Department of Mathematics UCLA, Los Angeles, CA 90024, USA.

E-mail address: lsy@math.ucla.edu

Received: 30 June 1994

Commun. Math. Phys. 156, 355-385 (1993)

The authors wish to point out an error in Sublemma 6 in Sect. 5 of [1]. The claims in Theorems 3 and 3' have been revised accordingly; a correct version is given below. Other results in [1] are not affected.

The first author is grateful to P. Collet, S. Isola, and B. Schmitt for useful discussions.

i) Revised Statement of Results in Sect. 5.C

Section 5 of [1] is about piecewise C^2 expanding mixing maps f of the interval. The number Θ below refers to $\Theta = \lim_{n \to \infty} \sup(1/|(f^n)'|^{1/n})$. These maps are randmoly perturbed by taking convolution with a kernel θ_{ε} , and the resulting Markov chain is denoted χ^{ε} . The piecewise statements of Theorems 3 and 3' should read as follows:

Theorem 3. Let $f: I \to I$ be as described in Sect. 5.A of [1], with a unique absolutely continuous invariant probability measure $\mu_0 = \rho_0$ dm, and let χ^{ϵ} be a small random perturbation of f of the type described in Sect. 5.B with invariant probability measure ρ_{ϵ} dm. We assume also that f has no periodic turning points. Then

(1) The dynamical system (f, μ_0) is stochastically stable under χ^{ε} in $L^1(dm)$, i.e., $|\rho_{\varepsilon} - \rho_0|_1$ tends to 0 as $\varepsilon \to 0$.

Let $\tau_0 < 1$ and $\tau_\epsilon < 1$ be the rates of decay of correlations for f and χ^ϵ respectively for test functions in BV. Then:

(2) $\limsup_{\varepsilon \to 0} \tau_{\varepsilon} \leq \sqrt{\tau_0}$.

Theorem 3'. Let f and χ^{ε} be as in Theorem 3, except that we do not require that f has no periodic turning points. Then

- (1) $|\rho_{\varepsilon} \rho_0|_1$ tends to 0 as $\varepsilon \to 0$ if $2 < 1/\tau_0 \le 1/\Theta$;
- (2) $\limsup_{\varepsilon \to 0} \tau_{\varepsilon} \leq \sqrt{2\tau_0}$.

If θ_{ε} is symmetric, the factor "2" in both (1) and (2) may be replaced by "3/2".

Section 5.D is unchanged.

ii) Revised Version of Section 5.E

We follow the notation introduced at the beginning of 5.E, except that we consider only the situation where

$$\Sigma_0 = \{1\}$$
 and $\Sigma_{1,0} = \emptyset$.

That is to say, the reader should read 5.E with $\kappa_0 = 1$, $\kappa_{11} = \kappa_1 = \tau_0$, etc.

Sublemma 6, which is problematic in [1], is valid in this more limited setting because $\pi_0 \varphi = \rho_0 \cdot \int \varphi \, dm$. Lemmas 1' and 3', which use Sublemma 6, are also correct under the present assumptions. We take this opportunity to add " $X_0^{\epsilon} \to X_0$ ", which had been inadvertently left out in [1], to the conclusion of Lemma 3'.

To Prove Theorem 3, one applies Lemma 9, 1' and 3' with κ close to (and slightly bigger than) $\sqrt{\tau_0}$. To prove Theorem 3', take κ close to $\sqrt{\tau_0/2}$ (or $\sqrt{\tau_0/(3/2)}$ if θ_{ϵ} is symmetric).

References

 Baladi, V., Young, L.-S.: On the spectra of randomly perturbed expanding maps, Commun. Math. Phys. 156, 355–385 (1993).

Communicated by J.-P. Eckmann