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Abstract: We construct a Cantor set Z of limit-periodic Jacobi operators having the
spectrum on the Julia set J of the quadratic map z + 2% + E for large negative real
numbers E. The density of states of each of these operators is equal to the unique
equilibrium measure i on J. The Jacobi operators in Z are defined over the von
Neumann-Kakutani system, a group translation on the compact topological group of
dyadic integers. The Cantor set Z is an attractor of the iterated function system built
up by the two renormalisation maps ¢, : L = 1/J(D2i + E) — D,. To prove the

contraction property, we use an explicit interpolation of the Bicklund transformations
by Toda flows. We show that the attractor 7 is identical to the hull of the fixed point
L, of®,.

1. Introduction

Random Jacobi operators are discrete one-dimensional Laplacians and are discrete
approximations of one-dimensional random Schrodinger operators. The literature
about such operators is huge and a part is by now covered by text books like [CFKS,
CL, C, PF].

Dynamical systems obtained by iteration of rational maps have a rich structure.
Among these systems, the quadratic map z — 2? + E is studied best. For reviews in
the large literature we refer to [Bla, CG, Ere, M].

Toda differential equations are integrable Hamiltonian systems and are discretisa-
tions of the Korteweg de Vries systems. According to the chosen boundary condition,
the investigation of the Toda systems touches different areas in mathematics. We refer
to [FT, Tod, Per, K1].

The subject of this article is located in the intersection of the above three fields.
We study random Jacobi operators having the symmetry of being invariant under a
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scale transformation given by a doubling of the lattice spacing, a squaring of the
operator and an adaptation of the energy:

T :Dw—Y(D*+E),

where 1) is the restriction of the Laplacian to the coarser lattice. More precisely,
assuming that D is an off-diagonal disorder Jacobi matrix (Du),, = d, u,,, +
dy_ U,_y, the matrix L = D? + E is given by Lu,, = G, Uy, + Qy_oUy_y + b, Uy,
with a,, = d,d,,, and b, = E + d> + d>_,. This operator is the direct sum of
two Jacobi matrices. One of them is L, = [W(D? + E)] ,,,, = [D* + E] 4, ,,,.
Because L has also diagonal entries, the map .7~ can not be iterated. However, we
have shown in [K2] that the inverse of .7~ can always be computed in the class of
random Jacobi operators: given L, there exist two new Jacobi operators D, defined
over a new renormalized dynamical system such that (D) = L. The entries of
D, are constructed from the Titchmarsh-Weyl functions of L. The aim of this work
is to study the iteration of the maps

&, :L=yp(Di+E)— D, .

These maps on operators correspond on the spectral level to the two inverses ¢, of
the quadratic map z +— 22 + E. Here is the link between random Jacobi operators
and the iteration of the quadratic map.

Before we outline the content of our results, we mention the earlier works of
Baker, Barnsley, Bellissard, Bessis, Geronimo, Harrington, Mehta and Moussa, who
constructed semi-infinite Jacobi operators L € Z(I*(N)) with spectra on Julia sets
J (see [Bak, BBM, BGM, BMM, BGH2, BGH3]). Such operators have also the
equilibrium measure on the Julia set as the density of states and satisfy the fixed
point equation y(L* + E) = L. The side diagonal d,, = [L],, ,,,, of L begins with

dy=1[Lly; =0,d, =L, =VE,dy = [Llys = 1,... ,

where the entries d, are obtained recursively using d3,,; = —d}, — B, &% =
d3,d3,_;. Our set up is different in that we construct Jacobi matrices by renor-
malisation maps ¢, which can only be defined in B(*(Z)) and not in B(*(N)),
whereas the fixed point equation of the renormalisation equation has a solution also
in Z(1*(N)). For the construction of the attractor, we have to work in an algebra of
random operators rather then in B(*(Z)).

The set of random Jacobi operators forms a fiber bundle over the topological group
2% of dynamical systems: over each dynamical system is defined the Banach space
of random Jacobi operators which is a subspace of the crossed product of L*°(X)
with the dynamical system. The factorization result in [K2] can be restated in saying
that the 2 : 1 integral extension map ¢ on % can be lifted to two renormalization
maps ¢ defined on an open set of the bundle. A pair (T, L), where L is a Jacobi
operator over the dynamical system (X, T, m) is mapped into a pair (S, D ), where
%(D% + E) = L and S is an integral extension of T satisfying S = T. We will
show that for large enough real —F, both renormalization maps . are contractions
on an open set of the bundle forming a so called hyperbolic iterated function system
having an attractor 7 which is a Cantor set in the fiber £ over the von Neumann
Kakutani system.

The spectrum of L = (D> + E) and the spectrum of D are related by
a(D)?> + E = o(L) and the spectrum of each operator L € ¥ is the Julia set
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J of the quadratic map z — z? + E. Moreover, we will show that the density of
states of L is the unique equilibrium measure on J. The Lyapunov exponent turns
out to be the potential theoretical Green function of the Julia set and the determinant
z + det(L — z) of an operator L € 7 is the Bottcher function which conjugates the
map z — 22 + E to z — 22 in a neighborhood of cc.
The factorization L = 1)(D? + E) is the key for isospectral Béicklund transforma-

tions, translations by one unit on the finer lattice. A main tool to prove our results
is the following interpolation of Bécklund transformations BT, by a Toda flow with

a time-dependent Hamiltonian H (L) = tr(hz(L)) = $%w(E), where w(F) is the
Floquet exponent of L. The interpolating Toda flow is

d 1 1 ’ 1 -
— BT =F=|l—s) - |—— .
a5 BT ¢2[<L—E> <L-E> ’L]
It follows from this Toda interpolation that BT, (L) is unitarily equivalent to L. It
is here, where the theory of integrable systems enters. We mention, that for the KdV

equation, there exists a similar interpolation of the Bicklund transformation given by
a time-dependent KdV flow

d

EEBT(L) =-2DG, (B, L),

where G, (E,L) = (L — E);}! is the Green function of the Schrodinger operator
L = —D? +q. (See [McK] p. 31.)

The hull @ of the fixed point L, of &, is the set of all translates of L, (T}),
where T, is the translation belonging to any element x in the group X of dyadic
integers. Every L € 7 belongs to some w € 2 = {—1,1}N by

L =®Ww) = nlergo %%, -9, K.
A change of alphabet 1 +— 0,~1,— 1 identifies an element w € 2 = {-1, 1N
with an element z(w) € X = {0, 1}N. We will prove that $(w) = L, (T'y())» which
implies @@ = 7 and means that each element of the attractor of the iterated function
system is obtained by an explicitly known translation of the fixed point L, .

2. The von Neumann Kakutani System

The set % of automorphisms of a Lebesgue space (X, m) is a complete topological
group when equipped with the uniform topology given by the metric d(T, S) = m{z €
X | T(x) # S(x)}. For T € 74, we call (X, T, m) a dynamical system.

Given a function f € L'(X,N\ {0}), a new dynamical system (X7, T/ m/)
called the integral extension is defined as follows (see [CFS]). Define X/ :=
{(z,i) | z € X and 1 < i < f(z)} and a probability measure m/ on X7 by
mf (Y, 1) = m(Y) / f f dm. This measure is preserved by the transformation

Foooon._ Jlxi+ )y, ifi+l<f(o),
TH@ 0= (P, 1) if i+ 1= f).

This construction gives also a map $f : % — 7% because the integral transformation
is again an automorphism of (X, m) after an identification of the Lebesgue spaces
(X,m) and (X1, m’).
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Proposition 2.1. For [ f dm # 1, the map &1 is a contraction on 74 and has a
unique fixed point TY.

Proof. The contraction property follows because for all T},T, € %

-1
m({T\(z) # Ty(x)}) = ( / f dm) -m({T(z) # Ty()}) -

Apply Banach’s fixed point theorem in the complete metric space %. [

We consider now the special case of an integral extension with f = 2, where the
identification of X = [0, 1] with X7 is given by

X =10,11 = (X, {1hu(X,{2ph = X7 =[0,1/21U[1/2,1].

In order to fix the ideas we can write a dynamical system as a measurable map
T : [0, 1] — [0, 1] leaving invariant the Lebesgue measure on [0, 1] and define &7 by

z+1/2, if ze X, =1[0,1/2),

f -
M@= {1z -1))2, fzeX,=[1/21].

The unique fixed point T of & = &f, with f(x) = 2 is called the von Neumann-
Kakutani system. It is by construction a piecewise translation of intervals
T)y=z+1-C,,,, for C, <z<C,,, ,

n .
where Cj, =0 and C,, = >~ 27*, n > 0. The system (X, T, m) is ergodic and has a
discrete spectrum i=1

G={¥"*" |keZn>0}CT

(see [P, F]). T is conjugated to a group translation on the compact abelian group G
of dyadic integers, the dual group of G C T'. The group G is the space of sequences
w = {w;,w,,...} in {0, 1}N with group operation

(w+m), =w, +1, +p,_ (mod 2),
where p, = 0 and p,, € {0, 1} is equal to 1 if and only if w,, +7,, + p,,_; > 2. The

group translation T}, : w — w+(1,0,0,...) is conjugated by w — > w, 27" € [0, 1]
to the map 7' on the interval I. n=1
3. Random Jacobi Operators

The crossed product % of L°°(X,C) with the dynamical system (X, 7T, m) is a C*
algebra consisting of operators K = ) K, 7" with convolution multiplication

nez
KM =) (KM),7" = Y (KM, (T*)"
n k+m=n
and norm |||K||| = | ||K(2)|| |, where K(z) is the infinite matrix

[K@)pp = Ky (T 2) .
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The adjoint of an operator is defined by requiring 7* = 77!. A trace on .2 is given
by tr(K) = [ K, dm. A random Jacobi operator L is an element in %" of the form
b

L=ar+aT Hr*+b

with a,b € L>=(X, C). We denote by % C .Z" the complex Banach space of random
Jacobi operators. We call M (L) := exp ( [ log|a| dm) the mass of a Jacobi operator.
If log|a| > 6 > 0 for some § > 0, we say, the operator has a positive definite mass.
Notice that random Jacobi operators are only normal, if a, b are real. Denote by &(.Z")
the C*-algebra corresponding to the renormalized system (X, @#(T"),m). As long as
we consider only one renormalization step, we denote the renormalized dynamical
system with (Y, S,n) and the von Neumann algebra with %/ and elements in %/ by
B = %" B, o™, where ¢ is the symbol in %/ corresponding to 7 in .%". Call v the

mapé=¢(%“)—>%”
’(,D:K=ZKnUnF—>ZKnTn,

where f{n(x) = K, (z) forz € X| = X. The mapping ¢ gives for almost all z € X
(D)@, = [K(@)] 21, 21, -

Let L € % be a random Jacobi operator having positive mass. For E outside a
ball containing the spectrum of L, the Titchmarsh-Weyl functions are given by

uy (Tx) u (T ')
uy(z) ’ uy ()

my(x) = a(x) ny(x) = a(T™ 1x)

?

where u_ (z) € RZ are solutions of L(z) = Eu(z) with Y |(uy),(z)]* < co. These
+n>0

functions are measurable according to the multiplicative ergodic theorem of Oseledec
and are bounded. Using Luy = auy (T) + a(T Du (T~1) + bu, = Eu, and the
definition of m,n,, we get

my+n, =E—b,
my -ny (T) =ad*.

New random Jacobi operators

D, = Jcio+/c (S D" e ¥/

are obtained with functions c,. € L*°(Y, C) defined by requiring that forz € X = X,

ey (@) = —mo(z), ey (S7'z) = —n (2).
The sign of D, is specified if we take the principal branch of the square root for
y/—m4 and the branch ,/—n_ such that a = \/m_n_(T). We get then
cp(@) +c(S7'z) = —E + b(z),
cy(z) ¢y (Sz) = a*(z) .

As cis defined on Y, these formulas extend the functions a, b € L*°(X, C) to functions
in L=, C).
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Propesition 3.1. The random Jacobi operators D, =  /c o + (/c (S~Ho* € &/
are bounded for |E| > |||L]||| and satisfy

YWDL+E)=1L.

The operator BT (L) := 1/)(D24__(S) + E) is a Bdcklund transform of L and is
isospectral to L. The operators D are selfadjoint if L is selfadjoint and E is real
below the spectrum of L.

Since the proof that BT, is isospectral given in [K2] is quite rough, we add here
a detailed proof. We will see in the next paragraph that L and BT (L) are even
unitarily equivalent. We call

b, : % - d%), LD,

renormalisation maps. They are parameterized by an energy £ € C and are defined
on an open (possibly empty) set 7 of £.

Proof. The relation (D )2y = L — E follows from the definition of the Titchmarsh-
Weyl functions:

w((Di)z) = zp(, ey - ch(S)a2 +(cy + ci(S’l)) + \/ci(S'—z) . ci(S—l)a‘z)

=ar+b—E+a(T HYr*=L—E.

If E is real and below the spectrum of L, the functions ct

real and selfadjoint.

In order to prove that BT, (L) is isospectral to L we take first the periodic ergodic
case, where N = | X| is finite and where we can build for each periodic N x N Jacobi
matrix L of positive mass a periodic 2N x 2N Jacobi matrix D such that D? + E
is the direct sum of two /N x N matrices L and BT, (L). The spectrum of periodic
Jacobi operators is generically simple and the multiplicity of their eigenvalues is < 2.

(i) Assume first that L has N simple nonzero eigenvalues. The Jacobi matrix D

are positive and D, are
P +

has a spectrum £, ..., 3+, symmetric with respect to the imaginary axis because
if A\ is an eigenvalue with the eigenvector (u;,uy,...,Uyn_1,Uy) then —X is an
eigenvalue with the eigenvector (u;, —u,,...,Uyy_,, —U,x). The matrix D? + E is

the direct sum of the two Jacobi matrices L, BT (L) and has the eigenvalues N+ E,
each with multiplicity exactly 2 coming from the two signs of A,. As L has by
assumption simple spectrum and each eigenvalue A\? + E of D? + E has multiplicity

2, we obtain by the pigeon-hole-principle that both L and BT, (L) have the spectrum
{N+E|i=1,...,N}

(ii) In the case, when L is periodic with not necessarily simple spectrum, the claim
follows because the renormalisation maps are continuous and the spectrum depends
continuously on the matrix and invertible matrices having a simple spectrum are dense
in the finite-dimensional vector space of N periodic Jacobi matrices.

(iii) In the general infinite-dimensional case, we can approximate a Jacobi matrix L(z)
in the weak operator topology by periodic Jacobi matrices L¥)(z) and the spectra of
these approximations converge by the theorem of Avron-Simon for N — oo to the
spectrum of L(z). The Bécklund transformed matrices BTi(L(N )(z)) converge for
N — oo in the weak operator topology to BT (L(x)) because the Titchmarsh-Weyl
functions depend continuously on the matrices. The spectrum of BT (L(x)) is the
same as the spectrum of L(z). [
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Random Jacobi operators form a fiber bundle over the space % of dynamical
systems. Over each dynamical system 7" is defined the fiber £ of Jacobi operators
over this system. Given E € C, there is an open (possibly empty) subset of this fiber
bundle, where the renormalisation maps @, make sense. A pair (T, L), where L is a
Jacobi operator over the dynamical system (X, 7', m) is mapped into a pair (S, D),
where w(Di + FE)=L and &(T) = S is the 2 : 1 integral extension of 7.

4. Bicklund Transformations

For |E| > [||L]||, the Bécklund transformations BT, are given by
L=ar+aT "Yr*+bw— BT (L)=a 7 +a (T Hr* +b .,
where by construction
T
by =b+ny —n (1), @t = azT—iQ .
my
We have shown in [K2] Proposition 4.4 that
lim BT, (L)=L({T), lim BT (L)=1L
E—~co E——o0

and that in the periodic case the transformations can be interpolated by time-dependent
Toda flows in .% (see Theorem 4.5 in [K2]). Because we want to estimate the Fréchet
derivative of the Bécklund transformations near —oo, we have to refine the analysis
of Bicklund transformations and to determine explicitly the Hamiltonian Toda flow
which does the interpolation. The projections

K = i K" K*= Y K"

n=—00 +n>0

yield the decomposition K = K~ + K, + K*. Define K + K to be the projection
from .#" to £. For a Hamiltonian H(L) = tr(h(L)) with analytic A, the differential
equation

L=[@)" -k (L), L1 =[L" = L™,k (L)1,

is a random Toda system [K1]. In order to get local existence of the flow, the domain
of analyticity of h must be sufficiently large. We will consider also complex time ¢
as well as time-dependent Hamiltonians H.

The Floquet exponent w(E) of L = a1 + a(T~')7* + b is defined as

w(F) = —tr(log(L — F)), Im(E) > 0.

By the Thouless formula it is also defined on R. The Lyapunov exponent A(E) =
—Re(w(E)) — [ log|a(z)| dm(x) makes sense for all E' € C and the derivative w'(L)
is bounded for all E in the resolvent set of L.

Proposition 4.1. Bdcklund transformations can be interpolated by random Toda flows
with the time-dependent Hamiltonians HE(L) = j:%w(E). This means

d 1 1 " 1 B
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Proof. We prove the proposition first in the finite-dimensional periodic case | X | < oo

and under the condition that E is real below the spectrum of L. We know

from [K2] (see Theorem 4.5 in [K2]) that Bicklund transformations can then be

1nterp01ated by Toda flows. In the coordinates (d,b) = (log(a),b), the Toda flow
=[L* — L7,k (L)?] is

d !/ !
?d_td R(L)(T) — h'(L)y,

ab = et (L), - T (D), (TTY,
whereas the Bécklund transformations BT, are
1 1
d—d (E)=d+ 3 log(m YT — 3 log(m.) ,
bi=b (E)=b+n, —n (T).

Differentiating these equations with respect to E

dm d m
gtk gt
Ay YdETE ) 1dETE
dE 2 mg 2 my
d d

d
2B’ g™~ gD

and requiring ( %d, c-idEb> = (;;d ib) gives (up to a L-independent constant

function which we put to zero)

d
, _ ld_Em 1d
Mo = 3 oy = 2B °8m) @
d
ni(T)
W), =-4E——
a
and so
t(h'(L))-/h’(L(E)) d d/ log(m.) dm = +1 % w(E)
r o dm = - og(my) dm = +5 —w
= Ft(L— B
Therefore

1 1
B0 =F5(L—B)7", hp(L) = F5log(L — B)

which leads to ]
Hyg(L) = tr(h (L)) = :I:zw(E) .

We have proven (1) in the finite-dimensional case with E real below the spectrum of L.
The formulas (2) are true in general, if they hold in each finite-dimensional case. One
can approximate the operators L(z) by periodic matrices L™(x) in the weak operator
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topology. For N — oo, we obtain h(L‘™)(x) — h(L)(z) in the weak operator
topology and (mi)(N Nz) — m (x) for almost all z € X. (By analytic continuation,
the formula (1) holds also for complex numbers E satisfying |E| > |||L|||.) O

We use this interpolation to estimate the Fréchet derivative EBTi(L) of the
Biécklund transformations near oo.

Corollary 4.2. For |E| — oo, we have
fixed ball B(R) C %.

d‘i BTi(L)H — 1, uniformly for L in each

Proof. Since there is a uniform bound for the Fréchet derivative of

d L™ \* L™\~
oS ()

on 7°, we have

d d >
agap 21 = 0™
for |E| — oo. Therefore
d — BT (L) — =OE™, |E| -
L'+ B ’ oo

where I~ : % — % is the identity operator and I* (L) = L(T). O

5. Iterated Function Systems

We state now a version of Barnsley’s result about hyperbolic iterated function systems
[Bar]. Such a result holds in the general context of complete metric spaces. We
formulate and use it in the case when the hyperbolic iterated function system is
acting on a Banach space. The proof of the result is given for the convenience of the
reader.

Lemma 5.1. Given a Banach space (., || - ||) and two differentiable maps &, , D _
7 C M — M leaving invariant an open connected bounded subset 7" of .
Assume there exists a common inverse I of both @,,&_ on & (7)) U &_(¥).
Suppose, there exists A < 1 such that for L € 7"

H @i(L)“ <A 3)

and @, (L) # ®_(L) for all L € 7. Then there exists a D invariant Cantor set 7
homeomorphic to 2 = {—1,1}N which is the image of the injective map
D w=(w,w,,...)— klinoloéwl o@wz o--- o@wk(K) =P(w),

where K € 7 is arbitrary. The map 7 restricted to 7 is topologically conjugated
by @ to the one-sided Bernoulli shift ¢ on {—1,1}N: .7 o® =P oo.
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Proof. The contraction property. Connect two given points K), K, € 7 by a
1

piecewise differentiable path t — K(t) € 7 so that K, — K, = [ K, dt. The
assumption Equation (3) leads to 0

1

d
/ S P () dt

0

||¢1(K1)_¢i(K0)H= S)\'HKl—KOH .

Existence of the mapping ®. For K € 7" and w € {2, n +— @wl od,
is a Cauchy sequence in 7 because

diam(@,, 0 ®,, o0, (7)) < A" - diam(?)

o 0B, (K)

2

and the limit &(w) of this Cauchy sequence exists, because .7 is complete. The limit
is independent of K € 77 and the map is continuous as

[|BW)K — (K| < diam(2") - A~ min{keN [wprne}
Call 7 = &(£2).

Injectivity of @ : {2 — 7. Assume @, = §, with w # v and k is the smallest index
with w, # v,. Since @, ,®_ have a common inverse, we obtain from &, = &, that
forall Kk € N

Py = Pokiwy »

where o is the shift w = (W w, ...) — (W,,w;s, .. .). Withw,, # v,, and the assumption
D (L)y#P_(L) for all L € .Z, we get

SZSu.»,,gpa"(u.y) 7[ dsvn@On(w)
in contradiction to the fact that both sides are equal t0 @,n—1(,) = Pyn-1(,)-

Conjugation to a Bernoulli shift. The map ¢ : {2 — Z is a continuous bijection.
Since {2 is compact, ¢ is a homeomorphism. As @, , =.9 @ _, the map @ conjugates
the Bernoulli shift o : 2 — 2 tothemap .y : ¥ — 7. O

The maps @, ,9_ in the Lemma form a hyperbolic iterated function system. The
invariant Cantor set 7 is called the attractor of this system.

6. The Quadratic Map

We will need some facts about the dynamical system on the complex plane C defined
by the quadratic map t: z — z* + E, where E € C is a parameter. The inverse
of t is a correspondence ¢ :  — £+/x — E with the two branches ¢,. A map for
measures 4 — ¢*(u) is defined by

B4 = 5 (V)

For E # 0, the map ¢* has a unique fixed point x in the space of probability
measure on C. It is an attractor so that (¢*)™(v) — u for all probability measures v
on C [Bro, L]. This measure is called equilibrium or electrostatic measure because
1 maximizing the metric entropy of ¢ among all invariant probability measures. The
support of y is the Julia set J of ¢, which is defined as the closure of all repelling
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periodic orbits of t. The measure p has the property of being balanced [BGH1], which
means that for each chosen branch ¢, one has

1
(WP (V) = Zp¥) .

For large |E|, the two maps ¢* form a hyperbolic iterated function system having
the Julia set as the attractor. It follows from Barnsley’s Lemma 5.1 that ¢ is then
topologically conjugated to a one-sided Bernoulli shift. The Julia set is then called
hyperbolic and is a completely disconnected Cantor set. (See [Bla, C, EL] for reviews.)

7. Existence of the Attractor

We return now to the renormalisation maps ®, acting on the Banach space %
of Jacobi operators defined over the von Neumann Kakutani system (X,7,m). An
element L = at + a(T~)7* + b € % is called limit-periodic if for almost all x € X
the sequences a,, = a(1™z) and b, = b(IT™x) are limit-periodic in the sense that they
can be approximated in [°°(Z) by periodic sequences.

Theorem 7.1. For large enough real —E, the maps @, ,9_ form a hyperbolic iterated
Sfunction system defined on an open non-empty set 7" C %. Each L € 7 is limit-
periodic and has the spectrum on the Julia set J of the quadratic map t : z — 2*+E.

Proof. Fixing a neighborhood of the Julia set. For large —F, there exists an open
¢ -invariant connected real neighborhood V' of J that does not contain E.

Fixing an open set of Jacobi operators. The open connected set
7 ={L € ¥ |o(L) €V, L has positive definite mass }

is not empty: take any L € % with positive definite mass. There exist constants
a > 0,0 € R, such that o(aL + ) € V.

The renormalisation maps have a common inverse. The inverse of @, is given by
T (D) =yp(D*+E).

The two renormalisation maps have no common image. For large enough |E| and
Le7,
P, (L) #P_(L)

because @, (L) = &_(L) would imply m, = m_ and E would be an eigenvalue.
This is not possible, since we have assumed FE to be outside the open set V' which
contains the spectrum of L.

Decomposition of the renormalisation maps. In order to estimate the Fréchet derivative
of &, we make the decomposition

P =pongob,

where ¢ : L — +/L — E is the square-root giving D, and 8(L) = L& L € £  is the
unique operator which satisfies

WOL) = L, pOL)) = L, 0(L)y,,q =0
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and
W (Le&K)=L® BT, K.

The mapping ¢ is defined on the manifold n, o (%) C %"

The derivative of 0. 0 : % +— % is linear and %0 l =|6]| < 2.
The derivative of n,.. We know by Corollary 4.2 that for |E| — oo,
d
T — BT, (L)|| —
uniformly for L € 7”. We obtain therefore also
: d
Glim Eni(L)” =1

The derivative of . The derivative of the map L +— +/L — E = D, from the manifold
Ny 0 6(F) to £ is given by

d
T
Because ||[(L — E)~'/?||| — 0, for |E| — oo, we get

(L)U = %(L ~-B)U = %D;‘U .

11m “ — (L)

The derivative of @, : 7" — £. It follows from the four previous steps that for
|E| — o0
d d d

'd—L + ™| ||az
The hyperbolic iterated function system. We have checked the existence of a common
inverse, the contraction property and the disjointness of the two maps ¢, . Lemma 5.1

is thus applicable and we have shown that for large enough —FE, a hyperbolic iterated
function system has a unique attractor Z in %.

gl — 0.

dL(<P°773: 00)

' ||—(<p)

Limit-periodicity. Start with (T, L), where T is a periodic dynamical system satisfying
TN(z) = z. Every Jacobi matrix L(z) is then periodic. Under the iteration of the
renormalisation maps, the periodic Jacobi matrices ¢, o...0®, (L) converge to
®(w) which is limit-periodic. [J

8. The Hull of the Fixed Point of &+

We will assume in this paragraph that —F is so large that the maps &, ,P_ are
defined and form a hyperbolic iterated function system on the bundle of random
Jacobi matrices.

Different notation for X and 2. The topological space 2 = {1,—1} labelling the
renormalisation sequence and the dyadic group X = {0, 1}" can be identified by the
change of alphabet 1 — 0, —1 — 1. We will use the notation w = w(x) or z = z(w) if
2 and w correspond to each other. The addition in 2 is the group operation inherited
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from the group X. We also use the notation z;, = (0,0,0, . ..) for the zero in X and
z; =(1,0,0,...) for the unit in the ring X of dyadic integers.

The fixed points of ¢,.. Call L, € Z the unique fixed points of ¢,. By definition
L, = d(w(zy)) and L_ = $(—w(zy)).

The group structure on the attractor 7. The homeomorphism z +— w(z) brings the
group structure of X to {2 and so to 7 by ®(w)P(n) = D(w + 7).

The hull of L, . Call T, the group translation on X defined by T, (y) = z + y and
denote by T, the analogous group translation on (2. The group X is acting on .% by
L~ L(T,). The hull @ := {L,(T,) | z € X} of L, is a compact set in % which
becomes with the operation L, (T,) o L. (T,) = L,(Z},,) a compact topological
group.

Theorem 8.1. The two sets 7 and (9 coincide and are as groups isomorphic by the
isomorphism ®(w) = L, (Tx(w)).

+y

The proof of this theorem needs some preliminary steps. Denote by p the involution
(T, L) — (T~', L(T~")) on the bundle of random Jacobi operators.
Lemma 8.2. a) po®, =®_op, b) L, (T*Y)=L_(T*), Vk € Z.
Proof. a) Given (T, L), we write mg’L) for the Titchmarsh-Weyl functions of the
operator L over the dynamical system (X,T,m). Using the definitions of these
functions, we get

") = mTET D)

m{T P (@) = n T ET D)
which is equivalent to

dTD(§1g) = dT T D gy
Because @ (L) = d o +d (S~ )o*, this can be rewritten as
po® (L)y=P_op(L).
b) Using a), we obtain
S_(pL,)=P_op(L,)=pod,(L,)=pL,

which shows that pL, is the fixed point of &_. Therefore L, (I'~') = L_. The claim
follows by applying T* on both sides. [

Define the sets Xy, := X = [0,1] and X, := 27%[4,i+1] C X for0 < i < 2k—1.
Given L € 7, we define inductively Ly := L, Ly, = L, + E € £ and

Lemma 8.3. L, (T%) € 7, Vi € Z.

Proof. The spectrum of L, is the Julia set J because this is true for L, and by
the spectral theorem inductively for each L. Each L, is a random Jacobi operator

over the dynamical system (X,72 ,m) which has the 2¥ measurable invariant sets

X,,;- Each map T?") restricted to such a set X, is ergodic and the operator L,
restricted to X, is an ergodic random Jacobi operator over the dynamical system
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(X,ci,T(zk),m). By definition, .7 *(L(T"%)) is defined as L(T%), restricted to X,
and this is the same operator as L, restricted to X,;. The spectrum of .77 "(L(T™))

is therefore also the Julia set J. Since .7 *(L(T*%)) € 7, we conclude that L(T*) is
in the image of some &, where w is a word of length k. Because this is true for
all k € N, we know that L(T") is arbitrarily close to the closed set 7 and therefore
Lez. O

Define for L € Z and k e N,k >0

wy(L) := —sign / log|d_yy| dm
Xko

and call w(L) the code for L. The next lemma justifies this name.
Lemma 84. Forall L € 7, one has $(w(L)) = L.
Proof. We know by definition that .7 *(L) is L, restricted to X . For z € X,

ldge_1y@)] = /ImE_ @),

where mi_l) are the Titchmarsh-Weyl functions of .7 *~!(L). The upper-script =+
in m,f_, is in correspondence with the fact that .77*~!(L) is in the image of
@,. We see that .7 *~I(L) is in the image of P,z for all k. Therefore we get
P(w(L)=L. O

Lemma 8.5. a) w(p(L)) = —w(L), b) w(L, (T™)=—w(L_(T™™)).
Proof. a) Lemma 8.2 implies
pod op=P_,
for all w € §2. Let L have the code w such that L = &(w). It follows from
p(L) = pP(w) = po P (K) =P_,p(K) = D(~w)
that p(L) has the code —w.
b) From L, = p(L_) we get L, (T™) = p(L_(T'~™)). Use a) to get
WL, (T™) = w(p(L_(T™™)) = —w(L_(T7")) . a

Proof of the theorem. We know by Lemma 8.3 that L, (T™) € Z. Because 7 is
closed, it follows that ¢ C #. Our aim is to show that &(n - w(z;)) = L, (T™) for
alln € Z.

In order to determine the action of 7" on the subset of £2 = {—1, 1} labelling the
points of 7 C Z, we define the matrix

My, = w (L, (TY), k>0, icZ.

We can read of the code w = {M,,}, oy of L, (I") = &, (w) from the columns of
the matrix M.

We build up the matrix M beginning at the top first row and determine inductively
one row after the other. The first row is given by

M, = wy(L, (T) = (~1)
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because T(X;) = X, and T(X ) = X;; and

sign( / log [d g, (z)] dm(:r)) = —sign( / log [d g (z)] dm(x)) .

X10 X1
The (k + 1)-th row can be constructed from the k-th row using

wiep (L, (T*) = wi (L, (TY) )
WL, (TY) = —wy (L, (T~"Vy) . ®)

Proof of formula (4). We know from @, (L,) = L, that d_, restricted to X, is
equal to d, restricted to X, ., ,;. Therefore

Wy (L, (T*) = —sign / log |d(k)(T2i:c)| dm(x)

Xk+1,0

= —sign / log |dy ()| dm(z)

Xk+1,2¢

= —sign / log |dg, ) (x)| dm(z)
Xk,z

= —sign / 1og |dj,_ (T x)| dm(z) = wy(L, (TY) .
Xk,0

Formula (5) follows from w (L, (T%) = —w,(L_(T%) = —w,(L, (T'~**!)) which
is a consequence of Lemma 8.5 b) and 8.2 b). The constructed matrix

-1 1 -1 1 -11 -1 1 -1 1 -1
- =1 1 1 -1 -1 1 1 -1 -1 1 1
M=t- 1 -1 -1 -1 -1 1 1 1 I -1 -1

has the property that if b is the 4-th column of M then the b+w(x,) gives the (i+1)-th
column. To prove this, one checks that if a matrix M is constructed by this rule for

the columns, then M = M.
We know now the action of T' on 7

T"P(w) = P(w +n - w(x,)) .

Because the orbit {L, (T™)} of L, is dense in 7, it follows that (7 = 7. Moreover
P(w) = L, (T},,) holds for all w € {2 because the relation holds on a dense set of
the group X. O
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9. The Density of States

There exists a probability measure dk in C satisfying for any f € C(R)
w(f ) = [ FE) dh(E)

which is called the density of states of K. The next lemma gives the relation between
the density of states of the renormalized Jacobi operator @, L and the density of states
of the operator L.

Lemma 9.1. dk(® L) = ¢* dk(L).
Proof. Assume first that | X| = N is finite so that L is a N-periodic Jacobi matrix.

—~ 1 N

Denote by dk(L) the Dirac measure v >~ 6();), where A, are the eigenvalues
i=1

of L acting on the finite-dimensional vector space of N periodic sequences in

I2(Z). The 2N x 2N periodic Jacobi matrices D, = @, (L) have the eigenvalues

{£VX - E}f\:1 This implies
k(& (L)) = ¢* dk(L) .
In the general case, let L™)(x) be a N-periodic approximation of L(z) such that for
~N/2<i,j < NJ2,
LY@ oy oy = LV@] 5 = [L@)] 4 -

By the lemma of Avron-Simon (see [Cyc]), one has the weak convergence

dk(L™(z)) — dk(L) for almost all z€X. The claim follows because
@i(L(N )(x)) — &, (L(z)) in the weak operator topology. [l

Proposition 9.2. The density of states of P(w) is the unique equilibrium measure (i
on J.

Proof. We know that for (¢*)"v — p holds for any probability measure v on C, where
1 is the unique equilibrium measure on the Julia set J. Applying this to v = dk, the
density of states of a Jacobi operator L, we get with Lemma 9.1

dk(@,, o...0®, (L) = (")) = u,
for all w € §2. The density of states of P(w) is u. O

Lemma 9.3. Every operator L = dr + d(T~Y)7* € 7 has the mass M(L) =
exp ( [log(d) dm = 1.

Proof. Because every element in 7 has the same mass (Theorem 8.1), it is enough
to show that L, = d, 7 + d,(T~")r* has mass 1. From the fixed point equation

@, (L,) =L, we get m, (z)n, (Tz) = d (z) for almost all z € X 1- Using this, we
calculate

1
/log|d+|dm= —;—/log|m+|dm+§/log|n+|dm

X X, X,

1
= E/log](d+)2|dm= /log|d+| dm = %/log|d+|dm
X X1 X
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which implies log(M(L,)) = [log|d,|dm =0. O
X

Remark. The above proof shows log(M (¢ (L))) = %log(M (L)) and the renormali-
sation maps & are also contractions in the stronger topology

AL, K) = |||L — K[| + |log(M(L)) — log(M(K))|

and map an open set of operators with positive mass and spectrum in a connected
neighborhood of J into its interior.

The potential theoretical Green function g of a compact set K C C is a function
g : C — R which is harmonic on C\ K, vanishes on K and has the property that
g — log(z) is bounded near z = co. The Green function exists for the Julia set J of ¢
(see [M)).

Proposition 9.4. The Lyapunov exponent E — X(E) of an operator L € 7 is equal
to the Green function g(E) of the Julia set J. The Lyapunov exponent \ of L € 7 is
vanishing exactly on the spectrum J of L.

Proof. The density of states of L € 7 is the equilibrium measure on the Julia set J
(Proposition 9.2) and gives J the capacity y(J) = 1 (see [Bro]). The integral

w(z) = — /log|z — E'| dk(E")

is called the conductor potential. The relation between the conductor potential, the
Green function and the capacity is given by the formula

9(2) = —u(2) +log(v())) ,

(see [T] Theorem III, 37). Lemma 9.3 together with the Thouless formula A(z) =
Jlog|z — E'| dk(E') — log(M) gives u(z) = —A(2). It follows that the Lyapunov
exponent )\ is equal to the Green function g of the Julia set J, which is by definition
vanishing on the Julia set. [J

Because oo is a super-attractive fixed point of the polynomial map #(z) = 2% + E,
there exist new coordinates Z = ((2), near oo satisfying

Cotol N3 =2.

The function ( is called the Bottcher function of the polynomial t. (See for example
(M)

Corollary 9.5. The Bottcher function ( for the polynomial t satisfies ((z) = det(L —z)
for E in a neighborhood of co. One has

det(L — (2> + E)) = det(L — 2)* .
Proof. The Green function g can be expressed as g(z) = log |((2)|. It follows from
1C(2)] = exp(A(2)) = | exp(~w(2))| = | det(L — 2)|

and the analyticity of ¢ and det(L — z) near oo that ((z) = det(L — z). The known
identity g(2) = g(2* + E)/2 for the Green function g gives then

det(L — (22 + E)) = det(L — 2) . O

It follows from the structure of the Julia set that for the limit-periodic Jacobi
operators in 7, there is an obvious gap-labelling:
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Proposition 9.6. The integrated density of states of L € 7 takes in the gaps exactly
the values | - 27" withn € Nand 0 <1 < 2™

Proof. We know from Proposition 9.2 that the density of states is the equilibrium
measure on J and so a balanced measure. The inverse of the map ¢t™ has 2™ branches
™9 labelled by 0 < j < 2™. Each of the sets ¢™7)(.J) has measure 2~ ™. If a gap of
L € 7 has [ sets ¢™9(J) to the left and 2™ — [ such sets to the right, the integrated
density of states of this gapis [-27". [

General gap-labelling theorems for limit-periodic operators lead to the same result:
it is known that the integrated density of states of an almost periodic Jacobi operator
takes the values in the frequency module ([DS] Theorem III.1). For limit-periodic
operators having as the hull the compact topological group G, the frequency module
is the Z module generated by {a € R | €™ € G} (see [Bel]). Applying this in our
case leads also to Proposition 9.6.

10. Generalisations and Questions

We discuss some generalizations or extensions:

Complex values E. Because an attractor of a hyperbolic iterated function system is
structurally stable, the renormalisation is defined on an open subset of C. All the
results about the density of states, the Green function, etc. hold also there.

Julia sets of the anti-holomorphic quadratic map. Operators with spectra on the Julia
sets of z > #(z) = 22+ E (introduced by Milnor) can be obtained by replacing o, by
@, . The parameter set of ¢ analogous to the Mandelbrot set is called the Mandelbar
set or tricorn.

Nonrandom Jacobi matrices. An advantage of doing the renormalisation for random
operators over dynamical systems is that one gets immediately the dynamical system
over which the Jacobi operators are defined in the limit. We remark that for general
Jacobi operators on [*(Z), there exists a continuum of Bicklund transformations
BT, [GZ] parametrized by a parameter s € [—1, 1]. For Random Jacobi operators,
the random boundary condition selects two of them. It might be possible that the
renormalisation for nonrandom Jacobi matrices can be done with an iterated function
system @, parametrized by s € [—1,1].

Jacobi operators on the strip. The renormalization of Jacobi operators can be
generalized to some random Jacobi operators on the strip in the crossed product of
L*®(X, M(N,C)) with the dynamical system. In the limit of renormalisation, these
operators factorize into a direct sum of one-dimensional operators, obtained there.

Higher-dimensional Laplacians. A direct generalization to higher- dimensional ran-
dom Laplacians is not possible without further modifications. The reason is that for
a Laplacian

L=D*+E=Y am,+a(I ")} +b,

the cocycles a,7; satisfy the zero curvature condition

la;T;, ajTj] = (aiaj(Ti) — ajai(Tj))TiTj =0
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while the cocycles d,o; belonging to the discrete Dirac operator D = Zd
d; (S, )a must satisfy the anti-commutation relation
{d,0;,d.0.} = (d;d;(S,) +d,d;(S;)o,0, =0, 1 7]

ll’_]]

which prevents a further factorization of D unless one renormalises also the statistics.
Dirac operators play a role when doing isospectral deformations of higher-dimensional
Laplacians [K3].

Operators with spectra on random Julia sets. The renormalization can be generalized
in another way. Instead of taking a constant energy F, we can take a space dependent
function E(x) < —R for large enough R. We get again the same type of result as
before. There exists an attractor above the von Neumann Kakutani system which
consists of operators having the spectrum on random Julia sets (compare [FS]).

Operators with spectra on Julia sets of higher degree polynomials. By composing the
renormalisation map ¢ with a linear map of the form @, ,L = aL +b with a,b € R,

one can get operators with spectra on the Julia set of the polynomial (az + b)* + E
or on the Julia set of finite products of different such polynomials. With —E, large
enough or |a,| small enough, the renormalisation limits exist.

More general values of E. We don’t know how far one can explore the renormalization
for general complex parameters E. The results of the literature mentioned in the
introduction suggest however that one can find an iterated function system for a
large set of E. For complex E, one has to deal with not normal operators. Another
problem is that for smaller values of |E|, the norm of $™(L) can blow up under the
renormalisation steps even if the spectrum converges to the Julia set. The reason is
that I can get closer and closer to the auxiliary spectrum of the matrices. Since the
Titchmarsh-Weyl functions are singular at the auxiliary spectrum, the norm can get
large or explode. Numerical investigations suggest that for all £ in the complement
of the Mandelbrot set, there should exist a hyperbolic iterated function system having
a Cantor set as an attractor. The scheme can not work for general E € C because
for E = 0, a fixed point of D — &* (D) = (D?) is not almost-periodic. If we do
the renormalisation maps numerically for values E approaching 0, there are entries
in the Jacobi matrix which begin to blow up. Obviously an invariant set exists but it
is no more an attractor.

The case £/ = —2 is interesting because it describes a situation, where the energy
E is at the boundary of the Mandelbrot set. The spectrum [—2,2] is then absolutely
continuous with respect to the Lebesgue measure and the corresponding operator is
the free Laplacian. Numerically, the renormalisation maps are contractions for all real
values E < —2 and the attractor 7 approaches a single point in the limit £ = —2.

We mention some open points:

e An obvious problem is to determine the maximal set in C, where the renormalisation
mappings ¢, make sense and to understand what happens at the boundary of this
maximal set. Even if a fixed point L, of the renormalisation map @, exists, it is
an additional problem to determine its stability or to check if &, is a contraction.
The key problem is to estimate the Fréchet derivative of the Bicklund transformation
BT, which we were only able to estimate for large |E|.

o The constructed operators have the property that the density of states is the potential
theoretical equilibrium measure minimizing the energy on the spectrum. For which
random operators is this also true?
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o The high symmetry of the constructed operators in 7 could allow to determine the
isospectral set of such operators. It is tempting to guess that the embedding of the
dyadic group G in the infinite-dimensional torus T“ corresponds to an embedding
of the attractor Z in a not yet explored isospectral set of L, which would then be
labelled by the infinite-dimensional torus T*.

Acknowledgement. 1 thank O. Lanford III for his support and valuable discussions.
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