
Commun. Math. Phys. 164, 305-349 (1994) Communications l'Π

Mathematical
Physics

© Springer-Verlag 1994

Asymptotic Stability of Solitary Waves

Robert L. Pego1, Michael I. Weinstein2

1 Department of Mathematics & Institute for Physical Science and Technology, University of
Maryland, College Park, MD 20742, USA. Supported by NSF Grants DMS 9196155 and 9201869.
2 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA. Supported
by NSF Grant DMS 9201717.

Received: 20 August 1993

Abstract: We show that the family of solitary waves (1-solitons) of the Korteweg-de
Vries equation

dt u + udx u + 93

X u = 0 ,

is asymptotically stable. Our methods also apply for the solitary waves of a class
of generalized Korteweg-de Vries equations,

In particular, we study the case where f (u) = up+l/(p + 1), p — 1, 2, 3 (and 3 <
p < 4, for u > 0, with / G C4). The same asymptotic stability result for KdV is
also proved for the case p = 2 (the modified Korteweg-de Vries equation). We
also prove asymptotic stability for the family of solitary waves for all but a finite
number of values of p between 3 and 4. (The solitary waves are known to un-
dergo a transition from stability to instability as the parameter p increases beyond
the critical value p = 4.) The solution is decomposed into a modulating solitary
wave, with time-varying speed c(f) and phase y(t) (bound state part), and an infi-
nite dimensional perturbation (radiating part). The perturbation is shown to decay
exponentially in time, in a local sense relative to a frame moving with the solitary
wave. As p — > 4~, the local decay or radiation rate decreases due to the presence
of a resonance pole associated with the linearized evolution equation for solitary
wave perturbations.

1. Introduction

Solitary waves are a class of finite energy, spatially localized solutions of nonlinear
dispersive partial differential equations of Hamiltonian type. In many such systems,
computer simulations and certain analytical results suggest that, in general, solutions
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eventually resolve themselves into an approximate superposition of weakly interact-
ing solitary waves and decaying dispersive waves. Thus it has been suggested (see
[L, GGKM1] that solitary waves play the role of elements in a nonlinear basis,
with respect to which it is natural to view the solution in the limit of large time. A
natural step toward understanding this sort of asymptotic decomposition is to con-
sider the stability of solitary waves. This is the study of the behavior of solutions
with initial conditions in a neighborhood of the solitary wave.

In this paper we establish a result concerning the asymptotic stability of solitary
wave solutions of the Korteweg-de Vries (KdV) equation

dtu + udxu + d3

xu = Q . (1.1)

The methods we use also apply, for example, to the solitary waves of a generalized
KdV equation (gKdV)

dtu + dxf(u) + dlu = Q. (1.2)

In particular, we study the case where f (u) — up+l/(p -f 1), for p — 1, 2, 3, (and
3 < p < 4 for u > 0, with / G C4). The same asymptotic stability result which
is proved for KdV is shown to hold for the case, p = 2, the modified Korteweg-
de Vries equation (mKdV). The solitary waves of (1.2) are known to undergo a
transition from stability to instability as the parameter p increases beyond the critical
value;? = 4, cf. [LS, Wl, W3, BSS, PW2]. Some of the results of the present paper
were announced in [PW1].

The KdV and gKdV equations have a two-parameter family of solitary wave
solutions of the form u(x, f) — uc(x — ct + y), for all c > 0, γ G IR. The solitary
wave profile uc (y) is the unique symmetric solution of the equation

-d2

yuc+cuc-f(uc) = Q , (1.3)

having uc(y) — » 0 as y — > oo. Explicitly, for our particular nonlinearity, we have

\l/P/ ι \ P ι

, where α - ί -c(p + l)(p + 2)J , β=-PVϊ. (1.4)

Because a small perturbation of a solitary wave can yield a solitary wave with
a permanent phase shift, or one with a different speed, it is appropriate to study
the orbital stability of solitary waves. An extensive mathematical literature on
the subject of orbital stability of solitary waves developed following the work of
Benjamin [Be] (see also Bona [Bo]) for the KdV equation. The results of Laedke
and Spatschek [LS], Weinstein [Wl], [W3] and Bona, Souganidis and Strauss [BSS]
(see also [BSo]) assert that for integer p with 1 ̂ p < 4, a solution which is ini-
tially close to a solitary wave uc(x — ct) in the Sobolev space /^(R), will forever
remain close to the set of translates uc (x — ct + y) of the wave. (This is the orbit
of the wave under the group of time translations.) Somewhat more precisely, for
sufficiently small δ > 0, one has

inf | | tt( ,0-«c( + y)||#ι <δ (1-5)

for all t > 0, if the same quantity is small at the initial time t — 0. This notion of
stability establishes that the shape of the wave is stable, but does not fully resolve
the question of what the asymptotic behavior of the system is. A priori^ it is possible
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that the solution wanders in a neighborhood of the group orbit of the solitary wave
without settling down to some well-defined asymptotic state.

Our goal in this paper is to describe more precisely the long-time asymptotic
behavior of a class of solutions initially close to a solitary wave. In the general
study of the stability of periodic solutions of ordinary differential equations [CL],
and traveling waves of parabolic systems [Sa], one often seeks to establish that a
perturbed solution will approach, as t —> oo, some fixed translate of the periodic
orbit or wave. This is the property of orbital asymptotic stability. In the present
context, since small perturbations of solitary waves can change the wave speed,
what we seek to show is that under suitable conditions, if u(x, t) is initially a small
perturbation of a given solitary wave uc (x — ct + y), then

u(x, t) - uc+ (x - c+t + y+) —>• 0 as t —> -hoc , (1.6)

for some c+ near c and y+ near y. If this property holds, we say that the family
of solitary waves is asymptotically stable. (For the pure power nonlinearity with
f (u) = up, the family of solitary waves may also be regarded as a group orbit,
under the larger group of symmetries consisting of translations u \-> M( + y), and
dilations u *-+ cl/pu(cl/2 •).)

Now, the approach taken in the Hl stability theory does not yield this informa-
tion. The reason is as follows: To prove Hl stability, the solitary wave profile, uc,
is viewed as a critical point of a conserved energy functional:

δ[u\ = $e\u\ + cJf\u\ .

Here, the Hamiltonian ffl and impulse functional <Af are given by

3f[u} = ίl-(dxύ)2-F(u)dX, ^[u] = I^u2dx, (1.7)

where F' (u) =f(u\ F(Q) = 0. The estimate (1.5) arises because uc is a constrained
minimum of <f, under the condition

d^[uc]/dc > 0 ,

which is true for p < 4, due to the scaling relation uc(y) — cl/pu\(y^fc). Being
derived from conserved integrals, the norm in (1.5) is insensitive to dispersive decay
phenomena.

In order to establish asymptotic behavior of the type in (1.6), one should choose
a norm which decreases as perturbations disperse. A program along these lines was
carried out for a class of nonlinear Schrόdinger equations by Soffer and Weinstein
[SW1-3], who used Lp and polynomially weighted L2 norms to establish the asymp-
totic stability of a family of nonlinear bound states. There, and in the present work,
a key ingredient is a decay estimate for the local energy of perturbations, where
the measure of local energy is tailored to the dynamics at hand.

What norm is appropriate for KdV solitons? For the KdV equation, numerical
computations and certain results based on the method of inverse scattering suggest
that, if a soliton moving to the right with speed c > 0 is perturbed, the solution
will evolve toward a superposition of a similar dominant soliton, possibly followed
by a number of small solitons (bound states) also propagating to the right, and then
a dispersing part (radiation), cf. [ZK, GGKM, L, AS, DJ]. See Fig. 1. (For rigorous
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Fig. 1. Schematic picture of a solution of the KdV equation with two solitons and a dispersive
wave

results regarding the emergence of solitons from arbitrary initial conditions, obtained
using results from inverse scattering theory, see Schuur [Sc].)

One therefore should not expect (1.6) to occur in any translation-invariant norm,
such as any Lp norm, 1 ̂ p ^ oo. Heuristically, we may analyze the situation as
follows: First, by (1.4), small solitary waves travel slower than larger ones; the
amplitude increases with the speed c. Second, small amplitude dispersive waves,
considered in the frame y = x — ct of a dominant solitary wave traveling to the
right with speed c, evolve approximately according to the equation

dtu — cdxu + ΰ\u = 0 ,

whose solutions are a superposition of plane waves e

lkx~ιωt, where ω(k) = —ck —
A;3. The group velocity of these linear waves is always negative: ω'(k) = — c —
3k2 < 0 for all k. So small amplitude dispersive waves should travel to the left in
this frame.

Hence, one may expect the dominant soliton to "outrun" the generated distor-
tions. In a coordinate system moving with the large soliton, one could expect local
uniform convergence in (1.6). Thus, we introduce a notion of local decay, to be
used in the frame of the dominant solitary wave. This is expressed in terms of
weighted norms, with exponential weights of the form eay where a > 0. We define

L2

a = {υ e<*veL2(K)}9 with || υ\\L2 = \\ e^υ\\L2 ,

Hi = {v I eφυ € Hl (R)}, with || υ \\Hι = \\ e^υ \\ffl .

Convergence in the space Hl

a implies local uniform convergence. Furthermore, given
a function v(x + st) which is simply being translated to the left, with speed — s < 0,
then its norm || u( +st) \\Hι in the weighted space decays at an exponential rate,

like e~ast.

The global existence of solutions of the KdV equation with initial data u( , 0) G
Hs Γ\L2

a with s^2 has been considered by Kato [K3], who showed that a unique
solution exists with u G C([0, oo), Hs Γ\L2), depends continuously on its initial
data, and furthermore, enjoys a "parabolic" smoothing property, having e^u G
C((0, oo), Hs) for any real s'. Further developments concerning the well-posedness
of KdV and gKdV appear in the more recent papers [KPV, GT].



Asymptotic Stability of Solitary Waves 309

Our main result for solitary waves of the KdV equation is as follows.

Theorem 1. Let uc(x — ct + y), c > 0, y G R, be a solitary wave solution of the
KdV equation (1.1). Suppose 0 < α < x/c/S αwd 0 < Z? < a(c — a2). Then there
exists C > 0 such that if ε > 0 is sufficiently small, we have the following: Con-
sider the initial value problem for the KdV equation with data

u(x,Q) = uc(x + γ) + vQ(x). (1.8)

Assume that VQ e //2 Π/fj , w#λ || VQ \\H\ + || UQ \\Hι < ε. 7%e« ίλere exist c+ >

0, γ+ G R, swc/z ί/zαί I c — c+ < Cε, | y — y+ | < Cε, and /or all t^.0 we have

|| w( , 0 - uc+ (- - c+t + y+) ||tf i ^ Cε,

|| ιι(. + c+ί - y+, 0 - κc+( ) ll//ι ^Cεe-tt . (1.9)

Exactly the same result is true for the modified KdV equation (mKdV), which is
(1.2) withp = 2.

Remarks.

1. The solution to KdV and gKdV (see Theorem 3 below) will be expressed in
the form

u(x, t) - uc(t)(x + 0(/)) + v(x H- 0(0, 0 > (1-10)

where 0(0 = KO ~ /o c(s)ds. It is proved that

I 7(0 - 7+ I +11 1>( , 0 ll//ι ̂

The modulating speed c(f) and phase y(0 do not depend on a, nor do their asymp-
totic limits c+ and y+.

2. Related results for the KdV and mKdV (p = 2) equations appear in [Sc].
The KdV and mKdV equations are completely integrable, and may be solved by
the inverse scattering transform. In [Sc] the representation of the solution in terms
of the inverse scattering transform is analyzed to obtain information about the large
time behavior of solutions in which solitons emerge. This approach does not apply
to Eq. (1.2) with more general /(M), where the equation is not expected to be
integrable.

In (1.10), the leading (and dominant) term is an exact solitary wave solution of
(1.1) when c(t\ y(i) do not vary in time. If we perturb the solitary wave slightly,
it is natural to expect the solitary wave to adjust, via slow and small variations of
its available parameters, to a nearby solitary wave. Thus we allow the parameters c
and y to "modulate." Substitution of the ansatz (1.10) into (1.2) yields an equation
of the form

dtv = dyLc(t}v - (cδc + ydy)uc(t) + ̂ (uc(t^ v) , (1.11)

where
Lc = -d2

y + c-ff(uc).

At this point c(t) and y(t) are still unspecified functions of time. The evolution
equations we obtain for these quantities may be said to arise from a non-secularity
condition to be imposed on the solution v of (1.11). In the space L2 (with domain
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//3), the operator dyLc is degenerate, with an eigenvalue at the origin λ = 0. The
(generalized) eigenfunctions are dyuc and dcuc, which satisfy

dyLcdyuc — 0, dyLcdcuc — —dyUc .

(To derive these equations, differentiate (1.3) with respect to y and c.) These two
zero modes are associated, respectively, with infinitesimal changes in the location
and speed of the solitary wave. They give rise to solutions dyuc and dcuc — tdyuc

to the linearized problem

dtv = dyLcυ , (1.12)

which are, respectively, constant and linearly growing with time.
Formally, to ensure that v contains no component of these solutions which ex-

hibit secular growth, it is appropriate to require that the right-hand side of (1.11) be
orthogonal to the (presumably 2-dimensional) generalized kernel of the adjoint of
dyLc. These constraints yield two coupled first order differential equations for c(i)
and y(f) (called modulation equations), which are themselves coupled to the infinite
dimensional dispersive evolution equation for ι;( , t).

It turns out that the weighted space L2 also plays a role at this point. In fact, the
generalized kernel of the adjoint of dyLc is not 2-dimensional in the space L2, but
it is 2-dimensional in L2 for 0 < a < ^/c. Thus, introducing the weighted space
L2

a provides a regularization which facilitates the derivation and justification of the
modulation equations. (We note, however, that the modulation equations themselves
do not depend on α.)

The functions c(f) and y(f) are sometimes referred to as collective coordinates.
Modulation equations for collective coordinates have been previously derived by
various formalisms (see for example [KM, KA, Ne]). In formal perturbation theories,
the coupling to the dispersion is usually neglected and the modulation equations are
approximated by a coupled system of ordinary differential equations. The validity
of this approximation on large but finite time intervals is considered in [W2] for a
class of nonlinear Schrόdinger equations.

Another point of view that describes our analysis is that the change of variables
implicit in (1.10), from u to (y(t), c(t), v(y, t)\ is one for which the family of
solitary waves becomes a 2-dimensional manifold of equilibria, corresponding to
constant values of y and c, with v = 0. We study the asymptotic stability of this
manifold by regarding it as a center manifold. The "parabolic" character of the KdV
equation in the space Hs Π L2

a makes this approach feasible.
Our results below for gKdV in Theorem 3 will differ from the results in Theorem

1, due to differences arising in the detailed spectral properties of the operator dyLc

in the linearized evolution equation (1.12). As mentioned above, the point λ — 0
is an eigenvalue of the operator dyLc in L2. Concerning the rest of the spectrum,
the results of [PW2] and Sect. 2 (see Theorem 2.1 below) imply that when
1 ̂ p < 4, the spectrum consists of the entire imaginary axis. Most of this spectrum
is approximate point spectrum. The point λ = 0 is an eigenvalue which is embedded
in the essential spectrum.

A crucial spectral property that makes Theorem 1 possible is that for the solitary
waves of KdV (and mKdV).

λ — 0 is the only eigenvalue of dyLc in the space L2 . (1.13)
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In particular, the linearized equation (1.11) has no localized (L2) solution of the form
eίωtY(y) with ωφO real. While this refined spectral information concerning dyLc is
not required in the /^-Lyapunov stability theory, it is necessary for our asymptotic
stability analysis that (1.12) admit no spatially localized, temporally nondecaying
solution which is not associated with modulation of the parameters c(t) and y(f).
We will prove (1.13) in sect. 3 and Appendix B. The proof relies on some general
results in [PW2] concerning the eigenvalue problem for solitary waves of gKdV, and
on explicit formulae available for the solution of the eigenvalue equation dyLcυ = λυ
for KdV solitons. (Such formulae appear in [JK, Ber]. Our development relies on
results from [M, GGKM].)

We are not presently able to prove that (1.13) holds for the solitary waves of
gKdV for all p E (1, 4). For p fixed, we note that λ is an eigenvalue of dyLc if and

only if A/c3/2 is an eigenvalue of dyL\. (This is due to a dilational symmetry admitted
by the gKdV equation, but can easily be checked using (1.4).) It follows that the
property in (1.13) does not depend on c. What we can prove is the following:

Theorem 2. The set E, of values of p with p > 0 such that the operator dyLc has

a nonzero eigenvalue in L2, is a discrete set In particular, E Π [1, 4] is a finite
set (which does not contain the values p = 1 or p = 2).

We conjecture that E is empty, in fact. There is strong numerical evidence to this
effect, see the remarks concluding Sect. 3 below. But at this time, except for p = 1
and 2, we are unable to prove that any particular p E [1, 4] lies in E or not.

Our main stability result concerning gKdV solitary waves is as follows.
We are interested in treating real values of p near p = 4, the transition to
instability. Since for noninteger p, the nonlinearity f(u) is not smooth, the
results of Kato [K3] do not immediately yield the global existence of solutions.
In Appendix A, we show that the method of Kato does yield global existence for
3 < p < 4 (where / is C4) : given u( , 0) E H2ΠH^ the solution u E C([0, oo),

#2 n#j), and eaxu E C([0, oo), Hs') for any s1 < 4. In particular, the solution is
classical: For t > 0, dtu and d^u are continuous.

Theorem 3. Let uc(x — ct + 7), c > 0, y E 1R, be a solitary wave solution of
the gKdV equation (1.2). Suppose 3^p < 4, and assume that (1.13) holds, i.e.

p £ E. Let 0 < a < \fcβ. Then there exists C > 0 and b, 0 < b < a(c - a2),
such that if ε > 0 is sufficiently small, we have the following: Consider the initial
value problem for gKdV with the data in (1.8). Assume that VQ E H2 Γ\H*, with
II vo \\HI + II yo \\ffi < ε Then there exist c+ > 0, y+ E IR, such that \ c — c+ \<

Cε, I y — y+ \ < Cε, and for all ί^O we have

| ι/0, t) - uc+ 0 - c+t + y+) \\Hι ̂

|| u(. + c+t - γ+, 0 - uc+ 0) ll^i ^ Cse-bt . (1.14)

The conclusion of this theorem differs from that of Theorem 1 regarding the rate
of exponential decay obtained in the weighted norm. In both Theorems 1 and 3,
the local decay rate — b satisfies — a(c — a2) < — b < 0, but now it may be further
restricted. The difference arises from the character of the spectrum of the oper-
ator dyLc in (1.12), considered in the space L2. Studying the resolvent equation
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(λ — dyLc)v = g in L2, is equivalent, after multiplying by eay and letting w = eayv,
h = eay g, to studying the resolvent equation

(λ - Aa)w = h, with Aa = eaydyLce~ay , (1.15)

in the space L2. The transformation from AQ — dyLc to Aa has the effect of shifting
the essential spectrum (defined to consist of all points of the spectrum which are
not isolated eigenvalues of finite multiplicity [H, chap. 5]): The essential spectrum
of AQ is the imaginary axis, but the essential spectrum of Aa lies entirely in the
left half plane Reλrg — a(c — a2) < 0. Thus, modulo a finite dimensional subspace
corresponding to point eigenvalues of Aa, we expect that the linearized flow defined
by eAat is dissipative. Now, for the KdV and mKdV equations one can verify that
the entire spectrum of Aa consists only of its essential spectrum, plus the isolated
eigenvalue λ — 0 of algebraic multiplicity 2. But for gKdV this may no longer be
true: In principle, the operator Aa can have isolated eigenvalues of finite multiplicity
lying in the strip — a(c — a2) < Re/l^O. The property (1.13) is used to guarantee
that, for p £ E, the only eigenvalue of Aa on the line Rel = 0 is λ = 0. The
additional restriction on the exponential decay rate — b in Theorem 3 arises because
b must have the property that Re A < — b whenever λ lies in the spectrum of Aa

and A φ O .
We remark that the restriction 0 < a < A/c/3 is imposed in Theorems 1 and

3 because the expression a(c — a2) is maximized at a = y/c/3. Larger values of a
would restrict the initial data further, with no gain in the decay rate achieved.

The possibility that Aa has isolated nonzero eigenvalues in the strip — a(c —
a2) < Re/I < 0 becomes reality for p near 4, the point of transition to instability:
For p > 4 the operator AQ = dyLc (and also Aa) has an eigenvalue λ#(p) > 0 [PW2-
3]. Having characterized λ#(p) as a zero of a Wronskian-like analytic function D(λ)
called Evans' function, Pego and Weinstein showed that λ#(p} is analytic in p in a
neighborhood of p = 4, with λ#(p) < 0 for p < 4.

When λ#(p) < 0, it is not an eigenvalue of AQ in L2. As discussed in [PW2-3],
it is instead analogous to a resonance pole in quantum scattering theory [RS4]: It
is a singularity arising in the analytic continuation of (λ — Ao)~lf(x) (for fixed x
and / G L2 with compact support, for example), as λ moves from the right half
plane, across the essential spectrum on the imaginary axis, onto the second sheet
of a Riemann surface, above the left half plane. Such singularities of an analyti-
cally continued resolvent control radiation rates in a variety of physical problems,
accounting, for example, for the phenomenon of Landau damping in the Vlasov-
Poisson system of plasma physics [CH1-2], and for acoustic scattering in the
wave equation, where local decay occurs at rates given by scattering frequencies
[LP, V].

What we will show below is that in the present circumstances, λ#(p) is a small
negative eigenvalue of Aa, when 4 — p is small and positive. The decay rate b in
Theorem 3 must then satisfy λ#(p) < — b < 0, and λ#(p) —> 0 as p —> 4. Therefore,
the local decay rate of solitary wave perturbations, as guaranteed by Theorem 3,
must approach zero as p approaches 4. See Fig. 2, comparing the spectrum of AQ
with that of Aa9 for a value of p near 4.

Finally, a word about issues arising in carrying out a priori estimates of the
perturbation about the solitary wave. A significant technical obstacle to overcome
is that nonlinear terms like υ2 become discontinuous when considered as functions
on the weighted space 7/j, because the weight eay is not bounded away from zero.
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(α) (b)

Fig. 2. (a) Spectrum of dyLc

mark eigenvalues
for/? near 4. '<>' marks resonance pole, (b) Spectrum of Aa.

(For this reason Sattinger [Sa] required his weights to remain strictly bounded away
from zero.) As an example that describes how we will overcome this problem, we
estimate || v2 \\Hι as follows:

Thus if the unweighted norm || v \\Hι can be shown to be small, then a quadratic
term can be controlled like a small linear term. While control of the weighted
perturbation w(y, t) — eayυ(y, t) is obtained by direct estimates of an integral equa-
tion, using smoothing and decay estimates on the semigroup eAat, control of the
unweighted norm ||^( , O i l / / 1 requires a different kind of analysis. The key is to
use the conserved energy functional <ί, originating in the work of Benjamin [Be],
for which uc is a critical point. Using this together with the local decay of the
perturbation u( , t), we obtain the necessary bound for || v( , t) \\H\.

The paper is organized as follows: In Sect. 2, we begin the spectral analysis
of the linearized operator dyLc in (1.12), characterizing its essential spectrum and
generalized kernel in the spaces L2 and L2

a. Nonzero eigenvalues are characterized
as zeros of Evans' function D(λ\ whose properties are recalled from [PW2] and
further developed. In Sect. 3, we exhibit D(λ) explicitly for/? = 1 and 2, and verify
the property (1.13). Also, we prove Theorem 2, by studying D(λ,p) using analytic
continuation in p.

We study the linear equation (1.12) in Sect. 4 by semigroup methods, and obtain
certain smoothing and exponential decay estimates for later use. In Sect. 5 we justify
the representation (1.10) of the solution, and derive the equations of motion of the
new variables (c(t), y(t\ w(y, t)). In Sect. 6 we obtain the estimates indicated in
Remark 1 following Theorem 1, and complete the proofs of Theorem 1 and 3.

Section 7 contains discussion of some further points, concerning, for example,
multisoliton initial data, and the influence of the resonance pole on local asymp-
totic behavior when p is close to 4. In Appendix A, the existence and regularity
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of solutions of gKdV for 3 < p < 4 is studied using Kato's theory. Appendix B
contains the details of the calculation of Evans' function D(λ) for the KdV and
mKdV equations.

2. Spectral Analysis of the Linearized Equation

In this section we study the spectral properties of the operator AQ = dyLc appearing

in the linearized equation (1.12), in the spaces L2 and L2

a.

2.1. Spectral Theory in L2. We consider the operator AQ = dyLc on L2 with domain

/f3 . The properties of the spectrum of this operator were delineated in [PW2]. The
spectrum consists of discrete spectrum (isolated eigenvalues of finite multiplicity),
and essential spectrum (everything else in the spectrum). Since uc (y) — » 0 at an
exponential rate as \y \— » oo, the essential spectrum may be shown to agree with
the spectrum Se of the constant coefficient operator dy(— d2 + c). Hence the essential
spectrum Se is the imaginary axis.

Regarding the isolated eigenvalues of AQ, the following result was proved in
[PW2].

Theorem 2.1.
(1) If 0 < p^4 (corresponding to dΛ"[uc]/dc^Q), then AQ has no isolated

eigenvalues. Its spectrum coincides with the imaginary axis.
(2) If p > 4 (corresponding to dJ^\u^\ldc < 0), then the spectrum of AQ con-

sists of the imaginary axis together with two simple, real eigenvalues λ — λ#(p)
> 0 and -λ#(p) < 0.

In [PW2], the isolated eigenvalues of AQ were studied using their characterization
as zeros of Evans' function D(λ). Evans' function also yields finer spectral infor-
mation, such as the location of eigenvalues embedded in the essential spectrum, and
resonance poles. This information is important in our asymptotic stability analysis.

We now discuss the definition of Evans' function D(λ) and some of its key
properties. For a more detailed development, see [PW2], also [E, AGJ]. If λ is an
eigenvalue of AQ with Z/2-eigenfunction Y(y), then Fis a solution of the differential
equation

dy[-d2 + c -fl(uc(y)}}Y(y) = λY(y) . (2.1)

As y — > oo, the coefficients of (2.1) rapidly converge to those of the constant
coefficient equation

(2.2)

This equation has solutions of the form eμy where the exponent μ satisfies

-μ3+cμ = λ. (2.3)

For arbitrary λ in the right half plane Re/I > 0, Eq. (2.3) has roots μ/(/l),y = 1, 2, 3,
which satisfy

i (λ) < 0 < Re^ (A), j = 2, 3 . (2.4)

Corresponding to the solution eμιy of (2.2) which decays to zero as y — -> +oc, Eq.
(2.1) has a solution Y+(y, λ) which is analytic in λ and satisfies

Y+(y, λ) ~ e^y as y -> +00 . (2.5)
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From the solution Y+(y, λ), Evans' function D(λ) may be defined, as a transmission
coefficient, with the property that

Y+(y, λ) ~ D(λ)eμιy as y -> -oo . (2.6)

D(λ) is an analytic function in the right half plane. If D(λ) — 0 for some λ with
Re/I > 0, then Y+(y, λ) must decay exponentially as y — » — oo. In this case, 1 is
an eigenvalue of AQ with corresponding eigenfunction Y = Y+( , λ). Conversely, if
λ is an eigenvalue with Re A > 0 and eigenfunction Y(y), then Y(y) must be a
constant multiple of Y+(y, λ) and so D(λ) = 0, since Y(y) is bounded.

Theorem 2.2. For Re A > 0, λ is an eigenvalue of AQ if and only if D(λ) — 0.

The origin λ = 0 is an eigenvalue of AQ embedded in the essential spectrum, with
eigenfunction dyuc. Furthermore, dcuc is a generalized eigenfunction: we have

dyLcdyuc — 0, dyLcdcuc — —dyUc . (2.7)

For the purposes of this paper, it is useful to observe that D(λ) is naturally defined,
by the same property (2.6), on a domain properly containing the (closed) right half
plane, defined by the inequalities

A) < Reμy(A), 7 = 2 , 3 . (2.8)

We denote the domain defined by (2.8) by ΩQ. For Re A = 0, it turns out that

< 0 = Reμ2(Ό < Reμ3(/ί) ,

thus (2.8) holds in a neighborhood of the imaginary axis, i.e., {λ ReΛ^O} C ΩQ.
In fact, ΩQ is explicitly given as follows.

Proposition 2.3. D(λ) is analytic in the whole complex plane, cut along the
negative real axis from —oc to λ* — —2(c/3)3/2. That is, ΩQ — C\(—oo, Λ,*].

Proof. By the theory developed in [PW2], it suffices to show that the equation
0*(μ) = λ has a unique root of smallest real part, for all λ G (C\(—oo, λ*]. This
statement is true for Re/l^O because of (2.4), which is proved in [PW2]. Assume
Re/I < 0 and that 0*(μ) = λ for distinct μ\ = α -f iβ\, μ2 = oc + iβ2, with the same
real part. Now

λ = 0>(μj) = OL(C - oc2) + 3αβ7

2 + iβj(c - 3α2 -f β2).

We have αφO since Re/I < 0. Comparing real parts, we find β\ = β2, so β\ =
—β2, hence μ\ = μj Then comparing imaginary parts, we find that λ must be

real, and βj = 3α2 - c > 0. Since λ < 0, we must have α < —^/c/3, so since

λ = α(8α2 - 2c) is an increasing function of α, λ < — Λ/c/3(8c/3 — 2c) = Λ,*.
The only value of λ with Re/ί < 0 for which a double root occurs is when

£?'(μ) = 0. i.e., μ = —\fcβ and λ — A*. The proposition now follows. "]

In principle, when Re/l^O, zeros of D(λ) need not be eigenvalues of AQ, and
conversely. However, the following was shown in [PW2], using the symmetry

-> Y(—y) of (2.1) which is valid when Re/I = 0.
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Theorem 2.4. Suppose Re/ί — 0. Then λ is an eigenvalue of AQ if and only if
D(λ) = 0. If λ is an eigenvalue, then the eigenfunction Y(y) = Y+ (y, λ) —> 0 at
an exponential rate as \ y \—> oo.

Since λ = 0 is an eigenvalue, Z)(0) = 0. It will turn out that λ = 0 is an isolated
eigenvalue of AQ in the space L%. In order to describe the associated eigenspace and
spectral projection, we introduce the following definitions:

ξι — dyUc, ξ2 — dcuc ,
y

ή^ = θ\ / dcuc + Θ2uc, ή2 = θ^uc . (2.9)
— oo

Here,

d λ"1 1 id oo \2 / ^ V2

, and 63 = —0ι ., 2

The functions ξ{ ξ2, and ̂ 2 decay exponentially as | y \-^ oo, at the rate
The function ήl decays like e^~cy as y -^ — oo, but is merely bounded as y — > +00.
In addition, these functions have the following properties:

Lcdyήλ = ή2, Lcdy ή2 = 0 , (2.10)

and
( ή j , ξ k ) = δjk9 Λ * = 1 , 2 , (2.11)

where (w, t;) = /f^ MtJίfe.

2.2. Spectral Theory in L2

a. As mentioned in the remark following Theorem 1, we
seek to prove that perturbations of a modulated solitary wave decay in a local
energy sense, captured by norms in the weighted space L%. Thus, we consider now
the spectral theory of the linearized operator dyLc in L2

a.
We first make a change of variables,

(2.12)

Then the eigenvalue equation (2.1) is transformed into the equation

AaW - eaydyLce~ayW = (dy - a)[-(dy - a)2 + c -f'(uc)} W = λW . (2.13)

The spectral theory of AQ = dyLc in L2

a is equivalent to the spectral theory of Aa in
Z2, and from now on we refer to the latter.

We first consider the essential spectrum of Aa. Since /'(wc(>>)) and dyf'(uc(y))
decay to zero at an exponential rate as | y |— > oo, the essential spectrum of Aa can
be shown to agree with the spectrum, S", of the constant coefficient operator

Hence, we have:
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Proposition 2.5. For 0 < a < ^J~cβ, the essential spectrum of Aa is the set S",
a curve parametrized by

τ H-» &(iτ ~a) = (iτ - ά)[-(iτ - a}2 + c]

= iτ3 - laτ2 + (c - 3α2)/τ - a(c - a2) , (2.14)

which lies in the open left half plane. (See Fig. 2.)
Next, we study the discrete spectrum of Aa. For 0 < a < \/c/3, the complement

of the set S% in the complex plane consists of two disjoint open components. One
of these components, which we denote by Ω+ or Ω+ (α), contains the closed right
half plane. Any point of the spectrum of Aa lying in Ω+ is an isolated eigenvalue
of finite multiplicity. The following result characterizes such eigenvalues as zeros
of Evans' function D(λ).

Proposition 2.6. Let 0 < a < τ/c/3. Then:
(i) {λ Re/ί^O} C Ω+(a) C ΩQ, the domain of definition of D(λ).
(ii) For λ £ Ω+(fl), λ is an eigenvalue of Aa in L2 if and only if D(λ) = 0.

Proof. Consider the curve in (2.14) which parametrizes S*. The imaginary part
of &(iτ — a) is a strictly increasing function of τ, since c — 3a2 > 0. Also 0*(—a)
> λ*. So S% = dΩ+(ά) and S" does not intersect the cut (—00, /I*]. Thus Ω+(a) C

Oo
Next, observe that for λ £ 5*, the equation 0*(μ) = λ has exactly one root sat-

isfying Reμ = —a. Because of this, and the fact proved in [PW2] that the roots
μ/(λ) of (2.3) satisfy

μj = (-λ)l/3 + 0(| λ Γ1/3) as \λ\-+ oo with λ G Ω0 , (2.15)

it follows that for 0 < a < ^/~c[ϊ>,

(λ) < -a = Reμ2(λ) < Reμ3 (λ\ λ G Sa

e ,

(A) < -α < Reμ7 (A), 7 = 2, 3, A e ί2+(fl) . (2.16)

Now suppose λ G Ω+(α) is an eigenvalue of Aa. Then the differential equation (2.13)
has solution W(y) in L2. By standard results on the asymptotic behavior of solutions
of ordinary differential equations with asymptotically constant coefficients, W(y) is
bounded uniformly in y. Hence e~ayW(y) is a solution of (2.1) and satisfies

e~ay W(y) = 0(e~ay) as y -> =boo .

Therefore, by Proposition 1.6 of [PW2], e~ayW(y) is a constant multiple of
Y+(y, λ), and furthermore, since now Y+(y, λ) = O(e~ay) as y -* —oo and Reμι(l)
< -α for A G Ω+(α), it follows that D(λ) = 0. (Also see (2.6).)

If conversely, D(λ) — 0, then we know from Proposition 1.6 and Theorem 1.9
of [PW2] that

whenever 0 < ε < μ* — Reμi, where μ* =min(Reμ2, Reμs). Hence by (2.16),
W(y) = eayY+(y, λ) satisfies (2.13) and decays exponentially as \ y \— » oo. So λ
is an eigenvalue of Aa. Π
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Proposition 2.6 implies in particular, since the closed right half plane {λ \
Re/ί^O} C Ω+ for 0 < a < ^J~cJΪ>, that eigenvalues of Aa in the closed right half
plane must be zeros of D(λ). We know that λ = 0 is an eigenvalue of AQ, and
that Z)(0) = 0. Hence λ = 0 is an eigenvalue of Aa. In Sect. 3, we prove that for
1 ^/?^4, except for values p £ E (a finite set), Z>(/1)ΦO for all nonzero λ in the
closed right half plane. (See Theorem 3.6.) Therefore, we have:

Theorem 2.7. Let 0 < a < \fcβ and assume p — 1 or 2, or 1 < p^4 with
p £ E. Then the only eigenvalue of Aa in the closed right half plane is λ = 0.

We shall require a detailed characterization of the generalized eigenspaces of Aa and
its adjoint A* — —e~ayLcdye

ay. The dimension of these eigenspaces is determined by
the fact that 0 - Z)(0) - £>'(0)Φ£>"(0) for ;?Φ4, proved in [PW2]. (The fact that
0 = D(Q) = D'(Q) is associated with the existence of a two-parameter continuous
family of solitary waves, obtained by translation and changes in wave speed.) For
an operator A defined in I2, define

oo

ker(Λ) = {w e άom(A) \ Aw = 0}, kerg(A) = (J ker(^^) .
k=ι

Proposition 2.8. (Spectral projections for the zero eigenvalue) Assume
Φθ(pφ4) and 0 < a < yc/3. Then λ = 0 is an eigenvalue for Aa with algebraic
multiplicity two, and

ίerg(Aa) = ker(4|) - span {ft, 6}, ker^Λ*) = ker(Λ*2) - span{/y1? η2} , (2.17)

where ξj = eVξj and η = e'^ήj for j = 1, 2, i.e.,

θι / dcuc + Θ2uc] , η2 = e-ayθ,uc , (2.18)
-oo /

where θ\, Θ2, 63 are as in (2.9). In addition, the ξj and η% are biorthogonal, with
(ζj> nk) — δjk far 7, k = 1, 2. Thus the spectral projection P for Aa, associated with
the eigenvalue λ = 0, and the complementary spectral projection β, are given by

2 2

Pw = Σ <w, ηk) ξk, Qw = (I-P)w = w-Σ (™> Ik) ξk , (2.19)
k=l k=l

for w G iΛ These projections satisfy PAaw = AaPw, QAaw = AaQw, for w G
dom(Aa).

Proof. Because of (2.10), zero is an eigenvalue of Aa of algebraic multiplicity at
least two, with

Aaξι = 0, Aaξ2 = -ξι ,

A*aηι = -η29 A*aη2 = 0. (2.20)

We must show that the algebraic multiplicity is not greater than two; then the
formula (2.19) for the spectral projection P follows. But there is a general relation
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between the algebraic multiplicity of eigenvalues of Aa and the order of vanishing
ofD(λ), see [E], [AGJ]. We have the following.

Lemma 2.9. Assume 0 < a < A/c/3 and λ e Ω+(a) with D(λ) — 0. The algebraic
multiplicity of λ as an eigenvalue of Aa equals the order of λ as a zero of D(λ).

Proof Assume λ is a zero of D(λ) of order k + 1, &^0, so 0 = D(λ) = ... =
D<*)(λ)ΦD(*+1)(λ). By [PW2], Propositions 1.2 and 1.21, in this situation the deriva-
tives d{Y+(y, λ) satisfy

tf y+rv ^ - / tf(^13^) as j -> +00 ,flλ 7 0>, A) -

for any ε > 0, fory = 0, . . . , k. Here μ* = mm(Reμ2, Reμ3) > -α by (2.16). De-

fine Wj(y) = e^3/ y+Cv, A). Since

(dyLc - λ}d{ Y+(y, λ) =jdj

λ~
l Y+(y, λ)

for j — 1, 2, . . . , we have that Wj(y) decays exponentially as | y \— > oo for j =
0, . . . , A:, and

Λ^o-0, AaWj=jWj^, for . / = 1 , . . . , * .

Hence 1 is an eigenvalue of v4α of algebraic multiplicity at least A; -h 1; the functions
WQ, ... Wk form a Jordan chain.

To prove that the algebraic multiplicity is not greater than k + 1, it remains to
show:

(a) ker(^4α) is one dimensional, and (b) the equation AaW — W^ has no L2 so-
lution. That (a) is true is a consequence of the proof of Proposition 2.6. To prove
(b), suppose that W is an ZΛsolution of AaW — (k + 1)£F&. Then JF(.y) is bounded.
Put Y(y) = e-ayW(y)-df+l}Y+(y,λ). We have dyLcY = 09 Y(y) = O(e~^) as
jμ —> +00. It follows that Y(y) is a constant multiple of Y+(y, λ). Hence, we find
that

3ffi+l)γ+(y> $ = °(e~ayϊ as j - -oo , (2.21)

for j = 0, 1,2. But Proposition 1.21 of [PW2] gives a formula that implies that since
D^+^^ΦO, the 3-vector df+l\Y+, 7+/, Y+") has exact order eμ*y as y -> -oo.
Since Reμi < —α, the bound (2.21) contradicts this and implies D^k+l\λ) = 0.
Hence (b) is true, and this finishes the proof of the lemma.

We conclude this section by describing how a resonance pole of the operator AQ,
present for p near 4, yields an eigenvalue of Aa near 0. In [PW2] (see also [PW3]),
we showed, for p less than but near the critical value pcr = 4, that D (λ) has a real
and negative zero, λ#(p) < 0, with A#(/?)—> 0 as p —> 4. Associated with λ#(p) is
the solution ξ#( 9 p ) = Y+( , λ#(p)) of (2.1), which for/? < 4 decays exponentially
as y tends to +00, and grows exponentially as y —> —oo since μ*(/l#) < 0:
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-0.015

-0.02
-1.5

Fig.3. D(λ) vs. λ for p = 3, c = 3

as -oo
(2.22)

The transition to instability of the solitary wave, as p increases from values less
than pcr = 4 to values larger than 4, is marked by the passage of λ#(p) through the
origin and becoming positive for p > 4. For p > 4, the function ξ#(y, p) is now
in L2 since μ*(λ#) > 0, and so λ#(p) > 0 is now an unstable eigenvalue of AQ.

Now consider the function ξ#(y,p) = eayξ#(y,p). By (2.22) we have

00,

• ~oo .
(2.23)

Since λ#(p) —> 0 as p —> 4, we have μ*(λ#(pj) -+ 0. Hence, for /? sufficiently near
4 and /? < 4, we have ξ#(y,p) eZ2, and so λ#(p) < 0 is an eigenvalue of ^4β.
This eigenvalue (which is also a resonance pole of dyLc) is indicated in Fig. 2.

An analogous construction can be carried out for the adjoint operator —LcSy.
Summarizing these results we have:

Proposition 2.10. Let 0 < a < ^fc. Let p be less than and sufficiently near pcτ =
4. Then

(a) λ#(p) < 0 is an L2 eigenvalue of Aa with corresponding exponentially de-
caying eigenfunction ζ#(y,p)

(b) λ#(p) is an L2 eigenvalue of A* with corresponding exponentially decaying
eigenfunction η#(y,p).

We can choose ζ#(y,p) and η#(y,p) to satisfy the normalization (£#(p),

*I#(P)) = 1-

Remark . There is strong numerical evidence suggesting that no resonance pole is
present for 1 ̂ p^2 while there is a resonance pole for all p with 2 < p < 4. In
Fig. 3, we plot numerically computed values of D(λ) vs. λ for/? = 3 with c = 3, for
λ between 0 and the endpoint of the cut (—00, /U] where /I* = —2, cf. Proposition
2.3. A zero, corresponding to a resonance pole of AQ, is apparent at the approximate
value ^(3) w-1.6.
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3. Absence of Nonzero Embedded Eigenvalues

The results of this section will prove Theorem 2, establishing that for/? = l(KdV),
p — 2 (mKdV), and for all but a possibly finite set of values of p £ E with
p e (1,2)U(2,4), the linear operator dyLc has no nonzero eigenvalues in L2. By
Theorems 2.3 and 2.4, this implies that Z)(A)ΦO for nonzero λ with Re/l^O, and
hence that the operator Aa has no nonzero eigenvalues in the closed right half plane
(except possibly when p G E). This proves Theorem 2.7. The proof of Theorem 2
relies on: (a) the explicit calculation of D(λ) for the KdV and mKdV equations
(p — l and 2), and (b) an analytic continuation argument in p, using a result of
[PW2] which implies the simplicity of any nonzero embedded eigenvalue of dyLc.
This argument does not depend on the explicit form of the nonlinearity f(u, /?), and
could be used for other analytic families of nonlinearities that contain the KdV case
f(u) = u2/2.

Theorem 3.1. Let λ e Ώ0 (see Proposition 2.3). (a) For the case of the KdV
equation (p — \, i.e., for the eigenvalue problem

dyLcY = dy(-d2

y + c - 3c s e c h 2 > / ? ) ) 7 - λY , (3.1)

Evans' function is given explicitly by

'
where μ\ (λ) is the root μ of smallest real part of equation (2.3), μ3 — cμ + λ = 0.
(b) For the case of the mKdV equation (p = 2), Le, for the eigenvalue problem

dyLcY = dy (-d2 + c-6c sech2(^Vc)) Y = λY , (3.3)

Evans' function is also given explicitly by (3.2).

Corollary 3.2. For the cases p — 1 and p = 2,
(a) λ = 0 is the only eigenvalue of dyLc.

(b) λ = 0 is the only eigenvalue of Aa, for 0 < a < Λ/c/ΐ.

To prove the corollary, note that if D(λ) = 0, then μ\ (λ) = —^/c, hence λ — 0
by (2.3). The proof of Theorem 3.1 is given in Appendix B.

Next, we study the eigenvalue problem for dyLc forp 0 {1,2}:

dyLcY = dy(-d2 + c - ιfc(y))Y = λY , (3.6)

where ι/c(y)= \c(p + 1)0 + 2)

Lemma 3.3. If λ is a nonzero purely imaginary eigenvalue of (3.6), then λ is
simple andD'(λ)*Q.

Proof. Recall from [PW2, Theorem 3.6] that if λ = iβ is an eigenvalue of (3.6)
with 0 φ β real, then the eigenfunction Y (y) — 7+ (y, λ) decays exponentially as
y — > ±00. Moreover, the eigenspace is one dimensional (by [PW2, Proposition 1.6]
any eigenfunction must be a multiple of 7+ (y, λ)). Furthermore, with Y^ (y) =
dχY+(y,λ\ the following ordinary differential equation is satisfied:
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). (3.5)

Suppose D'(λ) = Q. Then from Propositions 1.2 and 1.21 of [PW2] we find that
since Reμiί/l) = 0, for k = 0, 1,2 we have

k + ( — > 0 exponentially as y — > -foo ,
λ

asy -> -oo, for all ε > 0 .

Therefore, when we multiply (3.5) by LcY+(y) and integrate by parts, we are as-
sured that the integrals involved converge and boundary terms vanish. We find

+) = f Y+LcY+dy = / (dyLc - λ)Y+LcY+dy
— 00 — 00

00 00

= - / LcY+λY+dy - / λY+LcY+dy = 0 ,
— 00 —00

since λ + λ = 0 and Lc is real and formally self adjoint. It follows (Y+,LCY
+) = 0,

and one has also

λ(Y+,LcΎ+) = J dyLcY
+LcY+dy = 0 .

— oo

From these considerations, we have that ®J — span{7+ ( , A), Y+ ( , λ)} is a subspace
of L2 (complex valued functions) that satisfies

(Lcu,υ) = 0 f o r aΆu9υ€<Sf .

Furthermore, <& Π ker (Lc) = {0}. Since Lc has only one negative eigenvalue, which
is simple, it follows that dim <3^1. (This follows from Lemma 3.3 of [PW2], but
is also easy to show directly.) But this contradicts the fact that dim <9J — 2. Hence

We also claim that λ is simple, i.e., there is no Z,2-solution of (dyLc — λ)Ϋ = Y. If
indeed there were, then from standard results on the asymptotic behavior of solutions
of ordinary differential equations [CL, C], we find that Ϋ(y) (and its derivatives)
decay to zero exponentially as \y\ — > oo. From this it follows that Y^ — Y is a
constant multiple of 7+, and hence Y^(y) (and its derivatives) decays exponentially
as \y\ -* oo. But this implies that D'(λ) = 0; see Proposition 1.21 of [PW2]. This
finishes the proof of Lemma 3.3. D

One consequence of Proposition 3.3 concerns how the zeros of D(λ) depend on
p. Considered as a function of λ and p, Evans' function D(λ,p) is analytic in both
λ and p, as remarked in [PW2]. So we have the following:

Corollary 3.4. If for some positive βo,po it happens that £>(/βo,/?o) = 0, then there
is an analytic function λQ(p), defined for p in some neighborhood ofpo, such that
λo(po) = iβo, and D(λo(p),p) = 0, and such that, for every (λ,p) in some small
neighborhood of (iβo,po) with D(λ,p) — 0 one has λ =

Our next result will be used to confine any zeros of D(λ) to a compact set in
the plane.

Lemma 3.5. D(λ) — > 1 as \λ\ — » oo with λ e ΩQ, uniformly for p in any compact
set of (0, oo).
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Proof. It was proved in [PW2] that D(λ) -» 1 as \λ\ -> oo with Re λ > -ε, for
some ε > 0, f o ΐ p fixed. But an examination of the proof, in Sects. 2b (iv) and Ig
of [PW2], reveals that the stronger statement above is true, as a consequence of the
following facts:

oo

(1) J\up

c\ + \dyW)\dy
— oo

is uniformly bounded for p in any compact set of (0, oo), and also
(2) The roots μ/(/l) of 0>(μ) = λ in (2.3) do not depend on p, and satisfy (2.15),
hence

= 0(\λ\~l/*) as |/ί| -> oc with λ e Ω0 ,

for / = 0, 1 and any j, k.
The second fact was proved in [PW2], but the point is that it does not mat-

ter that Re(μι — μ^) can become arbitarily small for λ £ ΩQ as λ approaches the
boundary, π

Theorem 3.6. The set E, of values of p in (0,oo) such that D(λ,p) = 0 for some
nonzero imaginary λ, is a discrete set. In particular, E(Ί [1,4] is a finite set, which
includes neither the value 1 nor the value 2.

Proof. Assume that E has an accumulation point PQ > 0. From Lemma 3.5, we
may conclude that there is a real sequence βj > 0 and distinct pj > 0 such that
D(iβj,pj) = 0, and that as j — > oo, PJ — > PQ and βj — > β0 ̂ 0.

We claim β0 > 0. If instead βo = 0, a contradiction is obtained as follows. The
value λ — 0 is known to be a zero of D(λ) of order exactly two for all PΦ4, three
fwp = 4 [PW2]. Since D(±iβi9pj) = 0 for all j, we infer that if βj -» 0 then λ = 0
is a zero of D(λ,po) of order at least four, contradicting known facts.

Now since βo > 0, we have D(iβo9po) = 0. So from Corollary 3.4 there is
an analytic curve λ = λ$(p) of zeros of D(λ,p), defined for p near po, such that
iβj = λo(pj) for j sufficiently large. Since PJ — > PQ, we may be conclude that λo(p)
is purely imaginary for real p. (Consider the Taylor series of /λo (/?).) Hence the
analytic continuation of λQ(p) will remain purely imaginary for all p in the maximal
real interval of existence that contains PQ.

Now, the function λ$(p) may be analytically continued to be defined on the
entire half line p > 0. This is a consequence of the results 3.3-3.5 above, the
implicit function theorem, and the fact that lmλo(p) > 0 for all p (which is proved
as we proved βo > 0 above).

We conclude that for p = 1 in particular, D(λ) = 0 for λ = λo(l), which is
purely imaginary with positive imaginary part. But by inspection of the explicit
formula (3.2), no such zero of D(λ) exists for p = 1. This is a contradiction, and
proves that E is discrete. We note that Theorem 2 is a corollary, π

Remarks.

1. Although we have fixed the wave speed c in the above discussion, the set E
does not change with c. This is due the the scaling satisfied by the the eigenvalue
problem (3.6): λ is an eigenvalue (resp. zero of D(λ)) for dyLc if and only if c~3/2λ
is, for δyL\.

2. We cannot prove that D(λ,p) φO for purely imaginary A Φ O , for any particular
p > 0, except p = 1 and/? = 2. But for any particular value of/?, strong numerical
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10-2 ιo-> 1QO iQi 1Q2 iQ3 ιo

Fig. 4. Log-log plot of \D(it)\ vs. t, forp =

evidence is easy to obtain to decide whether it is so. For example, in Fig. 4, for
the case p = 4 at which transition to instability occurs, we present a log-log plot of
|D (if) I vs. log t. Note that for small t, the graph is approximately linear, with slope
3. Correspondingly, for p — 4, λ = 0 is known to be a zero of order 3 of D(λ). The
numerical evidence is strong for the following conjecture, which is significant for
our study of the influence of a resonance pole on the decay rate of solitary wave
perturbations when 4 — p > 0 is small. See the remarks following Theorem 4.2 and
the concluding Sect. 7 below.

Conjecture 3.7. The value p = 4 £E. I.e.,forp = 4,D(/l)φO for imaginary AΦO.

4. Decay and Smoothing Estimates

In the introduction, we remarked that dispersing radiation, for the gKdV equation
linearized about a constant state, moves to the left. One manifestation of this is
that in a weighted space, with spatial weight decaying exponentially as x —> — oo,
the dynamics are dissipatiυe. In this section, we develop the analysis of the linear-
ized evolution equation (1.11), for solitary wave perturbations in such a space, the
space L2

a.
After the substitution

w(y,t) = eayv(y,t\ a>0, (4.1)

the linearized evolution equation (1.11) becomes

dtw = Aaw, with Aa = eaydyLce~ay . (4.2)

As \y\ — » oo, the coefficients in (4.2) converge to those of the free evolution equation

(4.3)

where

A°a = (dy - α) -(3, - a)2 - a(c - α2) .
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Indeed, Aa — A® -f (dy — ά)f (uc). Equation (4.2) is a dissίpatίve evolution equation

for 0 < a < \fcβ. As is easy to see using the Fourier transform, initial data in L2

for (4.3) yield solutions which are C°° for t > 0 and decay exponentially to zero
as t —> oo :

Proposition 4.1. For any integer rc^O, and 0 < a < γ/c/3, there exists C —

C(n,a) such that, for any w G L2 and for all t > 0,

The group exp (—dj5 + (c — 3a2)dy)t is unitary on L2. Therefore, we find that

The main result of this section is a decay and smoothing estimate for the semi-

group eAat', of the type above satisfied by the free semigroup eAat. Since λ = 0 is
an eigenvalue of Aa, however, the estimate we seek will hold only on the invariant
subspace range (Q) complementary to the generalized kernel of Aa.

Theorem 4.2. Assume that 0 < a < χ/c/3 and that λ = 0 is the only eigenvalue
of Aa in the closed right half plane, with associated spectral projection P. Let
Q — I — P. Then Aa is the generator of a C° semigroup on Hs for any real s,
and, for any b > 0 such that the L2-spectrum σ(Aa) C {/l|Re/l < -b} U {0}, there
exists C such that for all w G L2 and t > 0,

H^'eHk ^CΓl/2e-bt\\w\\L2 . (4.4)

Remark. The smoothing-decay estimate (4.4) will be used in the proofs of Theorem
1 (KdV and mKdV) and Theorem 3 (gKdV). For KdV and mKdV (p = 1 or 2),

Corollary 3.2 (b) implies that for 0 < a < >/c/3, Aa has no eigenvalues in the
open left half plane. Therefore, we can take —b, the exponentially rate of local
energy decay, to satisfy — a(c — a2) < — b < 0.

For general p, we can deduce from the results of Sect. 3 that if p £ E, then
there is a number b > 0 for which the L2-sρectrum σ(Aa) c {A|ReA < —b} U {0}.
Furthermore, if 4 ^ E, and 4 —p > 0 is sufficiently small, then Proposition 2.10
ensures the existence of a negative eigenvalue of Aa, λ#(p), with λ#(p) —> 0 as —> 4.
We then have for p less than and sufficiently near 4, that b is constrained by the
inequality

λ#(p) < -b < 0 .

Therefore, the location of the resonance pole, λ#(p), here dictates the exponential
rate of decay of the perturbation's local energy.

The proof of Theorem 4.2 relies on perturbation arguments. The property that
Aa generates a C° semigroup on Hs will be used below for s — 0,1 and -3. To
establish the estimate (4.4), we begin by studying the free resolvent (λl — A%)~1,
which is defined for λ not on the curve S% in (2.14). It is convenient to estimate
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this resolvent in regions of the form Ω+ (α) for 0 < α < a\ the boundary of Ω+ (α)
is the curve S"9 which will be a convenient contour to use for representing eAatQ
as a contour integral.

Lemma 4.3. Let 0 < α < a < ^J~cβ. Then there exist Co, C\ such that for λ G

Ω+(α) with |λ|^

\\dϊ(λΐ-A0

aΓ
l\\£Cι\λ\<n-W9 /or i = 0,1. (4.5)

Here and below, \\-\\ denotes the operator norm in L2.

Proof. First, we note that the inequalities (2.16) imply that Ώ+(α) C Ω+(ά) for
0 < α < a < ^/c/3. Also note that (A°a - λl)e^+a» = 0 if and only if &>(μ) = λ.
The action of the resolvent is given by convolution with the Green's function Kχ(y)
for the resolvent equation (λI—A^)υ = w, i.e., (λl — A%)~lw = Kχ * w. Provided
that μ2(λ)=t=μ3(Λ,), we claim that the Green's function is given explicitly by

for y > 0, ίA ~
for y < 0, (4'6)

where
a,- = aj(λ) = i/ Π (My - μ*) -

λ:Φ;

To see this, we need to see that (λl — A^)Kχ — δ, i.e., that with [v] = ι;(0+) - ^(0— ),
we have

= 0 ,

But this follows from a computation: Put vy = μy + α, then

(v2 - v3) - (vi - v3) -f (vi - v2)

- v2)(vι - v3)(v2 - v3)
v3)- v2(vι - v 3)-hv 3

7 - ̂ - Γ7
(vi - v2)(vι - v3)(v2 -

2 , 2 Vl(V2 ~ V3) - V 2 (Vι - V3) -f vf (Vi - V2)-̂ - - - - - - - *— -

vι(v2 - v3)- v2(vι - v3) + v3(vι - v2)4- V2fl2 -I- v3fl3 = = 0 ,
(vi - v2)(vι - v3)(v2 - v3)

1 1 2 2 3 (vi - v2)(vι - v3)(v2 - v3)

Now for λ large, it is true that μ2φμ3 by (2.15). To prove the lemma, since
8y(λl — A%)~lw = dyKχ * w, it suffices to estimate H^A^H^i and use Young's in-
equality. From (4.6) we obtain the estimates

From (2.15) we have l/\μk — μ/| = O(\λ\ 1/3) as \λ\ — > oo, and since λ G Ω+(a),
from (2.16), Reμ7 (/l) + a^a — α for 7 = 2,3. From these facts and (2.15), one may
also check that Reμi — > — oo as |/l| -̂  oo with λ G Ω+(α). Hence we obtain the
estimates

as \λ\ —> oo with A G Ω+(α). The lemma follows.
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Lemma 4.4 Let 0 < α < a < ^/cβ. Then there exist Co, C\ such that for λ G

Ω+(α) with |λ|^Co, we have λ G p(Aa) and

\\dn

y[(λI-AaΓ
l -W-A°ar

l]\\^C^\-l^\ Λ = 0,l . (4.7)

VI\ 11 = 0,1- (4.8)

Proof. That λ G p(^4a) if λ e Ώ+(α) is sufficiently large follows from Lemma 3.5
and Proposition 2.6. Now, if A and # are operators with the same domain, and
λ G p(A) Π p(B), then we have the resolvent identity

(λl -BY1 -(λl-AΓ1 = (λI-Aγ\B-A)(λI -A)'1

x [I - (B - A)(λl - AΓ1Γ1 - (4 9)

We may take A = A°a,B = Aa in this identity, so B-A = (dyf'(uc)) +f(uc)
(dy — a). Since f'(uc(y)) and Syf

f(uc(y}) are bounded, from Lemma 4.3 we have

ll(5 _ A)(λr _ Λ)-I || = IK4, -

as |λ| — > oo with /I G Ώ+(α). From this we easily obtain (4.7), which together with
Lemma 4.3 implies (4.8). D

Proof of Theorem 4.2. Postponing for a moment the proof that Aa is a generator
of a C° semigroup on Hs, we complete the proof of (4.4). Let b > 0 be such that
σ(Aa) C {λ|Reλ < — b} U {0}. Then by Lemma 4.4, we may choose α,0 < α < α,
so that the nonzero spectrum of Aa lies to the left of the curve Sg,i.e.,Ω+(α) C
p(Aa) U {0}. We may choose α so — b < —oc(c — α2), so that the curve S% intersects
the line ReΛ, = —b, at two points ^(±iτo — α) for some unique τ0 > 0 see (2.14).

We define the contour Γ to consist of the leftmost portions of the curve S% and
the vertical line Re/I = — b. Γ may be parametrized by:

(4.10)
- 0τ ι τ τ 0 . V J

where β0 = Im^(zτ0 - α)/τ0 > 0.
Now, since Q — I — P, where P is the spectral projection for the eigenvalue

λ = 0, the operator- valued function λ ι— > (λl — Aa}~lQ is analytic on and to the
right of Γ, with only a removable singularity at λ = 0. Because of estimate (4.8),
standard results in semigroup theory [P] imply that we have the representation

From Lemma 4.4, we obtain the following estimate for « = 0, 1. (Here, C denotes
a generic constant, whose value may change from instance to instance.)
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\\feλ'd"y[(λl - AΓ1 - (λl -A°aΓ
l]Qdλ\\ ϊCfe*eλt\λ\-^\dλ\

Γ Γ

t + ce-^-e-t^iτ - α)Γ2/3|0"(ιτ ~ α)|rfτ .
τo

But |^'(zτ - α)||^(zτ - α)|~2/3 ^C, so the above is bounded by

Ce~bt

- c<r6ί(i + r1/2) ,
since Re^(rr0 — α) = — 3ατ^ - α(c — α2) = —b.

Now, in this argument, b can be replaced with a slightly larger value Z/ > b.
So we may bound the above by

Ce~b'\\ + Γl/2)^Cfe-btΓl/2, for all f > 0.

Combining this estimate with Lemma 4.1, the estimate (4.4) follows.
It remains to prove that in Hs, for any real s, Aa (with domain Hs+3) is the

generator of a C° semigroup. Now, A = AQ

a is the generator of a contraction semi-
group on Hs; this is easy to check using the Fourier transform as in Proposition 4.1.
We claim that, on Hs, the operator B = Aa — A = (dy — a)ff(uc) has the following
properties (the terminology is taken from Kato [K2]):

(i) B is ^-bounded with relative bound 0, i.e., for any ε > 0,

\\Bu\\H* £ε\\Au\\ff* + C(ε)\\u\\ff*, u G dom(^); (4.11)

(ii) B is quasi-accretive - it suffices to prove

\(Bu,u)H,\^C\\u^H,, u€CZ°. (4.12)

By a standard result in perturbation theory [K2, p. 502], these properties imply that
Aa is the generator of a Q semigroup on Hs. (Here, the inner product in Hs is
given by (U,V)HS — (Λsu,Λsυ), where Λ = (I — d2)1/2.)

Property (i) is straightforward to prove, based on the two facts that: (a)/x(wc( ))
is smooth and all its derivatives decay exponentially, so it lies in Hs for all s\ and
(b) by standard interpolation estimates, for j = 0, 1,2, the operator dy is d3 -bounded
with relative bound 0.

The proof of (ii) is based on a classic procedure of obtaining energy esti-
mates and commutator estimates. Let g(y) =ff(uc(y)), then clearly (Bu,u}^ =
(gdyu,u}HS + O(||w||^). Now with the notation [A,B] = AB - BA,

(Λsgdyu,Λsu} = (gdyΛ
su9Λ

su) + ([Λs,gdy]u9Λ
su) .

The first term equals — ̂ (g'Asu,Λsu) = O(||w||^). To bound the second term, we
claim that v = [As,gdy]u satisfies | |ϋ|| = O(||ylsM||). To prove this, we write (ξ) =

(1 + ξ2)1/2, then

00 00

ΰ(ξ) = / g(ξ - η)((ξ)s - (η)s)iηύ(η)dη = / K(ξ,η)(η)sύ(η)dη ,
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where K(ξ,η) = g(ξ - η)((ξ)s - (η)s)iη/(η)s. Now, to show that \\v\\ L2^C\\Λsu\\L2,
it suffices to show that

oo

sup / \K(ξ,η)\dη + supf!°jK(ξ,η)\dξ < oo . (4.13)
ξ -oo η

To estimate \K\, we make use of the inequalties \η\^(η) and

muί((ξ}/(η),l)Z\(ξ)-(η)\ +

We consider two cases. If sΞ^l, then

Y~l\ξ - η\

Hence \K(ξ,η)\£C\g(ξ-η)\(ξ-lY Since
(4.13) holds for s^l If s < 1, then

\Z S\2l~s(ξ - η)2~s.

From this, (4.13) similarly follows. Π

Remark. It follows from the fact that Aa is a generator of a C° semigroup on Hl,
that for w e H\

\\eA^\\H^C\\w\\H^ O^^l.

Hence (4.4) implies also

(4.14)

5. Decomposition of the Solution

We seek to represent solutions of the initial value problem (1.2), (1.8) for the gKdV
equation in the form

u(x,t) = uc(t)(y) + v(y,t) (5.1)

with

Given the initial data in (1.8), fix CQ = c and yo — 7 to avoid a conflict of notation.
In order to achieve exponential decay for the perturbation υ(y, t) in the weighted

space If*, we wish to impose the constraint that

w(j, 0 = e?*υ(y, 0 G range(β) = ker(P) , (5.2)

where P is the spectral projection associated with the zero eigenvalue of the oper-
ator Aa = eay dyLCQe~ay . This requirement corresponds to the two scalar constraints
(wjίfc) =0,k = l,2,cf.(2.19), which we will satisfy by modulating the parameters
γ(t), c(t) in a time-dependent fashion. An alternative point of view is that the change
of variables u (x, t) H-» (7 (f), c (t\ v (y, t)) is one for which the family of solitary waves
becomes a manifold of equilibria (corresponding to y, c constant, v = 0), and the
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representation (5.1) arises from the use of (time-dependent) tubular coordinates in
a neighborhood of this manifold.

In this section, we first establish the existence of the decomposition (5.1) locally
in time, for w( ,0) close to UCQ( + yo) We also establish a continuation property
for this decomposition: it should persist as long as v remains small and c(t) remains
close to c0 Finally, we establish the validity of evolution equations for y(t\c(t) and
v (y, t) which arise from the constraints on w. The a priori estimates carried out in
Sect. 6 will be used to obtain the global continuation of the decomposition, and to
prove the results on asymptotic behavior asserted in Theorems 1 and 3.

Proposition 5.1. (Local existence of the decomposition). Let 0 < a < y^o/3. Let
s be real, and ίi^O. Then there exist δ$,δ\ > 0 such that: For any real yo? if
u(x, f) is such that

<f*u € C([0, t,lHs) with sup |K('+^(i/(., t) - uc^ - c0t + y0))|k < ^o , (5.3)

then there exists a unique function t *-+ (y(f), c(i)\

(y,c) G C([(U],R2) with sup \γ(t) - γ0\ + \c(t) - c0\ < δl , (5.4)

such that

oo

2Γk\μ, y, c] (t) =def - / [u(x, 0 - uc(t)(y )-\e"yηk(y)dx = 0 , (5.5)

for k = 1,2, O^ί^ίi, where y = x — Jj c(s)ds + y(t). The number δ$ may be cho-
sen as a decreasing function oft\. The map u \- > (y,c\from the set defined in (5.3)
to that defined in (5.4), is analytic, and moreover, ife^u G Cw([0, t\\Hs)for some
integer m > 0, then (γ,c) 6 Cm([0,ίι),R2).

Proof. The idea is to use the implicit function theorem [Ni] to solve (5.5) for the
functions (y(t),c(t)) in terms of u. First, from (1.4) and (2.18) we see that η^ and
its spatial derivatives decay exponentially at infinity, so ηk € H~s for all real s. In
fact, one can check that ηk(x) is analytic in a strip \lrnx < ε for some ε > 0, so
the map y H-> //*(• + y) from R to H~s is analytic. Also, the map (y,c) \-^ uc( + y)
from R x R+ to Hs

a = {v^v 6 Hs} is analytic. Then it is not hard to verify
that the map (u,γ,c) \-+ 9~ — (^1,^2) defined in (5.5) is analytic, where 2Γ maps
a neighborhood of the function 1 1— >• C/o(0 = (wco( — coO>0,co) in C([Q9tι],H%) x
C([0,ίι],R2) to C([(Uι],R2). (Note that it suffices to consider the case y0 = 0, by
a simple translation.)

In fact, «^"[t/o] = 0. To compute the Frechet derivative of &~ with respect to the
pair (γ,c) at UQ, observe

00 00

rt[u,γ,c](t) = - / u(x,t)ήk(y)dx+ / κc(ί)0'WtO'>fy.
— oo — oo

where ήk,k =1,2 are defined in (2.9). Then we find, for (δγ,δc) 6 C([0,/ι],R2),
since y = x — c$t for (w, y, c) — UQ,
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d L - U J V / / W = - / uCQ(x - cQt)dyήk(y)dx δy(t)
— oo

— oo

00 /

ί δγ(t) for k — 1,
= j o for £ = 2?

— oo 0 —oo

00 t 00

s)ds+ / dcuco(y)ήk(y)dy δc(t)

<5φ) for A: = 2.

Hence the Frechet derivative with respect to the pair (y, c) may be written in block

form as d^ [uQ]/d(y, c) = f J ~* \ where (&?)(*) - /0' c(s)ds for c e C([0, tι ], R).

This block operator is clearly invertible (replace —B by B to get the inverse). Hence
the implicit function theorem can be applied, proving the main conclusion of the
Proposition, and establishing the analytic dependence of (y, c) on u.

Since 3~[u,y,c\(t) depends only on values of (u,γ,c)(s) for O^s^, one can
follow the proof of the implicit function theorem to see that if a value δo in (5.3)
works for some value of t\ = t\(δo) > 0, then it works for smaller values of t\. So
<5o may be chosen to increase as t\ decreases.

Finally, if u e Cm([0,ίι),//^),then if 0 < t2 < t\, the curve τ ̂  u(x,t + τ) with
values in C([0,/2]?#α) is a Cm curve for O^τ < t\ - t2. Since the map u H-> (y,c)
is analytic, and u( , ί + τ) h-> (y(ί + τ) - ^c(s)ds, c(t + τ)), it follows that (y, c) e

C"([0,ί2],]R
2).

Proposition 5.2. (Continuation principle). TΆere exwί δo, δi > 0 such that, for any
t > 0, if

eaxueC([Q,t0lH
s) with sup ||Λ( ,Oll//^<V3 , (5.5)

ι;(j, 0 = u(x, t) - uc(t}(y\y = x- f^c(s)ds + y(t\ and if

(y, c) E C([0, ί0], R
2) w/ίA sup c(0 - c0| ̂  <5ι , (5.6)

2Γ[u,y,c\(i) — Qfor 0^ί^ί0, ί/z^ β unique extension of(y,c) in C([0,ίo + U}9

IR2) exists for some U > 0, w/ϊ/z F[u,y,c](i) = 0/or O^ί^^o + ί* Moreover, if
eaxu G Cm([0,cx)),^)? then (y,c) e Cw([0,ί0 + ί*),IR2).

Let δ0 be given by Proposition 5.1 for some t\ > 0, and suppose δ± is
such that ||MCI - MCO||^ ̂ δ0/3 for c\ - c0| ̂ δ\. Put φ,ί) = φ,ί + ίo),and y0 =

—$c(s)ds + y(ίo). Then by (5.5) and the choice of δ\ we have

+ uc(tώ - uCQHs ̂

where j = x ~ f^°c(s)ds -f y(^o) = ̂  + yo It follows that ύ satisfies the hypo-
theses of Proposition 5.1 for some sufficiently small t\ = ί* > 0. From ύ(x, t) one
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obtains (γ (t\ c(t)\ which must satisfy (y(0),c(0)) = (yo,c(^o)) Then the extension
may be defined by (y(t\c(t)) = (y(t - f0) - y0 + y(to),c(t - f0)) for tQ^t^tQ + t*.
The uniqueness and differentiability of (y,c) may also be proved using the local
result in Proposition 5.1. L;

At this point, let us begin the proof of Theorem 1 and 3. Assume p = 1,2,3
or 3 < p < 4. As discussed in Appendix A, the solution u(x, t) of the initial value
problem (1.2) - (1.8) satisfies, for any T > 0,

u G C([0,nH2)nCl([09T]9H~l)9 e^u G C([09Γ\9H
l) Π Cl([09T]9H~). (5.7)

Moreover, u is a classical solution of (1.2) for t > 0. Given the initial data in (1.8),
if \\VQ\\H\ is sufficiently small, it follows from Proposition 5.1 (taking 5 = 1 and

s = -3) that the decomposition (5.1) exists locally in t9 with (γ,c) G Cl([09tι)9ΊSL2)
for some t\ > 0.

We now derive evolution equations for y(t)9 c(t)9 and v(y, t), which are valid
pointwise for 0 < t < t\. Substituting (5.1) into (1.2), we have

0 - dtu + %u + dxf(u)

= [dt + (7 - c(t))dy + 83

y](uc(ί} + υ) + ̂ (/(Wc(0 + !>))

+ (c3c + ydy)uc(t} + ̂ [(y + c(0 - c0> + A(z/C(

where

i
h(uc(t),v)υ = f[f'(uc(t} + τυ) -f'(ucj\dτv=f(uc(t) + u) -/(«c(/)) -f(uCQ)υ .

o

Thus y(j,0 satisfies

3/ϋ =dyLCQv - (cdc -f ydy)uc(t)

- dy[(y + c(0 - c0)u + A(MC(O, ι?)ϋ] .

Now w(j,0 = eayv(y,f) satisfies (recall ^α = eaydyLCQe~ay)

dtw = Aaw - &, (5.8)

where we write

= eay(cdc + yy)uc(t} + ye^dyβ^w + »(ί) ,

)>"^w . (5.9)

Equation (5.8) holds pointwise, but also in C([0,ίι),//~3) due to (5.7). The con-
straint w G range (Q) in (5.2) now yields the following system of evolution equa-
tions for (w, y, c), given v:

dtw = AαW + Q^, P^ = 0. (5.10)

Written as an integral equation, the initial value problem for (5.10) becomes:

= eαtw(0) + feAαt-sQ&(s)ds . (5.1
o
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This equation is initially justified in C([0,ίι),/Γ~3), but also holds in C([0,ίι),Z,2),
since all terms lie in this space. The equation P 3F — 0 yields equations for y, c as
follows. Introduce the notation

eι(y,t) = eay(dyuc(t}(y) - dyuCQ(y)) ,

e2(y,t) = eay(dcuc(t}(y) - dcuCQ(y)) ,

and note that ((eaydye~ayw,ηk) = -(v,dyήk} for k = 1,2, by integration by parts.
Then by (2.18), the condition PJ^ = 0 is equivalent to

0 = <y(ξ, + ei + (a, -a)w) + c(fc + ez) + «?,»/*>, £ = 1,2. (5.12)

Using the biorthogonality relations (ζj,ηk) — <5/£? we obtain a system of equations
for y(t) and c(ί):

(eι,η2)-(v,dyή2) I + (e2,η
(5.13)

The matrix stf(f) satisfies

j*(t) = / + O(|c(0 - c0| + \\υ\\L2) as \c(t) - c0\ + |H|Z2 -> 0 . (5.14)

Summarizing, we have that on some time interval [0,fι], the solution u(x,t) of
(1.2) can be decomposed as in (5.1) — (5.2), where w(y,t), the weighted perturbation
about the solitary wave, and c(ί),/y(ί), the modulating speed and phase, satisfy the
coupled system of equations (5.11), (5.13). Finally, from (5.12) or (5.13) it can be
seen that the equations for c(f) and y(f) do not depend on the weight parameter a;
that is, (5.12) can be expressed entirely in terms of c, γ, ι;( , ί), and uc.

6. A Priori Estimates and Asymptotic Behavior

In this section we complete the proof of Theorems 1 and 3. What remains is
to establish a priori estimates from the evolution equations in (5.11), (5.13). The
a priori estimates will be seen to imply that the decomposition of solutions to (1.2),
(5.1) -(5. 2), persists for all time, with v(y, /), the perturbation, remaining small in
Hl and decaying exponentially as t — > +00 in H^.

Let 0 < b < a(c — α2) so the conditions of Theorem 4.2 are satisfied, (b is
arbitrary for;? = 1 or 2, and in general, Re/I < — b for nonzero λ e σ(Aa).)

Proposition 6.1. There exist <5* > 0, εo > 0, C > 0 such that, if the decompo-
sition (5.1)-(5.2) exists for Q^t^T and satisfies

(6.1)
and if \\VQ\\H\ + \\VQ\\H\ < ε^ε0 in (1.8), then

(6.2)

Proof The proof is broken down into two types of estimates:

(i) Local energy decay estimate, i.e. estimates of the weighted perturbation,
w(y, t) = eayv(y, t), mHl, via the integral equation (5.11), and the modulation
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equations (5.12). Here we use the linear semigroup estimates of Theorem 4.2, which
are valid provided p £ E, i.e., provided dyLCQ has no nonzero eigenvalue.

(ii) Hl estimate. Here, a Lyapunov functional (for which the solitary wave is
a constrained minimum) is used, together with local decay estimates to control

(i) Local Decay Estimate: If c>* is sufficiently small, then stf(t) in (5.13) has
bounded inverse, so we may estimate (5.13) to find

(6.3)

From (5.9), using that eaydye~ay — dy — a, we obtain the estimates

HI//0 + \c\

Now, we may choose b' with b < b' < a(c — a2), such that b1 , as well as b, satis-
fies the conditions of Theorem 4.2. The remarks following the statement of Theorem
4.2 indicate how b is constrained for the case of KdV and gKdV. We may then
estimate (5.11) as follows, for 0^/^Γ:

C f ( t - sΓl/2e-b/(t-s\l + δ*)δ*\\w(s)\\Hι ds . (6.4)
o

Now define
MW(T)= sup e*Ί|

Then from (6.4) we find, for O^ί^Γ,

ebt\\w(t)\\Hl £C\\w(0)\\Hι +
0

Taking the supremum over Q^t^T, we find that if δ* is sufficiently small, then

MW(T)= sup ebt\\w(t)\\H^C\\w(0)\\Hι . (6.5)

O^t^T

Next, we estimate c(f) — c0|. Using (5.13) and (6.3) we find

t t
\c(t) - c0| ̂  c(0) - c0| + f\c(s)\ds^\c(Q) - c0| -I- fCδ*\\w(s)\\ffι ds

o o (6-6)

^|c(0)-c0| + C(5*Mw(Γ)^|c(0)-c0 + Cδ*\\w(0)\\Hι .

(ii) Hl Estimate: We make use of the conserved quantity

00 1 1

u\ = / -(dxu)2 - F(ύ) + -c0u
2dx ,
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where F'(ύ)—f(u), see (1.7). This is the Lyapunov functional used in the Hl

orbital stability results mentioned in the introduction. A key property of $ is that
uc is a critical point. The key step in the Lyapunov stability analyses was to show
that uc is a local minimizer of δ subject to the constraint of fixed L2 norm. This
requires a careful spectral analysis of the second variation of £*. Equipped with
our local decay estimates v = e~ayw, the Hl estimate is now considerably simpler.
Since UCQ is a critical point of the functional ff, we have for any z E Hl,

[UCQ + z] - <ί[tιco] = / - (a,z)2 + - (c0 -/'(wco))z2 - g(uCQ, z)z3dx , (6.7)
-00 2 2

where

z)z3 = / ( l - τ)2/"
o

Now, we take z = uc(f)(y) + ^(75 0 — ^c0 W — u(x> 0 ~ Wc0(j7) above, and observe
that δ&Ό = $[u] — $[UCQ] is constant in time. We estimate (6.7) as follows. Note
||wc(o — uCQ\\Hι ^C|c(ί) — co| for δ* sufficiently small. Then for some k\ > 0,

00 1 1
J -(dyz)2 H- -coz2φ>^λ;ι||ι;||^ι — C\c(t) — co|2 .

-oo2 2

Since l/^M^O^I^Cw^^) and α < Λ/C, e~ayff (UCQ (y)) is bounded in j;. So we
may estimate

f'(uCϋ)z2dy\ rS
-00 7

0 - co| + UH|£2)

where we have used the estimate ab^δa2 + C(δ)b2 for a suitably small δ. Finally,
since \\z\\ffl ^C(|c(0-c0| + \\v\\Hl)£Cδ.,

— oo

Hence, if δ* is sufficiently small, (6.7) yields, with (6.5)-(6.6),

i*ιN&ι ̂ o + C(|c(0 - c0|
2 + |M|22)^<5A) H- C(|c(0) - c0|

2

2

or
\\v\\Hι £C(Vδ#Q + k(0) - co| + 11^(0)11^). (6.8)

To finish the proof, it suffices to bound the right-hand side of (6.8) by
ll//! + lko||//ι) Using (1.8) and z = VQ in (6.7) we have
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To estimate the remaining terms, observe from (1.8) and (5.1) that

u(x, 0) - UCQ(X + 70) + VQ(X) = uc(Q}(x + 7(0)) + v(x + 7(0), 0) .

Applying Proposition 5.1 with t\ — 0, we find that for ||e^o||//ι sufficiently small,
the -map u( , 0) ̂  (7(0), c(0)) is smooth on Hl

a, f o r w ( , 0) near UCQ( + 7o)- In
particular, this map is locally Lipschitz, and UCQ( +70) •-» (7o? eo)> so

From this it also follows

IKM , 0)11^1 = 11^(0)11^1 ̂

This completes the proof of Proposition 6.1. Π

We now complete the proof of Theorems 1 and 3. Let t* be as in Proposition
5.2. First note that there is an εi > 0, such that if H^oH^i + ||^o||#ι < ε\9 then for

some t\ > 0,

sup ιι^ ^o)(W ( . ? ί )_W c o(._C o ί + 7o))||//1 < ( 5 o.

Therefore, by Proposition 5.1, the decomposition (5.1)-(5.2) exists on the time
interval [0, t\\. Since the function t \-+ \\u(t)\\H\ + ||w(0||//ι is continuous, εi can

be chosen so that in addition (6.1) holds with T = t\.
We denote by Γmax the supremum of the set of all positive real numbers T9

for which the solution u(x9 t) has a decomposition (5.1)-(5.2) for t G [0, Γ] and
such that the estimate (6.1) holds. By the previous remark, 0 < Γmax^oo. The
proofs of Theorem 1 and Theorem 3 will be complete if we establish that Γmax =
+00. If Γmax < +00, then we let Cε0 = |min{^0/3, δ\9 <J*, εj, where <50, δ\9 5*,
and C are as in Propositions 5.1, 5.2 and 6.1. Then, for ||t>o||//ι + ||^o||//ι < ^ = ̂ 0?

Proposition 6.1 implies that

x . (6.9)

The choice of εo and Proposition 5.2 implies that the decomposition can be contin-
ued to yield a solution defined on the interval [Γmax, Γmax + f*]. By the definition of
εo, we have that the sum on the right-hand side of (6.9) is dominated by <5*/2. By
continuity of | |w(OII#ι> c(0 and ||ι>( , Ol l#ι> (6.1) holds with T replace by Γmax + τ,
for some τ with 0 < τ. This contradicts the definition of Γmax, and so Γmax — +00.

Continuing, we then have from (6.3), the estimate below it on ||^(0llz,2, and the
bound on ||w(0||//ι implied by (6.9), that \c(t)\^Cεe~bt. Hence c+

exists, and \c(t) - c+| ^Cεe~bt. Similarly, \y(t)\^Cεe~bt

9 and so

( *7+ - lirn^ (7(0 - f(c(s) - c+)ds

exists, and, defining y(t) = γ(t) - /J(c(j) - c+) ds - 7+,

t
\J(01 - 17(0 - fc(s)ds + c+t - y+\^

o

-bt
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We claim finally that the estimates (1.9) hold. Indeed,

u(x + c+t - y+, t) - uc+ (x) = uc(ή (x + γ(t)) - uc+ (x) + v(x + y(t\ t) .

Now we have the estimates

KoO + 7(0) - uc+ (Oll t f i rwj ^C(\c(t)

N + y(0, t)\\Hι ^C||w(

These estimates, together with the estimate ||t;( 5 t)\\Hι ^Cε from (6.2), imply the
estimates (1.9). This finishes the proof of Theorems 1 and 3. Γ

7. Further Discussion

In this paper we have studied solitary wave stability with respect to small perturba-
tions in initial data, which are constrained to decay exponentially in space ahead of
the wave, having small norm in Hl Π//j. With such data, the solution asymptoti-
cally approaches a nearby solitary wave, at an exponential rate in the "local" sense
implied by the norm in H\. While the result in Theorem 1 is far less general than
results achieved via inverse scattering by Schuur [Sc], concerning the emergence
of any number of solitons from general initial data, the method involved makes
minimal use of the Hamiltonian structure of the system, meaning that it may be
more broadly useful.

One restriction that arises from our technical constraints on the initial pertur-
bation concerns the possibility of small solitons emerging behind the main wave,
in addition to any "dispersive radiation." In particular, consider the explicit 7V-
soliton solutions of the KdV equation. In the large time limit, an 7V-soliton solution
approaches a superposition of 1 -solitons, arranged from left to right by order of in-
creasing speed and amplitude, c\ < < CN> One may ask: if TV — 1 of the wave
speeds are sufficiently small, can the 7V-soliton be regarded as a small perturba-
tion of a dominant 1-soliton to which Theorem 1 applies? The answer apparently
must be no, for the following reason: If an 7V-soliton solution UN (x, t) corresponds
asymptotically to 1 -solitons with speeds c\ < < c#, then the spatial rate of de-
cay of the solution is dictated by the amplitude of the smallest 1-soliton it contains:
In fact, UN(X, t} ~ a(ήe~^x as x -> +00 (cf. [GGKM2]). Thus, when we fix a in
Theorem 1, this imposes a minimum size on the amplitude of the smallest wave in
the combination, since we must have ^/c^ > a. But then there is no guarantee that

the ordinary Hl norm of the perturbation is small enough to meet the conditions of
the theorem, since the constants involved do depend on a. We do, however, believe
that by tracking the dependence of these constants on a, one ought to be able to
improve the results to handle such initial data.

We have mentioned that the issue of existence of an asymptotic (or scattered)
state is not addressed by the existing Hl orbital stability theory, which asserts only
that the solution remains close to some (time-varying) translate of the unperturbed
wave. Recently, Bona and Soyeur [BSo] have improved this theory, for a large class
of equations including (gKdV) and nonlinear Schrδdinger equations, showing that
the "wave speed" of the perturbed solution remains close to that of the unperturbed
wave. For (gKdV), they identify this speed as the rate of change of the phase shift
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yu(t) which minimizes the L2 -distance from the solution to the solitary wave orbit,
satisfying

||κ(. , 0 - κc( - yM(0)|lz2 = inf |K , ί) - uc(- - y)||L2 .

They do not show that the wave speed becomes asymptotically constant, but it may
be that this is not true for all perturbations small inH1. After all, such perturbations
can decay slowly enough that the Schrόdinger operator — d2 + UQ associated with the
initial data can have an infinite number of discrete eigenvalues. In inverse scattering,
this corresponds to the solution containing an infinite number of solitons. (The
construction of such solutions has recently been announced by Gesztesy, Karwowski,
and Zhao [GKZ].) Perhaps a 1-soliton may be perturbed by an "infinite" number
of small solitons, so that the wave interactions cause the phase of the main wave
to drift forever, and fail to converge.

Finally, we discuss two points connected with the decrease in the local decay
rate e~bt as guaranteed by Theorem 3, when p approaches 4 (assuming 4 ^ E, as
is supported by numerical evidence, see Sect. 3). As discussed in the introduction,
for gKdV this rate is constrained by the inequality

-a(c-a2) < λ»(p) < -b < 0,

where λ#(p) is a resonance pole of the operator A$ — dyLc, and an eigenvalue of
Aa, which approaches 0 as p — •> 4. Indeed, in [PW2] it was proved that λ#(p) is
analytic in p near p = pcr — 4, and has the following expansion, for some constant
β2 > 0:

]/dc + 0((p -pcr)
2} .

(Here d^[uc]/dc depends implicitly on p.) Thus, the quantity dΛ^[uc]/dc, which
arose in the Hl orbital stability analysis as the quantity whose sign determines the
stability of the wave, is also seen to have quantitative significance close to the
transition to instability: It is proportional to the growth rate of the instability in
the unstable regime p > 4, where λ#(p) > 0 is an eigenvalue of dyLc, and it is
proportional to the maximum local decay rate in the stable regime p < 4.

Lastly, we believe that λ# (p) does represent the true rate of local decay of the
solitary wave perturbation when p is close to 4. Although the associated "eigenfunc-

tion" ξ#(y) (described in Sect. 2) is not bounded as y — > — oo, it is plausible that
the "typical" perturbation may be asymptotically approximated, in the local sense
of the norm in H\ , by an expression of the form

u(y + c+t - γ+9 0 - uc+ (y) = βe^ξ^y) + o(e^) as t -> oo .

While the profile of ζ#(y) is unbounded, nevertheless we expect the shape of the

perturbation to better approximate the shape of ξ# (y) in the limit of large time on
compact sets in y, as the amplitude decays exponentially to zero.

Appendix A. Existence Theory for Solutions

For the KdV equation, it is well known that the initial value problem is globally
well posed in Hs for s^2, cf. [BSm, BSc, K3]. For gKdV with f (u) = up,p =
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1, 2, or 3, global well posedness in Hs, s^.2, follows from the results of Kato
[K3]. Kato also establishes well posedness in the space Hs ΠZ^, where L2

a is the
exponentially weighted space L2

a = {w\eaxw G L2}, a > 0. Kato showed that initial
data in Hs Π L2

a yield solutions of KdV which are C°° in x and / for t > 0. For
recent results on the well posedness of gKdV, see [KPV].

For the results in this paper, we require some variations of earlier existence
results. First, we must study solutions in Hs Π //j this is only slightly different
from the case Hs Π L2

a studied by Kato. But also, we are interested in treating
/' (ύ) — up when u > 0, for noninteger values of p near 4, because of the influ-
ence of resonance poles as the transition to instability is approached. Because such
nonlinearities are not smooth (/ is only C4 and not C5 for 3 < p < 4), some care
ought to be taken to determine for which s one obtains an Hs Π H\ existence the-
ory. We will obtain such a theory for s — 2 only, for p > 3 only; we collect the
arguments necessary for this in this appendix.

Our strategy is to: (1) use Kato's abstract existence theory to establish local well
posedness in H2 for/ G C4, in particular when/'(w) = up for u > 0, where/? ̂ 3 is
real; (2) obtain global existence for 3 ̂ p < 4 via standard a priori estimates (which
are justified through regularization of/); and (3) remark that Kato's arguments
in [K3] apply to obtain a solution u G C([0, oo), H2 Π#j), for/7 G C3, u0 G
H2Γ\Hl

a.

(1) Local well-posedness in H2. First, we recall Kato's abstract existence and well
posedness theorem in the form we will use, cf. [K3, CS]: Consider an abstract
quasilinear equation of evolution

9 , tt(0) = w 0 . (A.I)
at

Let X9 Y be real Hubert spaces (with norms || ||̂  and || ||y respectively), and assume
Y C X is dense with continuous injection. Assume S : Y \— > X is an isomorphism
of 7 onto X.

(HI) Assume A(y), defined for y G 7, is a linear operator on X with domain
D(A(yJ) D 7, anάA(y) is quasi-m-accretive, uniformly for \\y\\ y bounded, i.e., given
R > 0 there exists β such that for |[y||y^,

(A(y)v, v)x £ - β\\v\& for all v G D(A(y)) ,

and the range of A (y) + λ is X for some (equivalently all) λ > β.

(H2) Assume that for any R > 0, there exists CA such that

\\(A(y)-A(z))v\\x^cA\\y-Z\\x\\v\\r (A.2)

for all y,z,v€Y with \\y\\γ, \\z\\γ^R.

(H3) fory € Y, SA(y)S~l D A(y) + B(y), where B(y) : X H-> X is a bounded linear
operator, bounded uniformly for \\y\\y bounded.

(H4) For any R > 0, there exists CB such that

\\B(y)υ-B(z)v\\x^cB\\y-z\\r\\v\\x (A3)

for all j, z, v £ Y with \\y\\ γ, \\z\\γ£R.



340 R.L. Pego, M.I. Weinstein

The result of Kato is the following.

Theorem A.I. Assume (H1)-(H4). Then for any R > 0, there exists T =
T(R) such that for any UQ G Y with \\UQ\\γ^R9 there exists a unique solution
u of (A.I) with u G C([0, Γ], 7)Π (^([O, Γ], X). Also, the map UQ ̂  u from
Y to C([0, Γ], 7) is continuous.

In our application of this result to gKdV, we will follow Kato and take
Y = Hs with s = 29X = Hs~3 = H~\ and S = A3 where A = (/ - 32)1/2. For y G
7, A(y)v is defined for ι> G 7 = £>C400) by

A(y)υ = dlυ+ff(y)dxυ. (A.4)

We are interested in the case that/ is Cr with r^4 only (corresponding to/'(w) =
w^ for M > 0 when/?^3 is real), and proceed to verify hypotheses (H1)-(H4) in
this case:

1. To verify (HI), we follow Kato [Kl]. Since the operator d3

x mX with domain
7 is skew-adjoint, by a perturbation theorem it suffices to show that for [[ylly^Λ,
the operators f'(y)dx are uniformly quasi-accretive in X. It suffices to show

\(Λ-lf'(y)dxυ, Λ-lv)\£β\\Λ-lυ\\2

L2, v G H2 , (A.5)

for some β depending on R. Here ( , •} denotes the inner product on L2 (real
valued functions). To verify (A.5), let z = A~lv G H3. Then, with the notation
[A9 B]=AB- BA9 we have

(Λ-lf'(y)dxΛz, z) = (Λ-l[f(y\ dx]Az, z) 4- (Λ~ldxf (y)Az9 z)

= - (z, Λ(dxf'(y))Λ-lz) - (\f\y\ A]z, dxA~lz)

It is clear that the first and third terms are bounded by H^/Ό^H^-i ||z||22. That the
middle term is bounded by the same quantity is a consequence of the following
lemma.

Lemma A.2. Let b G L°° with dxb G H\ Then

Proof Let p = [b, A]z and (ξ) = χ/1 + ξ2. Then

β(ξ) = !((η)-(ξ))b(ξ-η)z(η)dη.

Since K ^ - ^ l ^ l ξ - ^ l a n d l l l ξ l / ί O l k ^ C l l δ ^ ω i l ^ , by Young's in-
equality it follows that l lp l l^^Cll^/ 'WII^i l lz l l^ .

To complete the proof of (A.5), observe that for \\y\\H2 ^R, we have
\\Dxf'(y)\\ffι£C(R)smcef'isC2.

2. In order to verify (H2), it suffices to show
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for \\y\\H2, \\z\\H2 £R. We estimate the H~l norm by duality: Let h e Hl with
P H t f i ^ l . Define

ί/'ω-/'ω
r(y, Z)=\ y-z

\/"00
Then

-/'ω)δΛ *>ι = \(y-z, r(y, zx

^ \\y - z l l f f i \\dxv\\Hl (\\r(y, z)\\L~ + \\dxr(y,

Now (A. 6) follows from the following lemma.

Lemma A.3. I f f is C2, and \\y\\H\, \\z\\Hι ^R, then

Proof. Use the representation r(y, z) — /0/
/; ((1 — τ)z + τy)dτ.

3. In order to verify (H3) it suffices to show that

\\[S,A(y}]z\\x^CB\\z\\γ, z£S~lY,

since S~1Y = H6 is dense in Y. Thus we must show

\\[Λ\f'(y)}dχZ\\H-^CB\\z\\H,, zeH6. (A.7)

Since for /' in C2, \\y\\H2^R implies \ \ d x f ( y ) \ \ f f i ^ C R , (A.7) follows from this
lemma:

Lemma A.4. Let b e L°° with δxb e H1. Then

\\[Λ\ b]dxz\\H^ ^c\\dxb\\#\\te\\Hi> z e H2 .
Proof. Let A e /ί1 with ||Λ||^ι ^ 1. Then

ilδΛ A) I = \((Λ[Λ\ b] + A[b, Λ]Λ + [Λ2, b]Λ)dxz, h}\

^\\[Λ\ b]dxz\\L2 + \\[b, Λ]ΛdχZ\\L2 + \(Λ8xz, [Λ\ b]h)\

where we have used Lemma A.2 to estimate the middle term.

4. In order to verify (H4), it suffices to check

\\[Λ\f'(y)-f'(z}\dxz\\H-^CB\\y-z\\H2\\z\\H2.

By Lemma A.4, this follows if we prove that for |[y||#2, ||z||#2 ̂

But since f is C3, this is easily checked. (Note that when f'(u) = up for u > 0
with 3 < p < 4, /' is C3 but not C4.)

This completes the verification of hypotheses (H1)~(H4) of Theorem A.I, yield-
ing local well posedness for gKdV in H2 with/7 in C3.
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(2) Global existence in H2. In order to deduce from Theorem A.I that solutions
of (A.I) exist globally in t, when/'(w) = up for u > 0 with 3 < p < 4, it suffices
to show that

\\u(t)\\H2^C(T\ O^Γ, (A.8)

for any Γ > 0. This a priori estimate follows from Kato's arguments in [K3], which
are based on the following energy identities for solutions of (1.2):

fu(x)dx, (A.9)

#Ί«(0] = !\(Sxu)2-F(u)dx = Jt?[uQ] , (A.10)

g2[u(t)] = Ϊ(d2

xu)2 - 5-f'(u)(dxu)2dx

= <?2[uo] + / I^f(4\u)(dxu)5 +ff(u)f"(u)(dxu)3dxdτ . (AM)
0 [Z

We must establish the validity of these identities for the solutions u with u G
C([0, T]9 H2), given by Theorem A.I. Kato's strategy for the proof of the energy
identities (A. 9) -(A. 11) is to regularize the initial data, and to work with solutions
which have sufficiently many derivatives, so that the formal derivation of (A.9)-
(A.ll) is valid. We are unable to proceed directly in this manner due to the fact
that/ is only C4. We therefore regularize the nonlinear function/ as well. That is,
we approximate (1.2) by a sequence of approximate problems

dtu
n + dxf

n (un) + d3

xu
n = 0 , (A.12)

where/" £ C°° and un

0 £ Hs for all s, with \\fn -/||c4 -* 0 and ||wg - u0\\H2 -> 0
as n — >• ex).

From [Kl, Theorem 7], it follows that the problems (A. 12) are locally well
posed in H2 uniformly in n9 in the following sense.

Theorem A.5. There exists T > 0 such that for all n, problem (A. 12) has a
unique solution un £ C([0, Γ'], H2). Moreover,

un(t) -> u(t) in H2 uniformly for t £ [0, Γ'] . (A.13)

In order to verify the hypotheses of Theorem 7 in [Kl], it is necessary to verify
that (H1)-(H4) hold uniformly in n (i.e., the hypotheses hold with constants not
depending on n)9 and in addition:

-^O f o r a l l u e y , (A.14)

|| (Bn(y) - B(y))υ\\x -> 0 for all v G X . (A.15)

To prove (A. 14) it suffices to check that

IICΓ'OO -f'(y))dxv\\H-ι - 0 as n -+ oo .

This follows easily by duality.
The proof of (A. 15) is similar to the proof of (H4). One need only check that
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\\Sx(fn/(y) -/' 00)ll/fi - 0 as n - oo, fory G H2 .

But this is true because/" — >/ in C4.
In fact the approximating solutions un of (A. 12) are smooth, with u G C([0, 71'],

Hs) for all s [K3, Theorem 4.1]; in particular T1 is independent of s. It follows
that the identities (A.9)-(A.ll) hold for M", with F,/, replaced by Fn

9f
n. We

now let w tend to infinity, and use (A. 13) to conclude that (A.9)-(A.ll) hold for
the limit, u.

From these considerations and Kato's arguments in [K3], the a priori estimate
(A. 8) follows, and global existence of solutions in H2 is proved.

(3) Solutions in H2ΠH^. Kato, in [K3], demonstrated that (1.2) is well posed
on Hs T\L2

a for any s^2, assuming /' is C°°. Furthermore, a smoothing property

holds: If UQ G Hs Γ\ L2

a, then u G C([0, oo), Hs Γ\ L2

a\ and eaxu G C((0, oo), Hs') for
any s' < s + 2. These results were obtained by starting with the given solution
u G C([0, oo), Hs) and studying the properties of w = eaxu, which is shown to lie
in L2 and satisfy the integral equation

w(ί) = Ua(t)eaxuQ + fUa(t ~ r)f'(u(r))(dx - a)w(r)dr , (A.16)
o

where Ua(f) = Qxp(-(dx - aft).
If we fix s = 2 and assume only /' G C3, Kato's arguments remain valid. Thus

for UQ e H2 Π L2

a, we obtain a solution

M G C([0, oo), H2 Π L^), with w = eaxu G C((0, oo), Hs')

for all s' < 4. In particular, u is a classical solution of (1.2): Both dtu and <53w are
continuous in jc, ί for ί > 0.

As a final remark, we note that if, in addition, eaxUQ G H1, then w = eα^w G
C([0, oo), /71). This may be proved from (A. 16) using the smoothing properties
of Ua(t) and a bootstrap argument. Consequently, it is easy to see that the second
term in (A. 16) is in C([0, oo), L2), and hence by standard arguments of semigroup
theory [P], w G C1 ([0, oo), //~3).

Appendix B. Evans' Function for KdV and mKdV

Consider the Korteweg-de Vries equation

dtu + udxu + dlu = 0 , (KdV)

and the modified Korteweg-de Vries equation

dtu + u2dxu + dlu - 0 , (mKdV)

In this section we prove Theorem 3.1, which gives an explicit formula for Evans'
function, D(λ), associated with the linear eigenvalue problem

dyLcY = λY, Lc = -d2

γ+c-up

c(y), (B.I)
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in the cases p = 1 (KdV) and p = 2 (mKdV) (see (1.2)). Since D(λ) is analytic, it
suffices to establish the formula in Theorem 3.1 for Re λ > 0, where we know that
the roots of μ3 — cμ -f λ = 0 satisfy

Reμi (λ) < 0 < Reμ/(/ί), j = 2, 3 .

The main tools used in this section are:
(i) the relationship between solution of the linearized KdV equation and the

Jost solutions of an associated second order stationary Schrodinger equation
[GGKM2],

(ii) the complex Miura transformation [M], which maps solutions of mKdV (p — 2)
to solutions of KdV (p = 1), and

(iii) a trick of Darboux (1882), which gives a way of constructing solutions of a
second order Schrodinger equation with potential ϋ(x), given solutions of some
other such Schrodinger equation with potential u(x). (See [T, Ke], for example.
We thank R. Krasny for pointing this tool out to us.)

In order to construct D(λ) we must study the behavior, as y —> — oo, of Y+(y, λ),
the solution of Eq. (2.1) with maximal decay as y —> oo (see Sect. 2). Our object
in this section is to show that for KdV (p = 1) and mKdV (p = 2), the construction
of 7+ (y, λ) can be reduced to finding the solution of a second order Schrodinger
equation,

-%f(y, k) + (~z(y) - k2}f(y, k) = 0 , (B.2)

with the asymptotic behavior

e~ikyf(y, k) -> 1 as y -> +00 . (B.3)

A solution of (B.2) satisfying the asymptotic condition (B.3) is called a Jost solution
[RS3].

Lemma B.I. Let z(x — ct) be a traveling wave solution of KdV, i.e. z satisfies
z(y) -* Q as y -+ ±00 and the second order nonlinear ordinary differential equation

~cz -f ]-z2 - z" = 0 . (B.4)

Lei f(y, k) denote a (Jost) solution of the Schrodinger equation (B.2) with the
asymptotic behavior (B.3). Let μ = 2ik and λ = cμ — μ3, and suppose that Reλ >
0 > Reμ. Then,

(-d2 + c-z)dyV = λV, (B.5)

where F(y, k) =f(y, k)2.

Remark . This proposition allows z to be real or complex valued. Our application to
KdV will involve choosing z equal to the real solitary wave profile uc. For mKdV
we shall apply Proposition B.I with z given by a complex solitary wave of KdV.

Proof An explicit calculation gives

(-Λ2 + c - z)a,F = o .
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Therefore

φ(y) = ±(-d2

y+c- z}dyV = af(y, k) + bg(y) ,

where a and b are constants, and g is a solution of (B.2) which is linearly inde-
pendent of/. Now, by the theory of asymptotic behavior of solutions of ordinary
differential equations, z ( y) — » 0 as y — > ±00, and g(y) is unbounded, being asymp-
totically proportional to e~lky as y — » +00. Since it is also true that

&yf(y> *) ~ (z*y^ as j; -» +00 for 7 = 0, 1, 2, 3 ,

we find that
φ(y) ~ e-*y(-(2ik)3

It follows that 6 = 0 and a = λ, from which (B.5) follows. Π

Differentiation of (B.5) yields the following for Reλ > 0. (For general λ, use
analytic continuation.)

Corollary B.2. Let λ e ΩQ = C\(-oo, λ*\ (see Sect. 2), and let μ\ (λ) denote the
root of μ3 — cμ + λ = 0 vwϊ/z smallest real part. Then,

Y+(y, 1) - μiαr^l/G;, μι(A)/202] .

At this stage we can complete the proof of Theorem 3.1 (a), by determining
D(λ) explicitly for KdV. For KdV we have z(y) = 3csech2(^v^y). Corollary B.2
implies that we need to solve the scattering problem

-dyf ~ ^^Qch2(-^/cy)f = k2f, e ihyf(y, k)-+ lasy-^ +00 , (B.6)

for k = μ\ (λ)/2i. The solution of (B.6) is well-known to be

f(y, k) = Aelky —j= — tanh(-\/cy) , (B.7)
L v c ^ J

/ \- ι
where the constant A = ί ̂ | — 1J has been chosen to satisfy the asymptotic

condition in (B.3). (For a derivation of this result see the remark concluding this
appendix.) Part (a) of Theorem 3.1 now follows from examining the expression for
Y+(y, λ) given in Corollary B.2, in the limit y —> —oo, namely

The reduction to a second order Schrόdinger scattering problem for mKdV is
more involved and requires the complex Miura transform, as originally given by
Miura [M].

Lemma B.3. Let p(x, t) be a solution o/mKdV. Then ψ(x, t) is a solution of
KdV, where

+ p2 . (B.9)
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Proof. By explicit calculation, \j/t + ψψx -f i/^ = (—i\/6dx + 2p)(pt -f p2px -f

/>«*). ^
If, in particular, we choose p(;c, ί) to be a solitary wave solution of (mKdV),

Po(x, f) = \/6csechVc(jc - cf) , (B.10)

then we have:

Corollary B.4. The KdV equation admits the complex solitary wave solution

ψ Q (y) = βc (sech2 \/cy 4- i sech\/cy tanh \J~cy) , (B. 1 1 )

where y — x — ct, for any c > 0.

To calculate D(λ) for mKdV, we argue as follows, to reduce the problem to
one for the complex KdV equation. Let Reλ > 0, and let 7+ (y, λ) be the solution
of

dy(-d2

y + c-p2

Q)Y+ = λY+ , (B.12)

satisfying 7+(y, λ) ~ e™ asj -> +00. Recall that then D(λ) = \imy^00Y
+(y, λ)

e~μιy. We relate Y+ to a solution W+ of the linearized complex KdV equation via
the linearized Miura transformation, as follows.

Lemma B.5. Let W+ (y, λ) be defined by

-iVβμι (A).^+(j;, λ) = -iVβdyY
+(y, λ) + 2pQ(y)Y+(y, λ) . (B.13)

Then
dy(-82

y +c- <Ao)^+ - λW+ , (B.14)

and we have

W+(y, λ) - eμιy asy-+ +00, W+ (y, λ) - D(λ)eμιy as y -> -oo . (B.15)

Proof. By explicit computation, with α = — i\/6 we find

The behavior in (B.I 5) follows since dyY
+ ~ μ\eμιy (resp. D(λ)μ\eμιy) as y -* +cχo

(resp. -oo), cf. [PW2]. I

The significance of Lemma B.5 is that Evans' function D(λ) for the linearized
mKdV equation (B.I 2) is the same as the corresponding Evans function for the
linearized complex KdV equation (B.I 4). To determine the latter, we will find the
Jost solutions of the associated Schrodinger equation with complex potential, and
apply Lemma B.I and Corollary B.2 to identify W+(y, λ).

The associated Schrodinger equation we must study is

-a2/ - c(sech2Λ/ςy + / sechv/ςy tanh χ/cy)/ = k2f . (B.16)

The Jost solutions of this equation can be explicitly computed using a trick of
Darboux (1882). Darboux observed that if y(x) is the general solution of

and w denotes a particular solution with k2 = β, satisfying
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w" + 05-w(jc))w = 0, (B.18)

then the general solution of an equation with different potential, namely

z" + (k2 - u(x) + 2(lnw)")z - 0 , (B.19)

is given by
z=y' -yw'/w. (B.20)

To solve (B.16), take u(x) = 0 in (B.17)-(B.19), and observe that if w(;c) =
ex + ie~x

9 then (Inw)" = 2(sech22jc -f i sech2xtanh2x). With this choice, (B.I9) be-
comes

z" -f [k2 + 4 (sech22jc -f z sech 2;c tanh 2x) ]z = 0 . (B.21)

By now taking y(x) = (ik - l)~leίkx in (B.20), we obtain a solution of (B.21) given
by

z(x) = (ik - iylelkx [ik - tanh 2x - ί sech 2x] . (B.22)

This is easily related to the Jost solution of (B.I6), via the change of variables
x — Λ/cy/2. This yields

/0>, t) = -7= - 1 1 e*y -7= - tanh Vςv - ί sechVςy . (B.23)
Wc / L v c J

Now from Corollary B.2, we infer that the function W^ in Lemma B.5 is given
by

; λ ) = -d-y e^
μ\ — Λ/C (tanh ^fcy + i sechVςy) λ

μ\ - Vc J

By examining this expression in the limit y —> — oc, we conclude that

(B.24)

This completes the proof of Theorem 3.1. ~J

Remark. Darboux's trick can also be used to solve the scattering problem (B.6)
which yielded, via Corollary B.2, D(λ) for KdV. In this case we choose M(JC) = 0
and w(x) = cosh(x). The expression (B.7) for the Jost solution now follows easily
after scaling.
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