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Abstract: We derive semiclassical quantization equations with uniform estimate of
the error term near unstable equilibria of the classical system for the one-dimen-
sional Schrodinger operator.

1. Introduction

The Einstein-Brillouin-Keller (EBK) quantization rule gives semiclassical energy
levels of a quantized completely integrable classical system with n degrees of
freedom as

E(ku. . .ikJ^Hiπhi^+i^μ)),. . .,πh(kn + (an/4))), (1.1)

where kί9. . ., kn are integer quantum numbers and α l 5 . . ., αn are the Maslov
indices (see, e.g., [BT]). Here H(I1,. . . ,/π) is the classical Hamilton function in
action-angle coordinates 7 1 ? . . ., /„; φu . . ., φn. For a one-dimensional potential
hole U(x), (1.1) reduces to the Bohr-Sommerfeld quantization rule of the old
quantum mechanics,

h-1 J j2m(Ek-U(x))dx = π(k + (l/2)) . (1.2)

The EBK quantization rule has been established in a number of cases (see [CdV,
Laz and KMS]). Still many problems remain open and among them the most
important problems are, probably, the following two:

(i) Does the EBK quantization rule satisfy the correspondence principle, which
means that (1.1) gives all (or at least almost all except finitely many) quantum
energy levels?

(ii) What is a uniform quantization rule near separatrices?

In the present paper we address ourselves mostly the second problem in the
simplest, one-dimensional case.
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Consider a classical particle which moves on a circle of the length L in the field
created by a smooth potential U(x). Assume that x = 0 is the only absolute
maximum of U(x). Then if the energy E of the particle is bigger than UmΆX = £/(0),
the particle will run around the circle with some average nonzero velocity. On the
other hand, if the energy of the particle is less than t/m a x the particle cannot cross
the point x = 0 and it will oscillate between two turning points x± which satisfy
U(x±) = E. For E<Umax the quantized energy levels are determined (up to O(h2))
by (1.2), while for E>Umax the quantization rule is

ft"1 j J2m(E2k-U2k-U(x))dx = 2πk . (1.3)
o

Thus the quantization rule changes discontinuously when E = Ek passes the value
Umax and this implies that the error term O(h 2) in the value of energy levels given by
the quantization rules (1.2), (1.3) cannot be uniform when E -» C/max. Our aim in the
present paper is to derive a quantization rule with uniform estimate of the error
term, which connects (1.2) to (1.3).

A similar situation appears when E passes the value of a local maximum of
U(x). Consider a double-well potential with a local maximum at x = 0 (see Fig. 1).
Then for E< U(0) we have independent quantization rules for each well,

h'1 J v /2m(£-ί/(x))dx = π(fc_+(l/2)) , (1.4)
xl

and

ft"1 J s/2m(E-U(x))dx = π(k+ +(1/2)), (1.5)
x'+

while E>U(0) the quantization rule is (1.2). Again the quantization rule changes
discontinuously at t/(0) and so the error term O(h2) is not uniform when E -> U(0).
Our aim is to derive a quantization rule with uniform estimate of the error term,
which connects (1.2) to (1.4), (1.5). Let us turn to exact formulation of our results.

Consider a one-dimensional Schrodinger equation on [—(L/2), (L/2)],

φ{x)9 (1.6)

with periodic boundary conditions, where U=U(x) is a periodic C0 0 potential,
)=U(x), with a nondegenerate absolute maximum at x = 0:

Umax = U(0)>U(x) ifx + 0; ί/"(0)<0 .

Let E o ^ £ x ^ £ 2 = be eigenvalues (quantum energy levels) of (1.6) and

^ ^ " 1 J y/2m(E-U(x))dx .

We are interested in eigenvalues E = Ek near Umax and we prove the following
result:
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Fig. 1. Double-well potential

Theorem 1.1. There exists ε>0 such that in the interval Umax~ε<E<UmΆX

E = E2k,E2k-i are, up to O(ft4/3), solutions of the equation

where a(E) = h-1(rn/\U"(0)\)1/2(E-U(0)) and

(1.7)

ί ] . (1.8)

Remark. We in fact prove that E = E2k,E2k-1 are solutions of Eq. (1.7) up to
0(min{h4l\τh2}) where τ = l + |£/ /"(0)| |ί/(0)-£Γ1 / 2, which gives O(h2) when
U'"(0) = 0 (e.g., for even U).

The graphs of the functions y±(t) are shown on Fig. 2. Observe that y±(oo) = 0
so for E-Umax>h{\U"{0)/m)112, (1.7) reduces to

L/2

* ί
-L/2

and y ± (-oo)= ±(1/2), so for Umax-E>h(\U"(0)\/m)1/2, (1.7) reduces to

J

(1.9)

(1.10)

which is equivalent to (1.2). Equations (1.9) and (1.10) are the Bohr-Sommerfeld
quantization rules without and with turning points, respectively, and (1.7) describes
a continuous transition from (1.9) to (1.10) with a uniform estimate of the error
term.

Consider now the case when x = 0 is a local and not a global maximum of U(x)
("double-well" potential, see Fig. 1). Define for E^U(0), the points x_<x'_g
x+<x+ as solutions of the equation U(x) = E. For E^U(0) we define x_ <x+ as
solutions of U{x) = E and xf- =x'+ =0. For the sake of simplicity we will assume
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Fig. 2. G r a p h s of the functions y + (/)

that in some interval \E—U(0)\^εo,εo>0, there are no other solutions of the
equation U(x) = E. Let

1(E) = h~1 j j2m(E-U(x))dx

and

y/2m(E-U(x))dx .

(1.11)

(1.12)

We will take the convention that tan x + tan y = 2tan z if either tan x, tan y, tan z are
finite and the equation holds or at least two of these three numbers are infinite.

Theorem 1.2. There exists ε>0 such that in the interval U(0)-ε<E<U(0) + ε, all
the eigenvalues Ek of (1.6) can be found, with the error O(h4/3), as solutions of the
equation

tan(/1-0++(π/4)) + tan(J2-0++(π/4)) = 2tan(ψ_-ψ + ), (1.13)

with Ilt2 = Iι,
Theorem 1.1.

and Φ±=W2)y±iβ(P)\ where a(E) and y±(t) are the same as in

When E-U(0)>h(\U"{0)\/m)1/2,φ- and φ+ are close to 0 and (1.13) reduces
to the Bohr-Sommerfeld equation (1.2). When U{0)-E>h(\U"(0)\/m)1/2, ±φ± is
close to π/4, so that \ten(φ — φ+)\ is close to infinity and (1.13) reduces to two
possibilities described by (1.4), (1.5). In the case of a symmetric double-well
potential U(x), h =I2 and (1.13) reduces to the equation

I1=I2 = πk + φ±±(π/4).

In general, other wells can exist in which the particle have energy close to U(0).
In this case (1.13) represents the energy levels with eigenstates (or quasi-eigenstates)
localized in the double well area under consideration, and there are other energy
levels near £/(0) with (quasi-) eigenstates localized in the other wells.
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It is to be noted that near U(0) the energy levels are more dense than on the
average. Consider, for instance, the case when x = 0 is the absolute maximum of the
potential U(x) such that U(x)<U(0) for x Φ 0 and £/"(0) φ 0. Define

b(E)= f
{x.E^U

Then it is not difficult to show that as t -• 0,

where bo(t) and bx(i) are C00 functions and ft1(0) = |2ί/ / /(0)|"1 / 2. Comparing this
asymptotics with the quantization equation (1.7), we obtain that for energy levels
Ek lying in 0 (ft^neighborhood of ί/(0) the spacing between neighboring energy
levels is of order of const ft |logftΓ\ while on the average it is of order of const ft.
Similar asymptotics of the spacing between neighboring energy levels holds also in
O(ft)-neighborhood of any local maximum of U(x).

The asymptotic expansions for the one-dimensional Schrodinger equation is
a highly advanced area of investigations (see excellent reviews in [BM] and [Olv3]
with a lot of references therein). So it was very surprising to the author that the
semiclassical quantization rules with uniform estimate of the error term, derived in
the present work were seemingly not known before. A very close to (1.7) quantiz-
ation condition was recently obtained in the paper [KMS] of Kosygin, Minasov
and Sinai for the Laplace-Beltrami operators on the Liouville surfaces. Also the
asymptotic formulas describing wave penetration through a potential barrier (see
[BM, Olv3] and references therein) are related to the present study. The import-
ance of the phases y± for these problems was emphasised in the works [FHWW,
Mil] and others. For analytic double-well potentials N. Frδman, P.O. Frδman,
Muhrman and Paulsson (see [FFMP] and references therein) derived, without
estimation of the error term, a semiclassical quantization formula which includes
integration over different paths in complex plane (the author thanks Michael Berry
for calling his attention to this work). It can be shown that this formula is
consistent with (1.13) in the limit when E -> ί/(0).

We will prove Theorem 1.1 and 1.2 in the next section. The proof uses the
matching of asymptotic solutions of the Schrodinger equation (1.6) constructed
near different turning points.

2. Proof of Theorems

Proof of Theorem 1.1. To construct approximate solutions of the Schrodinger
equation (1.6) we use the method of comparison equations which was first set out
by Miller and Good [MG] and Dingle [Din] (see also papers [HM] of Hecht and
Mayer and [Mor] of Moriguchi). A very good exposition of the method of
comparison equations and other relevant methods and applications is given in the
review article [BM] of Berry and Mount.

A model (or comparison) equation for (1.6), when E is near ί/max, is the Weber
equation

x2/4))υ = 0 . (2.1)
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Let v± (x; a) be even and odd real valued solutions of the Weber equation. We look
for the WKB solutions of (1.6) in the form

ψ + (x)^—L=v+(h--^2φ{x);h'1a)9 (2.2)

where φ(x) is an unknown function. Substituting the form (2.2) into (1.6) we obtain
the equation

(φ')2 (aHφ2/4)) = 2m(E-U) + h2S(φ'), (2.3)

where

S(ψ) = (Ψ"/Φ)-(V2)(ψ'/ψ)2 (2.4)

is the Schwarzian. Let us drop the last term in (2.3) and consider the equation

2 2 U). (2.5)

Here ψ(x) and a are unknown. We claim that we can find such an a that (2.5)
has a nice C0 0 solution φ(x) with φ'>0. Assume first that E<Umax. Let
t/(x_) = ί/(x + ) = £, so that E-U{x)<0 when x_ <x<x+. Then from (2.5)

a + (φ2(x±)/4) = 0, (2.6)

so α < 0 . Let us rewrite (2.5) o n x _ < x < x + as

Integrating from X- to x+ we obtain

2|α| 1 / 2 φ(x + ) x +

J y/— a — (φ2j4)dφ= j ^/—a — (φ2/4)dφ= J +J2m(U— E)dx . (2.7)
- 2 | α | 1 / 2 φ(χ_) x_

The LHS integral is equal to π( — a\ hence

fl^-TΓ"1! sj2m{U-E)dx . (2.8)

/m a x,Lemma 2.1. a = a(E) is a C0 0 function ofE on [ ί/ m a x — ε, ί/m a x], απ<i w/ien £ -> ί/

1 / 2 1 2 ί / m a x | 2 ) . (2.9)

Proof of this and all subsequent lemmas is given in the next section.
Observe that (2.8) determines a = a(E) for E^Umax. Consider an arbitrary

C0 0 continuation of α = α(E) to ί/max ̂  £ ̂  Umax + ε with α'(E)>0. Consider the
equation

4)\1/2 = \2m(E-U)\112 , (2.10)

which is equivalent to (2.5) if we assume that φ'>0. Define

j 4)\^2dξ (2.11)
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with y+=0iί a^O and y+ =2 |α | 1 / 2 if α<0. Define also

J(x;E)=S \2m(E-U(ξ))\lί2dξ , (2.12)
x +

where x + =0 if E^ Umax and x + >0 is the root of the equation

if E< ί/max. Then (2.10) can be rewritten as

hence I(φ; a) = J(x;E) + const. To have a smooth φ we put const = 0, so that we are
looking for φ as a solution of the equation

/(</>; α) = J(x;E). (2.13)

Since I(y; a) is a strictly increasing function y with

lim I(y;a)= ±oo ,
y-* ± oo

(2.13) has a unique solution φ = φ(x;E) which satisfies (2.10) as well. We will
consider the solution ζ = ζ(x; E) on the covering line — oo < x < oo and not on the
circle because ζ does not satisfy in general the periodic boundary conditions.

Lemma 2.2. Assume that a = a(E) is chosen as described above. Then φ(x;E)
is C00 smooth in xe[-(2/3)L, (2/3)L] and for all xe[-(2/3)L, (2/3)L] and Ee

φf(x;E)>λ>0, φf = dφ/dx, (2.14)

and

\φ"(x;E)\£C, \φ'"{x;E)\£Cτ, τ = (H- | ί / " ' (0) | | ί / m a x -£ |- 1 / 2 ) . (2.15)

It is to be noted that (2.7) implies that when a<0,

hence Eq. (2.13) is equivalent to

7_((p;α) = J_(x;£), (2.16)

where

/_(φ;α)= J \a + (ξ2/4)ll2dξ
-2|«|"2

and

J^(x;E)=j\2m(E-U(ξ))\il2dξ.
X-

Observe that the even and odd solutions v±(y;a) of the Weber equation are
determined up to constant factors. These factors can be chosen in such a way that
the following asymptotics hold:
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Lemma 2.3. When j ; ^ 2 ( α 2 + 0.01)1/4,

v+(y;a)= . cos(Φ(y;a)~φ + (a)) ,
y/Φ'{y;a)

(Φ()φ()l Φf dΦ/d(2.17)

where
φ±(α)

and Φ(y a) is a real valued C00 function such that Φf(y;a)>0 and

) 9 (2.18)

with
\djr{y;a)/dyj\^Cy-2-\ j - 0 , 1 , 2 . (2.19)

In addition, the k-th zero y = ykt±>0 ofv±{y; a) is the solution of the equation

Φ(y;a)-φ..(a) = kπ9 y = yk,- ,

respectively.

Lemma 2.3 is well known so we will not prove it (the asymptotics of the
function v+ (y; a) as a -> oo was studied by Schwid [Sch] who used general results of
Langer [Lan] and by Olver, see [Olvl-Olv3] and references therein).

Lemma 2.3 enables us to find the asymptotics of \J/±(x) = φ±(x;E) in (2.2) as
h ->0. For the sake of definiteness we will consider ψ + (x; E). Assume that for all
Ee[Umax — ε, ί/max] the roots x± of the equation E — U(x) = 0 lie in the interval
[-L/8,L/8]. Let x>L/4. Then

cos{Φ(h-1/2φ(x;E);h'1α)-φ + (α))

(2.20)

ll2φ(x;E);h~ία% α = α(E) . (2.21)

By (2.18)

hence by (2.13)

X

Λ{x;E)= j \2m(E-U(ξ)\1/2dξ + hr{h'ί/2φ(x;E);h~1α) . (2.22)

Due to (2.19)

\dj(hr(h~1/2φ(x;E);h'1α))/dxj\^Ch2, j = 0,1,2 ,
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hence (2.20) leads to

==cos(h-1 J p(ζ;E)dξ-φ + (a) + O(h) , (2.23)

where

For x< —L/4 we have a similar formula,

/
cos ft"1 J p(ξ;£)dξ + 0 + (α) + O(ft). (2.24)

Now we want to glue φ + (x;E) at x= —L/2 and at x = L/2 to have a periodic
function. Comparing (2.23) with (2.24) we see that modulo error terms of order
O(h2) the periodicity of φ + (x;E) holds when

ft"1 J p(ξ;E)dξ-φ+(a) = h-l$ p(ξ;E)dξ + φ + (a) + 2πk9 keZ , (2.25)

or, equivalently,

( π / z Γ 1 ^ p(ξ;E)dξ = 2k + y+(al keZ , (2.26)

with

fl] . (2.27)

Assuming (2.26) we construct now a periodic approximation φ^er)(x;E) of

Let χ(x) be a C0 0 function such that χ(x) = 0 when x^ — Lβ, χ(x)=l when
x^Lβ and 0 ^ χ ( x ) g l everywhere. Define the function

ψ^\x;E) = (l-χ(x-(L/2)))ψ + (x;E) + χ(x-(L/2))ψ + (x-L;E) (2.28)

on [0,L], which is a C0 0 periodic function, since it coincides with ψ + (x; E) in the
interval O^x^(3/8)L and with φ + (x-L) in the interval (5/8)L^x^L.

For what follows the following simple lemma will be useful:

Lemma 2.4. \j/ = φ + (x;E) satisfies the equation

) = Eφ. (2.29)

Since φ%QX)(x\E) coincides with φ + (x;E) in the interval |x|^(3/8)L, we have:

Corollary. φ{ler)(x;E) satisfies Eq. (2.29) in the interval | x | ^ (

When |x | ̂ (3/8)L, φ(ler)(x; E) satisfies a more complicated equation due to the
terms which appear under differentiation of the function χ in (2.28). In this case we
have
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Lemma 2.5. On the interval (3/8)L < x < (5/8) L,φ = φ%er){x\ E) satisfies the equation

h2 d2φ ( h2

(2.30)
Δ m a x \ — . . . . . .

where

Let H be the operator

h2 d2*1*

in L2([—L/2, L/2]) with periodic boundary conditions.

Lemma 2.6. Assume that E satisfies (2.26). Then φ = φ^QT\x; E)(x; E) satisfies

\\(H-E)ψ\\^Cτh2\\ψ\\, τ=(l + | t/ ' "(O) | | t/ m a x -£|- 1 / 2 ), (2.32)

and

H^H^C" 1* 1 ' 4, C > 0 . (2.33)

Lemma 2.7. Assume that E satisfies (2.26). Then 3Emt + ,φmf + such that

Hψm,+ =Em, + ψm, + , ||tfrm,+ || = l ,

and

\E-Em, + \^Cmm{h4>\τh2} . (2.34)

In addition, φm^ + has exactly 2k zeroes and all these zeroes are simple.

A similar statement holds for the — -case, so that if E is a solution of Eq. (2.26)
with y~(a) instead of y + (α) then there exist Em >_,^m >_ such that
Hψmt-=Emf-ψmt-9 \\ψmt- || = 1, and (2.34) holds with the replacement + for — .
Also φmt _ has exactly 2fe zeroes and all of them are simple.

Lemma 2.8. φmt _ can be chosen in such way that φmt _ and φm, + are not collinear.

Observe that if E0^Eι^E2S are eigenvalues of H with eigenfunctions
Φo,Φi,φ2, > . J respectively, then φ2u-i and φ2u has exactly 2/c zeroes and all these
zeroes are simple (see, e.g., [Ble]). This proves that £ m ± coincide with E2k, E2k-1

and hence E2k, E2u-i satisfy (1.7) up to 0(min{/ί4/3, τh2}). Theorem 1.1 is proved.

Proof of Theorem 1.2. We are looking for solutions of (1.6) in the general form

φ = aφ+ +bφ- ,

where φ± are the WKB solutions (2.2). By (2.23) up to a constant factor and an
error term

where

/ = ft"1 ]p(ξ;E)dξ.
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Similarly,

so

Simple calculations give now

with
φ = φ++ arccot[(α-I-bcos Aφ)/(bsin Δφ)~\

and Aφ = φ- +(π/2) — φ+. Now we are to glue this formula with the asymptotics
which comes from x+, which is

ψ = Alp(x;E)Γll2cos\ -h-1] p(ξ;E)dξ + (Φ)\.
L x J

This leads to the equation I1 = φ + (π/4) + kπ, or

I1 — φ+ — (π/4) — kπ = arccot[(α + bcosΔφ)/(bsinAφ)'] .

By the gluing condition at x^ — L/4 we have a similar equation,

h — φ+— (τc/4) — k'π = arccot[(α — 6coszlφ)/( — bsinziφ)] .

Hence

and

Since cot(x — (π/2))= — tanx this is equivalent to

This gives (1.13). The remaining part of the proof of Theorem 1.2 is similar to the
proof of Theorem 1.1. Theorem 1.2 is proved.

3. Proof of Lemmas

Proof of Lemma 2.1. Let/(x) be a smooth function such that

) = 0, /'(0)=V-t/"(0)/2.

Then

y = ( t / m a x - £ ) - 1 / 2 / ( x ) (3.1)

satisfies

From (3.1)
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where ) = x,0'(O)=(-t/"(O)/2Γ1/2, so

Let g±(t) = (l/2) \_g{i) + g( — t)~\. Then g'+{t) is an odd function, so

ί
while g'-(t) is an even function, so g'-(t) = h(t2) with a C^-smooth h(t) such that

and

φ(x±)=±2\a
112

In virtue of (2.8), this implies that a(E) is a C^-function of E and when E -> ί/max,
(2.9) holds. Lemma 2.1 is proved.

Proof of Lemma 2.2 Let first E< t/m a x . We are looking for a smooth solution φ of
(2.5) with <p'>0, so (2.5) is equivalent to

(3-2)

(3.3)

(3.4)

I, g(f(x)) = x. (3.5)

Let Umax-U{x)=f(x)2 where/(x) is a C" function with/'(x)>0, and

y=\umax-E\-ιi2f(x),

Then (3.2) reads

ζ'\ζ2 - I I 1 ' 2 = h ( y ; E ) \ y 2 - I I 1 ' 2 ,

C ( ± i ) = ± i ,

where

By (2.9),

a x) = (m/2) 1 / 2m- 1 / 2 | ί/"(O)| 1 / 2

0 ' (O)=l , (3.6)

so that when E = ί/max Eq. (3.4) has the evident solution ζ=y. Let b = | ί7m a x — E\1/2,
so that E = Umax — b2, and

(3.7)
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Then (3.4) implies

G(ζ) = G(y;b), (3.8)

where

G(ζ;O)=\\ξ2-\γi2dξ. (3.9)

Since G(ζ) is an increasing function (3.8) determines ζ = ζ(y;b) uniquely. Let us
verify that ζ is smooth in y. Consider first y = 1.

Observe that G(() has a semicubic singularity at ζ=ί and G(C)2/3, where we
define x2 / 3 as |x | 2 / 3 sgnx, is a C00 function near ζ = 1 with (G(C)2/3)'>0. Similarly,
G(y; b) has a semicubic singularity at 3/= 1, and G(y; b)2/3 is a C00 function near
y=\ with (G(y;b)2/3)'>0. Since Eq. (3.8) can be rewritten as

this implies that ζ(y b) is C00 smooth in y near y = l and ζ\y;b)>0. Consider
second y= — 1.

The choice of a in (2.8) is equivalent to

(-π/2 = ) G ( - l ) = G(-l;fc). (3.10)

(integrate the both sides of (3.4) from — 1 to 1), and hence (3.8) is equivalent to

(G(ζ)-G(-l))2l3=(G(y;b)-G(-l;b))2l\ (3.11)

The function
2/3

= l J J
is C00 smooth near y = l with ((G(y;b)-G(-l;b))2/3y>0. Hence from (3.11) we
obtain that ζ is smooth near y= — 1 with ζ'>0. Since, in addition, the function
G(y; b) is smooth and G'(j/; 6)>0 when y φ ± 1, (3.8) implies that ζ(y; b) is smooth
and ζ'(y;b)>0 everywhere outside of y=±l, so that ζ(y b) is smooth and
ζ'(y; b)>0 everywhere. Let us prove that

\ζ"(y;b)l\Γ(y;b)\<C(\U"'(0)\b + b2l V\y\Syma,= max \y\ . (3.12)
xe[-L/2,L/2]

Assume first that |y|^^4 where A> 1 is an arbitrary fixed number.
We can rewrite (3.5) as

h(y;E) = λ(b2)g'(byl b = \Umaiί-E^2 , (3.13)

where by Lemma 2, λ(t) is C00 positive function on [0,ε]. Then (3.7) reads

(3.14)
1

Assume yg:0 and put y=l+z, ξ = l+η2z. Then

y;b) = 2λ(b2)z3'2\ g'(b(l+η2z))(2 + η2zγ'2η2dη , (3.15)
o
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SO that

))2/* = H(z;b) (3.16)

with
\2/3

\l+η2z))(2 + η2z)1/2η2dηj . (3.17)

Putting 6 = 0we obtain

(G(y))2^ = H(z) = H(z;0). (3.18)

Observe that by (3.8),

ζ(y)=l+H-1(H(z;b)l z = y-l . (3.19)

From (3.17) we have that H(z;b) is C0 0 in z^O and 6e[0,ε 1 / 2 ] .
By (3.5),

(f(x))2 = Umax-U(x) = -(l/2)U"(0)x2-(l/6)U'"(0)x*-

so that

and

g(y) = \Uf\0)\/2y1/2y(l-(l/6)\Uf\0)\-1Ufff(0)\Uff(0)\/2r1/2y- . . .)

= |£/"(0)|/2)- 1/ 2

3;-(l/3)|t/"(0)r 2£/" /(0)y 2

which is the expansion of g(y) into the Taylor series at y = 0. Using this expansion
in (3.17) we obtain

where H1(z) and H2{z;b) are C0 0 smooth. From (3.19) we obtain now

2

2(z;b), (3.20)

where h1(z) and h2{z;b) are C0 0 smooth. This obviously implies that
\/A> 13C = C(Ά)>0 such that (3.12) holds when 0<^y<,A. Assume now that y>A
where A > 1 is a large number.

By (3.9),

G(ζ) = } | ξ 2 - l | 1 / 2 d ξ
1

oo

=(l/2)ζ 2 -( l/2) lnζ + (l/4)+ ^ fljΓ
2J, (3-21)

.7=1

which implies that

l/2

Σ Σajkζ~J\nkζ, (3.22)
j=2k=0
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where the series converges for large ζ and defines H(ζ) as an analytic function.
Hence

00 j

; = 2 fc = 0

Now,

(3.24)

(3.25)

where h(t) is a smooth function, so from (3.14) we obtain that

G(y; b) = G(y) + bU"'(0)ko(y) + b2k(y; b),

where ko(y) and k(y b) satisfy the estimates

d%(y)

dy3

djk(y;b)

dyJ
,,4- — J

Assume now that by ̂  δ, where δ > 0 is a sufficiently small number so that

(y2~)G(y)>bk0(y)~by3

and

G(y)>b2k(y;b)~b2y* . (3.26)

Then

//(j; b) = (2G(y; b))1/2 = (2G(JO + 2^ί////(0)fc0(^) + 2b2/c(j;; b))1/2

' + foί////(0)Xo(3;)+^2X(y;fc)

" ' (o jKoί^+f t^ ίy fe),

where K0(y) a n < i ^(yi ̂ ) satisfy the estimates

d]K0(y)
dyJ

djK(y;b)

dyJ
(3.27)

Now,

where

= y + bU"'(0)L0(y) + b

dJL0(y)

dy1

d'L(y b)

dyJ

This implies (3.12). So (3.12) is proved when Λ<y and by^δ. Similar estimates
holds for y<0, so (3.12) is valid for all y with \by\^δ.

By (3.3)

and (3.12) implies (2.14) and (2.15) for all x with \f(x)\^δ. For x with \f(x)\>δ
(2.14) and (2.15) follow from (3.2) since then E-U(x)>δ0 and a + (φ2/4)>δ0 with
some (50 > 0. Thus in the case E < ί/max Lemma 2.2 is proved.
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If E = Umax, α = 0 and (2.5) reduces to

hence

l/2

is a smooth solution of (2.5) and it satisfies (2.14) and (2.15).
If E> Umax, the change of variables (3.3) reduces (3.2) to

and we define ζ as a solution of the equation

and

Since G(y; b) is a smooth function of y with G'(y; fc)>0, the solution ζ = ζ(y; b) is
smooth in y as well, and C'(.y; f>)>0. The same arguments as we used in the case
α < 0 prove (2.14) and (2.15). Lemma 2.2 is proved.

Proof of Lemma 2.4. If we substitute φ+ into (2.29) we obtain Eq. (2.3) with
U+(h2/2m))S(φ') instead of U. With this replacement (2.3) reduces to (2.5). Since
by construction φ is a solution of (2.5), ψ+ satisfies (2.29). Lemma 2.4 is proved.

Proof of Lemma 2.5. Assume (3/8)L < x < (5/8) L. As was mentioned r comes from
differentiation of χ in (2.28). We can differentiate χ either once or twice. If we
differentiate χ twice we obtain the term

(3.28)

Now, by (2.24),

X~L

L
/ x

cos h'1 J p(ξ;E)dξ-φ+(a

hence comparing this with (2.23) we have

so that the term (3.28) is O(ft3 + ( 1 / 4 ) ) . In the same manner we estimate the term
which appears when we differentiate χ once, as O(h3 + {1/4)). Since by (2.23)
WΦW^C1^14 (observe that the proof of (2.33) does not use Lemma 2.5) (2.31)
follows. Lemma 2.5 is proved.

Proof of Lemma 2.6. Comparing (2.4) with the estimates (2.14) and (2.15) we obtain

\S(φ')\£Cτ. (3.29)
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By (2.29) and (2.30)

(H-E)ψ=-h2S(φ')ψ + r 9

hence (2.31) and (3.29) imply

so that (2.32) holds.
To prove (2.33) observe that ψ(ler)(x;E) with ψ + (x;E) on the interval (1/

8)L<x<(3/8)L, and (2.23) gives

(3/8)L

f W + iξ Etfdξ^C

hence
(3/8)L

^ f WΛξ

and thus (2.33) is proved.

Proof of Lemma 2.7. Let
00

Φ= Σ
fc=l

be an expansion of ψ = φifeτ)(x; E) into series in eigenfunctions of the operator i/.
Let

Then

\\(H-E)φ\\ =

= mm\E — Ek\ .
k

Σ{Ek-E)akιj/k

hence (2.32) implies

If \E-Uw\£hW and φ = ψ^r)(x; Umax% then

and we obtain

hence (2.34) follows.
Let us prove that ψm, + has exactly 2fc zeroes. Consider some point x0 near L/2

where

is integer, ω = /. Then (2.33)-(2.25) together with Lemma 2.3 imply that ψ + faE)
has exactly 2k zeroes on the interval [x 0 — L, x o ] Moreover, the same is true for
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φ + (x;E + AE)iϊO^AE^h514, because then

0<h'1 f p(ξ;E + AE)dξ~h-1 J p(ξ;E)dξ^Ch1/12

x + {E + ΔE)) x + (E)

and the argument in cosine in (2.23) changes too little when we pass from E to
E + AE to gain more zeroes in φ + (x; E + AE) than we have in φ + (x;E).

Observe now that by Lemma 2.4, φ + (x;E + AE) satisfies the equation

0 (3.30)

with

qo = (2m/h2) [E + Δ-U-(h2/(2m))S(φf)-] ,

and φ = φm^ + (x) satisfies the equation

φ" + qψ = 0 (3.31)

with

q = (2m/h2)(E-U).

Assume \E-Umax\>h4/3. Then by Lemma 2.2 S{φ')^Ch~2β and if we take
AE = ft5/4, then we get q0 > q. In this case by the "argument principle" any solution
of (3.31) cannot have more zeroes than the number of zeroes of any solution of
(3.30) plus 1 (see, e.g., [Ble]). Hence φmΛ(x) has at most 2/c+l zeroes on
[x0—L, x 0 ] . All these zeroes are simple since φm,+ satisfies (2.36) which is a linear
equation of the second order. Since ψmt + is periodic and all its zeroes are simple,
φm,+ has an even number of zeroes so this number does not exceed 2k. A similar
reasoning in which we use φ + (x; E — AE) instead of φ + (x; E + AE), shows that the
number of zeroes of φm,+ is not smaller than 2/c, hence this number is equal to 2k.

If \E — Umax\Sh413 we use the same considerations with φ = φ{+er){x;Umax)
instead of φ(ler)(x; E), and we again obtain that the number of zeroes of φm^ + is 2/c.
Lemma 2.7 is proved.

Proof of Lemma 2.8. Assume φm,+ and φm,- are collinear. Then Em +=Em^ =E.
Let E± be solutions of (1.17). Then by (2.34)

\E-E±\^Cτh2

(we assume for a moment that \E — UmΆX\>hArβ\ hence

\E+-E_\^Cτh2 . (3.32)

Hence Lemma 2.9 and (1.7) imply

\y+-y^Cτh*'\ y±=y±(E±) . (3.33)

By (2.33)

1 / 4 ί x \

cos ft"1 S p{ξ;E+)dξ-(π/2)γ++O(h) ) . (3.34)
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For φ~(x;E-) we have a similar formula:

-1 ] p(ξ;E-)dξ-(π/2)γ-+O(h)Y (3.35)

This enables us to estimate the scalar product of φ + (x;E+) and i^_(x; £_) as

L/2

-L/2

which implies that φ + (x;E + ) and φ _ (x; £_) are almost perpendicular (the angle in
L 2 between φ + (x;E + ) and φ-(x;E-) is 0(τ/z1/4)). Hence φ± = φ{^er)(x;E±) are
almost perpendicular as well.

On the other hand ||i/ —E)ι/f± || ^Cft 4 / 3 | |^± ||. Since φ± are almost perpendicu-
lar, at least one of them has a "big" projection φ on the orthogonal complement to
the eigenfunction φm,±. Then || (H — E)φ || < Cft4/31| φ ||, hence there is an eigenfunc-
tion φ' in this orthogonal complement with an eigenvalue E' which differs from
E in O(ft4/3). Now we can take φm,- ~Φ' and Eφmt- = £'.

Lemma 2.8 is proved.
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