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Abstract: We establish large deviations bounds for translation invariant Gibbs mea-
sures of multidimensional subshifts of finite type. This generalizes [FO] and partially
[C, O, and B], where only full shifts were considered. Our framework includes,
in particular, the hard-core lattice gas models which are outside of the scope of
[FO, C, O, and B].

1. Introduction

In [R1] Ruelle rewrote a part of the general theory of statistical mechanics for the
case of a Z%action, d=1 on a compact metric space Q satisfying expansiveness
and the specification. The main model for which one constructs translation invariant
Gibbs states (see [R2]) consists of a finite set Q taken with the discrete topology
and called the alphabet (which may represent, for instance, the spin values etc.),
the set de considered with the product topology (making it compact) of all maps
(configurations)  : Z¢ — O, the shifts Op,m € Z¢ of Q%" acting by the formula
(0®)y = Wpim, Where @y € Q is the value of w € de on k € Z4, and a closed
in the product topology subset 2 of de called the space of (permissible) config-
urations which is supposed to be shift invariant, i.e. 0,2 = Q for every m € /2
The pair (£,0) is called a subshift and if Q = de it is called the full shift. The
construction in [R2] assumes, in fact, that (£,0) is a subshift of finite type (see
[Sh]) which means that there exist a finite set F C Z¢ and a set £ C QF such that

Q=Qrz ={we 0% : (0uo)r € E for every m € 7}, (1.1)

_ d -
where (w)z = wr denotes the restriction of ® € 0% to R C Z¢. The set & C OF
is the collection of permissible (allowed) words or configurations on F.
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Recall that a sequence A, C Z%,n = 1,2,... of finite sets tend to infinity in the
sense of van Hove, written 4, /" oo, if |4,| — oo and |04,| = o(|4,|), where |A|
denotes the number of points in A and 04 is the boundary of A, i.e. set of points
which have neighbors both inside and outside of A. If a = (ay,...,aq4) € Z¢%,a; >
0,1<i<d and A(a)={i € Z : 0<iy < ar,1 £k<d} then A(a) / oo provided
ai,...,ag — oo which will be written as a — oo. If limits are the same over all
sequences A, / oo we will write this limit over 4 /" oco. We will need also the
notion of the weak specification from [R1] which means in our circumstances that
there exists N > 0 such that for any subsets R; C Z¢ which are N apart and for
any permissible configurations &; on R; one can find w € Q such that wp = ¢&;.
By [R2] for any shift invariant summable interaction potential @ defined on finite
configurations there exists a Gibbs measure (Gibbs state) on 2 whose conditional
probabilities for given configurations outside of finite sets are determined by @ (see
Sect. 2 for the definitions). The probability measures

=14 D 0w, W EQ, AC Z¢ is finite , (1.2)
meA

where J,, is the unit mass at w, are called usually the occupational measures.

Theorem A. Let (,0) be a subshift of finite type satisfying the weak specification
and pu be a Gibbs measure for a shift invariant summable interaction potential ®.
Then for any closed subset K of the space P(R2) of probability measures on Q,

lim sup|A|~" log p{w: {4 € K} < — infI%(v) (1.3)
A oo vek

ana f(‘ a‘ly Clé‘z : C tW(SE)’
ll“l lllf /l 10 U . C e (; Z - 1“[1 4 1.4

where _
() = { P(A®) — wW(A®) — h, if v is shift invariant (1.5)

00, otherwise .

Here h, is the entropy of the subshift (2, 0) with respect to v, P(g) is the pressure
-of a function g on Q,v(g) = [gdv, and

A%(w)=—Y {®r(wg): RCZ" is finite and 0 is the first element of R
in the lexicographic order in Z°%} . (1.6)

Remark that following the dynamical systems tradition we denote the entropy
by h,, though in statistical mechanics it is denoted usually by s(v) and is called
the mean entropy of v. In the proof of Theorem A we do not use explicitly that
(2,0) is a subshift of finite type and this assumption comes in only via [R2]
where it was needed for the construction of the Gibbs states and for the proof of
their coincidence with the equilibrium states on which the supremum is attained in
the Gibbs variational principle. For finite range potentials @ Theorem A follows
essentially from [DSZ] where a completely different method was employed.

Leaving the precise definitions of the quantities appearing in Theorem A till
the next section we remark that Theorem A is a generalization of the main result
of [FO] where only full shifts were considered and instead of A oo the limits
were taken only over sequences of increasing cubes. This generalization enables us
to include physically important models where certain configurations are not allowed,
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for instance, the “hard core” model (see [R2]) (called in [S] “the golden mean”)
where Q = {0,1} and two ones are not allowed in any pair of neighboring sites of
Z¢. Of course, one can consider such models in a full shift framework prescribing
interaction potentials of certain configurations to be infinity but this approach usually
does not help much.

We derive the upper bound (1.3) of large deviations following the approach in
[Kil] in view of existence of the thermodynamic type limits for the pressure. The
lower bound required in [Kil] the uniqueness of Gibbs measures for a sufficiently
large class of potentials. This does not hold true for Z?-actions with d =2 in view
of phase transitions. By this reason, in order to obtain the lower large deviations
bound (1.4) we apply a modification of the approach from [FO]. An important part
in the proof of (1.4) is played by the following result which has an independent
interest and holds true in more general circumstances than Theorems A and C.

Theorem B. Suppose that Z%-acts continuously on a compact metric space (2,d),
the action preserves a probability measure v on £, it satisfies the weak specification
(see Sect. 2), and the entropy hy of the Z-action as the function on the space of
Z¢-invariant probability measures v is upper semicontinuous at the point 1 =v.
Then there exists a sequence of Z%-invariant ergodic probability measures v, on
Q such that

w
v, —Vvand h,, — h, as n — oo,

where 2 denotes the convergence in the weak topology of P(Q).

Following [Ki2] we will obtain also the bounds for large deviations from the
set of measures with maximal entropy for occupational measures sitting on periodic
orbits. This means the following: For a given a € Z%,a; > 0,i = 1,...,d let Z%(a)
be the subgroup of Z¢ generated by (a),0,...,0),...,(0,...,0,a,). The collection

I, ={w € Q: Z%a)w = v}, (1.7)
which is clearly finite, is called the set of a-periodic point. Define v, € 2(Q) by
vo(l)=|I,|7'\FrnM,), I'cQ, (1.8)

which is the uniform distribution on I1,, and {* : I1, — 2(Q) by

{8 =A@ (1.9)

Theorem C. Suppose that the conditions of Theorem A are satisfied except that
the weak specification is replaced by the strong specification (see [R1] and Sect.
2). Then for any closed K C P(Q),

lim sup|A(a)|™"! log v{w: {8 €K} < — irellf(J(n) (1.10)
n

a —oo

and for any open G C P(Q),
lim inf|A(a)| ™! log v, {w: {4 € G} = — irengJ(n), (1.11)
a—oo n

where
hiop — by if 0 is shift invariant
0, otherwise

J(ﬂ)={
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and hyp, = sup{hy : n is shift invariant } is the topological entropy of the subshift
(£2,0).

The final version of this paper was written while the second author visited
the University of North Carolina at Chapel Hill whose support he gratefully
acknowledges.

2. Preliminaries and the upper bound

Let ./ be the family of all finite nonempty subsets A of Z¢, (£, 0) be a subshift, and
Q4 be the restriction of Q to A. A collection @ = {@,, A € o/} of real functions
D, : Q24— R is called an interaction potential (or just: interaction). Following [R2]
we assume that

[@l= > [®a] < o0, (2.1)
A0EAe s
where
[@4] = sup [D4(&)] (2.2)
£eQy
and
D (048) = Py(&) forany A € of and £ € Q,, 23)

the latter means that we consider only shift invariant interactions. For 4 C Z¢ set
A =TN\A. If £ € Q4 and i € Que denote by &V the point £ € 0% such that
{4 =¢& and {4 = n. If, in addition, £ V1 € Q and A C «Z, then one can define the
energy functions

U&= ¥ ox(&x), (24)
XcA
Ugp (&) = > Dx((EVnx), (2.5)
XEs/ XNA+D
and the partition functions
Zp = % exp(=UL(&), (2.6)
ey
Zim = % exp(-Ug,(&). (2.7)
CGQAfVﬂEQ
For any ¢ € Q/ set also
Zi)={w el :w,=¢}. (2.8)

Given an interaction @ we will call u € 2(Q2) a Gibbs state (or a Gibbs measure)
if for any finitt A C Z% and all ¢ € Q,n € Q e satisfying ¢V ny € Q p-almost
everywhere

WEADNB 1)) = (ZF(m) ™ exp(=Ug,,(£)) , (2.9)

where p( - | - ) denotes the conditional probability and %, M C Z¢ is the restric-
tion of the Borel g-field on Q to Q. This definition is the same as in [F1 and
G], and it is equivalent to the definition given in [R2] in view of Theorem 1.8 there.
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In particular, (2.9) implies

H(EA(S)) = S 1a(Emydpac(n) , (2.10)
{nee:evnea)

where u,(&, ) denotes the right-hand side of (2.9) and p,,, M CZ* is the projec-
tion of pe 2(Q) to M.

Recall that a family of finite sets A, C Z¢ indexed by a directed set I" tend to
infinity in the sense of van Hove (see [R2]) written 4, / oo if

yerrgl/lﬂ = oo and }]1€ﬂ11|(/1y +a)\4,|/|4,| =0 (2.11)

for any a € Z¢. Roughly speaking this means that the “boundary of A” becomes
negligible in the limit as compared to A. In particular, 4, /oo if a — 0o as in
the Introduction. If I" coincides with the family ./ of all nonempty finite subsets of
Z¢ ordered by inclusion then we will write just 4 /" co. By Corollary 3.13 from
[R2] the limit
P? = lim |A|"" log Z% (2.12)
A/ 00

exists and is called the pressure. Let C(£2) be the space of continuous functions on
Q2 and 4 € C(Q2). Set

Zid)= Y exp ( ZA(emwf)> (2.13)

EeQy meA

where w° is an arbitrary point of Z,(&), and so the above expression depends on
these choices of w®. Again by Corollary 3.13 from [R2] the limit

P(4) = Ali/n;olA]“log Z3(4) (2.14)

exists, it is independent of choices of ¢, and
P(A%) = P?, (2.15)

where 4% defined by (1.6) is a continuous function in view of (2.1).
Denote by 2;(Q2) the set of O-invariant probability measures on Q, ie. v €
2;(Q) means that v(0,,I') = vw(I') for any m € Z% and a Borel set I' C Q.
Set
Hy(v) = — 32 W(E4()logv(E4(E)), (2.16)
feQy
then for v € 2,;(Q) the following limit

1 —1 i —1
hy = Ah/rrolol/l| H,y(v) 11}1f|A| Hy(v) (2.17)
exists, is called the (mean) entropy, and it is a nonnegative, affine, and upper

semicontinuous function on 2;(2) (see Theorem 3.10 in [R2]). Moreover ([R2],
Theorem 3.12) for all 4 € C(Q),

P(4) = sup (6(4)+hs), (2.13)
c€21(Q)

which is called the variational principle.
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Until now we only assumed in this section that (£,0) is a subshift, but further
results require (£, 6) to be a subshift of finite type. In fact, results of [R2], which
we are going to rely on, use another equivalent condition saying that there exists
a locally finite collection # C .o (i.e. each m € Z¢ belongs to a finite number of
A€ F)and a family {¥4,A € F} such that ¥y C Q4,if A€ F then A —m € F
and 0, %4 = ¥4_,, for all m € Z4, and

Q={wecQ? wiec¥ forall Ac F}. (2.19)

If (©,0) is a subshift of finite type defined in the Introduction, then taking & =
{F+mme Z} and ¥rym = 0_,E we obtain the above condition with the same
Q as in (1.1). On the other hand, if Q is defined by (2.19) then taking F =
Usoescs4 and E = Pr we obtain the subshift of finite type framework with the
same €, i.e. both conditions are equivalent.

Following [R2] we will say that a sequence of finite sets A, C Z%,n=1,2,...
with A, /" co satisfies the condition D if there exists another sequence of finite sets
M, C Z% M, C A, such that

lim |A,||M,|™" =1 (2.20)
n— 0o

and for each &1 € Q there exists () € Q,n=1,2,..., such that C(/;'n) = ¢y, and
Cﬁ;; = g, wWhere again M¢ = Z4\M. In order to prove (1.3) and (1.4) for all
sequences A, " oo, in fact for A oo, one has to assume that the condition D is
satisfied for all such sequences which is enough for the upper bound (1.3). A large
part of the proof of the lower bound (1.4) needs nothing else, as well, but its final
step relies on Theorem B which employs the weak specification condition which is
a stronger assumption.

We will give the corresponding definitions in the more general framework of
Theorem B. The result of action of m € Z¢ on w € Q in this more general set
up will be denoted by mw which in the subshift case is the same as 0,w. A
continuous action is said to satisfy the weak specification if for any ¢ > 0 there
exists N(¢) > 0 such that for any collection of sets R; C Z? that are N(e) apart,
ie. for i+j,& € Ri,n € R; one has ||& — n|| = maxy|&x — x| =N (e), and any points
~{; € Q there is an w € Q such that d(mw,m{;)<¢ for all i and all m € R;. The
action of Z¢ is said to satisfy the strong specification if for any R; C A(a) such
that all R; + Z%(a) are N(e) apart and any points {; € Q one can find o € I1, such
that d(mw,m{;)<¢ for all i and all m € R;.

In the more general set up of Theorem B one also has to keep in mind the
following expansivity condition on the action of Z¢ on Q saying that there exists
& > 0 such that d(mw,m®) < § for some w,d € Q and all m € Z¢ implies w = &.
The expansivity is a sufficient condition for the upper semicontinuity of the entropy
(see [R1]) and it is, clearly, always satisfied for subshifts with finite alphabets.

Pick up B € (0,1) and define the metric on @ C Q%" by
d(w,®) = B, where L = min{||£|| : &+ &/} . (221)

Then d(w,®) < 1 implies wy = @y, and so if d(mw,me&) < 1 for all m € R; C Z¢,
then wg, = @g,. Thus if &; are permissible configurations on R;, i.e. & € Qp,, then

there exist () € Q such that cg’} = &, and if R; are, say, N(1/2) apart then one can
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find w € Q with wg, = C(ii) = ¢;. Thus for subshifts the above definition coincides
with the definition of weak specification given in the Introduction and, in particular,
the weak specification implies the condition D for all sequences 4, ,/ 0o by taking

M,={teZ: néi? l£ —m|| SN(1/2)} . (222)

Remark that the “hard core” model described in the Introduction is a subshift of
finite type satisfying both the weak and the strong specification. The subshift of
finite type conditions are checked here trivially and both specifications follow since
surrounding any configuration on R; by zeros we eliminate the influence of this
configuration and can continue in any permissible way, and so one can take N(¢) =
1 for all ¢ > 0.

Next, we will prove the upper bound (1.3). For this one has to assume only
that (2,0) is a subshift of finite type and that the condition D is satisfied for all
sequences A, /" co. Denote the set of all Gibbs measures for an interaction @ by
K?. By Theorem 1.9 from [R2], K®+0,K? is closed, compact, and it is a Choquet
simplex. Let u € K? then by Proposition 4.4 from [R2] for any g € C(Q),

def

lim |A|™logu (exp Sgo 9,,,) = P(4? + g) — P(A")ZP%(g), (223)
A/ meA

where u(q) = fqdu and (g o 0, )(w) = g(0,®). Then by (2.18),

P%(g)= sup (W(g)—I°(v)), (2.24)
VEP(Q)

where I1%(v) is given by (1.5). Since the entropy 4, is affine and upper semicontin-
uous then 7®(v) is convex and lower semicontinuous, and so by the duality theorem
in convex analysis (see, for instance, Theorem 3.12 in [R2]),

1°(v) = sup (v(g) — P?(g)) . (2.25)
9€C(Q)

Finally, (2.23)—(2.25) together with Theorem 2.1 from [Kil] yield the upper bound
of large deviations (1.3).

3. The Kullback—Leibler Information

For each finite nonempty A C Z¢ and any u,v € 2(Q) define

WEA)
Ha(vlp) = ;LAV(HA(i))lOg 1EA0))

3.1)
where we assume 0 log g =0 for any ¢20 and log § = oo for any ¢ > 0. We
call Hq(v|p) the Kullback—Leibler information and it appears in different variations
sometimes under the name of relative entropy in many works (see, for instance,
[DS, DV, F, FO, and G]). The following result was proved in [F] in the full shift
case with A(a) /" oo in place of A  oc.

3.1. Proposition. Suppose that (2,0) is a subshift of finite type and the condition
D holds true for any sequence A, /" oo. Then for any v € #;(Q) and u € K2,
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lim |A|7 Hq(v|p) = P(A?) — v(4®) — b, . (3.2)
A 00

First we will prove the following assertion.

3.2. Lemma. Suppose that the sequence A, /" oo satisfies the condition D and
that M, D A, is a corresponding sequence satisfying (2.20). Then
(1) There exists a sequence of numbers o(n) > 0 such that

Lim a(n)|My| =" = 0 and |U (&) — Uj7, (&) Sa(n) (33)

Jor any § € Qu, and n € Qyc satisfying £V n € Q.
(ii) For any ¢ > 0 there is n(g) such that
Ui, (&) = UR (€, Sel 4] (3.4)
for any & € Qy, and n=n(e).
(iii) For any ¢ > 0 there is n*(¢) such that

Ut (04,)+ 3 A% (Onw)| el (3.5)
me Ay

for any w € Q and n=n*(¢).

Proof. Some parts of the following proof are standard and can be found in [F and
R2] but for the reader’s convenience we give the whole proof here. To obtain (i)
notice that by (2.1), (2.2) and (2.4), (2.5) for any integer k=1,

Us, (&) = Uy (O] = SAexEvm) X e,
XM, %0, XM +0} <3 {||Px]|
X
Xed, XOM+0, XM +0}a(n)

s 2 2loxll: X e /X 2mX ¢ Clk)+m}
meM, X

+ 2 Y A{lloxll - X € Ai(m)}, (3.6)

mEMy X
where C(k) = {m € Z% : 0<|m;| <k} is the k-cube centered at zero and
dim)={Xed meXCChk)y+mX¢gM,}.
By (2.1)—(2.3) for any m € M,
;{HQYH Xeod, Xom, X ¢ Clk)+m}
= ;{Hdixll X e, X350, X ¢ Ck)}

EBk) — 0 as k — oo (3.7)
On the other hand, for any X € .o7;(m) there exists m; € C(k) such that m + m; ¢
M,. Thus

{m € My, 1 oy (m)+0} < M, (k)] (38)
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where we set A(k) = {m € A : minscsc||m — ¢|| £k}| and again ||a|| = max;|a;| for
a € Z%. Since M, /" oo then by (2.11) for any k=1,

Tim |M, (k)M " = 0. (3.9)
By (2.1)-(23),
S(lexl : X € sm)STAlox] X € o/, X30}<]0). (310)

Thus by (3.6)~(3.8) and (3.10),
oa(m)| M|~ < Bk) + (| DM (KM~ (3.11)

Letting, first, n — oo and then & — oo we derive (3.3) from (3.7) and (3.9). In
order to obtain (ii) observe that for any ¢ € Qy,,

U = U, (Ea)l SEAI@x(E)| 1 X € o, X C My X ¢ A}

s X > lloxlsIM\A ||| 2] (3.12)
meEMy\ 4y, XEA;XOm

Now (ii) follows from (2.20) and (3.12). It remains to establish (iii). Consider some
total order on Z? which is compatible with the translations of Z¢, for instance, the
lexicographic order. Then (see Sect. 3.2 in [R2]),

A%(w) = 43,(0,0) (3.13)
where for A C Z% m € A, and ¢ € Q4 we set
A%m, &) = — S {Px(Ex): X €, X om, X C A,
X

and m is the first element of X} . (3.14)

By (2.4) for any ¢ € Q4,,

Ug (&) =— }:A A% (m, &) . (3.15)
meAy,
By (2.1)-(2.3),
S A% (m OIS |®)||Aak)| . (3.16)
meAy(k)

Since A4, /" oo then by (2.11) for any k=1,
Tim [ 4,(6)] 4,7 = 0. (3.17)
On the other hand, if m € A,\A,(k) then
ClkycA,—m, (3.18)
and so by (2.3) and (3.13) for any w € €,
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A%, (m o) =A% (0,04, )
= A%(Onw) — SAPx(Ono)e - X & Ay
and 0 is the first element of X'} . (3.19)
Thus by (2.1)—~(2.3), (3.14)—(3.16), (3.18), and (3.19),
U (@4,) + 2 A%(0n0)| || @] 4a(K)] + | 4] B(K) , (3.20)

meAy

where (k) was defined in (3.7). By (2.1), (k) — 0 as £k — oo, and so (iii) follows
in view of (3.17).

Next, we pass to the proof of Proposition 3.1. First, we will show that for any
sequence A, / oo satisfying the condition D, v € Z/(2), and u € K,

lim sup|A,| ™' H, (v|u) P(A%) — w(4%) — h, . (321)

n—oo
By (2.6), (2.7), and Lemma 3.2(i) for any n=n(e) = max{n : a(n)|M,|~! > &}
Zy, (m etz (3.22)
for any n € Qyc, where the sequence M, /oo is given by the condition D. By the

assertions (i) and (ii) of Lemma 3.2 for any n=n(e) = max(n(35),n1(5)) and all
¢ € Qu, and n € Q¢ satisfying (V€ Q,

exp(~Uyr, () Zze™ Mlexp(~UZ (£4,)) - (323)
By (2.10), (3.22), and (3.23) for any { € Q4, and n=n3(e) = max(n;(¢), n2(e)),
WELO) = > wEm(E)

$€u,,€a,=¢

2(Zy )" exp(—Un,(8) — 2e|My s {n € Qug : EV i € Q}
EEQy,.Ca,=C

= (Zy,) exp(=Un,(0) — 2e|M,)) (3.24)

since by the condition D,

> mme{n € Que 1 EVneQ}

E€,, ¢4, =C
= tye{n € Qe : there exists w € Q such
that w4, = { and wye = n} = pye(M,) = 1. (3.25)

Finally, by (2.16), (3.1), (3.5), (3.24), and the shift invariance of v for any
nZny(e) = max(ns(e),n*(¢)),

H, (vV|u) S — Hap, (v) + log Zy, + 2&|M,|
+ [Un(@4,)dv(@) S — Hp,(v) + logZy; + 2¢|M,|
Q

+ & An] = [Aa]v(4%) . (3.26)
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Now dividing both parts of (3.26) by |A4,], letting first » — oo and then ¢ — 0, we
obtain (3.21) by (2.12), (2.15), (2.17), (2.20), and (3.26).
Next, we are going to show that

lim inf|A,| " H, (vju) = P(A?) — w(A®) — h, . (3.27)
n—00
By (2.6), (2.7), and Lemma 3.2 (i) and (ii) for any n=n;(¢) and 7 € Qye,

ZM”(?") - Z Z{exp( UMn 7I(€)) g € QMn’éAn - ( C \ 77 € Q}

EQA” ¢

Ze Ml S exp(— Uy, (O Wiyl s (3.28)
{eQy,

where, again, || is the number of elements in ¥ and ¥, = {{ € Qy, : &4, =
and ¢V € Q}. By the condition D for any { € Q,, and € Que Yoy +(), and so
[¥: = 1. Thus by (2.6),

Zy, (mze ¥ Mizy (3.29)
for n=ny(¢). By (2.9), (2.10), (3.3), (3.4), and (3.29) for all n=n3(¢) and { € Q,,,

WELE) = 2 wEm,(8)

NSIUTAN C/1n s

< | QM BelMinl (79 Y exp(—Uy, (1)) (3.30)

where, recall, Q is the alphabet. Thus by (2.16), (3.1), (3.5), (3.30), and the shift
invariance of v for any n=nq(e),

Ha,(V|[10)Z = Hy, (v) = 3¢|M,| + log Z1
— [M,\A,[log|Q| — |A/1;V(Aq>) — el A, . (3.31)

Dividing both parts of (3.31) by |A,|, letting first » — oo and then ¢ — 0 we
obtain (3.27) by (2.12), (2.15), (2.17), (2.20), and (3.31) completing the proof of
Proposition 3.1. U

3.3 Remark. The main part of the proof of Proposition 3.1. is, in fact, the re-
sult saying that logu(=4,(&)) is equivalent when 4, / o to (ane/l,,A (00 )—

|4,|P(A%)), where w° € Q satisfies o", 4, = ¢ which is the “volume lemma” type
statement similar to Proposition 3.2 from [Kil].

4. The Lower Bound

We will describe next a more general approach to lower large deviations bounds,
than actually needed for Theorem A. Let (€2, %) be a measurable space and 2(Q) be
the space of probability measures defined on elements of the ¢-algebra B. Suppose
that 7 C # is a sub c-algebra of % and v, u € 2(Q). Define the Kullback—Leibler
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information (cf. [DS, DV, F, G]) by
H” (v|u) = p( py,, log p7,) (4.1)

if v is absolutely continuous with respect to u on (Q,#) (written v Z u) with
Radon-Nikodym derivative pi, and HZ (v|u) = oo otherwise. If Q is the same as

in the previous section and F is the finite o-algebra of all subsets of Q4 for a
finite A C Z¢ then HZ (v|u) coincides with H(v|u) definied by (3.1). By Jensen’s
inequality for all v, u € 2(Q),

H” (v[n)20. (42)

Set g™ = max(0, g) and let L! (Q, #,v) denotes the set of all F-measurable functions
g with v(g%) < oo. If g € LL(2,F,v) then v(g) =v(g") — v(g" — g) is defined
though it may be equal to —oo.

4.1. Proposition. For any v, u € 2(Q),

H”(jw)=  sup  (v(g) — logu(e’)), (4.3)
geLL (Q.7.,v)

and if vZ u then for each C > 0,
o pl(0)2eCt<CTIHT (V) + log2) . (44)

Proof. Though (4.3) is contained essentially in [DV] and also in [DS, p.68] (with
the supremum taken over bounded or bounded continuous functions) we will give
the proof here for the sake of completeness.

First, remark that if H? (v|u) = oo then both parts of (4.3) equal co. Indeed,
if vZpu does not hold true then there is a set ¥ € # with w(¥) =0 and
v(¥) > 0. Choose g, = nly,n=1,2,... where ly(w) =1 if ® € ¥ and = 0, oth-
erwise. Then the supremum of the right-hand side of (4.3) over {g,,n=1,...} is
oo. If v Z p but v(log* pfﬂ) = oo then define ¥, = {w : 0=<log pvﬁ(Q)gn} and
gn = 1y,log pf#. Then p(efn) = p(Q\¥,) + v(¥,) <2 and v(g,) — oo as n — oo.
Hence, again, the supremum of the right-hand side of (4.3) over {g,,n=1,...} is
co. Now assume that v Z p,v(log™ p7,) < oo, and set ¥ ={w € Q: pf () >
0}. Let g € LL(2,7,v) and g = ¢%( pJ,) "1y + 1g\y then, clearly,

v(g) — logu(e?) <HZ (v|p) + [v(logq) — logv(¢)] . (4.5)

The expression in the square brackets is nonpositive by Jensen’s inequality, and
so the lefthand side of (4.5) does not exceed H? (v|u). On the other hand, set
gn = lylog pJ, —nlg\yp then g, € L} (Q,#,v) and

Tim (v(g,) — logp(e™)) = H” (v]w) .

completing the proof of (4.3).

Next, we prove (4.4). If v(log* p7,) = oo, then H” (v|) = oo and there is noth-
ing to prove. So assume that log pf s LL(Q,Z,v) then by (4.3) and the Chebyshev
inequality,
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v{ p\igec}gC_]v(log‘Lp‘fﬂ)
SCT(HZ (v|p) + logu(exp(log ™ p,)))
= CTMH” (v|w) + log(u{ p7, < 1} +v{ P, 21})
SCT'(H” (v]u) + log2), (4.6)

completing the proof of Proposition 4.1. O

Next, let (£2,4) be again a measurable space, v,u € #(2), and (" : Q2 —
P(Q2),n=1,2,... be a sequence of measurable maps, where 2({2) is taken with
some measurable structure.

4.2. Proposition. Suppose that there exists a measurable set U C P(Q) and a
sequence of o-algebras F, C B,n = 1,2,... such that {w: (!, € U} € #, for all
n=12,... and

lim v{{" € U} =1. (4.7)
If r(n) — oo as n — oo and
h = lim sup(r(n)) "' HZ"(v|n), (4.8)
then
li'rlrl)gf(r(n))’llogu{C" cU}=—h. (4.9)

Proof. 1If h = co then there is nothing to prove. So suppose that & < oo, then

without loss 9f generality we may assume that H#7(v|u) < oo for all n which
means that v77 < u and v(log" p‘:/’—,;') < 00. By (4.7) and (4.8) for any € > 0

there exists n(e)=1 such that
{{"eUlzl-¢ (4.10)

and
H " (v|u) < r(n)(h + €) (4.11)

for any n=n(e). Applying (4.4) with
C=Cpe=r(n(1—-28)""(h+e), (4.12)
we obtain from (4.11) that for all n=n(e),
Wplrzer <l —2e. (4.13)
Remark that v{ p7 o> 0} = 1 which together with (4.10) and (4.13) gives
w(P,)ze, where ¥, = {{" € U, pl} > 0,(plp) ' ze e}

Now by (4.13),

W e Urzu{Wut = [(pln) 'dvzee e . (4.14)
Y
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Taking log in (4.14), dividing by 7(n), letting first » — co and then € — 0 we
derive (4.9). O

Next, we are going to apply Proposition 4.2 in the set up of Theorem A in order
to prove (1.4). Let G C 2(Q) be an open set and u € K. Set IE = inf,ccI%(v)
with 7?(v) given by (1.5). If I® = co there is nothing to prove, so we assume
I® < oco. Then by Theorem B which will be proved in Sect. 6 for any ¢ > 0 there
exists an ergodic v, € #;(Q) such that

ve € G and I%(v.)<Ig +¢. (4.15)
In addition. we can choose N = N(v.) > 0 so large that
U=U)E{ve2(Q): fnax W(Ecn)(£)) = ve(Ecan(€))] <exp(=N?)}CG,
C(N)

(4.16)
where, recall, C(N) is the N-cube centered at 0. Now let A, /* co. Denote

An(N) = UA(C(N)“H”).
meAn

If w,&d € E4,w)(n) for some n € Q4,(N), then clearly (8,w)cwvy = (Om@)cvy for
any m € A,, and so for any & € Qcw),

{A(Ecan(£)) = L& (Ecan(©)) -
Thus for some ¥, C Q4,),

{{"eU)= U Esm). (4.17)

NEDn,e
Let &, be the finite o-algebra of all subsets of Q,4,v), then by (4.17),
{(" e UW))e#,. (4.18)

Since v, is ergodic it follows from the mean ergodic theorem (see [Kr, Sect. 6.4 or
[T], Sect. 3 of Chapter 3) and the Chebyshev inequality that

lim v {{*" e U()} =1. (4.19)
n—o0
Remark that H%"(v.|u) < oo, in particular, vZ» < u since u € K® implies that
v(E4,0(n)) > 0 for any n € Q4,v). Since A,(N) / oo as n — oo, then by (1.5)

and (3.2),
Tim | A, (N7 H T (velu) = 17(ve) (4.20)

Remark that by (2.11),
Tim (4,4, =1,

and so we can apply Proposition 4.2 with U = U(v,),{" = (!, and r(n) = |4,|
which together with (4.15) and (4.16) yields

lim inf|A,| Hogu{{!" € G}
>lim inf|A4,| ogu{{™ € U(v.)}= —I%(v.)= —IE —¢.  (421)

Since ¢ > 0 is arbitrary this implies (1.4). O
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4.3. Remark. Note that in order to prove (1.4) one needs (4.3) and (4.4) only for
finite o-algebras & which amounts to

A sees a i=1

k k k
H(plg) = 3 piog( pi/qi) = sup (Epiai—log<2qie“‘>> (422)
= k i=

and
S{pi: pigi ' 2} SCTHH( plg) +2) (4.23)

being true for any probability vectors p = ( pi1,..., px) and g = (q1,...,qx) pro-
vided 0/0 = 1, Olog % =0 for C=0, and log % =00 for C > 0.

5. Large Deviations from the Equidistribution

Set
Prax(2) ={v € P1(Q): hy = hiop} ,

where Ay, is the topological entropy of the subshift (2,6) and A, = P(0), ie. it
satisfies (2.18) with 4 = 0. Since 4, is upper semicontinuous in v then 2P, (Q)+0.
Recall that the measures on which the supremum in (2.18) is attained are called
the equilibrium states (measures) for 4. Thus elements of 2,,,(2) are equilibrium
states for the function 4 = 0. Since the strong specification implies the weak speci-
fication and the latter yields the condition D from Sect. 2 then by Theorem 4.2 from
[R2] saying that sets of all Gibbs states for an interaction ¢ and all equilibrium
states for 4? coincide it follows that P (Q) is the set of all Gibbs measures for
the interaction @ = 0, i.e. Ppax(2) = K°. Remark that when d = 1 the set P (Q)
is a singleton and the corresponding measure vy is called the measure with max-
imal entropy. In this case Theorem C was proved in [K2]. It implies, in particular,
that long periodic orbits with the distribution close to vyax form a set whose propor-
tion is close to one. This result was proved by Bowen and was called by him the
equidistribution of closed orbits. As far as we know there are no general conditions
available in d =2 case implying that Z,,x(2) is a singleton. Thus the upper bound
(1.9) yield only that the collection of “long” periodic orbits with distributions close
to the convex set Pmax(2) have proportion close to one.

Let now g € C(Q). Then under the strong specification condition by (1.8) and
Theorem 2.2 from [R1],

lim |A(a)| " logv, <exp > go 0,,,)

me A(a)

= lim |A(a)|"'log 3 exp( » g(t‘)mw))
a0 w€ll, me A(a)
— lim |40)|og|T,| = P(g) — PO) = P(g) ~ hop . (5.1)
But by (1.12) and (2.18),

P(g) = hiop = eS}y}%)m(v(g) —J() (5.2)
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with J(v) being convex and lower semicontinuous in v. Now the upper large devi-
ations bound (1.10) follows from Theorem 2.1 of [Kil] by the same routine as in
the end of Sect. 2.

Since the uniqueness of Gibbs measures for a large class of interactions as
required in Theorem 2.1 from [Kil] does not hold true in our circumstances we
cannot use this theorem in order to derive the lower bound (1.11) and we will use
for it the lower bound from Theorem A.

Let p € Pnax(RQ), and so v is a Gibbs measure for the interaction ¢ = 0. Let
Z¢4 5 M O A, where A and M are finite sets such that

omin £ = m||ZN (53)

and N is the constant from the definition of the weak specification which means
that for any ¢ € Q4 and n € Q¢ there exists w € Q with w, = ¢ and wye = 7.
Then by (2.5) and (2.7) for n € Qyye,

Zu(n) =Z5(n) = {E € Qu : EVn € QY

= Y HleQu :{a=E0Vvne Q2|04 . (54)
§eQy
Thus by (2.9) and (2.10) for any { € Qy,
HEM(O)S Q47" (5:5)
It follows from here that for any & € Q,
HEAE)Z Q| QM (5.6)

where, recall, Q is the alphabet.

In our circumstances we can reformulate the definition of the strong specification
given in Sect..2 in the following way: there exists K > 0 such that for any subsets
R; C A(a) satisfying min{||/ —m|| : £ € A,m € A; +Z%(a)} 2K, i+j and for any
& € Qp, there exists w € II, such that wg, = ¢&; for all i.

Let L > max(N,K) and

Gr(a) = {/ € A(a): mgl/licr%a)”/ —m|| gL} .

The strong specification implies that for any ¢ € Gi(a) there exists w € II, such
that wge) = &. Thus defining

Diw)={6eQ: 06y = Dley }

for all w € II, we obtain
Q= {J Di(w). (5.7)
w€EIll,
It is clear that either Di(w) = DL(®) for w, & € I, or DE(w) N DL(&®) = 0. Let
IT; be a maximal collection of points w € II, such that w,® € II;,w+& imply
DE(w) N DL(®) = 0. Then by (5.7),

Q= U Diw). (5.8)
welly
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Taking in (5.6) A = G(a) and M = A(a) we obtain that for each w € II,,
D)) £ Q60| " e (59)

with pL(a) = |A(a)\GL(a)llog|Q| = o(|A(a)|) as a — oo. Since QA(,,)#QA(,,) for
any 0, Qe Ha,Q:#Q then

4| £ |12 40)| £ 126, ()€”? (5.10)
and so by (5.9) for each w € I1,,
W(DE(w) < || (5.11)

Next, let G C 2(£2) be an open set and Jg = inf,cc/(n) with J(y) given by
(1.12). By the convexity of the function —xlogx, x € (0,1) and Jensen’s inequality
one derives from (2.12) the well known inequality H,(v) <log|Q|, and so by (2.17)
and (2.19), hwp = P(0)<log|Q|. Thus both J(n) and J are bounded by log|Q|, as
well. Given € > 0 pick up v, € Z;(Q) such that

ve € G and J(v.)SJg + €. (5.12)
Similarly to (4.16) choose L > 0 so large that

UsE{ve 2(Q): max IV(HC(L)(f)) —ve(Ec) (&) <dexp(—N?H)}CG. (5.13)

If @ € DE(w) then wg, () = &g, (), and so
(0n@)cry = (0n®)cy for any m € Gyr(a) . (5.14)
Thus for any & € Di(w) and & € Qc(),
ICe(Eca)(©)) = (5(Ecay(©)]
< |A(@)| | A@\Gar(@)Eri(a) — 0 as € — o . (5.15)

Pick up n(d) > 0 so that if a = (ay,...,as) and amindéfminléiédaign(é) then
r(a) £96/2.
This together with (5.15) imply that if amis 21(3),& € DL(w), and (A € U, 4,
)
then (% € Uy s, and so by (5.8),

{weQ: (1@ ¢ UL’%(S} C Lg{Dﬁ(w) cw € I8 € Ups). (5.16)

Taking into account that DL(w) are disjoint for different w € IT, we derive from
(5.11) and (5.16) that

Ho €, : (& e GYz[{we I : (% € Ups}
> |, |e O { (DY) s € I, € Uy 5}
w

— ey (U{Dé(w) Coe Il € UL,a})

= |Hle™*Dpi{w € Q: (4@ ¢ Upist- (5.17)
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Since u € K% 1%v) =J(v), and p(a) = o(|A(a)|) then by (1.4), (1.8), (5.12),
(5.13), and (5.17),

lim |A(a)| ™" log vo{w: {4 € G}
= ali)xgolA(a)l“llog(lﬂaFl[{w €, : (5 € G}

> lim |A(a)| Mogu{{i® € U, 15}= —Jo —¢. (5.18)
a—o0 2
Since € > 0 is arbitrary we obtain (1.11). O

6. Approximation by Ergodic Measures

In this section we will prove Theorem B in the set up of a continuous action of
Z¢ on a compact metric space (2,d ) assuming that the weak specification and the
upper semicontinuity of the entropy conditions introduced in Sect. 2 are satisfied.
Recall that the expansivity which is always satisfied in the framework of Theorems
A and C is a sufficient condition for the upper semicontinuity of the entropy (see
[R1]). Remark that usual proofs for the approximation of a Z¢-invariant measure v
by a weakly converging to v sequence of ergodic measures v, takes v, sitting on
periodic orbits thus having zero entropy, and so does not enable us to approximate
v in entropy, as well (unless 4, = 0), which is the main point here.

In fact, we will produce more than just ergodic measures approximating v €
P2(Q). Invariant sets ¥ C Q will be constructed such that all of their invariant
measures are close to v, and such that the topological entropy of the action restricted
to ¥ is close to the entropy of (2, Z%,v). This can be thought of as an approximate
version of the Jewett—Krieger theorem (see [W]) in the non-ergodic setting where,
of course, the theorem itself fails to hold true.

Recall that for ¢ > 0 and A C Z¢ a set E C Q is said to be (e, A)-separated
if for any w,® € E,w=+ @ there exists m € A such that d(mw,m®)=¢e, where mw
denotes the result of the action of m € Z¢ on w € Q. We will need a general result
on the relation between a measure entropy and the topological entropy. Here no
specification and expansivity assumptions are necessary. Denote by C, the cube
{m=@my,...,mg): 0=m; < n,1Zi<d}.

Proposition 6.1. Let 5 € P(Q) be an ergodic invariant measure of a continuous
action of Z¢ on (Q,d). Given continuous functions { f1,..., fx} and positive con-
stants o > 0,8 > 0 there exist ng,e > 0 such that for all n=ny one can find a
(e, Cy)-separated set S C Q satisfying:

(i) |S|=exp(n?(h, — «)) where, again, h, is the entropy of this Z%-action on Q
with respect to 7,

(i) ||Cal™' Y fi(mw) — [ fidn| < B for all o € S and j =1,... k.

meCy

Proof. By the definition of the entropy 4, (see [R1, Kr, or T]) we can find some
finite partition D of @ into regular sets D; such that #(0D;) = 0 and

|hy — hy(D)| < /4, (6.1)
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where h,(2) is the entropy of the partition D. Next, by the ergodic theorem (see
[Kr] or [T]) if n is sufficiently large then the set £, of x which satisfy

Gl ™" 3 filmao) = [frdv| < B, 1)<k (6.2)

meCy

has measure at least 1/2. Choose now an auxiliary 6 > 0 (the precise choice will
be specified later) and find an open set ¥ containing ( J;0D; such that

ny)y<a. (6.3)

Finally, let 2¢ be the minimum distance between the disjoint closed sets (D;\ V).
We will say that points w,d € Q are “well” (e,n)-separated if d(mw,md)=¢ for
some m € C, and in addition mw and md@ do not belong to V. Applying again the
ergodic theorem and taking » still larger we can ensure that

Fp=E,N{0:|C|™" 3 1y(mw) <26}
meCy

has #-measure at least 1/4. Now let S be a maximal “well” (e,n)-separated subset
of F,. We associate now with each point w € § a collection of atoms /(w) of
vaCnm~1‘@ in the following way. Put into A(w) any atom containing a point @
such that

|Cul ™ {m € C,, : mew and mc are in the same

Z-atom}| =21 —40.

Clearly, the number of elements in A(cwp) does not exceed 3°,, _45c, ( |(;:'|) |2|™,

and so if J is small enough then
| #(w)] < exp(|Cylo/4) . (6.4)

Observe that the maximality of S implies that |J,.s.9/(w) covers F,. Indeed, if
this were not true we would have a point & € F), such that for all w € § md and
mo are in different P-atoms for more than 46|C,| points m in C,. Then by the
definition of F), there is at least one point my among these m such that both myw
and mo® does not belong to V, and so w,d € F, are “well” (g,n)-separated for
any o € § in contradiction to the maximality of S. Thus we get a collection of
atoms from \/, .. m~'9 whose cardinality is at most |S|exp(|C,lo/4) covering a
set of y-measure 1/4. By the Shannon—McMillan theorem (see [Kr], Sect. 9.2, [T],
Sect. 5 of Chapter 8, or [OW]) for n large enough those atoms from the above
collection whose measure is smaller than exp(—|C,|(hya) — 2/4)) will cover a set
of measure of at least 1/8, and so

ISlexp(Cloy/)exp (—ICol (m(2) - 5 )) 218 (65)

which together with (6.1) imply the lower bound (i) provided # is big enough. The
property (ii) is also satisfied by (6.2). |

Next, we will pass to the proof of Theorem B. Using the ergodic decomposition
of v and the fact that the entropy is an affine function on the space of Z¢-invariant
measures (see [Kr, T, R2]) it follows that with no loss of generality we may assume
that v is a finite sum of ergodic measures v\¥), k=1, ...,K, i.e.
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v=K"! A (6.6)

where the v¥)’s are not necessarily distinct. So we will complete the proof of
Theorem B under this assumption. OQur next objective will be, given continuous
functions f; with sup,|f;|<1,j=1,...,J and § > 0, to find a large enough cube
C so that the set

Y={weQ: ICI“Igjj}((l-%m)w)—fﬁdv <p

forall m € Z¢ and all j=1,...,J}, (6.7)

which is clearly closed and Z“-invariant has topological entropy at least /4, — a.
We may assume that the f}, ..., f; and >0 are chosen in such a way that for any
large enough cube C the topological entropies of the corresponding sets ¥ will not
exceed h,+a. This can be done since for otherwise by the variational principle (see
[M, R1)), the affine nature of the entropy function, and the ergodic theorem we will

have a sequence of Z4-invariant ergodic probability measures #,~>v as n — oo such
that Ay, = h, + o. But this contradicts the upper semicontinuity of the entropy at the
point v. Thus if we will make the above construction for any o, f > 0 and will
show that the topological entropy of ¥ is at least 4, — a, then by the variational
principle and the affine character of the entropy function we will deduce that in
any open neighborhood of v there are ergodic measures on ¥ with the entropy
sandwiched between 4, — o and 4, + o. This would yield Theorem B.

Denote 4 = h, and Ay = h,u),k =1,...,K. Find 6 > 0 so that for all the func-
tions f;,d(w,®) < ¢ implies |f;(w) — f;(®)| < /3. Then let N(J) be the sepa-
ration needed in the weak specification property. Applying Proposition 6.1 with o/2
and B/3 in place of o and f to each of the ergodic measures v(¥) we can find an
¢ > 0 and an n large enough good for all the measures v*), and such that N(5)/n
is also sufficiently small. Fix such n, and fix (g, C,)-separated sets Sy, 1 Sk <K with
the following properties:

|Sk| = exp(n® (b — /2)) , (6.8)
|C,| ™! g)c filmw) — [ fav®| < /3 (6.9)

forany w € Sy and j = 1,...,J.
Let Ey represent a parallelepiped in Z¢ that contains disjoint translates C,(f), cey
C,(,K ) of C, such that

Eo = {m=(m,...,mg) €Z? :0<m; < (n+2N(3))K and
0=m; < n+2N(5) fori> 1}

and C® =n, 4 C, where n, =N()+(n+2N(8))(k—1)e,. e; =(1,0,...,0)e Z* and
N(J) € Z¢ is the vector with all coordinates equal to N(5). Let M be the set of
those m = (my,...,my) € Z% for which m; is an integer multiple of (n + 2N(5))K
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and other coordinates m;,i > 1 are integer multiples of (n +2N(J)). Then the dis-
joint translates E,, = m + Eg,m € M of E, tile Z¢. For each cube C denote by M¢
the subset of M so that if m € M then E,, is contained entirely in C. For the C
in the definition of the set ¥ we will take any sufficiently large cube so that any
translate C of C may have at most 8|C| points which do not belong to E,’s with
meM. Now assign to each m+C® meMc,k=1,...,K a point w*™eS,, in

any way at all, and then using the weak specification find a point w € © such that
d(lo,(I—m—n) o*™)<d for all £ € m+ CH . (6.10)

Then @ € ¥ provided N(6)n~! is sufficiently small. Suppose that 6 < %s, then the

points @ chosen for different collections of the points wh™ € §; give rise to a
(e/2, C)-separated set S in V. By (6.8),

ISIzexp<(1 —ﬁ)lanor‘nd(fhk - %m)) : (6.11)
k=1

and by the definition of Ej.
|Eo| = K(n 4+ 2N(5)) . (6.12)

Since we can produce this construction for arbitrarily large cubes C with the same
set ¥ we will end up with a sequence of cubes CY /o0 as i — oo and a corre-
sponding sequence of (g/2, C?)-separated sets S(i),i = 1,2,..., such that

lim sup|C(i)|~'log|S(i)| = (1 — B)|Eo|~'n? (fjhk - %m) . (6.13)
[ k=1

11— 00

The construction above goes through for any small §§ and large enough n, and so by
(6.12) choosing § and n appropriately we can make the right-hand side of (6.13)
to be not less than 4 — a. This yields that the topological entropy of ¥ is at least
h—oa.
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