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Abstract: We establish large deviations bounds for translation invariant Gibbs mea-
sures of multidimensional subshifts of finite type. This generalizes [FO] and partially
[C, O, and B], where only full shifts were considered. Our framework includes,
in particular, the hard-core lattice gas models which are outside of the scope of
[FO, C, O, and B].

1. Introduction

In [Rl] Ruelle rewrote a part of the general theory of statistical mechanics for the
case of a 2^-action, d^l on a compact metric space Ω satisfying expansiveness
and the specification. The main model for which one constructs translation invariant
Gibbs states (see [R2]) consists of a finite set Q taken with the discrete topology
and called the alphabet (which may represent, for instance, the spin values etc.),

the set QΈ considered with the product topology (making it compact) of all maps

(configurations) ω : Έd —> Q, the shifts θm,m G TLd of QΈ acting by the formula

(θmU>)n = ω w + m , where ω^ G Q is the value of ω G Qz on k G 7Ld, and a closed

in the product topology subset Ω of QΈ called the space of (permissible) config-

urations which is supposed to be shift invariant, i.e. θmΩ — Ω for every m G 7Ld.

The pair (Ω, θ) is called a subshift and if Ω = Q^ it is called the full shift. The
construction in [R2] assumes, in fact, that (Ω, θ) is a subshift of finite type (see
[Sh]) which means that there exist a finite set F C TLd and a set Ξ c QF such that

Ω = Ω ( /rS ) = {ω G Qz" : (θmω)F G Ξ for every meZd}9 (1.1)

where (ω)# = ω^ denotes the restriction of ω G QΈ to R C 7Ld. The set Ξ c QF

is the collection of permissible (allowed) words or configurations on F.

* Partially supported by US-Israel BSF. Partially sponsored by the Edmund Landau Center for
research in Mathematical Analysis, supported by the Minerva Foundation (Germany).
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Recall that a sequence An C Έd,n = 1,2,... of finite sets tend to infinity in the
sense of van Hove, written Λn / oo, if \An\ —• oo and \dAn\ — o(\An\), where \A\
denotes the number of points in A and dA is the boundary of A, i.e. set of points
which have neighbors both inside and outside of A. If a = («!,...,α^) G Έd,ai >
0,1 ^ί^rf and A{a) = {i eZd :0^ik < ak, \<>k<,d} then A(a) / oo provided
ai,...,ad —>• oc which will be written as a —•> oo. If limits are the same over all
sequences An / oo we will write this limit over A / oo. We will need also the
notion of the weak specification from [Rl] which means in our circumstances that
there exists N > 0 such that for any subsets Rj C TLd which are N apart and for
any permissible configurations ξt on Rt one can find ω e Ω such that ω^ = &.
By [R2] for any shift invariant summable interaction potential Φ defined on finite
configurations there exists a Gibbs measure (Gibbs state) on Ω whose conditional
probabilities for given configurations outside of finite sets are determined by Φ (see
Sect. 2 for the definitions). The probability measures

t>ω = \Λ\~lΣδθmω, ω<Ξί2, AcZd is finite, (1.2)
m£Λ

where δω is the unit mass at ω, are called usually the occupational measures.

Theorem A. Let (Ω,θ) be a subshift of finite type satisfying the weak specification
and μ be a Gibbs measure for a shift invariant summable interaction potential Φ.
Then for any closed subset K of the space 0*(Ω) of probability measures on Ω,

lim supμiΓ 1 log μ{ω :ζ£eK}^- inf/φ(v) (1.3)

and for any open G C

lim inf ly l ]- 1 log μ{ω : ζ £ e G } ^ - i n f / φ ( v ) , (1.4)
Λ/Όo vEG

where
jφ( \—{ P(AΦ) - v(Aφ) - hv if v is shift invariant, (] -.

' ~~ (̂  oo, otherwise . '

Here hv is the entropy of the subshift (Ω, θ) with respect to v, P(g) is the pressure
vf a function g on Ω,v(g) — fgdv, and

Aφ(ω)= — £ {ΦR(ωR) \RcΈd is finite and 0 is the first element of R
in the lexicographic order in Zd} . (1.6)

Remark that following the dynamical systems tradition we denote the entropy
by hv, though in statistical mechanics it is denoted usually by s(v) and is called
the mean entropy of v. In the proof of Theorem A we do not use explicitly that
(Ω,θ) is a subshift of finite type and this assumption comes in only via [R2]
where it was needed for the construction of the Gibbs states and for the proof of
their coincidence with the equilibrium states on which the supremum is attained in
the Gibbs variational principle. For finite range potentials Φ Theorem A follows
essentially from [DSZ] where a completely different method was employed.

Leaving the precise definitions of the quantities appearing in Theorem A till
the next section we remark that Theorem A is a generalization of the main result
of [FO] where only full shifts were considered and instead of A / oo the limits
were taken only over sequences of increasing cubes. This generalization enables us
to include physically important models where certain configurations are not allowed,
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for instance, the "hard core" model (see [R2]) (called in [S] "the golden mean")
where Q = {0,1} and two ones are not allowed in any pair of neighboring sites of
Έd. Of course, one can consider such models in a full shift framework prescribing
interaction potentials of certain configurations to be infinity but this approach usually
does not help much.

We derive the upper bound (1.3) of large deviations following the approach in
[Kil] in view of existence of the thermodynamic type limits for the pressure. The
lower bound required in [Kil] the uniqueness of Gibbs measures for a sufficiently
large class of potentials. This does not hold true for Z^-actions with d^.2 in view
of phase transitions. By this reason, in order to obtain the lower large deviations
bound (1.4) we apply a modification of the approach from [FO]. An important part
in the proof of (1.4) is played by the following result which has an independent
interest and holds true in more general circumstances than Theorems A and C.

Theorem B. Suppose that Zd-acts continuously on a compact metric space (Ω,d),
the action preserves a probability measure v on Ω, it satisfies the weak specification
{see Sect. 2), and the entropy hη of the Έd-action as the function on the space of
7ίd-invariant probability measures η is upper semicontinuous at the point η = v.
Then there exists a sequence of TLa -invariant ergodic probability measures vn on
Ω such that

vn -̂ > v and hVn —» hv as n —> oo ,

where -^ denotes the convergence in the weak topology o

Following [Ki2] we will obtain also the bounds for large deviations from the
set of measures with maximal entropy for occupational measures sitting on periodic
orbits. This means the following: For a given a € 7Lά\at > 0,z = l,...,rf let Έd{a)
be the subgroup of Έd generated by {a\, 0,..., 0),. . . , (0,..., 0, aj). The collection

Πa = {ω e Ω : Έd{a)ω = ω} , (1.7)

which is clearly finite, is called the set of α-periodic point. Define va G ̂ (Ω) by

vfl(Γ) = | 77 f l | -
1 | ΓnΠ β | , Γ c Ω , (1.8)

which is the uniform distribution on Πa, and ζa : Πa —> έ?(Ω) by

ya yΛ{a) /j QΛ

Theorem C. Suppose that the conditions of Theorem A are satisfied except that
the weak specification is replaced by the strong specification {see [Rl] and Sect.
2). Then for any closed K c

lim supl^fl)!"1 log va{ω :ζa

ωeK}^- infJ{η) (1.10)
a —KX) V^K

and for any open G C

lim mi\A{a)\~l log va{ω :ζa

ωeG}^- infj{η) , (1.11)
a —>oo ηξϊG

where
ί t̂op — hη if η is shift invariant

oo, otherwise
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and htop — sup{/^ : η is shift invariant } is the topological entropy of the subshift
/ξ~\ /)\
( ώώ, U I.

The final version of this paper was written while the second author visited
the University of North Carolina at Chapel Hill whose support he gratefully
acknowledges.

2. Preliminaries and the upper bound

Let si be the family of all finite nonempty subsets A of Έά', (Ω, θ) be a subshift, and
ΩA be the restriction of Ω to Λ. A collection Φ = {ΦA,A G si} of real functions
ΦA '- Ωyi —> 1R is called an interaction potential (or just: interaction). Following [R2]
we assume that

= Σ l * > i | < o o , (2.1)

where

\ΦΛ\= suplΦ^OI (2.2)
ξeΩΛ

and

ΦΛ-m(θmζ) = ΦΛ(ξ) for any A e si and ξ e ΩΛ , (2.3)

the latter means that we consider only shift invariant interactions. For A C Zd set
Ac = Zd\A. If ξ G ΩΛ and η G ΩΛC denote by ξ V f/ the point £ G β 2 ^ such that
ζΛ = ξ and 1,AC — Ά- If? m addition, ξV η £ Ω and Λl c J^/, then one can define the
energy functions

tf (2.4)
XCΛ

Σ Φ^(«Vιy)Λr), (2.5)

and the partition functions

%A = Σ eχp(~kC?(O) 5 (2.6)

Zί(f/)= Σ e x p ( - l / ^ ( ξ ) ) . (2.7)

For any ξ £ ΩA set also

^ ( 0 = {ω eΩ:ωΛ = ξ}. (2.8)

Given an interaction Φ we will call μ G ̂ (Ω) a Gibbs state (or a Gibbs measure)
if for any finite A c TLd and all ξ G β ^ / j G Ω ĉ satisfying ξV η e Ω //-almost
everywhere

μ(3A(ξ)\ΛAc)(η) = ( Z ^ ) ) - 1 e x p ( - C / ^ ( O ) , (2.9)

where μ{ | ) denotes the conditional probability and $M->M. C Z J is the restric-
tion of the Borel σ-field on Ω to ΩM This definition is the same as in [Fl and
G], and it is equivalent to the definition given in [R2] in view of Theorem 1.8 there.
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In particular, (2.9) implies

μ(ΞΛ(ξ))= J μΛ(ξ,η)dμΛc(η), (2.10)

where μΛ(ξ,η) denotes the right-hand side of (2.9) and μM, McZd is the projec-
tion of μ e ^ ( Ω ) to M.

Recall that a family of finite sets Λy C Έd indexed by a directed set Γ tend to
infinity in the sense of van Hove (see [R2]) written Λy / oo if

lim|/U = oo and lim|(ΛL + a)\AΛj\AΊ\ = 0 (2.11)
yer yer

for any a G TLd. Roughly speaking this means that the "boundary of /I" becomes
negligible in the limit as compared to A. In particular, Aa / oo if a —> oo as in
the Introduction. If Γ coincides with the family si of all nonempty finite subsets of
TLd ordered by inclusion then we will write just A / oo. By Corollary 3.13 from
[R2] the limit

Pφ = lim \A\~X log ZΦ

A (2.12)
Λ/*oo

exists and is called the pressure. Let C(Ω) be the space of continuous functions on
Ω and A G C(Ω). Set

ZΛ(A) = Σ exp ( ΣΛ(θmωξ)) (2.13)
ξ£ΩΛ \meΛ J

where ω^ is an arbitrary point of EA(£>\ and so the above expression depends on
these choices of ωξ. Again by Corollary 3.13 from [R2] the limit

P(A)= \im\A\-hogZ\(A) (2.14)

exists, it is independent of choices of α/, and

Φ = PΦ, (2.15)

where Aφ defined by (1.6) is a continuous function in view of (2.1).
Denote by ^i(Ω) the set of 0-invariant probability measures on Ώ, i.e. v G

means that v(θmΓ) = v(Γ) for any m G TLd and a Borel set Γ C Ω.
Set

HΛ{v) = - Σ v(ΞΛ(ξ))\ogv(ΞΛ(ξ)) , (2.16)

then for v G ̂ /(Ω) the following limit

hv = lim \Λ\-ιHΛ(y) = i n f l ^ l " ^ ^ ) (2.17)
Λyoo A

exists, is called the (mean) entropy, and it is a nonnegative, afϊine, and upper
semicontinuous function on ̂ /(Ω) (see Theorem 3.10 in [R2]). Moreover ([R2],
Theorem 3.12) for all A G C(Ω),

P(A)= sup (σ(A) + hσ), (2.18)

which is called the variational principle.
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Until now we only assumed in this section that (Ω, θ) is a subshift, but further
results require (Ω, θ) to be a subshift of finite type. In fact, results of [R2], which
we are going to rely on, use another equivalent condition saying that there exists
a locally finite collection 3F c stf (i.e. each m G Έd belongs to a finite number of
Λe&) and a family {ΨΛ,Λ G ̂ } such that ΨΛ C QΛ, if A G & then A-meP
and θmΨΛ = ΨΛ~m for all m G Id, and

Ω = {ω £Q*d :ωΛe ΨΛ for all A G ̂ } . (2.19)

If (£2,0) is a subshift of finite type defined in the Introduction, then taking 3F —
{F + m,m e Έd} and Ψf+m = θ-mΞ we obtain the above condition with the same
Ω as in (1.1). On the other hand, if Ω is defined by (2.19) then taking F =
[Jsi-oeΛe^Λ a n c^ Ξ = Ψf we obtain the subshift of finite type framework with the
same Ω, i.e. both conditions are equivalent.

Following [R2] we will say that a sequence of finite sets An C TLά\n = 1,2,...
with An / oo satisfies the condition D if there exists another sequence of finite sets
Mn C TLdMn C An such that

lim l^llil^r1 = 1 (2.20)
« > o o l

> oo

and for each ξ,η G Ω there exists ζ{n) 6ί2,« = l ,2 , . . , such that ζ^] = £ΛΛ and
ζ&] = ηMc9 where again Mc = Zd\M. In order to prove (1.3) and (1.4) for all
sequences An / oo, in fact for A / oo, one has to assume that the condition D is
satisfied for all such sequences which is enough for the upper bound (1.3). A large
part of the proof of the lower bound (1.4) needs nothing else, as well, but its final
step relies on Theorem B which employs the weak specification condition which is
a stronger assumption.

We will give the corresponding definitions in the more general framework of
Theorem B. The result of action of m G Έd on ω G Ω in this more general set
up will be denoted by mω which in the subshift case is the same as θmω. A
continuous action is said to satisfy the weak specification if for any β > 0 there
exists N(ε) > 0 such that for any collection of sets Rι C Zd that are Λ (̂ε) apart,
i.e. for iή=j, ξ G Ri9η G Rj one has \\ξ — η\\ = m a x * ^ — ηk\ ^N(ε), and any points
ζi G Ω there is an ω G Ω such that d(mω,mζi)^ε for all / and all m G R\. The
action of Έd is said to satisfy the strong specification if for any Rt c A(a) such
that all Ri + Έd(a) are N(ε) apart and any points ζz G Ω one can find ω G Πa such
that d(mω,mζi)^ε for all / and all m G Ri.

In the more general set up of Theorem B one also has to keep in mind the
following expansivity condition on the action of 7Ld on Ω saying that there exists
δ > 0 such that d(mω,mώ) < δ for some ω,ώ G Ω and all m G Έd implies ω = ώ.
The expansivity is a sufficient condition for the upper semicontinuity of the entropy
(see [RI]) and it is, clearly, always satisfied for subshifts with finite alphabets.

Pick up β G (0,1) and define the metric on Ω C Ω%d by

d(ω,ώ) = βL, where L = min{||/|| : αv + dv} . (2.21)

Then d(ω,ώ) < 1 implies ωo = ώo, and so if d(mω,mώ) < 1 for all m G Ri• C TLa\
then ωjR/ = ώ/?.. Thus if ζ\ are permissible configurations on Rf, i.e. ξ G ΩR., then

there exist ζ ( z ) G Ω such that ζ$ = ξi9 and if Ri are, say, N(l/2) apart then one can
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find ω e Ω with ω^ = ζ$ = &. Thus for subshifts the above definition coincides
with the definition of weak specification given in the Introduction and, in particular,
the weak specification implies the condition D for all sequences An / oo by taking

Mn = {tf eΈd : min \\ί - m\\ ^N(l/2)} . (2.22)
m£Λn

Remark that the "hard core" model described in the Introduction is a subshift of
finite type satisfying both the weak and the strong specification. The subshift of
finite type conditions are checked here trivially and both specifications follow since
surrounding any configuration on Ri by zeros we eliminate the influence of this
configuration and can continue in any permissible way, and so one can take N(ε) —
1 for all ε > 0.

Next, we will prove the upper bound (1.3). For this one has to assume only
that (Ω,θ) is a subshift of finite type and that the condition D is satisfied for all
sequences An / oo. Denote the set of all Gibbs measures for an interaction Φ by
Kφ. By Theorem 1.9 from [R2], Kφ Φ 0 , £ φ is closed, compact, and it is a Choquet
simplex. Let μ € Kφ then by Proposition 4.4 from [R2] for any g e C(Ω),

lim \Λ\-ι\ogμ (exp £ g o θm) = P(AΦ + g) - P(Aφ)ά=Pφ(g), (2.23)

where μ(q) = Jqdμ and (q o θm)(ω) = q(θmω). Then by (2.18),

Pφ(g)= sup ( v ( 0 ) - / φ ( v ) ) , (2.24)

where /φ(v) is given by (1.5). Since the entropy hv is affine and upper semicontin-
uous then /φ(v) is convex and lower semicontinuous, and so by the duality theorem
in convex analysis (see, for instance, Theorem 3.12 in [R2]),

/φ(v)= sup (v(g)-Pφ(g)). (2.25)
gec(Ω)

Finally, (2.23)-(2.25) together with Theorem 2.1 from [Kil] yield the upper bound
of large deviations (1.3).

3. The Kullback-Leibler Information

For each finite nonempty Λ C Έd and any μ,vG έ?(Ω) define

HΛ(v\μ) = Σ v(ΞΛ(ξ))\og ^

where we assume 0 log § = 0 for any c ̂  0 and log g = 00 for any c > 0. We
call //yi(v|μ) the Kullback-Leibler information and it appears in different variations
sometimes under the name of relative entropy in many works (see, for instance,
[DS, DV, F, FO, and G]). The following result was proved in [F] in the full shift
case with A(a) / 00 in place of A / 00.

3.1. Proposition. Suppose that (Ω, θ) is a subshift of finite type and the condition
D holds true for any sequence An / 00. Then for any v £ &i(Ω) and μ e Kφ,
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lim \Λ\-λHΛ(y\μ) = P(AΦ) - v(Aφ) - hv . (3.2)
Λ/Όo

First we will prove the following assertion.

3.2. Lemma. Suppose that the sequence An / oo satisfies the condition D and
that Mn D An is a corresponding sequence satisfying (2.20). Then

(i) There exists a sequence of numbers ot(n) > 0 such that

\xmoι(n)\Mn\-χ = 0 and \U^η(ξ) - U$n(ξ)\ ^α(/ι) (3.3)

for any ξ £ ΩMn and η £ ΩMc satisfying ξ V η £ Ω.

(ii) For any ε > 0 there is n(s) such that

\Ul(ξ)-Ui(ξΛJ\£e\Λn\ (3.4)

for any ξ £ ΩMn and n^n(ε).

(in) For any ε > 0 there is n*(ε) such that

l Φ (3.5)

for any ω £ Ω and n^:n*(ε).

Proof Some parts of the following proof are standard and can be found in [F and
R2] but for the reader's convenience we give the whole proof here. To obtain (i)
notice that by (2.1), (2.2) and (2.4), (2.5) for any integer k^l,

= \ψΦx(ξv^):iei,

^ Σ Σίll^ll : X e ^\X 3 m,X £ C(k) + m}
X

+ Σ Σ{l|ΦAr||:^e^t(w)}, (3.6)
meMn X

where C(k) = {m £ TLd : 0 ^ |mz | ^k} is the A>cube centered at zero and

s/k(m) = {X £ sί : m £ X C C(t) -I- m,Z ςzί Mn} .

By (2.1)-(2.3) for any m £ Mn,

ΣiWΦxW :Xejtf, X3rn, X<£ C(k) + m}
x

: ^ e J/, x 9 o, jr (zί C(k)}
x

dHβ(k) -> 0 as jfc -+ oo . (3.7)

On the other hand, for any X £ s#k{m) there exists m\ € C(£) such that m + m\ $
Mn. Thus

(3.8)
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where we set Λ(k) = {m € A : min/6/ic||m - / | | ^k}\ and again
a € Zd. Since Mn / oo then by (2.11) for any £Ξ>1,

= max; |α;

441

for

lim = 0 . (3.9)

By (2.1M2.3),

(3.10)

(3.11)

Letting, first, n —> oo and then k —• oo we derive (3.3) from (3.7) and (3.9). In
order to obtain (ii) observe that for any ξ e ΩMn,

Thus by (3.6M3.8) and (3.10),

a(n)\Mn\'1 Zβ(k) + \\Φ\\\Mn(k)\\Mn\-1

-X
x

ύ Σ
meMn\Λn

Λn}

Σ (3 i2)

Now (ii) follows from (2.20) and (3.12). It remains to establish (iii). Consider some
total order on TLd which is compatible with the translations of Έd, for instance, the
lexicographic order. Then (see Sect. 3.2 in [R2]),

•-Atd(0,ω), (3.13)

where for A C Zd,m e A, and ξ € ΩΛ we set

A%n> 0 = - Σ{*x(ξx) Xestf,X3m,λ
X

and m is the first element of X) .

By (2.4) for any ξ € ΩΛκ,

By(2.1)-(2.3),

Since An / oo then by (2.11) for any &Ξΐl,

On the other hand, if m £ Λn\Λn(k) then

C(£) C Λ - m ,

and so by (2.3) and (3.13) for any ω € Ω,

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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Aφ

Λn(m,ωΛn)=Al_m(O,(θmω)Λn_m)

= Aφ(θmω) - Σ{Φx((θmω)x : X £ Λn_m

x

and 0 is the first element of X} . (3.19)

Thus by (2.1)-(2.3), (3.14)-(3.16), (3.18), and (3.19),

\Ul(ωΛn)+ Σ Aφ(θmω)\S\\Φ\\\Λn(k)\ + \ΛΛ\β(k) , (3-20)
m£Λn

where β(k) was defined in (3.7). By (2.1), β{k) —• 0 as k —• oo, and so (iii) follows
in view of (3.17).

Next, we pass to the proof of Proposition 3.1. First, we will show that for any
sequence Λn /* oo satisfying the condition D, v G &/(Ω), and μ G Kφ,

lim sup|ΛΓ 1 ^ n (v |μ)^Pμ φ ) - v(Aφ) - hv . (3.21)
/I—»OO

By (2.6), (2.7), and Lemma 3.2(i) for any n^.n\(ε) = max{« : α(«)|Λ/ΛZ|~1 > ε}

* ^ » \ Z * m (3.22)

for any *; G ΩΛ/C, where the sequence Mn / oo is given by the condition D. By the
assertions (i) and (ii) of Lemma 3.2 for any n^ri2(ε) = max(«( |) ,«i( | )) and all
ξ G ΩMn and η G ΩMc satisfying ξVη eΩ,

^ η U l ( ξ Λ J ) . (3.23)

By (2.10), (3.22), and (3.23) for any ζ G ΩΛn and n^n3(ε) = max(πi(ε),w2(ε)),

- 2ε\Mn\)μMc{η eΩMc:ξVηeΩ}

= (Z^Γ^xpί-t/^CO - 2ε|MΛ|), (3.24)

since by the condition D,

Σ μM^{ηeΩMc:ξWηeΩ}

= \iM^{y\ ^ ΩM% : there exists ω G Ω such

that ωΛn = C and ωMc = ̂ } = μ M ^ ( ^ ) = 1 . (3.25)

Finally, by (2.16), (3.1), (3.5), (3.24), and the shift invariance of v for any
ε) = max(w3(ε),/i*(ε)),

HΛn{v\μ)ύ -HΛn(v) + \ogZ*n +2ε\Mn\

+ JUΛn(ωΛn)dv(ω)S -HΛn(v) + \ogZ*n+2ε\Mn\
Ω

+ ε\Λn\-\Λn\v(Aφ). (3.26)
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Now dividing both parts of (3.26) by \Λn\, letting first n —> oo and then ε -* 0, we
obtain (3.21) by (2.12), (2.15), (2.17), (2.20), and (3.26).

Next, we are going to show that

lim mf\An\~ιHΛfΊ(v\μ)^P(Aφ) - v(Aφ) - hv . (3.27)
n—>oo

By (2.6), (2.7), and Lemma 3.2 (i) and (ii) for any n^n^iβ) and η G ΩMc,

Z M M = Σ Σ { e x p ( - ί / A f π Λ ( O ) : ξ € Ω M » , ξΛn = ζ,ξVηeΩ}
^ΩΛn ξ

2\M\ (3.28)

where, again, | !F| is the number of elements in Ψ and Ψ^η = {ξ G ΩMU '- ζλn — C
and ξ V η G Ω}. By the condition D for any ζ G ΩAn and η G i2M

f ^4,?? + 0, and so
1*^1^1. Thus by (2.6),

^ ^ - ' Z * (3.29)

for n^n2(ε). By (2.9), (2.10), (3.3), (3.4), and (3.29) for all n^n3(ε) and ζ G Ω Λ ,

Σ μ(ΞMn(ξ))

where, recall, Q is the alphabet. Thus by (2.16), (3.1), (3.5), (3.30), and the shift
invariance of v for any n^n^ε),

HΛn(v\μ)^ -HΛn(v)-3ε\Mn\+logZ*n

- \Mn\Λn\log\Q\ - \Λn\v(Aφ) - c\Λn\ . (3.31)

Dividing both parts of (3.31) by \Λn\9 letting first n —> oo and then ε —> 0 we
obtain (3.27) by (2.12), (2.15), (2.17), (2.20), and (3.31) completing the proof of
Proposition 3.1. D

3.3 Remark. The main part of the proof of Proposition 3.1. is, in fact, the re-
sult saying that \ogμ(ΞΛn(ξ)) is equivalent when An / oo to (J2meΛnΛ

φ(θmως)-

\Λn\P(Aφ)), where ω^ £ Ω satisfies ως

Λ = ξ, which is the "volume lemma" type
statement similar to Proposition 3.2 from [Kil].

4. The Lower Bound

We will describe next a more general approach to lower large deviations bounds,
than actually needed for Theorem A. Let ( β , ^ ) be a measurable space and &(Ω) be
the space of probability measures defined on elements of the σ-algebra B. Suppose
that #" C 3& is a sub σ-algebra of Si and v,μ G ̂ (Ω). Define the Kullback-Leibler
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information (cf. [DS, DV, F, G]) by

H*(v\μ) = μ(pζμlogpζμ) (4.1)

if v is absolutely continuous with respect to μ on (Ω, IF) (written v ̂ μ ) with
Radon-Nikodym derivative pζμ, and H^(v\μ) = oό otherwise. If Ω is the same as

in the previous section and F is the finite σ-algebra of all subsets of ΩA for a
finite Λ cZd then H^(v\μ) coincides with HΛ(v\μ) definied by (3.1). By Jensen's
inequality for all v,μ G ̂ (Ω),

H*(y\μ)^Q. (4.2)

Set g+ = max(0,g) and let Lι

+(Ω,^,v) denotes the set of all F-measurable functions
g with v(g+) < oo. If g G Z+(Ω,#", v) then v(g) = v(g+) - v(g+ - g) is defined
though it may be equal to — oo.

4.1. Proposition. For any v,μ G

H*(v\μ) = sup (v(flf)-logμ(^)), (4.3)

and if v ̂  μ then for each C > 0,

v{ω : pζμ{ω)^ec}^C-\H^{v\μ) + Iog2) . (4.4)

Proof Though (4.3) is contained essentially in [DV] and also in [DS, p.68] (with
the supremum taken over bounded or bounded continuous functions) we will give
the proof here for the sake of completeness.

First, remark that if H^(v\μ) = oo then both parts of (4.3) equal oo. Indeed,
if v ̂ μ does not hold true then there is a set Ψ G J^ with μ(Ψ) = 0 and
v(Ψ) > 0. Choose gn = nlΨ,n = 1 , 2 , . . . where lΨ(ω) = 1 if ω G Ψ and = 0, oth-
erwise. Then the supremum of the right-hand side of (4.3) over {gn,n — 1,...} is
oo. If v %μ but v(log+ pζμ) = oc then define Ψn = {ω : O^log pfμ(Ω)^n} and
Qn = \Ψn\ogpfμ. Then μ(e^) = μ(Ω\Ψn) + v(Ψn)^2 and v(gn) -+ oo as n -> oo.
Hence, again, the supremum of the right-hand side of (4.3) over {gmn — 1,...} is
oo. Now assume that v ̂ μ , v(log+ pfμ) < oo, and set Ψ = {ω G Ω : ρfμ(co) >
0}. Let g G Lι

+(Ω9^9v) and q = e*( pζμ)~ιlΨ + 1Ω\«P then, clearly,

v(g) - \ogμ(eβ)SH^(v\μ) + [v(log?) - logv(ήr)] . (4.5)

The expression in the square brackets is nonpositive by Jensen's inequality, and
so the lefthand side of (4.5) does not exceed H^(v\μ). On the other hand, set
gn = lΨ\ogpζμ - nlΩ\Ψ then gn G Lι

+(Ω9&9v) and

lim (v(gn) - \ogμ(eg«)) = H*(v\μ) ,
n—»oo

completing the proof of (4.3).
Next, we prove (4.4). If v(log+/?^) = oo, then H^(v\μ) — oo and there is noth-

ing to prove. So assume that \ogpfμ G L\_(Ω, #", v) then by (4.3) and the Chebyshev
inequality,
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logMexp(log + pζμ)))

(4.6)

completing the proof of Proposition 4.1. D

Next, let (Ω,0β) be again a measurable space, v , μ G ^ ( Ω ) , and ζn : Ω —•
),n = 1,2,... be a sequence of measurable maps, where &(Ω) is taken with

some measurable structure.

4.2. Proposition. Suppose that there exists a measurable set U C &(Ω) and a
sequence of σ-algebras SFn C l , / ι = l , 2 , . . . such that {ω : ζn

ω G £/} G J% /or α//
n = 1,2,... am/

lim v{ζπ G C/} = 1 . (4.7)

7/" r(«) —> oo α̂ s1 w —> oo and

h - lim sup(r(n)yιH^"(v\μ) , (4.8)

lim inf(r(τ ι))- 1 logμ{Γ G ί / } ^ - A . (4.9)
n—>oo

Proof. If Λ = oo then there is nothing to prove. So suppose that A < oo, then
without loss of generality we may assume that H^n(v\μ) < oo for all n which
means that v^n -< μ and v(log+ pζ») < oo. By (4.7) and (4.8) for any ε > 0
there exists « ( ε ) ^ l such that

v{Γ eU}^\-ε (4.10)

and

\n)(h + ε) (4.11)

for any n^n(ε). Applying (4.4) with

C = Q,ε = r(n)(\ - 2ε)~\h + ε), (4.12)

we obtain from (4.11) that for all n^n(ε),

v{ pζμ ^e c " ' ε }^ l - 2ε . (4.13)

Remark that v{pfj > 0} = 1 which together with (4.10) and (4.13) gives

v(Ψn)^ε, where Ψn = {ζn e U,pζn

μ > 0,( pζ;)~l ^e~Cn^} .

Now by (4.13),

μ{ζn e U}^μ{Ψm} = J(pf»Γιdv^εe-c^ . (4.14)
Ψn
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Taking log in (4.14), dividing by r(n), letting first n —> oo and then ε —• 0 we
derive (4.9). D

Next, we are going to apply Proposition 4.2 in the set up of Theorem A in order
to prove (1.4). Let G c &(Ω) be an open set and μ G KΦ. Set 1% = inf v 6 G / φ (v)
with Iφ(v) given by (1.5). If /<? = oo there is nothing to prove, so we assume
IQ < oo. Then by Theorem B which will be proved in Sect. 6 for any ε > 0 there
exists an ergodic vε e ^i(Ω) such that

v ε e G and Iφ(v£)^Iφ + ε. (4.15)

In addition, we can choose N — N(yε) > 0 so large that

U=U(v£) = {ve&(Ω): max \v(Ξc{N)(ξ)) - v£(Ξc(N)(ξ))\ <exp(-N2d)}cG,
ξ€ΩC(N)

(4.16)
where, recall, C(N) is the Λf-cube centered at 0. Now let Λn / oo. Denote

m£Λn

If ω9ώ G ΞΛn(N)(η) for some /y G ΩΛfl(N), then clearly (0mω)C(^) = (θmώ)C(N)
any m G Λn, and so for any ξ G

Thus for some ^ C ^ W ( Λ ^ ) ,

{C^ G U(vε)} = U S Λ O T ( ι / ) . (4.17)

Let ^ w be the finite σ-algebra of all subsets of ΩΛn(N), then by (4.17),

Λ } (4.18)

Since vε is ergodic it follows from the mean ergodic theorem (see [Kr, Sect. 6.4 or
[T], Sect. 3 of Chapter 3) and the Chebyshev inequality that

lim vε{ζΛ" G U(v£)} = 1 . (4.19)
n—KX)

Remark that H^n(vε\μ) < oo, in particular, vfn -< μ since μ G Kφ implies that
v(ΞΛn(N)(η)) > 0 for any η G ΩΛn{N). Since Λn(N) / oo as n -> oo, then by (1.5)
and (3.2),

lim \Λn{N)\-ιH**(yε\μ) = Iφ{v£) . (4.20)
«—> oo

Remark that by (2.11),
lim \Λn\\Λn(N)\-χ = 1 ,

n>oo
\

n—> o o

ζΛnand so we can apply Proposition 4.2 with U = U(v£),ζn = ζΛn, and r(n) = \Λn\
which together with (4.15) and (4.16) yields

lim inf |Λπ |-1logμ{ζ y l Λ G G}
n—*oo

^lim mί\Λn\-ι\ogμ{ζA» e U(vε)}^ - Iφ(vε)^ -1$ - ε . (4.21)
n—>oo

Since ε > 0 is arbitrary this implies (1.4). D
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4.3. Remark. Note that in order to prove (1.4) one needs (4.3) and (4.4) only for
finite σ-algebras 3F which amounts to

H{ p\q) = Σ A log( Pi/qi) = sup ( Σ > β / - log ( f > ^ ) ) (4.22)
Ϊ=I aι,...,ak\i=\ y, =i yy

and
1 ^ 1 2 ) , (4.23)

being true for any probability vectors p — ( p\,...9pk) and q = (q\,...,q/c)
vided 0/0 = 1, Olog § = 0 for C ^ O , and log § = oo for C > 0.

5. Large Deviations from the Equidistribution

Set

where htop is the topological entropy of the subshifl (Ω, θ) and htop = P(0), i.e. it
satisfies (2.18) with A = 0. Since hv is upper semicontinuous in v then ^maχ(Ώ)=l=(5
Recall that the measures on which the supremum in (2.18) is attained are called
the equilibrium states (measures) for A. Thus elements of &max(Ω) are equilibrium
states for the function A = 0. Since the strong specification implies the weak speci-
fication and the latter yields the condition D from Sect. 2 then by Theorem 4.2 from
[R2] saying that sets of all Gibbs states for an interaction Φ and all equilibrium
states for Aφ coincide it follows that ^ m a x ( & ) is the set of all Gibbs measures for
the interaction Φ = 0, i.e. ̂ m3iX(Ω) = K°. Remark that when d = 1 the set ^max(Ω)
is a singleton and the corresponding measure vmax is called the measure with max-
imal entropy. In this case Theorem C was proved in [K2]. It implies, in particular,
that long periodic orbits with the distribution close to vmax form a set whose propor-
tion is close to one. This result was proved by Bowen and was called by him the
equidistribution of closed orbits. As far as we know there are no general conditions
available in d^2 case implying that ^max(Ω) is a singleton. Thus the upper bound
(1.9) yield only that the collection of "long" periodic orbits with distributions close
to the convex set ̂ maχ(Ω) have proportion close to one.

Let now g 6 C(Ω). Then under the strong specification condition by (1.8) and
Theorem 2.2 from [Rl],

lim |yl(β)|~1logvα I exp Σ g o θm)
a^°° \ meΛ(a) J

= lim \Λ(a)\-ι\og E exp ( Σ g(θmω))
a^°° ωβΠa \meΛ(a) J

- βlim \Λ(a)\-ιlog\Πa\ = P(g) - P(0) = P(g) - htop . (5.1)

But by (1.12) and (2.18),

P(g)-htop= sup (v(g)-J(v)) (5.2)
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with J(v) being convex and lower semicontinuous in v. Now the upper large devi-
ations bound (1.10) follows from Theorem 2.1 of [Kil] by the same routine as in
the end of Sect. 2.

Since the uniqueness of Gibbs measures for a large class of interactions as
required in Theorem 2.1 from [Kil] does not hold true in our circumstances we
cannot use this theorem in order to derive the lower bound (1.11) and we will use
for it the lower bound from Theorem A.

Let μ G ̂ maχ(Ώ)? and so v is a Gibbs measure for the interaction Φ Ξ O . Let
Zd D M D A, where A and M are finite sets such that

min \\S-m\\>N (5.3)
ίGΛmeMc

and N is the constant from the definition of the weak specification which means
that for any ξ £ ΩΛ and η G ΩMC there exists ω G Ω with WA = ζ and COMC = η.
Then by (2.5) and (2.7) for η G ΩMc,

CeΩM:ζ\Λ = ξ9ζyηeΩ}\^\ΩΛ\. (5.4)

Thus by (2.9) and (2.10) for any ζ G ΩM,

(5.5)

It follows from here that for any ξ G ΩΛ,

ι \ M W (5.6)

where, recall, Q is the alphabet.
In our circumstances we can reformulate the definition of the strong specification

given in Sect..2 in the following way: there exists K > 0 such that for any subsets
Ri C A(a) satisfying min{||/ - m\\ : ί e Aum G Aj+Zd(a)}^K,i*j and for any
ξi G ΩRι there exists ω G Πa such that ωRi = ξt for all i.

Let L > max(N,K) and

GL(a) = {ί G A(ά) :

The strong specification implies that for any ξ G GL(a) there exists ω G Πa such
that cύG(a) — ζ- Thus defining

DL

a(ω) = {ώeΩ: ω\Gl{a) = ω\Gm}

for all ω G Πa we obtain
β = U DL

a(ω). (5.7)
ωeπa

It is clear that either DL

a(ω) = DL

a(ώ) for ω,ώeΠa or DL

a{ω) ΐλDL

a{ώ) = 0. Let

77* be a maximal collection of points ω G 77fl such that ω,ώ G 77*,ωφώ imply

ώ) - 0. Then by (5.7),

β = U ^ί(ω). (5.8)
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Taking in (5.6) A = G(a) and M = Λ(a) we obtain that for each ω G Πa,

L

( a ) \ - ι e ^ (5.9)

with pL(a) = \A(ά)\GL(a)\\o%\Q\ = o(\A(a)\) as a -> oo. Since ΩΛ{a)ΦΩΛ(a) for

any Ω,Ω eΠa,Ωή=Ω then

{ ) L { ) (5.10)

and so by (5.9) for each ω G Πa,

ι 2 ^ (5.11)

Next, let G C ^(Ω) be an open set and JG = inf^(7/(77) with J(η) given by
(1.12). By the convexity of the function -xlogx, x G (0,1) and Jensen's inequality
one derives from (2.12) the well known inequality HΛ(v)^\og\Q\, and so by (2.17)
and (2.19), Atop = P(0)^ log |β | . Thus both J(η) and JG are bounded by log|β|, as
well. Given ε > 0 pick up v£ G ̂ i(Ω) such that

vεeG and J{vε)^JG + ε . (5.12)

Similarly to (4.16) choose L > 0 so large that

{ max . (5.13)

If ώ G £^(ω) then co^α) = cθGL(a), and so

(βfflω)c(L) = (θmώ)C(L) for any m G G2i(α) . (5.14)

Thus for any ώ G D^(ω) and £ G

> 0 a s ε ^ o o . (5.15)

Pick up n(δ) > 0 so that if a = (a\9...,ad) and am{n= mini^i^d^i^n{δ) then

This together with (5.15) imply that if amϊn ^n(δ),ώ G DL

a(ω), and Q ^ u

L,ι-δrΛ{a)

then ζa

ω e ί / y , and so by (5.8),

{ω e Ω : ζ^(Λ) G I/,, J C LJ{£>«(ω): ω € n ; , £ e t4,ί} . (5.16)

Taking into account that D^(ω) are disjoint for different ω € Πa we derive from
(5.11) and (5.16) that

|{ω e Πa : ζa

ω e G}\^\{ω e Π*ω : ζ% e UU}\

(θ)): ω € /7α*,ζ^ e C4,,}

) € t/L>1J . (5.17)
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Since μ e K°,I°(v) = J(v), and p(a) = o(\Λ(a)\) then by (1.4), (1.8), (5.12),
(5.13), and (5.17),

lim M(a) |- ' log va{ω : ζa

ω € G}
>oo

= lim |^(α)Γ1log(|77 ί ;r
1 |{ω eΠtt:ζ

a

ωe G}\)
a>oo

a—> o o

|
a—>oo ω

e U^S}Z -JG-ε. (5.18)

Since ε > 0 is arbitrary we obtain (1.11). •

6. Approximation by Ergodic Measures

In this section we will prove Theorem B in the set up of a continuous action of
Έd on a compact metric space (Ω,d) assuming that the weak specification and the
upper semicontinuity of the entropy conditions introduced in Sect. 2 are satisfied.
Recall that the expansivity which is always satisfied in the framework of Theorems
A and C is a sufficient condition for the upper semicontinuity of the entropy (see
[Rl]). Remark that usual proofs for the approximation of a Z^-invariant measure v
by a weakly converging to v sequence of ergodic measures vn takes vn sitting on
periodic orbits thus having zero entropy, and so does not enable us to approximate
v in entropy, as well (unless hv = 0), which is the main point here.

In fact, we will produce more than just ergodic measures approximating v G
g?(Ω). Invariant sets Ψ c Ω will be constructed such that all of their invariant
measures are close to v, and such that the topological entropy of the action restricted
to Ψ is close to the entropy of (Ω,Zd,v). This can be thought of as an approximate
version of the Jewett-Krieger theorem (see [W]) in the non-ergodic setting where,
of course, the theorem itself fails to hold true.

Recall that for ε > 0 and A c TLd a set E c Ω is said to be (ε,Λ)-separated
if for any ω,ώ G E,ωφώ there exists m G A such that d(mω,mώ)^:ε, where mω
denotes the result of the action of m e Έd on ω e Ω. We will need a general result
on the relation between a measure entropy and the topological entropy. Here no
specification and expansivity assumptions are necessary. Denote by Cn the cube
{m = (mi,.. .,

Proposition 6.1. Let η G &(Ω) be an ergodic invariant measure of a continuous
action ofΈd on (Ω,d). Given continuous functions {/i,...,/&} and positive con-
stants a > 0,β > 0 there exist no,ε > 0 such that for all n^ino one can find a
(ε,Cn)-separated set S C Ω satisfying:

(i) \S\^exp(nd(hη - α)) where, again, hη is the entropy of this Έd-action on Ω
with respect to η;

Σfj(mω)-Jfjdη < β for all ωeS and j=l,...,k.

Proof By the definition of the entropy hη (see [Rl, Kr, or T]) we can find some
finite partition D of Ω into regular sets A such that η(dDi) = 0 and

\hη-hη(@)\ <α/4, (6.1)
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where hη(@) is the entropy of the partition D. Next, by the ergodic theorem (see
[Kr] or [T]) if n is sufficiently large then the set En of x which satisfy

mecn

<β, lύjύk (6.2)

has measure at least 1/2. Choose now an auxiliary δ > 0 (the precise choice will
be specified later) and find an open set V containing U/^A such that

η(V)<δ. (6.3)

Finally, let 2ε be the minimum distance between the disjoint closed sets
We will say that points ω,ώ G Ω are "well" (ε,«)-separated if d(mω,mώ)^.ε for
some m G Cn and in addition mω and mώ do not belong to V. Applying again the
ergodic theorem and taking n still larger we can ensure that

Fn=EnΠ{ω:\Cn -1

has ^-measure at least 1/4. Now let S be a maximal "well" (ε,rc)-separated subset
of Fn. We associate now with each point ω £ S a collection of atoms j / ( ω ) of
V fmecn

m~[^ m * n e following way. Put into A(ω) any atom containing a point ώ
such that

I d l " 1 ^ £ Cn : mω and mώ are in the same

Clearly, the number of elements in A(ωo) does not exceed Σm<^\Cn\ (

and so if δ is small enough then

\s/(ω)\ <exp( |C w |α/4). (6.4)

Observe that the maximality of S implies that \Jωes^(co) covers Fn. Indeed, if
this were not true we would have a point ώ G Fn such that for all ω G S mώ and
mω are in different ί^-atoms for more than 4δ\Cn\ points m in Cn. Then by the
definition of Fn there is at least one point mo among these m such that both m$ω
and moώ does not belong to V9 and so ω, ώ £ Fn axe "well" (ε,«)-separated for
any ω G S in contradiction to the maximality of S. Thus we get a collection of
atoms from \jmeC m~ι!3 whose cardinality is at most |5Ίexp(|Cn|α/4) covering a
set of ^-measure 1/4. By the Shannon-McMillan theorem (see [Kr], Sect. 9.2, [T],
Sect. 5 of Chapter 8, or [OW]) for n large enough those atoms from the above
collection whose measure is smaller than exp(—\Cn\{hη(β) — α/4)) will cover a set
of measure of at least 1/8, and so

1/8 (6.5)

which together with (6.1) imply the lower bound (i) provided n is big enough. The
property (ii) is also satisfied by (6.2). D

Next, we will pass to the proof of Theorem B. Using the ergodic decomposition
of v and the fact that the entropy is an affine function on the space of Έd-invariant
measures (see [Kr, T, R2]) it follows that with no loss of generality we may assume
that v is a finite sum of ergodic measures v^, fe = l, ...,K, i.e.
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(6.6)

where the v(A:)'s are not necessarily distinct. So we will complete the proof of
Theorem B under this assumption. Our next objective will be, given continuous
functions fj with supω\fj\^lj = I , . . . , / and β > 0, to find a large enough cube
C so that the set

Ψ = {ω G Ω :
lee

for all m e Έd and all j = 1,..., J) , (6.7)

which is clearly closed and Z^-invariant has topological entropy at least hv — oc.

We may assume that the f t , . . . , f3 and β > 0 are chosen in such a way that for any
large enough cube C the topological entropies of the corresponding sets Ψ will not
exceed hv + α. This can be done since for otherwise by the variational principle (see
[M, Rl]), the affine nature of the entropy function, and the ergodic theorem we will
have a sequence of Έd-invariant ergodic probability measures r\n^v as n —» oo such
that hηn ^ hv + α. But this contradicts the upper semicontinuity of the entropy at the
point v. Thus if we will make the above construction for any α, β > 0 and will
show that the topological entropy of Ψ is at least hv — oc, then by the variational
principle and the affine character of the entropy function we will deduce that in
any open neighborhood of v there are ergodic measures on Ψ with the entropy
sandwiched between hv — a and hv + α. This would yield Theorem B.

Denote h = hv and hk = hv(k),k = 1,...,K. Find δ > 0 so that for all the func-
tions fj,d(ω,ώ) < δ implies |//(ω) — fj(ώ)\ < β/3. Then let N(δ) be the sepa-
ration needed in the weak specification property. Applying Proposition 6.1 with α/2
and β/3 in place of α and β to each of the ergodic measures v(^ we can find an
ε > 0 and an « large enough good for all the measures v^k\ and such that N(δ)/n
is also sufficiently small. Fix such n, and fix (ε, Cn)-separated sets Sk,l^k^K with
the following properties:

\Cn ~l <β/3

(6.8)

(6.9)

for any ω e Sk and 7 = 1,...,/.

Let EQ represent a parallelepiped in Έd that contains disjoint translates dι\...,

C{

n

κ) of Cw such that

2N(δ))K and

^rrii < n + 2N(δ) for / > 1}

N(<5) G 2^ is the vector with all coordinates equal to N(δ). Let M be the set of
those m = (mi,... ,/w</) G 2^ for which mi is an integer multiple of (n + 2N(δ))K
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and other coordinates mui > 1 are integer multiples of (n +2Λ/χ<5)). Then the dis-
joint translates Em — m Λ-E^m G M of EQ tile Έd. For each cube C denote by Me
the subset of M so that if m e Mc then Em is contained entirely in C. For the C
in the definition of the set Ψ we will take any sufficiently large cube so that any
translate C of C may have at most β\C\ points which do not belong to £m ' s with
meM. Now assign to each m + Ci£\meMc,k=\, ...,K a point ωk'meSk, in

any way at all, and then using the weak specification find a point ω E Ω such that

d(lω,(l-m-nk) ωk>m)^δ for all ( e m + C<*> . (6.10)

Then ω eΨ provided N(δ)n~ι is sufficiently small. Suppose that δ^\ε, then the
points ω chosen for different collections of the points ωk>m E Sk give rise to a
(ε/2,C)-separated set S in Ψ. By (6.8),

f ^ ) ) (6.11)

and by the definition of EQ.

\E0\=K(n + 2N(δ))d . (6.12)

Since we can produce this construction for arbitrarily large cubes C with the same
set Ψ we will end up with a sequence of cubes C^ /* oo as / —> oo and a corre-
sponding sequence of (ε/2,C^)-separated sets S(i\i = 1,2,..., such that

lim suplCίOI-^oglSίOl^ίl - jSFol"1^ ( £ * * - ^ α ^ . (6.13)

The construction above goes through for any small β and large enough n, and so by
(6.12) choosing β and n appropriately we can make the right-hand side of (6.13)
to be not less than h — α. This yields that the topological entropy of Ψ is at least
λ-α.
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