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Abstract: A flat connection on the trivial bundle over the complement in C" of the
complexification of the system of the reflecting hyperplanes of the Bn, Dn Coxeter
groups is built from a simple Lie algebra and its representation. The corresponding
monodromy representations of the generalized braid groups XBn, XDn are com-
puted in the simplest case.

0. Introduction

0.1. Let { / ! , . . . , lm} be a hyperplane arrangement in Cw, the hyperplane lt be
defined by the equation L^XI, . . ., x») = 0, X = Cn\(J™=1 lt. Let Ωi9 i=l , ...,d
be m x m complex matrices; then the 1 -forms matrix

defines a connection on the trivial bundle X x V-+X where the fiber V is a n-
dimensional complex vector space. The condition that the connection be flat, that
is Ω Λ Ω + dΩ = 0, reads here as follows:

if ft cC" is a subspace of codimension 2 and JΛ = {i^d:ftc=/ ί }, then

\ΩJ9 Σ oΓ|=<
L ieJh J

for every jeJfc (1)

(see, for example, [5]).

0.2. The flat connection on the bundle gives a monodromy representation of the
fundamental group of the base of the bundle by the action on its fiber. This
monodromy was thoroughly investigated in the case in which the hyperplane
arrangement is the complexification of the system of the reflecting hyperplanes in
R" c= C" of the Weyl group of the root system An-^ and the fundamental group is
the pure braid group (see [6, 7]). Here Litj: xt = Xj and the conditions (1) of flatness
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of the connection β = Σιgi<, ̂ « ΩitjdlogLifj have the form

[Ωίt J5 Ωk t l] =0 for distinct i,;, fc, / (2)

(we put Ωij = Ωjj) and are called "the infinitesimal pure braid relations."

0.3. A series of solutions of these equations ([!]) is obtained in the following way:
let g be a semisimple finite-dimensional complex Lie algebra, U its universal
enveloping algebra, {/P}Γ an orthobasis of g with respect to the Killing form,
τ = ̂ Ip®IpeU ® U. Put τ l f 2 = τ(g) 1, τ2 | 3 = l® τ, τ l j 3 = ® 1 ® et/<g> C/® CΛ

NT/1

Then
[τι f 2 J τ 2 ,3 + τ1,3] = [τ 2 > 3,τ l f 2 4 τ l f 3 ]=0 . (3)

Let p:g-*End(PF) be a finite-dimensional representation of g; put V=W®n,
τ£j = pu(τ), where Pi.^l®^-^®/!®!®^"1-^®^® l®<»-'> : #(χ)0-+End(F).
Because of (3), τ/j satisfy the infinitesimal pure braid relations (2) and define
therefore a flat connection on the trivial bundle with the fiber V. Kohno ([6, 7]) has
found the corresponding monodromy action of the pure braid group (and even of
the braid group) for nonexceptional simple Lie algebras g.

0.4. In this paper we describe an analogous construction for the generalized pure
braid group of type Bn and, under certain restrictions, Dπ, and describe the
corresponding monodromy in the simplest case: # = s!2(C) and p is its standard
2-dimensional representation. The corresponding infinitesimal relations include
those of AJ-I and we start from the same construction.

Analogous problems were solved in [2, 3] in significantly more abstract form;
we have not established whether our constructions are partial cases of those
considered in these papers.

1. Computations in Lie Algebras

1.1. As in [1, 6, 7], let g be a semisimple finite-dimensional complex Lie algebra,
U its universal enveloping algebra, (,) be the Killing form, A c H* be the system of
the roots of g with respect to a Cartan subalgebra H of #; denote by {eΛ}ΛeA a Weyl
system of root vectors (see, for example, [8]): eαeα, (eα, e_α) = 1, [eα, e-a] = haeH,
Oα» eβ] = NΛtβea+β for α + βΦO with Natβ = N-Λt-βeC. Let {Λi = feαi}*=1 beabasis
of Jϊ over C, Hitj = (hi9hj)9 G = H~l.

Denote
d

αφO ί , j=l

d

^= Σ ^α®^" Σ ^i.J
αφO i , j = l

Σ £«2+ Σ ^α^-α) 6^- (4)
αφO αφO /
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Let σeAut(£7): σ(eα)=e_α, σ(Λβ)= -Λβ; χ;: £7->C/®": χ i(w)

*i.j = xM μι.j = Xι.j(μ), v,. = χ i(v)et/®". (5)

1.2. Proposition. In the above notation,

2) a) [τU 9μ ί f k + μJ.,k] = 0, b) [μ ίfk, τ ί f < / + μ j f k]=0 ,

3) a) [τij + v i + v j,μ i j]=0 b) [μ ί f i/+v ί + v j,τu]=0 ,

c) [τ^ + Vί + μ;,;, v7 ]=0,

(4) [τ ί t</, μM] - Iτij9 vk] - [μίf</, v fc] = 0 ,

/or distinct i, j, k, I. (6)

Proo/.
1) Our τ coincides with Belavin-Drinfeld's: if {Ip}™ is an orthobasis of g, then
τ = Σ™=1 /p®/p, and 1) holds. Let us reproduce the proof ([6]): let δ: U-+U® 17:
δa = a®\ + \®a for αegf, c = J]p=1/peί7 be the Casimir element. Then
τ=i(δ(c)— c®l — l®c); therefore [τ, δ(u)]=0 for every we 17 and

Ί
) =0.
J

2) Note that μ = (id l/®σ)(τ) = (σ(g)idl7)(τ), σ2 = id(/. Hence,

[τu>Λ,* + μM]=id? ( k"1 )®σ®idf""* )([τu,τM

[̂ ,1,,; + ̂

3) It is enough to prove that

a) [τ + v®l + l®v,μ]=0, b) [μ + v®l + l®v, τ]=0 ,

c') [τ + μ, v®l]=0, c r/) [v®l, l®v]=0.

c") is evident; as σ(v) = v, b) follows from a). We need some computations to prove
a) and c'). Remember, that [ea, eβ] = N^βea+β for α, βeA, α + j?φO; extend the
range of this formula onto the complete lattice generated by A in H* setting
Na,β = ΰ if one of α, β or α + β does not belong to A. We will use the following
equalities (see, for example, [8]):

^βe^ + βe,, for βφ-α,

βα , β_ α j = βαrία ~r rlαβα ,

Oα, /u] = -(/ι«, /ik)e«, [e«, Λ f c] = -2(Λβ, /ιt)eα

2, [eαe_α, hk~\ = 0
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a)
αφO

d I I

Σ Gίjhi®hj+- Σ eϊ®ι+- Σ '
j=l ^ α φ O ^ α φ O

1 1
~ Σ !®eα2 + ~ Σ
Z α φ O Z α φ O

-«, Σ *β®eβ- Σ

A. Leibman

= Σ !>«»
αφO
0ΦO

Σ
αφO
J3ΦO

+ Σ GiJlhheβ]®hjeβ+
ί ,/=l i

/3ΦO
aφO
/?ΦO

1 ά

"ό Σ eβ®{.e*e-^eβ\- Σ
^ αφO fc,Z=l

αφO

d ι d

- Σ G*.ίΛkβ.®[β-.»Λί]-^ Σ

a φ O

1 d

-^ Σ
Z f c , Z = l

aφO

aφO

d

aφO

/3ΦO

-^ Σ
Zk,l=l

aφo

+ Σ
aφO

aφO

Σ
aφO

, x
ι;

aφO

Gi,J(hi9hβ)eβ®hjeβ+ Σ GiJ(hj9hβ)eβhi®eβ

/C ^ i , j=l /o \

Λ Σ N«,β ~ Σ ^a«a
1

(S7)
aφO

9 Σ
^ aφO

a φ O
^Φo

a + jβφO

a-/?ΦO
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-- y NatΛ Lu α'P
L αφO

+- £ e-Λ®eahΛ+-

α-/3φO

d

k,l=l

αφO α φ O

1

i,j=ί
/3ΦO

0φO
α + /?φO

W l ? )

(S22)

d d

X GM(Λβ,Λ*)έ£®fcι+ X Gft.KΛ.

άφO (^25) αφO

^ Σ e«®e«h-«= Σ
αφO

^ Σ *«®[>β,Λ-α]= Σ ^«
^ α φ O α φ O

GiJ(hj9hβ)eβhi®eβ+-

α- Σ eβhβ®eβ- ̂
0ΦO αφO

^ Σ [Λα^_α]
a Φ O

So, -S12+-

e-Λ®hΛeΛ

' aΦO
a Φ O

^ Σ e-*®e*h*= Σ ea®e-A- Σ
^ a φ O aφO a Φ O
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1 1 d

SW = Σ
fc,ϊ=l
αφO

~ Σ e
αφO αφO αφO

So,

~ Σ l>α
αφO

f

αφO

d

S2β + S2= Σ
k , Z = l
αφO

Denote a' = a

Si3= Σ N-
αφO

αφO

αφO

α'φO

-«= Σ

αφO αφO

= — Σ NΛ>ιβea>+βe-(X
α'φO

= Σ
αφO α ' Φ O

= - Σ
α'ΦO

So, S19 + S 2 ι=0.

Denote 8' = α + 8,

= Σ
αφO αφO

/3'ΦO

= Σ
αΦO α Φ O

/? 'ΦO
α-/ΓφO
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= - Σ
α φ O

/ ? ' Φ O
α-0'φθ

αφO

Σ
αφO

- Σ N*,-β'Nβ',Λe-Λ+β>®eΛ+β>
αφO
ΓΦO

α + /ΓφO
α-/ΓφO

α ' Φ O
/ΓΦO

α + /ΓφO

S17=
αφO

e*ea+β= Σ
α φ O

α-0'φθ

N*',β'e*'+β'®e-Λ

αφO
/ Ϊ ' Φ O

So,

= Σ
αφO αφO

9 Σ N«,-β
L αφO

1 _ Λ r
x+/*®e a+/?-~ L NΛtβeΛ+β®e-aeβ

^ aφO
0 Φ O

α-/?φO

a 'φO
/3ΦO

a '- j ϊφO

Σ
αφO

Σ
α ' Φ O
0'ΦO

αφO

a ' Φ O
0 Φ O

α ' Φ O
/ S ' Φ O

α φ O
'- y

a φ O
0 ' Φ O

- Σ N*,«ha

α φ O
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SΊ=

A. Leibman

αφO αφO
0 Φ O 0 ' Φ O

α + 0φO α-0 'ΦO

= - Σ N-«,β'eβ'e*®e-«+β' -
αφO

/?'ΦO
α-/ΓφO

So,

= Σ N-«,βeβe«®e-a+β-~ Σ
αφO Z αφO
/?ΦO

~9 Σ
^ αφO

0ΦO

*®e-*+β-~ Σ
^ αφO

/3ΦO

= -9 Σ N*.-βN*,βe*+β®e-Λ+β.
^ αφO

α + jSφO
α-

Hence, 51

c')
αφO

Γ
= Σ

L α φ O

= Σ [(*« + *-«), Σ (e2β+epe-β)\®ea
α φ O L A Φ O J

\= Σ (l^

= Σ

-f

Σ
^ΦO^φα

Σ

/ς- N

W 5 J

-«e*+ Σ
^ΦO/Jφα

0 Φ O
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As /zα= — /z_α, the terms of the forms e±ah±a,h±Λe±a cancel out in the last expres-
sion. Furthermore, putting /Γ = β + α, we have

Sι= Σ N«,βe*+βeβ= Σ N*,-«+β'eβ'e-«+β'=- Σ N«,-β'eβ'e-«+β'
0ΦO 0 'ΦO /ΓΦO

£φ-α 0'φα / ϊ 'Φα

= - Σ N-*,β'eβ'e-«+β'=~S6
/? 'Φo
0'φα

Similarly, £2= — S5, S3 = — S4, S8 = — S7, and our expression is equal to zero.
4) is evident.

2. The Monodromy

2.1. Let PFbe a finite-dimensional space ρ:g-^End(W) be a representation of 0, and
V=W®n. The hyperplane arrangement of the root system Bn is given by the
equations x ί±x</=0, x/=0; define a connection on the trivial bundle C" x Fover its
complement Xc:Cn by the 1-form matrix,

(7)

where AeC, τ / s j , μ^, vu are defined by (4), (5), and pn: U®n^End(V=W®n)
is the representation of U®n constructed from p'.ρ»(gι® ' ' ' ®gn) =
ρ(9ι)® ' ' ' ®p(9n\

Proposition (1.2) says that this connection is flat and, consequently, it defines
a representation of the generalized pure braid group PBn = π l ( X ) in End(F).

2.2. In the case when g = slm(C) and p is its standard representation, we have also
a flat connection over the complement X' of the hyperplane arrangement
Dn:xi±Xj = 0 in C", due to the following fact:

Lemma. In the above assumptions, p(v) is proportional to idw, and, consequently,
[τu^i.j]=0.

Proof. If we put H to be the diagonal matrices in the standard representation of
slw(C), then the matrix corresponding to etj has a nonzero element only in the (ij)
place; ρ(efj) = Q, p(eijejίi) is diagonal, so ρ(v) is diagonal as well and is invariant
under permutations of the elements of the basis of W.

Hence, the matrix

Σ ρn(τitj)dlog(xi-xj)+ Σ Pn(μi,j)άlog(Xi + Xj)) (8)

defines a flat connection on X' and a monodromy representation of the generalized
pure braid group PDn
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2.3. We are going to describe these monodromies in the simplest case: from now on,
g = sl2(C\ and p is its standard representation

*•->- !: ί *--? o *»-;
in a basis {el9e2} of a 2-dimensional vector space UK

Change for this case the definition (4) of v by setting

v = r Σ
\ α φ (

Lemma. The equalities (6) hold for the new v as well.

Proof. The equalities

τ, Σ *α®ι+ Σ ι®*.=o, Σ ^.®ι+ Σ
L αφO αφO J L αφO αφO

hold for all semisimple g, it is seen from the proof of Proposition 1.2 a); we have to
check only, that \_e+ (x)e~ +e- ®e+ + e+®e+ +e- (x)e_, (e+ +e_)® 1] is equal to
0. But it is [e + -h^_,β + -f^_]®(e++^_) = 0.

2.4. Let « ! , . . . , ίz,,-!, C j be the generators of the generalized braid group X£n of
the root system Bn and, simultaneously, of the Weyl group WBn corresponding to the
reflections with respect to the hyperplanes {xι = %2}> , {xn-ι=xn}> {^ι=0}
respectively. XBn is described by the relations

for |ι-;|^2, aiai

for i

has in addition the relations a\=. . , = fl2_1 = c2 = l. The groups

Λ, corresponding to the system Dnί are generated by the elements α1 ? .
ι with the relations

aia^a^i for |ι-j|^2, aiai+1ai = ai+ί

for z

(9)

M and
an-l9

(10)

and n has in addition the relations, α2 = . . . α 2 _ 1 =& 2 = l.

2.5. Denote q = t

Theorem. The monodromy θp:PBn-*End(V) defined by the connection (7) is, up to
conjugation, the restriction of the representation θ of the group XBn given by the
matrices

/I 0 0 0\

0 0 4 0

0 q l-q2 0

\0 0 0 I /

n-ί-ί)

0 1

q~2s-q2i
(n-l) (11)
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where the matrices singled out are given in the basis {
e2® £2} ofW® Wand {ely e2} of Wrespectively. The monodromy 0P:PDn->End(F)
defined by the connection (8) is, up to conjugation, the restriction of
the representation θ' of the group XBn given by the matrices

/o
0

0

\«

\
0

0

i-.2/

»-2) (12)

Proof is modification of that of Theorem 3.2.3 of [6].

Define an action of the Weyl group WBn on V= W®n simultaneously with its
action on X so that the connection be invariant under the product action on X x V.
Namely, put

Cι(ek®v2® - - vn , fc=l,2 . (13)

Indeed, in terms of the action of C7®" on F, cΓ 1p«c 1=pMo( σ®ι®(«-D) and>

therefore, c5f1p«( τι,2)cι=p«(μι,2) After we quotient Xx Fby this action, we will
obtain a (non-trivial) bundle over X/WBn having F as a fiber and endowed with
a flat connection. The fundamental group of X/WBn is the generalized braid group
XBn, hence the monodromy of the flat connection yields a representation θ of
X/WBn in End(F), whose restriction θ\PBn on pure braids is ΘP. It depends of the
parameter λ\ when A=0 the action of XBn on F coincides with the action (13) of
WBH.

The monodromy action on F of the simple loop half bypassing the hyperplane
{xi = Xj} in X, that is 0(0j)> i§ defined by the residue of Ω along this hyperplane
^Pn(τi,i+i) and coincides, up to conjugation, with the composition of the exponent of
this matrix eπ^~lλpn(τι'ί+ί) and the action (13) of α f. The matrix has the form

/1/8 0 0 0\

0 -1/8 1/4 0

0 1/4 -1/8 0

\ 0 0 0 1/8/

it is semisimple with the set of eigenvalues {1/8, —3/8}, the eigenvectors corres-
ponding to the second one lying in the subspace W®(i~l)®(e^®e2 —
e2®e±)® w®(n~l~l} of F. Its exponent is semisimple with the set of eigenvalues

j g V - i λ i / 8 ^ ^π v/-iA(-3/8)| ? ancj ̂  fyom Qty ac{s as — 1 on the subspace correspond-

ing to the second eigenvalue and as 1 on the subspace corresponding to the

first one. Hence, 0(0,-) is semisimple with the eigenvalues

— q3/2= _e π v~ 1 Λ <~ 3 / 8 >} and satisfies the quadratic equation

n-i-l)

(14)
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In the same way, the residue of Ω along the hyperplane {xx =0} is given by the
matrix

,s/2 r,

with the eigenvalues r/4+s/2, r/4—s/2 and 0(0^) satisfy the equation

+ 2 s)=0. (15)

Let ABn be the maximal algebra over C generated by the elements
a i, . . ., 0,,-!, Ci in which the relations (9) and, in addition, the following relations
coming from (14), (15) hold:

a? = q-v2(l-q2)ai + q, c2><r~2s(l-<?4s)cι+<r2" . (16)

This algebra is obtained by a deformation with parameter q from the group algebra
CWBn, which corresponds to q= 1 (that is, to 1 = 0), and has the same dimension:
there exists a natural way to reduce the elements of C WBn to a natural form without
augmentation of their lengths computed in the alphabet { α ι , . . . , ί z n _ 1 , C ι } ; w e can
use the same process to reduce the elements of ABn to the same form if we replace the
relations α2 = c \ = 1 of C WBn by (16). Hence, the algebra ABn is semisimple for small
λ and the decomposition of any of its representation into irreducible ones depends
continuously on λ if λ is small enough (see [4]).

The representations 0, 0 satisfy Eqs. (14), (15) and factorize through ABn (for 0 this
is verified directly). When /l=0, both of them coincide with (13). Hence, these
representations are equivalent for small λ. But they depend on λ analytically and,
therefore, 0 is equivalent to 0 for any λ.

The second part of the theorem, dealing with the representation of XDn, is
proved in the same way.
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this paper.
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