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Abstract: A notion of topological entropy for endomorphisms of local C*-algebras
is introduced as a generalisation of the topological entropy of classical dynamical
systems. The basic properties are derived and a series of calculations are presented.

0. Introduction

The purpose with the following pages is to propose a definition of topological entropy
for endomorphisms of C*-algebras or, more generally, local C*-algebras. In view of
the significance of the topological entropy for the study of topological dynamical
systems it is natural to try to extend this notion to non-commutative dynamical
systems. In fact, several notions of entropy have already been introduced in the non-
commutative setting, in particular by the work of Connes and Stgrmer [4], Connes [3]
and of Connes, Narnhofer and Thirring [5]. See [14] for an overview. However, the
classical model for these definitions is the measure theoretic entropy, and while this is
natural for endomorphisms of von Neumann algebras, it seems that for C*-dynamical
systems it may be more appropriate to generalize the topological entropy rather than
the measure theoretical. With the right definition it might even be possible to relate
the non-commutative topological entropy to the entropy of Connes, as defined in
[3], through a non-commutative version of the variational principle which relates the
topological entropy to the measure theoretic in the commutative case.

Hudetz has proposed a definition of topological entropy for C*-algebraic dynam-
ical system in his thesis, [10, 11], and his work has been an inspiration for the work
we present here. The definition we offer is even more elementary than the “pedes-
trian” approach of Hudetz and this may be the reason that the algebraic properties
are better than with his. However, we share the problems with the continuity; good
continuity properties of the entropy should compensate for the lack of something
like a non-commutative Kolmogoroff-Sinai theorem as in case of the Connes-Stgrmer
entropy or the notion of refinements in the case of the classical topological entropy.
The entropy we define here does have some continuity properties, we derive these
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in Sect. 2 below, but they are far from satisfactory. Another parallel with Hudetz’
approach is that we can almost imitate his calculations with our entropy (see Sect. 3
below) even though it may be impossible to relate our definitions directly.

The topological entropy h(¢) of a continuous selfmap ¢: X — X of a compact
Hausdorff space X enjoys the following properties:

i) h(idy) = 0 and h(¢™") =‘h(¢) when ¢ is a homeomorphism.

ii) When 7: X — Y is a continuous surjection and ¢:Y — Y a continuous map
such that ¢ o m = 7 o ¢, then h(p) < h(9).

iii) When Y C X is a closed subset such that ¢(Y) C Y, then h(¢|y ) < h(e).
iv) When ¢:Y — Y is a continuous map and 7: X — Y a homeomorphism such
that ¢ o w = 7 o ¢, then h(y)) = h(¢). (This follows from ii).)
v) h(¢F) = kh(¢), k € N.
These properties have been our guiding line in the quest for the right definition; in

the next section we shall show that they can all be generalized to the non-commutative
case.

1. Definition and Basic Properties
A local C*-algebra A is a x-subalgebra of a C*-algebra A which is closed under

holomorphic functional calculus, cf. [2, 1]. We shall only consider unital local C*-
algebras in this paper and take the existence of a unit as part of the definition.

When o, o, ..., a,, are subsets of A we set
aVa,V...Va, = U {aja,.. 0,0, € ayy,i=1,2,...,n},
geEX,

where we take the union over all elements of the symmetric group X . When o C A
we set aa™ = {aa*:a € a} and a*a = {a*a:a € a}. When « is a finite set we
let Yo denote the sum of the elements in «. Recall that o C A is selfadjoint when
aca=a*€a.

Definition 1.1. A partition in A is a finite selfadjoint subset o« C A such that
Ya*a > 0.

Note that a partition o automatically has Yaa™ > 0. For any partition o C A set
N(a) = min{#3:8 C o, 263" > 0,263 > 0}

and
Ny(@) = min{#3:3 C a, Z3*3 > 0}.
Clearly,
Ny(e) < N(a) < 2N(a), (1.1)

Set H () = log N\(a) and H(a) = log N(cw). When o, ,, ..., o, are partitions
thensois a; Vo, V... Va,. Since (o, Va, V... Vo) V(o Vo, V...Va,) C
oy Vo, V... Va, we have that
H(a; Va,V...Va,)
<H{(a; Vo V... Vo) V(g Vag, V...Va,)). (1.2)
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Since N(aV ) < N(a) N(B), (1.2) yields that

H(a;Va,V...Va,)
<H(yVa,V...Vay)+ Hlay, Vag, V...Va,)). (1.3)

Finally, it is not difficult to see that
H(aVaVv...Va)< H), (1.4)

regardless of how many times « is repeated in aVa V...V a.
Let now m: A — A be a unital *-endomorphism. 7 induces a map on the subsets
of A in the obvious way and we have that

H(r(a)) < H(o) (1.5)

for any partition «. Combining (1.2) with (1.5) it follows that the sequence H(a V
k@) v k) v ... v 7= D(@)), n € N, is subadditive in n so that the limit

hy(m,a) = lim %H(avm(a)v~--V7Tk(n_l)(a))

1
exists and equals inf = H(a Vv m8@) v ... v 7¥=D(q)) for all k € N. Note that
n
(1.1) implies that

1

hy(m,a) = lim — H (a V1@ V... v D).
n—oo kn

Set

h(m) = suph(m, o),
ak

where we take the supremum over all partitions « and all k£ € N.

Theorem 1.2. /i generalizes the topological entropy of dynamical systems; i.e. when

X is a compact Hausdorff space and ¢: X — X a continuous map, then h(m o) = h(¢),

where Ty IS the x-endomorphism of C(X) induced by ¢ (viz. T(9) = god, g € C(X)).
Furthermore, we have the following:

i) h(id,) = O when id, denotes the identity map of the local C*-algebra A and

WO~ = W), when 0 is a x-automorphism of A.
Let A be a local C*-algebra and m: A — A a unital x-endomorphism.

i) When B is a local C*-subalgebra of A such that m(B) C B, then Il g) < h(m).
iii) When B is a local C*-algebra, q:A — B a surjective x-homomorphism and
v:B — B a unital x-endomorphism such that v o q = q o m, then h(~y) < h(m).
iv) When B is a local C*-algebra, 7,:B — B a unital *-endomorphism and
0:A — B a x-isomorphism such that § o w = m, 0 0, then h(m) = h(m)).

v) h(r*®) = kh(r), k € N.

Proof. The proof of the first statement is almost straightforward. The essential points
are the following: Every partition o of C'((X) defines a cover 72 = {a~'(C\{0}):a €
a} of X. Then N(«) is the minimal number of elements in a subcover of 77.
Conversely, every finite open cover of X gives rise to a partition in C'(X) by choosing
a partition of unity subordinate to it. The cover defined by this partition is a shrinking
of the given cover. We leave the details to the reader.
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i) It follows immediately from (1.4) that h(id4) = 0. To prove the identity
RO~ = n(8), it suffices to note that

H@Vvo ™ aov...vo ™ @) = HaVvea) V...V *a))

for every partition « in A and all n,k € N.

ii) is trivial.

iii) Let § be a partition in B. It is easily seen that there is a finite selfadjoint set
a, C A such that g(ey) = B. Since ¢(Xagay) > XB*B > 0, there is a § > 0
such that g(Zaga, — §1) > 0. Since B is a local C*-algebra, ¢(Zaf o, — 61) = b
for some b = b* € B.If a = a* € A such that g(a) = b, then y = e* > 0
in A and z = Yafo, — 61 —y € kerq. For K > 0 sufficiently large we have
that K222 + x + §1 > 0. If x # 0 we can choose K so large that Kz ¢ «. Set
a =ayU{Kz}. Then Za*a = Yaia, + K?2? = §1 +y +x + K*z? > 0, showing
that « is a partition in A. Note that ¢(«) = S U {0}. Thus h(7y, 3) = hy (7, g(a)) for
all k£ € N. Since

H(g(@) V~* (@) V... V4" *(ge))
= HglaVr* @) V...V ) < Ha V@ V...V a)
for all k,n € N, we see that 2 (v, 8) = Iy (v,9(0) < hy(m,a) < h(r) for all k.
Since  was an arbitrary partition in B we see that Ai(y) < h(m).
iv) follows immediately from iii) but can of course also be shown directly.
v) Let a be a partition. Then by definition and (1.2),

suph (™, B) > hy (7™, a0 V @)V 1* ) V... Vv TFmE Q)
B

> lim El— H(a Vv *a) v r* @ V... v o™ k) = mh(r, a)

T n—ooo kn
for all partitions « and all £ € N. Hence 2(7™) > mh(m). On the other hand we have
also that i, (7™, B) = mhy,,, (m, §) for all k € N and all partitions 3. Hence

(™) = suph, (7™, B) = msuph,,, (7, ) < msuph(r, B) = mh(m). O
B,k B,k B,k

We conclude this section by showing that & behaves in the expected way with
respect to direct sums.

Proposition 1.3. Let A, and A, be local C*-algebras and ,:A, — A, unital
«-endomorphisms, i = 1,2. Let 1, @ my: A, ® A, — A, © A, denote the direct
sum endomorphism. Then
h(m, & m,) = max{h(m,),h(m,)} .
Proof. 1t follows from Theorem 1.2 iii) that max{h(m,), (m,)} < h(m @,). To prove
the reverse inequality, let « be a partition in A; @ A, and write a = (a;, a,) for each
element a € a. Then o; = {a,:a € a} is a partition in A,, ¢ = 1,2, and it is easily
seen that
N(aV (m; @ m)F (@) V (1, @ 1) V...V (1, @ 1) F ()
< Ny, V) V... vaE=® ) + N, Vi) V... v iR (a,))

for all n, k € N. Hence h(m; ® m,, @) < max{h (7, o), h,(m,, )} < max{h(m,),
h(m,)} for all k € N. Since o was an arbitrary partition in 4, ® A,, the proof is
complete. [J
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2. Continuity Properties

The purpose of this section is to show that the numbers % (7,c) do depend
continuously on « in a certain very weak sense. For this purpose we consider the
partitions in A as a metric space with the Hausdorff distance D as metric:

D(w, B) = max { sup dist(a, 3), sup dist(b, a)} .
B

acw be

If o is a partition in A which contains at least one element > 0 and we set
a, = {a+elia € a}, then hy(m, o) = 0 since o, contains an invertible
element. Since D(o,a,) < ¢, this shows that a simple continuity statement like
zll)rgo D(a;,0) = 0 = llixgo hy(m, o) = hy(m, ) can impossibly hold. In fact, even

when we fix n, k € N, the number H(a V 7#(a) V ...V 7%~ D(qa)) does not depend
continuously on « in any straightforward way. We must therefore seek for a more
subtle form for continuity.

Let o be a partition. For each € > 0, let M («, €) be the least number of elements
in any subset 3 of o with the property that for all states w of A there is an element
b € 3 such that w(b*b) > &; in symbols: Vw € S, Ib € B:w(b*b) > e. We call then
(3 for an e-subset. We set M («, €) = oo if no such subset exists. Then

M(a,0) = Ny(o) 2.1)
and
0<e<éd= M(a,e) < M(a,b). 2.2)
Furthermore, we assert that
M(aV B,e6) < M(a,e) M(B,¢). 2.3)

To prove this we may assume that both M(«,e) and M(S3,06) are finite. Take an
e-subset o/ C « and a §-subset 3' C 3. Then v = {ba:a € o/,b € B’} is a subset
of oV 3. Since #y < (#a') (#0), it suffices to show that v is an 6-subset. So let
w € S,. There is an a € o such that w(a*a) > . Then w(a®a)~'w(a™® - a) defines a
new state on A and hence there is a b € 3’ such that w(a®a)~'w(a*b*ba) > 6. But
then ba € v and w(a®b*ba) > &6.
It is clear that
M(m(@),e) < M(a,¢). 2.4

We set H,(«a,¢€) = log M(c,€). Now (2.3) and (2.4) show that the limit
1
hy(m,a,e) = lim — H (Vv @) V@) v .. v P (@), ™)
n—oo kn
exists in [0, co] and equals
1
inf
l?z kn

for all £ € N and all € € [0, co[. Note that H,(7,c,0) = H,(7, ) and by (7, o, 0) =
B (m, o).

Hi(avVv 7w a) V() v ... v PP D), e™)

Lemma 2.1. The function ¢ — h (7, 0,¢€) is non-decreasing and upper semi-
continuous on [0, oo[. In particular, liﬁ)l hp(m, a,€) = hy(m, o).
1>
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Proof. 1t follows from (2.2) that b (7, a, €) is non-decreasing in €. So we only have
to show that lilm hp(m, a,€) = by (m, o, €,) for all g, € [0, 00[. Let 6 > 0 and choose
eleg
1
n € N such that n Hi(aV k@) V...V rEr=D(a) el) < h(r,a,g) + 6. Then
Hi(aVrh@) V...V =D(a),e™) = Hi(aV @) V...V 7¥"=D(a),el) for all
€ > g, sufficiently close to ¢,. Thus

hy(m,a,e) < zlﬁ H(aV @) V... vaFr (), ™) < hy(m, o, 60) +6

for all € > ¢, sufficiently close to g,. [
Proposition 2.2. Let o a partition in A and let o, n = 1,2, ..., be a sequence of

1
partitions in A such that lim — log D(«, ) = —o0. For each k € N we have
n—oo 7T

1
a) sup hy (7, a,8) < liminf — H (o, V 7¥(a,) V... V7" D(q, ), e™)
§<e n kn

1
< lim sup T H(a, Vv ﬂk(an) V...V wk(”_“(an), e™)
n

S hk;(ﬂ-a aa 5)

for all € €]0, co[. In particular,
1
hy (T, @) = lim ( limsup — H,(a, V7 (a,) V... Va* " D(q,), s")) .
€10 n kn

b) If 6, €10,00[ is a sequence such that lim 6, =0 and
n—0oo

lim <log 6, — % log D(a,an)) =00,

n—00

then )
Pi(m, @) = lim o Hy (o, V () V... v D(a,), 67).

Proof. a) Since lim D(a,c,,) = 0, there is a M > 0 such that [ja|| < M for all
n—0oQ

o0
a€aU |J a,. Then

n=1
D(aVr* @) V...V (), o, V Wk(an) V...V ﬂk(”‘l)(an))
<nM" ' D(a, o).

n
Let 0 < 6; < € and 6, > €. By assumption D(a,,,0) < m—lﬁj
sufficiently large n. It follows that if w is a state of A and a an element of
a, V¥, V... v a¥®=D(q ) such that w(a*a) > e, then there is an element b
of aVm¥(a) V...V ™= D(q) such that w(b*b) > e — §F > 67 for all sufficiently
large n. Hence

for all

1
o Hi@v wE@) V... v PP D), 67

< 7}72 H(a, V ﬂk(an) V...V wk(n_l)(an), ")
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for all sufficiently large n. In a similar way we conclude that

1
T H(a, vV Wk(an) V...V ﬂk("“‘)(an),e")

1
< - Hav (@) V... v D), 67)
for all sufficiently large n. Hence
1
h(m, @, 6) < liminf — Hy (e, V ™) V... v Dq, ), e™)
n

1

<limsup — H (o, V7™a,) V... V7" D(q ) ™)
n kn

S hk(ﬂ', «, 62) .

Since 6, < € was arbitrary and hm hy(m,a,6,) = hy(m, o, €) by Lemma 2.1, we get
the des1red inequalities.

b) Let € > 0. By Lemma 2.1 there is a 6 > 0 such that A, (7, o, 8) < hy(m,0) + €.
If a is an element of o, V n*(a,) V...V 7"~ D(q, ) and w a state of A such
that w(a®a) > 67, then there is an element b € aVvaf(@ V...V 7" D(a) such
that w(b*b) > 6" 2nM*"~'D(a, o)) > 0O for all sufﬁmently large n. If instead
a € aV k) V...V k= D(a) and w(a*a) > (26,)", then there is an element
bea,Vrka,)V.. k= Y(a,,) such that w(b*b) > (26,)"—2nM**~' D(a, o)) >
o + 6" 2kM*™ ' D(a, v,,) > 67 for all sufficiently large n. Thus
H(aV*a)Vv...vc=D(@),0) < H(a, V7*a,) V... VoD, ), 6"
< H((aVria) V... v o™=, (26,)™)
< H(aVr*@) V... vair=D), 6

for all sufficiently large n. Consequently
CEN 1 k k(n—1) n
hy(m,a) < lm}lmf T H(a, VT a,)V...VT (o), 671
1
< lim 'sup E_ H(a, vV 7*a,)V...vaF©=Dg ) 6

< lim H (o, VR, ) VL v D) 67
= Ry (m, a, 6) <hy(m,a)+e.
Since € > 0 was arbitrary the conclusion follows. [J

. . 1
In general it is not true that lim = e, v ) V..V D ) =
n—0o0 n

hy(m, o), no matter how rapidly o, approaches c. But we have the following
conclusion:

Corollary 2.3. Under the assumption of Proposition 2.2 it follows that

Ry (T, o) >11msup —H (o, VT, ) V...V y).
k kn n
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If, furthermore,

1
lim -~ H,(a, v ™) V... VarrD(q, ), em)

n—00 mn
1
= inf — H(a, V ™) V... v ) e,

for all sufficiently small € > 0, then we have that

. 1 -

A (m, @) = nango T H(a, VvV ﬂk(an) V...V ke 1)(Ozn)).
Proof. By a) of Proposition 2.2,
1
hy(m, a,e) > limnsup n H(a, V ﬂk(an) V...V ﬂk(n“l)(an))

for all € > 0. Since liﬁ)l hp(m,a,e) = hy(m,0) by Lemma?2.1, we get the stated
€

inequality. To prove the equality, note that under the given assumption we can prove,
as in Lemma 2,1, that

lim ( lim 7:— H(a, V7*@,) V...V Tr’“n—”(an),s"))

el0 n—oo KN

1
= lim — H (o, V7*a,) V...V 7**D(q ).

n—oo kn

The equality therefore follows by letting ¢ — 0 in a) of Proposition2.2. O

3. Calculations

In this section we calculate the topological entropy of a series of *-endomorphisms
of local algebras that are generated by a sequence of finite dimensional C*-algebras.
Fundamental to our calculations is the following simple lemma whose proof we leave
to the reader. We use the notation D(B) for the dimension of a maximal abelian
C*-subalgebra of a finite dimensional C*-algebra B.

Lemma 3.1. Let A be a local C*-algebra and o a partition in A. Assume that B is a
finite-dimensional unital C*-subalgebra of A and that o C B. Then N(o) < D(B).
(In other words, if B & Mnl((C) &5} an(C) D...DH Mnk((C), then N(a) < ny +n,
+.o.+my) O

We shall also need the following lemma which is the analogue of 3.2.9 in [10].

Lemma3.2. Let A C A, C A; C ... be an increasing sequence of finite dimensional

C*-algebras with the same unit and set A = |J A,. Then A is a local C*-algebra. Let
€N
w:A — A be a unital injective x-endomorphism satisfying the following conditions:

i) For each j,m € N, D(C*(Aj,ﬂ(A]), cee Wm"l(Aj))) < D(A]+m ).
ii) For each j € N, there is an integer n; € N such that Aj commutes with ™ (AJ)
for all k € N and the natural *-homomorphism
A, ®@m"(A)@T™M(A)® ... ®T*I(A;)
— C*(A,, 1" (A), 7" (A)), ..., T (A,))
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is an isomorphism for all k € N.

n.
i) lim —<—==0.

Then log D(A)
o )
h(m) = lim sup —g——j .
7

Proof. Let o be a partition in A. Then a C A; for some j € N. By use of (1.3),
(1.5), condition i) and Lemma 3.1, we find that

1
hy(m,0) = lim n o H@Vrr@) V... v =)

< lim ——(H(a\/ﬂ'k(a)\/ LV =D ()

n—oo kn

+ H(xFm=*D(q) v ... v 7" D()))
1 .
< lim sup " (log D(Aj+,c(n_1)+1 Y+ Ha V@) V...V 1P (q))

log D(A;
< limsup g—(L)
J

A
for all £ € N. This shows that A(7) < lim sup —gJ(—) On the other hand, if we

now let o; denote the partition in A con51stmg of the minimal non-zero projections

in a maximal abelian C*-subalgebra of A, the assumption ii) and the injectivity of
7 gives the following estimate:

1
h(r) 2 h, (m,0;) = lim — H(a; v a™(a,) V... Vati®=Da,)
J

1 log D(A;
= lim —mnlog D(A)) = log D(4,)
nee j
D(A log D(A;
for all j € N. Hence h(r) > limsup —g——(—]—) Since lim sup log D(4;) =
log D(4;) 7 " J "

lim sup T by iii), the proof is complete. [
J
Thus we have the same conclusion as in Theorem 3.2.9 in [10], except that we
log D(A))
have not shown that the sequence —&]— is actually convergent. This follows
from the proof in [10]. J

Example 3.3. Let B be a unital C*-algebra and let A = @ B be the infinite tensor
neN

product C*-algebra of a countable number of copies of B. For each k € N the

simple tensors of the form b; ® b, ® b; ® ... ® b, ® 1 ® 1 ® ... generate a unital

C*-subalgebra A4, of 4 whxch is *- 1somorphlc to the tensor product B®B®...®B

of k copies of B. Thus A = |J A, is a local C*-algebra such that A is the closure

k
of A. Let 0:N — N be an injective map. For each b € B, let b(z) denote the element
1I1®..81®bR@1®1®..., where b occurs as the i tensor factor, i € N.
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There is then a unique unital *-endomorphism 7, of A given by the condition that
7, (b(%)) = W(o (@), b € B, i € N. Then

i) h(m,) = 0 unless ¢ has an infinite orbit in N,

ii) A(m,) = oo if o has an infinite orbit in N and B is infinite dimensional, and
iii) A(mr,) = rlog D(B) when B is finite dimensional, where r is the number of
infinite orbits of ¢ in N.

Proof. i) Let o be a partition in A. Then o« C A,, for some m € N. If ¢ has

no infinite orbit in N there is an integer N such that 72 is the identity on 4,,. In

particular 75V (@) = o for all k € N. It follows that for each k € N and all sufficiently
large n, N(a V 7k(a) v ... vV 7*¥®™=D) can not exceed N(aV k() v ... vV 5N ()
and therefore % (7, ) = 0.

ii) Let N € N be arbitrary. If B is infinite dimensional there is an infinite
dimensional unital abelian C*-subalgebra D of B. By using this it is easily seen that
B contains a partition 3 = {b;,b,, ..., by} in D with the property that for every
i€ {1,2,..., N} there is a state w, of B such that w,(b;) = 1 while w; (b)) =0,
i # j. Now let m € N be an integer such that {o"(m):n € N} is infinite. Then
a = {b;(m),by(m), ..., by(m)} is a partition in A such that k(7 ) > log N for
all £ € N. Since N € N was arbitrary we conclude that A(r,) = co.

iii) We first derive the following expression for the number r of infinite orbits:

r= lim ( inf 1#Fn Ua(F)UdX(F)U... UO’k(Fn)> : (3.1
keN k

n—00

where F,, = {1,2, ..., n}. To prove (3.1) note first that by subadditivity we have
that

klim —};#FUU(F)U...UU’“(F)
1
= inf ~#FUGXF)U...Ud*(F)U...Ud*F)
keN k

for any finite set F' in N. If now F' is such a subset we can write ' = F| U F;,, where
F is the elements of F' whose orbit under ¢ is finite and F,, is the compliment. Then

#FUa(F)UoX(F)U...Ud"(F)
<#F,Uo(F)U...Ud"(F)
+#F, Uo(F)Ud*(F)U...Udk(Fy,

and since there is a k-independent upper bound on #F, U o(F)) U ... U o*(F}) we
conclude that

1
lim —#F Uo(F)UG*(F)U...Ud*(F)
k—oo k
= lim %#F2 Ua(F)U...Ud®(F).
Since the latter limit is < #F, < r and the right-hand side of (3.1) equals

sup ( lim ~ #FUo(F)UG*(F)U...U ok(F))) ,
F k—oo k
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where we take the supremum over all finite subsets of N, we have proved one of the
inequalities in (3.1). Let next ¢,1,, ..., 4,, be elements of N with disjoint infinite
orbits under o and set F' = {i,1,, ..., %, }. Then

klim %#FUG(F)U...Uak(F)=#F=m,

proving that the right-hand side of (3.1) is > m. We have now established (3.1) and
proceed to the calculation of h(r,). If F' is a finite subset of N we let A denote the
x-algebra generated by the elements of the form b(:), b € B, i € F. Then Ay is a
finite dimensional C*-algebra and D(Ay) = D(B)*F'. Note that A, = A, n € N.
Let o be a partition in A. Then o C A, for some m € N and

aVvrioy v V... vaknDa) e A,
where G = F, Uo*(F, )Ua?*(F,)U...Uck™ D(F ), k,n € N. By using Lemma 3.1
and (3.1) we find that
(log D(B) ™'y (7, @)

1
= lim - (#F, U P (F)U... U I(E )

n—o0

1
< lim o (#F, Uo(F,) U oM F)U...Ud"™E N <.

n—00

It follows that A(m,) < rlog D(B). To prove the reverse inequality, take n € N
and let B = {e,e,, ..., e;} be a partition in B consisting of the minimal non-zero
projections in a maximal abelian C*-subalgebra of B. For each m € N, let «,,, be
the partition in Ap_ given by the simple tensors

ei1®e’i2®"'®eim®1®l®""

ty0p, ooy by, € {1,2, ..., d}. Thus «,, consists of D(B)™ mutually orthogonal
projections. It is easy to see that
(log D(B)) "' H(a,, V T (a,,) V T2 (@) V . .. V Ta,,))
= #F, Uo(F,)Ud*(F,)U...Uo™F,)

for all n € N, so that
1
(log D(B)) "'k (r,,q,,) = inf - #F, Uo(F,)U...U o (F,).

Since this holds for all m € N, we conclude from (3.1) that i(m,) > rlog D(B). O
Example 3.4. Let 0 < 7 < 1. As shown by Jones in [12], the hyperfinite I, factor
R is generated by the unit 1 and a sequence of projections ey, e, €,, ... such that
(a) e;e; €, =Te;,

(b) e;e; = e e, for i — j| > 2, and

(c) tr(we;) = 7tr(w) when w is a word in 1,e4,€;, ..., €
-1
exactly when 7 € (0, ‘]—‘] U{ (4 cos? %) :m € N,m >3 5. There is a tr-preserving

n—1°

unital *-endomorphism 6 such that §_(e;) = e;,;, ¢ = 0,1,2,.... Let A, be the
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C*-subalgebra of R generated by 1,¢ey,¢e;,€,, ..., e, and set A = U A, . Then A is
a local C*-algebra and 6_(A) C A. We have that

-1
—%logT, when T€{<40082 i) :meN,m23}
h(erlA) = m

log2, when 7 € (0, %] .

Proof. By using iii) it is seen that the conditions of Lemma 3.2 are satisfied (with
A
n; =j+2). Thus A0, |4) = limsup % This number is easily found from
J

the literature: If 7 > 71 the inclusion pattern for A; C A, C ... is periodic (of period

) A 1
2) in the sense of [8] and hence, by [10], Lemma 3.2.7, lim sup —g# =3 log 53,

where (3 is the Perron-Frobenius eigenvalue for the 1nclu51on matrix of A CA.,, for

J+2
all sufficiently large j. It is well-known that 3 = 7~ !, If instead 7 < Z’ the Bratteli
diagram of A; C A, C ... was described by Jones in Sect. 5 of [12]. In particular,
one finds that

(%]

_ n+2—2k (n +2)!
D(A")',ZO: n+2 kln—k+2)!’

A
) =log2. O

Jj—o00

The Connes-Stgrmer entropy of 6_ with respect to the trace state of R was
calculated by Choda in [8], Example 2, and it interesting to compare with the

result above. For 7 > ‘—1‘ the results agree, but for 7 < ‘—1‘ Choda gets the value

—tlogt—(1—t)log(1—t), where 7 = t(1—t), while k(.| ,) = log2 is 7-independent.
Note that —tlog —(1 — ¢t)logt(1 — t) < log?2 for all ¢t €]0, 1.

There is also an automorphic version of §_ obtained from a twosided sequence
{e;:i € Z} of generating projections in R satlsfymg almost the same relations as
above, see [13, 8]. Again there is a canonical local C*-subalgebra A generated by
an increasing sequence of finite dimensional subalgebras of R such that 6_(A) =
By the same arguments as above, using [7] in place of [12], we get exactly the same
values for 2(6, | ,) as before.

Example 3.5. Let S be a finite subset in N and n € N. There is then a sequence
{u,:1=0,1,2, ...} of unitaries, which generates the hyperfinite II, factor R, such
that u” = 1 for all i, w;u, = exp(2mi/n)u u; when |i — j| € S and w;u; = uju,
when |z — j| ¢ S. Furthermore, there is a umtal x-endomorphism 6 of R such that
O(u,) = u;,,,1=0,1,2,.... See [6] for all of this. The C*-algebra A,, generated by

Ug, Uy, Uy, - - -, U, is finite dimensional, and hence 4 = |J A,, is a local C*-algebra

n
such that 6(A) C A. Lemma 3.2 applies to §: A — A and by the same arguments as
in 3.4 (for the case 7 > %) we get that (0] ,) = % log n; the same value as Choda

gets in [8] for the Connes-Stgrmer entropy with respect to the trace. Again there is
also an automorphic version, see Example 3 of [8], giving the same value. O
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Example 3.6. There is a canonical way to associate an AF-algebra to a given subshift
of finite type (also called a topological Markov chain), containing the subshift as a
canonical diagonal D, in such a way that the shift can be extended from the diagonal
to a x-automorphism 6 of the AF-algebra, see [9] and [10]. The union of the finite
dimensional C*-algebras defining the AF-algebra is a local C*-algebra A left globally
invariant by 6. Then 2(0] 4 p) = (6] 4) = log A, where ) is the spectral radius of the

matrix defining the subshift. It follows that k(6| 5) = log X for every local C*-algebra
suchthat ANDCBCA. 0O

Concluding Comment 3.7. In all the examples considered above the x-endomorphisms
are restrictions of x-endomorphisms of an enveloping C*-algebra, in fact most of them
extend to a canonical enveloping von Neumann algebra. It is an interesting question
to decide if the values of the *-endomorphisms on the topological entropy of the
C*-algebra level (and maybe even on the von Neumann algebra level) remains the
same as the ones obtained here. The continuity results of Sect. 2 show at least that the
entropy on the C*-level depends only on how the *-endomorphism acts on partitions
in the finite-dimensional subalgebras. However, the results of Sect. 2 are not strong
enough (or else the author is not strong enough) to decide if the values are no larger
on the C*-level. O
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