
Commun. Math. Phys. 163, 185-215 (1994) Communicat ions ΪΠ

Mathematical
Physics

© Springer-Verlag 1994

Local Properties of Coulombic Wave Functions

M. Hoffmann-Ostenhof \ T. Hoffmann-Ostenhof2 3, H. Stremnitzer4

1 Institut fur Mathematik, Universitat Wien, Strudlhofgasse 4, A-1090 Wien, Austria
2 Erwin Schrodinger International Institute of Mathematical Physics, Pasteurgasse 6/7, A-1090 Wien,
Austria
3 Institut fur Theoretische Chemie, Universitat Wien, Wahringerstrasse 17, A-1090 Wien, Austria
4 Institut fur Theoretische Physik, Universitat Wien, Boltzmanngasse 5, A-1090 Wien, Austria

Received: 16 July 1993

Abstract. We investigate the local behaviour of solutions of a nonrelativistic Schro-
dinger equation which describe Coulombic systems. Firstly we give a representation
theorem for such solutions in the neighbourhood of Coulombic singularities gen-
eralizing previous results (Cusp conditions) due to Kato and others. Secondly we
investigate the influence of Fermi statistics on the local behaviour of many fermionic
wave functions, showing that e.g. an TV-electron wave function must have zeros of
order at least 7V4//3 for large N.

0. Introduction

In a recent paper [6] the local behaviour of a real valued local solution u to the
Schrodinger equation

( - Δ + V)u = 0, x e Ω , i ? C R n , n > 3 (0.1)

under rather weak assumptions on the real valued potential V was investigated. It
was shown that in the neighbourhood of a point xQ e Ω, assuming that u vanishes
there at most polynomially that

u(x) = PM(x - x0) + Φ(x - x0), (0.2)

where PM{x) φ 0 is a harmonic homogeneous polynomial of degree M and
Φ(x) = o(\x\M). (See Sect. 1 for a precise statement.)

The purpose of the present paper is twofold. Firstly we give a detailed account of
the local behaviour of solutions to the Schrodinger equation for Coulombic systems,
e.g. atoms and molecules, especially in the neighbourhood of the singularities of the
potential. Secondly (see Sect. 5) we investigate the influences of Fermi statistics on
the local behaviour of many particle Fermionic wave functions. These results are
consequences of (0.2) and some symmetry considerations and are not tied only to the
Coulombic case.

Some of our results were recently announced in [7].
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1. Preliminaries and Statement of the Results

We consider Coulombic Hamiltonians of TV-particle systems with Hamiltonian

where rτ G R3 denotes the position of the i t h particle, m > 0, denotes its mass
and Δi denotes the 3-dimensional Laplacian with respect to the coordinates of the ith

particle. The potential
N

ra' (1 2 )

i<j l ι 3*

where the ai φ 0, i = 1,.. ., N denote the charges of the particles.
We shall describe the local behaviour of real valued solutions φ of the Schrodinger

equation Hφ = Eφ, where E e R, in the neighbourhood of coalescence points (CP),
where the potential Vc is unbounded. Let p(rλ, ...,rN) — YW^ — r-\. A point

r c p := (fCP,..., f£ p ) eRd, d = 3N, is a CP if piff9,..., f^p) = 0. Obviously
V^ is real analytic away from the coalescence points and hence any local solution φ
is real analytic there by elliptic regularity.

Before we can state our results on Coulombic systems we have to recall some
notation and a result obtained in [6].

Let Ω be an open set in Rd, d>3 and let V G L\0C(Ω) be a real valued function.
We require that

V e Kd>δ(Ω) for some δ > 0, that means (compare [17, 5]) that

linkup / Xato^Ldy-O, (A.I)
\x-y\<ε

where χΩ denotes the characteristic function of Ω. We consider a real valued
distributional solution u ψ 0 of the Schrodinger equation (-Δ + V)u — 0 in Ω,

so that Vx e C0°°(i7), ίu(-Δ + V)χdx = 0. (1.3)
J

The assumption on V is well known (see [17] for a detailed discussion). For δ = 0
(A.I) defines the Kato class K d first introduced by Kato [12]. For δ > 0 it was shown
that a solution of (1.3) is locally Holder continuous [2,17]. Now let wbea real valued
solution to (1.3) and assume without loss that we consider the local behaviour near the
origin O and that Ω = BR, where BR = {x e R d : \x\ < R}, for R > 0 sufficiently
small. We further assume that

u€C0(BR)ΠWι'2(BR), (1.4)

where W1>2 denotes the usual Sobolev space. Moreover we assume that u vanishes
at most polynomially in 0, i.e.

\\mr~2l~d / u2(y)dy < oo I
riO J (

Br )

< oo. (1.5)
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One of the main results in [6] on which our present investigations of Coulombic
systems are based on is

Theorem 1.0. Let
V e Kd'δ(BR) for some δ>0, (1.6)

and let u ψ 0 be a real valued solution of (13) in BR satisfying (1.4) and (1.5). Then
there exists a harmonic homogeneous polynomial PM ψ 0 of degree M G No such
that

With φ = O(\xM+mϊn(hδ/) ) for 0, for 6' < δ. (1.7)

Let us first note that Vc given in (1.2) satisfies (1.6), in fact (see [17])

VceKd>6 for <5<1. (1.8)

Furthermore it will be shown in Sect. 4, Lemma 4.1 that the Schrόdinger operator
H - E with H given in (1.1) has the strong unique continuation property, so that
a solution ψ ψ 0 of (H - E)ψ = 0 satisfies (1.5). Hence Theorem 1.0 is applicable
after some easy coordinate transformations (see below) to the Coulombic case.

Before we state our results for the Coulombic case we reformulate the problem
and introduce some notation:

Let Vc be given according to (1.2) and suppose that ψ φ 0 satisfies

(H-E)ψ = 0 in Bε(fcp) (1.9)

with B£(fcp) = {r e Rd\\f- fCP| < ε}, ε > 0, a neighbourhood of the CP,
rCΫ — ( f^ c p

5 F 2

c p

7 . . . ,r*jyP). Every CP induces in a natural way a partition of the
set of indices of the iV particles in m — m(fc?) clusters Wk, 1 < k < m, where
1 < m < N — 1, namely: i,j with 1 < i, j' < N belong to the same cluster if and
only if fp? = rf?. Therefore we can split the potential Vc uniquely into the part
Uc(r) denoting the interactions between different clusters and the rest describing the
interactions in each cluster with more than one element, so

k,\wk\>2
TA — 7\

Furthermore we note that since Uc(r
Ro < ε, where Uc remains bounded. Now let

rfp, fi9) is bounded there is somerfi

Then (1.9) becomes

(-Δ + VCP-E)ψcp = 0 in

where ψcv(xι,..., xN) = ψ(rλ,..., rN), and

(1.11)

(1.12)

1
V

with

and R < /2 min

N)--

m

= U

ε.

xi
X3

1<3<N

- 1

(1.13)
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So to every fixed coalescence point rCΫ we associate the coordinate transformation
(1.11) and obtain an equation for ^ C P so that Theorem 1.0 is applicable (once we know
that H — E has the strong unique continuation property).

To obtain more detailed and sharper results it will be convenient to use d-
dimensional polar coordinates x — rω, where r = \x\, ω = x/\x\ £ Sd~ι with
Sd~ι the unit sphere in Rd.

Let PM(x) be a harmonic homogeneous polynomial of degree M so that
ΛPM = 0 and PM(λx) = λMPM(x) for λ e R. Then we have (see [18]): PM(rω) =
C M Γ M ^ M ( W ) ' where YM is a real valued normalized surface harmonic,

J \YM\2dω — 1 and cM e R. The Laplacian in polar coordinates reads
Sd-\

Λ d2 d - l d L 2

A — _ ι _

or1 r or rι

with -L2 the Laplace Beltrami operator on Sd~ι. We have

L2YM = M(M + d - 2)YM .

Equation (1.13) reads now in polar coordinates

VCP(rω) = UCP(rω) + l- WCP(ω),

WCP{ω) =

with 0; =

(1.14)

Our main result about the local behaviour of Coulombic wave functions near a
coalescence point can be formulated now.

Theorem 1.1. Let φcp φ 0 be a real valued solution to (1.12) on a neighbourhood
of the origin with Vcp given according to (1.14). Let PM = cMrMYM φ 0 be
the harmonic homogeneous polynomial of degree M which determines according to
Theorem 1.0 the behaviour ofψCPfor r —» 0. Then

for (1.15)

with

and

sd~ι

η = O(rM+ι),
f

η = φCP-YM / YM(ω)φCP(rω)dω (1.17)
j

/ YMηdω = 0. W c p w given according to (1.14).
Sd-\

Corollary 1.1. For φcp given by (1.15) let
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Then

) = « M C ° ( 0 ) . (1.18)

To see this note that by Theorem 1.1

= r2M{\ + 2aMr + O{r2))c2

M + O(r2M+2),I
sd-\

so that ψ^ir) = (1 + aMr + O(r2)) \cM\ from which (1.18) immediately follows.
Some remarks might be appropriate:

Remark 1.1. Suppose we consider the Schrodinger equation of a molecule or atom
with fixed nuclei. It can be easily seen that the potential can be transformed so that
Theorem 1.1 holds. This kind of result was given in [7],

Remark 1.2. Let us point out that the splitting of φc? into YM J YMψCFdω and η
Sd-ι

is natural since aM is uniquely determined by PM whereas η is not. This can be seen
as follows: Suppose we have another solution ψ{ φ ψCP of (1.12) with the following
behaviour for r —» 0: For some P M + 1 = CM+I ^ M + I Γ M + 1 we have

Sd-l

with Vl = O(rM+2) and YM+ι J YM+ιφλdω = P M + 1 ( 1 + O(r)). (In fact it
Sd-ι

was shown in ([6], Theorem 5.1) that given any Pk then a solution satisfying
Ψ — Pk+o(rk) exists in a neighbourhood of the origin.) Now φ2 := φx + ^ C P is also a
solution to (1.12) andψ2 = PM(l+aMr+O(r2))+η2, butτ?2 = r y + P M + 1 + O ( r M + 2 ) .

Remark 1.3. If fCP is not a coalescence point, then Vcψ is bounded in a neighbourhood
of this point and in (1.14) WCP = 0. So Theorem 1.1 remains valid, but with aM = 0.

Remark 1.4. The nonanalyticity of solutions to Schrodinger equations with Coulombic
potentials is already evident for the Hydrogenic case. The first rigorous results about
the behaviour of wave functions in the neighbourhood of 2-particle coalescence points
date back to the work of Kato [11] in 1957 where for the case that ψ(rCP) φ 0 the
nonanalyticity was analyzed; essentially with a result corresponding to Corollary 1.1
with M — 0 though with a different averaging. This was generalized for iV-particle
coalescence points in [8] still assuming ψ(rCP) φ 0.

The nonanalyticity of ψ at CP's is also believed to be the main reason for the
slow convergence of the usual variational schemes to compute energies of atoms and
molecules. There have been successful attempts to incorporate the results of Kato [11]
to accelerate the convergence of various numerical schemes for such computations;
see e.g. [13].

Another strand to investigate the nonanalyticity of ψ near coalescence points runs
under the name Fock-expansions where one tries to find a kind of a generalized
power expansion of ψCP in terms of powers of r and In r with coefficients that are
functions in the angles ω. Most of these results concern 2-electron atoms, see [3, 1, 14,
15] for some recent results. According to these investigations the first nonvanishing
term, where logarithms show up is O(rM+2 \ lnr |) (in the notation of Theorem 1.1).
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Clearly such a series must have the properties stated in Theorem 1.1 and in particular
in Corollary 1.1 so that this first logarithmic term obviously stems from η.

Remark 1.5. Since the Coulomb potential given in (1.2) depends only on the
interparticle distances we immediately see (compare (1.14)) that

WCP(ω) = WCP(-ω). (1.19)

Without this symmetry property Theorem 1.1 would not hold true. For example take
d = 3 and V = xx(x\ + x\ + x\)~ι, where (x1,x2, x3) G R3. Then we can show: Let
φ be a solution of (—A + V)φ = 0 in a neighbourhood of the origin, then for some
harmonic homogeneous polynomial PM ψ 0, we have for r —* 0,

φ = PM{\ + aMr + O(r | lnr|)) + η

with η = 0{rM+ι | In r|) and ί YMηdω = 0,

s2 (1-20)

52

To clarify this different kind of local behaviour we shall proceed in the following
manner: We shall investigate not directly the Schrodinger equation with the potential
Vcv as defined in (1.14) but rather a more general class of potentials and obtain a
representation theorem for solutions uoϊ{—A + V)u — 0, with V belonging to this
class. Theorem 1.1 and also (1.20) of the above example will then be special cases.

For this purpose we introduce a Morrey space (see e.g. [4]). Let Ω be a bounded
domain in Rd and V G Lι(Ω). V is said to belong to MP(Ω), 1 < p < 00 if there
exists a constant k such that

/ \V\dx < kρd{l~ι/p) for all balls BQ . (1.21)

ΩΠBρ

Bρ denotes an arbitrary ball of radius ρ in Rd. The norm || V Ί | M P ( β ) is the infimum of
the constants k so that (1.21) holds. This and the following proposition can be found
in ([4], Lemma 7.18).

Proposition 1.1. Let Ω c Rd, Ω bounded, V G MP(Ω), l/p < μ, then

[
J

\x-y\d^ι)\V(y)\dy < 1 - ^ (dmmΩ)d^p)\\V\\MP a.e. (ί?). (1.22)

Ω

Next we set p = d and μ = 2/d. We assume

V G Md(Ω), i.e. / \V\dx < kρd~ι (A.2)

ΩΠBρ

for balls Bρ of radius ρ in Rd.

Noting that Vi?; C Ω, \\V\\Md(Ω/) < \\V\\Md(Ω) we obtain from the above

Proposition 1.2. Let V G Md(Ω), Ω c Rd, Ω bounded, then for Ω' C Ω

\x-y\2-d\V(y)\dy < (d - lXdiamί?7) \\V\\MdiΩ) a.e. (Ωr). (1.23)

Ω'

J\
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Remark 1.6. As can be seen from the definition of the Kato class Kd, (1.23) provides
us with an explicit estimate for the integral in (A.I) and will be especially useful for
potentials like the Coulombic one (see Proof of Lemma E in Sect. 3).

Before we can state our generalization of Theorem 1.1 we have to collect some
basic facts on surface harmonics. Let {Yι m } be an orthonormal system of real valued
surface harmonics of degree /, I G No and m = 0 , 1 , . . . , h(l) — 1 with

such that

YιtmYjtkdω = δldδmtk. (1.25)

Sd-\

We note that every Yι m satisfies

L%m = Kl + d-2)Yhm, (1.26)

where L2 was defined above. Let u G C°(BR) for some R > 0 and with BR c Rd

a ball with radius R centered at the origin. We introduce the following orthogonal
projections on Sd~ι:

ί YUrn(ω)u(rω)dω (1.27)

Sd-\

for I G N o and m — 0 , 1 , . . . , h(l) — 1, and

k h{ϊ)-\

= Σ Σ
ι=o m=o

— u(rω) — ( k

Theorem 1.2. Let Bε = {x e Rd:\x\ < ε}, ε > 0, αrcd to V e Lι(Bε) be real
valued. Assume that V satisfies the assumptions (A.I) and (A.2) with Ω = Bε and
further that V can be represented as

V(rω) = — — + U(rω) in Bε with U bounded in B~£andW G L2(Sd~ι). (1.29)

Let u φ 0 be a real valued distributional solution of

(-Δ + V)u = 0 inB£. (1.30)

Then for r —> 0 either u — O(ra) for all a > 0 or the behaviour of u near the origin
is determined by some harmonic homogeneous polynomial

PM(rω) = cMrMYM , cM φ 0 , M G No , J F^cίcϋ = 1, (1.31)

Sd-ι

in the following way:

u = P M ( 1 + α M r + ^ 4 - ry2)

r.M+1 7 , (1-32)
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with

χ f

aM+l,m = 2M + d J

qd—\
(1.33)

sd-\

and where r\i = η^rω), 1 < i < 3, satisfy

(O(\lnr\r2) if max \aM+lm\φ0,
ηi = ) ism^M+D-i1 M+ι'm η2 = O(r2), (1.34)

[ 0 otherwise,

/ η3(rcu)YM(ω)dω = / mYΆ/Γ^ ^dω = 0

^d-1 5 d - l

/or m = 0 , l , . . . , / ι ( M + l ) - l .

(1.36)

particular

1/2

(r) = | c M | r M ( l + aMr + μx + μ2)

wzϊ/z

θ ( | r 2 l n r 2 ) i/ max
m

ivi-sci, 0,

[ 0 otherwise ,

As an immediate consequence we obtain

andμ2(r) — O(r). (1.37)

Corollary 1.2. Suppose that the assumptions of Theorem 1.2 hold and assume that
W(ω) = W(—ω) for ω G Sd~ι. Further let u be a solution o/(1.30) which does
not vanish faster than polynomially for r —> 0, then for some harmonic homogeneous
polynomial PM

u{rω) = PM{\ + aMr + O(r2)) + η

with = O(rM+1) and ί ηYMdω = <

Sd~l

with aM as above. Furthermore

/
Sd-\

- |c
M

M
r M ( l + α M r + O(r2)). (1.39)

Remark 1.7. Comparing the results of Theorem 1.2 with the example given in
Remark 1.5 [see (1.20)] it now becomes obvious where the logarithms come from.
(It is easy to see that the potential in this example satisfies the assumptions of
Theorem 1.2.)

We also see that Corollary 1.2 coincides with the results of Theorem 1.1 if we set
u — ψcp and W = WCP.
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We shall organize the proofs of Theorem 1.1 and 1.2 as follows: In Sect. 2 we
shall prove Theorem 1.2 with the help of some lemmas which are proven in Sect. 3. In
Sect. 4 we shall show that VCP satisfies the assumptions of Theorem 1.2 and the strong
unique continuation property for solutions to the Coulombic Schrodinger equation,
hence proving Theorem 1.1.

2. Proof of Theorem 1.2

Suppose u does not vanish faster than polynomially in the origin, then by Theorem 1.0
there is a harmonic homogeneous polynomial PM φ 0 of degree M G No such that

u = PM+φ With Φ = O{rM+u) for r -> 0

with i/ = min(l, £'), V<5' G [0, <5).

We denote PM{rω) = cMrMYM(ω) with cM φ 0 and F M normalized to 1.
To verify Theorem 1.2 we proceed similarly as in the proof of Theorem 1.0 (see

[6]): We present u by

M+l h(l)-\

1=0 r)u—κj ,- ry.

where E7z,m(r) = / J uYlrndω\r)

and yz>m and (^M+i a r e defined according to (1.25), (1.26) and (1.28), and without
loss we take YM 0 = YM. We shall investigate the behaviour of each term in (2.2)
for r —• 0 separately. For the investigation of U^m we use the following Lemma A
(which is an analogue to Lemma A in [6], but yields more information due to the
already obtained result (2.1)).

Lemma A. Let V satisfy the assumptions of Theorem 12 and let u be a real valued
solution (9/(1.30) with the property (2.1). Then Uι^m,Ul

lπι (defined in (2.2), with '
denoting d/dr) are continuous for r <R and

, ^m(r) (2.3)

satisfies

-Km + m

r 2 1 } Ul,m = Km ' " Φ, R) (2.4)

in the distributional sense, where βι = I + (d — l)/2 and

for m = 0, l , . . . , f t (Z)- 1, and / = 0 , 1 , . . . , M + 1. (2.5)

Further Uι m has the following behaviour for r
/or / < M - 1

M + 1 Vm; (2.6)
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for I — M

UM,m = O ( r M + 1 ) , m = 1,2,... ,h(M) - 1, (2.7)

U ΞΞ UΆ/Γ n = = CA/ΓT (\ ~4~ (2 T ~\~ Φ ") with Φ ==: O(v > * ί 2 81

/or Z = M + 1

t = r ' M + 1 ( c M α M + l , m l n r + ' f i ^
/or m = 0 , 1 , . . . , h(M + 1) - 1, with Φ M + 1 ? m - 0(1). (2.9)

Thereby aM and a>M+ι m are defined in (1.33).

Lemma A, which is proven in Sect. 3 directly implies the following

Proposition A.

h(M+l)-\

771=1 771=0

with

(2.10a)

Σ , (2.10b)
771=0

UM(r) = cMrM(l+aMr + ΦM) with ΦM=O{rι+v), (2.10c)

and

h(M+l)-\ h(M+\)-l

(CMαM+l,m/ ^ M w = r Z ( C M α M+l,m m r

l ) - l . (2.10d)

In the second part of the proof of Theorem 1.2 we show

Proposition B.
@M+ιu = O(rM+ι). (2.11)

To verify this we again proceed as in [6]: we first show (Lemma B and C) that
r M + 1 is an upper bound to &M+γU in the L2(Sd~ι)-sense, and then we conclude
(Lemma D and E) that r M + 1 is also a pointwise upper bound to (2M+\U

are proven in Sect. 3.
Define

/ r \
Ψ(r)=( I WM+ιu\2dω\ r ( d~ 1 }/ 2, (2.12)

then ψ satisfies a differential inequality given in

Lemma B. Under the assumptions of Lemma A, (2M+\U ^S continuous in BR,for R <
| € L2(BR), φ is continuous in [0, R], φ(0) = 0 and φ' G L2((0, β), dr).
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Furthermore φ satisfies for some c > 0,

j(χφ)'φ'dr + βM+xβM+2 Jχr-2φ2dr <c JrβM-^φχdr for all χ > 0 ,

χe<'2(0,fi).
(2.13)

Therefrom we obtain via a comparison argument

Lemma C. Under the assumptions of Lemma A,

φ = O(rM+ι+id-ι)'2) for r - * 0. (2.14)

To proceed from this L2-bound to a pointwise bound to (2M+χU we use

Lemma D. Suppose the assumptions of Lemma A hold, then for some c{(d),
c2(d, M) > 0 we have for \x\ =r, r < R/2,

Lr

[φ(t)dt + c2 sup \u(y)\ sup / \χ - y\
J \y\<2r \x\=r J

- ί \V(\y\ω)\dω\dy. (2.15)

V Sd-1 /

Thereby Br(x) = {y e Rd\\x - y\ < r}.
We note that for the proof of Lemma D we adapt a subsolution estimate of Hinz

and Kalf ([5], Lemma 1) to our problem.
Finally we give upper bounds to the integrals occurring in (2.15):

Lemma E. Under the assumptions of Lemma A we have

sup / (\V(y)\+ I \V{\y\ω)\dω\\x-y\2-ddy<c{d,R)r

\x\=r JBr{x) \ £ i /

for r<R/2. (2.16)

Finally combining the foregoing considerations Lemma C, D and E imply

\«?M+ιu)(x)\<crM+1 for \x\ < r < R/2 (2.17)
with c = c(d, M, R), which verifies Proposition B.

The third (and last) part of the proof of Theorem 1.2 will now be established via
Proposition A and B: The propositions immediately imply that for r —• 0,

h(M+l)-\

U~UMΪM< / J - ^ M + l ^ T ^

with M(rω) = O(rM+x) and (2.18)

+hdω = 0, m = 0 , 1 , . . . , / ι (M+1) - 1.

Sd-\ Sd-ι
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Inserting (2.10c) and (2.10d) in (2.18) we obtain

u(rω) = cMτM{\ + aMr + ΦM)YM

l n r +

with ΦM+lrn = O(l) for m = 0 , 1 , . . . , ft(M + 1) - 1,

and ΦM = O(r 1 + m i n ( 1 ' δ / ) ) for all δ' £ [0, <5). (2.19)

Now we compare (2.19) with the statements (1.32)—(1.36) in Theorem 1.2. Identifying
JB with η3r

M+ι it obviously remains to show that

ΦM = Vι + 2̂ w i t h ^i ? ̂ 2 satisfying (1.34). (2.20)

This will finish the proof of the theorem. Clearly (1.37) is just a straightforward
consequence of (1.32)-(1.36).

So finally we prove (2.20): Note first that due to (2.8) and (2.19),

/u = UMYM + μ with / μYMdω = 0 (2.21)

Sd-\

and

(
P \ 1/2 / h{M+\)-\ \

/ μ2duΛ < constr M + 1 ] Γ | α M + 1 | J | l n r | + 1 . (2.22)

5d-l / \ m=0 J

Since ϋ M = uMQ satisfies (2.4) it is not difficult to see (see also the proof of
Lemma A) that

77 (r\ _ TM / j / \\
uM\r) — ' VCM — JMW '

where
r t

J M « = I t~2βM I FM(ΦβM ds dt (2.24)
o o

with FM = FM0 defined according to (2.5). Inserting (2.21) into (2.5) we obtain (by
taking into account (1.29))

= J YMV(UMYM + μ)dω

UM + J

Sd-l

x cMrM(l + aMr + ΦM)+ ί YMVμdω, (2.25)
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where we made use of (2.8) in the last step. Hence

_τ? (r\ _ Ίc^β^n ^rβM~{ 4- rβMn (2 26")

where for some constants C%, 1 < i < 4,

\η\ <Cλ ί \U\dω + C2r~M ί ί V2duλ ( ίμ2dω\

which by (2.22) gives

h(M+l)-l

H < C A- C \ Λ In I I In r l O Ί1Λ

m=0

Combination of (2.26) and (2.24) yields

r t

/

r
+ ~2βM / Q^fiMίOr R n Q~^ 4- TΊCQ\Λ ria di

J
0 0

r t

/

r
t-2βM sWMφ)dsdt, (2.28)

J
0 0

but due to (2.27)
r t

s2βM\η(s)\dsdt

< / f~2PM / ς2/̂ M f i . f \ Λ \n I I In ςl I r/ς r// Γ? 9QΊ

— s I 3 ̂  ° 4 ^ ^ l α M+i,ml l m < s l \a*aτ K^-£y)
J

Q { \ m=0 J
By partial integration we easily conclude from (2.29),

s2βM\η(s)\dsdt<C5 ^ lαM+i,ml ' I l n r l r 2 + ̂ 6 ^ ( 2 3°)
J ^ A

0 0

0 m = 0

Combination of (2.23) and (2.28) with inequality (2.30) gives

UM(r) = cMrM{\ + aMr + η, + η2)
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with ηx and η2 satisfying (1.34). Since UM(r) = cMrM(l+aMr+ΦM) due to (2.10c),
this together with the above implies (2.20) finishing the proof of Theorem 1.2.

3. Proof of the Lemmas

3.1. Proof of Lemma A. The proof mimicks the proof of Lemma A in [6]. Therefore
we give just the main steps.

Let 0 < R < ε, then due to our assumptions u satisfies

{—Λ-\- V)u — 0 in BR in the distributional sense

and u e C°(B^) Π W 1 ' 2 ^ ) . (3.1)

Define for / e No and m e {0,1,... ,ft(Z) - 1}, χ(rω) = Ylrn(ω)η(r), where
ηeCg°(ίO,R))9 then

ί Γ
uΔχdx= / \Vudx. (3.2)

ί Γ
/ uΔχdx= /

j j

Taking into account (1.26) and the definition of Ut (r) (see (2.2)) resp. ux (see

(2.3)) we obtain for η = r

{d-χ)l2η,

(3.3)

where Fι m(r) (defined in (2.5)) is bounded due to the assumption (1.29) on V. Hence
(3.3) verifies (2.4).

Now let without loss 6 < 1 and define

r

vδ{r):= ft1'6 ί \V(tω)\dωdt, (3.4)

0 Sd~ι

which is finite since

/

if \

t{~δ I / IW\dωΓι + const ) dt,
V J I

0 \gd—\ /

so by (1.29)

Therefore

t t

uδ(r) = O(rι~δ). (3.5)

= J J
o

t

< const I ( I \V\dωs1~δ\sβM-ι+δds

0 \sd-l /

(3.6)
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where we used that u = O(rM) due to (2.1), and (3.4). Further with

r t

/
f

I I r?τΛ / — ? V '

0 0

we obtain via (3.5) and (3.6) that

r

\JltJr)\ < const JtM-ι~ι+δvδ(t)dt
o

rM-l+δ

< const ι/δ(r) ——-—- < const r

M~ι+ι for I < M . (3.8)

By variation of constants the solution ut m of (2.4) can be written as

n, — rβi(r — J, ) for 1 < M Π 9)

with some constants clrn G R.

Further because of (2.2) and the orthonormality of the Yι m ' s we have

/ u2(rω)dω=J2 ^ U^r) + ((2M+ιuf dω (3.10)

which together with (3.9) and (2.1) immediately implies that q m = 0 for Z < M — 1,
m = 0 , 1 , . . . , h(l) - 1 and for / = M, m = 1,.. ., h(M) - 1. Hence for r -» 0,

verifying (2.6) and (2.7).
Further by (3.10) and (2.1),

M for m = 0,l , . . . ,Λ(M + l ) - l , (3.12)

with v given in (2.1) and v = δ' since <5 < 1. Finally from (2.1), (2.2), (2.6), (2.7)
and (3.12) we get

= O(rM^). (3.13)

To verify (2.8) we give a refined estimate for FM = FM0 and JM = JM0

(replacing (3.6) and (3.8)). Note first that due to (2.2), (3.11)—(3.Ϊ3) u can be written
as

u = UMYM + μ with / μYM dω = 0 and μ = O(rM+u). (3.14)
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Therefrom we conclude

Γ YMV(UMYM+μ)dω

gd-l

JγMVμdω

Since \\YMUdω = 0(1) and since by (3.14)

(γMVμdω < const (r~ι ί\W\dω+ ί \U\dω
I 1/ \ J J

T

M^ = 0(rM+y-1),

d - l ) a M r " ' + O(l)) + O ( r M + i - ' ) . (3.15)

we conclude from the above

//O Ά/Γ i 7̂ 1 \ , ,

Further since by (2.1)

(3.15) and (3.16) yieldd - l ) α M c M r ^ - i + ^ M with ηM = O(r^- i+-) . (3.17)

Insertion of (3.17) into (3.7) for I = M, m = 0, gives

(( d - l)aMcMsβM-* + ^ ( s ) *

0 0

= - α M c M r + O(r 1 + ί y ) . (3.18)

Application of (3.18) to (3.9) leads to

UM(τ) = rM(cMj0 + aMcMr + O(r1^)),

and because of (3.16) c M 0 = c M 7̂  0 verifying (2.8).
Finally we show (2.9): Analogously to (3.9) it is not difficult to see that for

1 ) - 1,

+ 1 | m M+ι,m(r)) ( 3 . 1 9 )

w i t h s o m e c o n s t a n t s c M + 1 m G R a n d w i t h

it τ

/

r
+-WM+\ II

J
r 0
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Similarly as above we conclude via (3.14) that

ι(r)r-(d-D/2 = J YM+ι>mV(UMYM+μ)dω

201

•"' / YMYM+i,mWdω+ / YMYM+ι>mUdω

But JYMYM+ιUdω = O(l) and due to (3.14),

therefore

-FM+x^r)r-{d-χ)'2 = ((2M + d

follows and further again by (3.14),

with

Insertion of (3.22) into (3.20) leads to

R

O(l))UM

ηM+ι

(3.21)

J
= αM+l,mCM l n r +

Finally combining (3.23) with (3.19) we arrive at

+ηM+ι(s))dsdt

(3.23)

which verifies (2.9) and finishes the proof of Lemma A.

3.2. Proof of Lemma B. Since the proof of the lemma follows directly the proof of
Lemma B in [6] we only indicate the main steps here.

First we recall that u satisfies (3.1). Then due to the assumptions on V we obtain
that

gM+ιu e C\B~R) Π Wι>\BR) and φ G C°([0, R]) Π Wι\{0, R)). (3.24)

From now on (2 = &M+\- Clearly φ(0) = 0. Then we conclude from (3.1) that

Λ(φu) = &(Vu) in BR in the distributional sense,

with (2(Vu) G L\BR), (3.25)

and observe that

1}(2 > (M + 2) (M + (3.26)
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in the quadratic form sense on L2(Sd~ι). The above observations lead to (compare
[6])

J(χφ)'φ' dr + βM+ιβM+2 Jφ2r-2χdr < Jx J WM ' W(Vu)\ dωd~λdr
Sd~ι

for all x > 0, x E W^2(0, R). (3.27)

But

J X J Wu\-\@{Vu)\dωrd-ιdr
Sd-\

^ ί* f Wu\(\Vu\ + \^M+ι

Sd~\

< const / x sup \u{x)\ / \@u\ \\V\+ / \V\ dω\
J \x\=r J \ J I

dωrd~ι dr

V I I I I I I

J I

X sup \u(x)\φ[ r~[ I W2 dω\ + [ I U2 dω\ \dr
\χ\=r i i y_i / i £ i / /

< const / χφrβM~λ dr , (3.28)

where we used W,U G L2(Sd~ι) and (2.1) in the last step. Equation (3.27) together
with (3.28) finishes the proof of Lemma B.

3.3. Proof of Lemma C. We shall obtain the upper bound to φ by a comparison
argument: Let

/ k\

(3.29)

where c is the constant occurring on the r.h.s. of the differential inequality (2.13), and
b > 0 is a parameter. We have for r > 0,

-h" + ^M+1fM+2 h = cb(2M + d + Dr^M-i (3.30)
rι

so that /ι satisfies

-h"+βM+ιPM+2h>crβM-ι for r > 0 a n d b> . (3.31)
r 2 2M -f d + 1

Multiplication of this inequality with xφ, where x > 0, x G Wo' (0, R) leads to

[(χφ)'tidr+ /^M+1fM+2 hχφdr>c ί rβM~'χφdr, (3.32)

which together with inequality (2.13) of Lemma B yields

J(χφ)'(φ - h)' dr + l ^M±1^M±1 {ψ _ h)χφ dr<0. (3.33)
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Now we choose

b = max((2M + d - I ) " 1 , φ(R)(cRβM+ιΓι)

so that φ(R) < h(R) and (clearly) φ(0) = ft(0) = 0. (3.34)

Suppose indirectly that in some interval {aγ,a2) C [0, R], φ(r) > h(r) and
φ(ai) = ft(α^), i = 1,2. Since h{r) > 0 in (0, R] and h vanishes polynomially
for r —> 0 we can pick χ = r?^"1 with 77 e Co^Cα^ί^), η > 0 and obtain from
(3.33),

ί V((^ - ft)' dr + ί ^M^fM+2 (y> - ft)τy dr < 0. (3.35)

Hence φ — h satisfies

^M+1fM+2 ^ - fa) < 0 in (ai,O2) (3.36)

in the distribution sense. But φ — hE Wo' ((α1? α2)), so (3.35) holds also in the weak
sense and we arrive at

»2 α 2

/(<p - h)12 dr+ f M+1fM+2 (<p - h)2 dr<0 (3.37)

which is a contradiction. Therefore

(/?(r) < h(r) for r < R,

finishing the proof of Lemma C.

3.4. Proof of Lemma D. This lemma can be considered as the homogeneous version
of Lemma D in [6] and its proof remains the same, therefore we indicate only the
main steps: Starting with Eq. (3.25) we obtain by Kato's inequality (see [10, 12])

-Δ\@u\ - W(Vu)\ < 0 in BR (3.38)

in the distribution sense. Mimicking the proof of Lemma 1 in [5] we conclude from
(3.38) that for some cx(d), c2(d) > 0,

Mu){x)\<cxr~d f \(&u)(y)\dy + C2 f \(2((Vu)(y))\ \x - y\2~d dy (3.39)
J J

BAx) BAx)

for x G BR and r < dist(x, dBR). But for \x\ = r < R/2 clearly

\{(5Wu)){y)\-\x-y\2-ddy

BAx)

( M+\ h{l)-\ „ \

Σ Σ \γι,m\ / \γιtm(Vu)(\y\v)\<fa + \(Vu)(y)\)dy
^rw ί==° m = ° Sd~ι

\x-y\2-d(c(M,d) ί \V(\y\ω)\dω + \V(y)\\dy sup \u(y)\. (3.40)

\ d-i / l y l ~ 2 r
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Also via Cauchy-Schwarz's inequality

2r 2r

ί \(&u)(y)\dy< ί ί \(&u)(tω)\dωtd-ιdt<c(d)rid-l)/2 fφ(t)dt. (3.41)

Br{x) 0 sd~ι 0

Combining (3.39) with (3.40) and (3.41) we finish the proof of Lemma D.

3.5. Proof of Lemma E. Let \x\ = r < R/2 and define

:= J \x~y\2~d j \V{\y\ω)\dωdy, (3.42)

Br{x) Sd~l

then because of assumption (1.29) on V we have

4l\x)<Kx(d,R) I \x-y\2-d\y\~ιdy. (3.43)
Blrφ)

It is lengthy but straightforward to work out that

J \x - y\2~d dωy = K2(d) (max(t, \x\))2~d , (3.44)

\y\=t

and therefore for \x\ = r < R/2,

2r

(max(ί, \x\))~d+2td-2 dt < K(d, R)r, (3.45)

o

where Kx, K2 and K are some positive constants.
To bound

j \x-y\2-d\V(y)\dy (3.46)

for \χ\ = r < R/2 from above we use assumption (A.2) on V, i.e. V £ Md(Bε(0)).
Since Br(x) C BR(0) C Be(0) for Λ < ε, V" e Md(Br(x)), and we obtain via
Proposition 1.2

\x-y\2-d\V{y)\dy<{d~l)τ\\V\\Md{BRm for |x| = r < i2/2 . (3.47)

Br{x)

We note that (3.47) holds pointwise since V £ Kd(BR(0)), which implies that the
integral on the l.h.s. of (3.47) is continuous in x (see [17]). Hence

42\x) < c(d, R)r for \x\ = r < R/2. (3.48)

From (3.45) and (3.48) we obtain

J(

r

ι\x) + J{2\x) < c(d, R)r for r<R/2,

finishing the proof of Lemma E.
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4. Proof of Theorem 1.1

As already indicated in Sect. 1 the proof of Theorem 1.1 will be organized as follows:
(i) We show that H - E [H given in (1.1) and (1.2)] has the strong unique

continuation property. This will imply that ψCF(rω) vanishes at most polynomially
for r —» 0.

(ii) We show that V = Vcv - E satisfies the assumption of Theorem 1.2.
Suppose (i) and (ii) is proven, then we apply Theorem 1.2 to the Schrodinger

equation (1.12) and therefore the behaviour of ^ C P (ΓCJ) for r —» 0 is characterized by
(1.31)—(1.37) with W(ω) = WCP(ω) given according to (1.14). Noting that clearly

W(ω) = W(-ω) for ω e Sd~\ (4.1)

YM+i,mYMWdω = 0 for m = 0,1,...,/ι(M + 1) - 1 (4.2)

Sd~ι

follows due to the symmetry properties of the Ylm's. Therefore we obtain (compare
(1.33))

= ° f o r m = 0 , l , . . . , h ( M + l ) - l . (4.3)

Taking this into account in (1.31)—(1.37) the result coincides with the statements
(1.15)—(1.17) and finishes the proof of Theorem 1.1.

Hence it remains to show (i) and (ii):

ad (i).

Lemma 4.1. Let r <°> - (rf\ . . . , r%]) e R3N and Bε(f<®) = {r e R3N\ r-% ε

ε}. Let ̂ φ θ , ψ e C°(Bε(f{0)))nWι^(Bε(r('0)) be a real valued distributional solution
of

(H - E)ψ = 0 in Bε(f(0)) (4.4)

with H denoting the N-particle Hamiltonian given in (1.1) and (1.2), and E e R. //

ψ2(r)dr = O(ρa) for all α > 0 , (4.5)

then ψ = 0in Bε(f(O)).

As an immediate consequence we obtain

Corollary 4.1. Let ψCF be given according to Theorem 1.1, then ifψCP(rω) vanishes
faster than polynomially for r —> 0, i.e. if (4.5) holds, φCP = 0 in BR(0).

Proof of Lemma 4.1. Equation (4.4) explicitly written reads

^+Έ l ε \ ψ = 0 for f=(f,,. . . , f J Ϊ )eβ ε (f ( 0 ) ) . (4.6)

We reformulate (4.6) by making the following ansatz:

ψ = eFΦ, (4.7)
with

N (i i V1

^ and m t j = ί _ + _ j . (4.8)
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As will be seen from the following this kind of ansatz is particularly adapted for the
Coulomb potential, it was introduced by Leray in [14]. Actually it turns out (by a
simple calculation) that since Λi\xi — Xj\ = 2\xi — Xj\~ι,

τ* — r •
2=1 ""z i<j ' ι •? '

and

|V;F| eL°°(Bε(fφ)). (4.10)

By a further calculation we obtain

N N

2 = 1 l 2 = 1 l

N N

Σ -L P F1 \—^ •"•

2m, i 1 ^ 2m

i = l ι 2=1 z

and because of (4.6) and (4.9) this yields

N Λ N

N

- A .Φ - 2 V - —
771̂  ' 4 f 2771

1
with J ^ — - (V F) 2 + E G L°°(Bε(f(0))). (4.11)

2 = 1 ^

To Eq. (4.11) we can apply a strong unique continuation result of Hormander (see
[9]) and obtain: If Φ vanishes faster than polynomially in a point then Φ = 0. But
since eF > 0 and (4.7) holds the same is true for ψ ending the proof of Lemma 4.1.

ad (ii).

V = Vςp — E is given according to (1.13) and (1.14). In (1.29) we therefore identify

U(rω) = Uc?(rω) - E and W(ω) = WCP(ω).

Due to (1.8) V satisfies assumption (A.I). To verify that V has property (A.2) we use

Proposition 4.1. Let d = 37V, y = (yu . . . , yN), yi G R3, 1 < i < N, Bρ{y) = {y G
R d | b - y\ < Q} with ρ > 0, y G R3N, then for some c(d) > 0,

:dx<c(d)ρd-{ V 5 J ) c R d , V § . (4.12)/

J

Proof of Proposition 4.1. Without loss let i = 1, j = 2.



Local Properties of Coulombic Wave Equations 207

Suppose first that y — 0: Then with x = (xx,..., xN) = (rω), ω = (ωx,..., ωN),

I 1 dx= ί [
J \Xχ — X 2 J J ωι-ω2\

with co(d) = (4.13)
Γ((3d -

follows as can be seen from [8].
Now suppose that y ψ 0: The case yx = y2 reduces to the foregoing case since by

the coordinate transform y — x — y,

1 dx= I , ' ,dy= ^ - p n - . (4.14)

Bρ(y)
l^i -^21 \vι-y2\

Finally let yx ^ y2' By the transform y = x - y we obtain

1

7 Xj — x2\ J
Bρ(y) Bρ(Q)

\Vι -
dy (4.15)

N I

If ρ < \yλ — y2\/(2λ/2), then since ]Γ y1- < ρ2 we conclude —= \yx - y2\ < ρ and

further (because of the assumption on ρ) \yx — y2\ — \yx — y2\ > \fϊρ. Hence for some
oo,

1

\Vl ~Vl\ ~ \V\ ~
dy < d-\

If ρ > \yx -

with

and

, then

Λl) =

<
dyx

lί/i- - 2 / 2 1

/y\+vi<a

Jf= J

(4.16)

(4.17)

(4.18)

(4.19)

Further by the transform z\ — ~Ά (Hi ~ V2)i z

2 — ~~m (V\ + U2)
 w e obtain with

2 (S V\

dzxdz2 dzλ

\z\
\z-zi\<ρ

s / H'

dzΊ

= c4(d)ρ5 , (4.20)

\z\<4ρ
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where in the last step we used that due to the assumption on ρ, \zλ\ < 2ρ.
Combining (4.18)-(4.20)

follows. This proves Proposition 4.1.
Proposition 4.1 clearly implies that Vc given in (1.2) satisfies assumption (A.2) for

all Ω C R d . S i n c e Vc?(xu. . . , x N ) = Vc(ru. ..,rN) w i t h x i = λ[2mi(fi - r f P ) ) ,
1 < i < N it follows immediately that V̂ p satisfies also (A.2), and further since
E = const, V = Vc? — E has this property.

Further we note that due to the definition of UCP, Ucp is bounded, and finally
we observe that WCP e L2(Sd-{) since \xi - x0\~l e L2

OC(R3N) and r~ι e

L2([0, R], rd~ι dr). Hence V = VCP — E satisfies the assumption necessary to apply
Theorem 1.2.

5. Fermionic Wave Functions

In this final section we investigate the influence of the Pauli principle on the local
behavior of fermionic wave functions. Let

Hψ = Eψ in Ω e R3N ,

where

i=\ ι

f G R3, m > 0 for i = 1,2,..., N\ E e R, and

V =z / V (\τ — T )
Kj

where V satisfies the assumptions of Theorem 1.0, so d = 3N'. The Hamiltonian H
in (5.1) describes a TV'-particle system and in particular with V — Vc as in (1.2)
atoms and molecules. Now suppose N < N' particles are fermions of the same
kind e.g., electrons and without loss we denote the coordinates of these particles by
(f{,..., f N ) . Then we have m% — m for some ? ? ι > 0 f o r l < i < i V and

Vχ.(r) = Vj2(r), Vr > 0, with 1 < i < j < N,

a n d Vιk(r) = Vjk(r), Vr > 0 w i t h 2<j<N,N<k<Nf. ( 5 . 2 )

Then the wave function has to transform with respect to these coordinates according to
a specific representation of y*N [10]. This property will imply that such a wave function
has to vanish at least of some order (depending on N) at coalescence points r*CP,
where the coordinates of the fermions coincide. We make a coordinate transformation
as in (1.11) (with N replaced by Nf) so that (5.1) becomes

{-A + VCP - E)ψCP = 0 in BR(0). (5.3)

If ψcp does not vanish faster than polynomially in 0 than by Theorem 1.0 we have
for some homogeneous harmonic polynomial PM φ 0,

= PM(x{, . . , xN, xN+ι,..., xNd + o(\x\M). (5.4)
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We first consider the case that ψ is totally antisymmetric with respect to f { , . . . , fN

(this corresponds to the case that the total spin of the N electrons is s = N/2). But
due to the foregoing coordinate-transformation this implies also that ψCP is totally
antisymmetric with respect to Xγ,...,xN, i.e.

— ~ΨC¥V£\Ί ' ' ' Ί Xji ' ' ' i Xf> # ' ' ' XN~> XN+\i ? XN''

for l < i < j < i V . (5.5)

But because of (5.4) this implies that

P]V[(X\i ' I Xi > ' ' > XJΊ ' ' ' ' XNi XN+\i ' ' •> XN')

^ ) = °(la )
for |x| -> 0 for 1 < i < j < N. (5.6)

Hence PM is totally antisymmetric with respect t o x ^ . . , % .

Remark 5.1. Other symmetry properties of ψcv (e.g. angular momentum and parity)
will carry over to PM according to (5.4) analogously.

Therefore to determine the minimal order of vanishing of ψcp in 0 it suffices to de-
termine the minimal degree of PM ψ 0, and obviously it suffices to consider homoge-
neous harmonic polynomials which do not depend on the coordinates xN+χ,..., Xjy/.

Lemma 5.1. Let PM(xγ,... ,xN) ψ 0 be a totally antisymmetric harmonic homoge-
neous polynomial with degree M. Then M is greater than or equal to the degree of
the totally antisymmetric harmonic homogeneous polynomial

1 N

Thereby the functions φτ = φ^y), y = (yx, y2, y$) G R3 are monomials ordered such
that their degree is monotonically increasing:

φx(y) = 1, φ2{y) = yu φ3(y) = y2, φ4(y) = y3 ,

/ Ψ ( y ) = vV ^ ( ϊ / ) = v\ > ( 5 8 )

Remark 5.2. D{N\xx,...,xN) in (5.7) is the well known Slater determinant of
(/?!,..., y>jy. Note that the ordering of the φi is of course not unique but this is
irrelevant for our considerations.

Proof of Lemma 5.1. Clearly D(-N\xlJ... ,xN) is a totally antisymmetric homoge-
neous polynomial. To see that it is harmonic note that

1 N

N N

ΊvJ 2-^ 2-JVNΪ

But for each j , ΔJφσ^(xJ) is a linear combination of monomials in x3- which already

occur amongst the other monomials of lower degree, hence ΔD(yN\xl1..., xN) = 0.
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Let g(N) denote the degree of D^N\ then clearly g(N) is equal the degree of
TV

Yl φτ(xt). Now let PM be given according to our assumptions, then we have to verify
i=\
that M > g(N). PM can be represented as a finite sum of monomials qi(xι,..., xN)
of degree M and since PM is antisymmetric it follows that

N

with the q- being monomials in x , where for each i at most one of the qi3 equals
a constant. Comparison with our construction (5.8) clearly implies that the degree of
qι > 9(N)τ verifying our lemma.

Denote by n m the cardinality of the subset of monomials φi9 1 < i < N as given
in (5.8), which have a given degree ra; then clearly

-2). (5.9)
Define

ί
k(N) = max h e N 0

and let

(5.10)

= N - 2^nm. (5.11)

Suppose PM has minimal degree, then if b(N) — 0, PM clearly is uniquely
in

determined (up to a multiplicative constant), whereas otherwise there are I k^

such polynomials.

Theorem 5.1. Let P M ( x 1 , . . . , xN) ψ 0 be a totally antisymmetric harmonic homo-
geneous polynomial of degree M(N), then

M(N) > g(N) where g(N) = \k(k + 1) (k + 2) (k + 3) + b(N) (k + 1) (5.12)

with k(N) — [a(N)], the integer part of a(N), and a(N) is the unique positive root
of the cubic equation

(α+l)(α+2)(α + 3) = 6iV, and b(N) = N-± (fe+1)(fc + 2)(fe+3). (5.13)

Proof of Theorem 5.1. With g(N) denoting the degree of D<<N\xι,... ,xN) as given
in (5.7), Lemma 5.1 implies that (5.12) holds. Further with k(N) and b(N) given
according to (5.10) and (5.11), we obtain

k(N)

g(N) = Σ nmm + b(N) (k + !) ( 5 1 4 )

But,
k(N)
\ ^ ^ γn — 1 h(h -U λ\ (h I 9"\ (h I 'W

m = 0 (5.15)
k(N)
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Therefore, by (5.10) we conclude k(N) = [a(N)] with a given as above. This proves
Theorem 5.1.

To make the foregoing results more transparent particularly with respect to large
JV-behavior we replace g(N) by g(x) for the real variable x > 1 and derive upper
and lower bounds B± to g which have the same leading order.

Let #(1) = 0 and let g(N) be given according to (5.12) for N > 2. We define

g(x) = g(N) + (g(N+l)-g(N))(x-N) for xe[N,N+l], ViVeN. (5.16)

Then due to (5.13) the slope of the line segment between (TV, g(N)) and (iV+1, g(N+
1)) is given by g{N + 1) - g(N) = k(N) + 1. Next we define a sequence of integers
{7VJ, I e No recursively:

Nλ = min{N e N | k(N) = k(N0) + 1} = 4, (5.17)

Nι+ι = min{N e N | k(N) = A;(7VZ) + 1} .

Therefore, recalling the definition of k(N), Eq. (5.10),

k(Nι+ι) = fc(JVz) + 1 = I + 1, V / e N 0 . (5.18)

From the above we conclude that {(x,g(x)) \ x > 1} is a polygonal path joining the
points (N^giN^) by straight lines with slope k(Nι+ι). Also, it is easy to check that
our construction implies for all x, y > 2,

g(x + y) > g(x) + g(y) >

Corollary 5.1. Let g{x) be given according to (5.16). Then,

B_{x) <g(x) < B+(x) for x>]

where

B_(x)=\
, c 9 , (5.20)

B+{x) = I xβ{x) + l6 (β(x) + 2)2 - ^

with a(x) given according to (5.13) (with N replaced by x), and β(x) is the unique
positive root of the cubic equation

(β + 1) (β + 2) OS + 3) - i φ 4- 2) = 6x . (5.21)

Proof of Corollary 5.1. Note first that it is not difficult but lengthy to verify that both
B± are convex functions in x (this can be done using the chain rule for B_(x(a))
with x(a) being the inverse function to a(x), and analogously for B+(x(β)). Further,
due to the foregoing considerations [see Eq. (5.19)], also g(x) is convex. Now we
take into account that obviously

and 6(JVZ) = 0 VZ € No , (5.22)

so that due to (5.13),

B_(Nι)=lNιk= lk(k+l)(k + 2)(k + 3) = g(Nι) with k = k(Nt). (5.23)l
The above implies that the line segments of g are secants to B_ and therefore
g(x) > B_{x) for all x > 1. To verify that also g(x) < B+(x) for x > 1 we
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show that there exists a monotonically increasing sequence {a^} with xι G (Nt, Nι+ι)
such that

B+(Xι) = g(Xι) (5.24)

and
dB, do

± (Ύ \ — _?_ (Ύ \ — j i i (z 2S)

which implies that B+ is the envelope of the line segments of g. To show this, we

define for / e No, βι = I + \ and [compare (5.21)]

Then,
xz = ± (21 + 5) (I2 + 5/ + 5). (5.26)

Obviously, xz φ No, and due to (5.21), βι = β(xt).
Now we show that xι G (N^Nι+ι): Let ^(x^) = [α(a^)] with a satisfying

With k = k{x{) we obtain via (5.26)

(k + 1) (fc + 2) (fc + 3) < (Z + 5/2) (I2 + 5/ + 5) < (k + 2) (k + 3) (fe + 4),

and this implies
[α(a;z)] = 1 V I G N 0 . (5.27)

Since α(x) is monotonically increasing, and due to (5.17) and (5.22) a(Nt) — I we
obtain xt e (Nl}Nι+ι).

Calculating now g(xt) and B^x^ we arrive at

B+{Xι) = γA Q H- 1)2(3/2 + 18/ + 26) - g(xt),

verifying (5.24). Furthermore, we find by a straightforward but lengthy calculation

dB+ _ (dB+(X{β)) /dxmγ'Λ _
^-{Xί)'{^dW^ { dβ ) ) 0 = ι + ι / 2 - '

verifying (5.25) and finishing the proof of Corollary 5.1.

Remark 5.3. Obviously, B±(N) can both be given explicit by using Cardano's
formula for cubic equations, but to make their asymptotic behavior, and hence also
the behavior of g(N) for large N more transparent, we expand these bounds in powers
of JV, estimate the remainder and get

h ( 6 Λ Γ > 2 / 3 ~ 6Ϊ8 (6AΓ)~2/3 < 9(N) - i (6AΓ)4/3

_μ I Kf <- A f6ΛΓ>2/3 4- -^- 4- 1 2 5 Γ6/W2/3 (5 28^
^ 2 ^ 4 8 V ° ; ^ 1152 ^ 20736 K > ' V-^O)

It is now easy to generalize Theorem 5.1 for general spin states, taking into account
well known properties of the representation theory of the symmetric group S^N [10].

Theorem 5.2. Let ^JJCY(XX^ . . . , x N ) x N + ι , . . , x^f) be given according to (5.3) and
(5.4) and let Nγ > N2 > 0 such that N{ + N2 = N. Suppose that ψCP is totally
antisymmetric with respect to the coordinates xx,...,xNι and to the coordinates
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^jVi+i' ' XNI+N2" Then the order of vanishing ofψcp in the N-fermionic coalescence
point 0 - which equals the degree M of the polynomial PM - is at least

,, N2) = #(JV1) + g(N2). (5.29)

Furthermore, for fixed N the minimum value of the degree is given by

(N\
2# ί — ), N even

Λ (5 3O)

N odd.

Proof of Theorem 5.2. Analogously to the foregoing considerations (compare (5.4),
(5.5), (5.6)) the polynomial PM is totally antisymmetric with respect to the coordinates
x{,...,xNι and to the coordinates xNγ+i, ^NX+N2- According to Lemma5.1
such a polynomial with minimal degree can be constructed as a product of two
Slaterdeterminants of degrees #(iV1) and g(N2). This yields (5.29), whereas (5.30) is
an immediate consequence of the convexity of g(x) (compare (5.19)).

We note that the setting of Theorem 5.2 corresponds to a wave function of a system
with N = Nι-\-N2 identical fermions whose total spin is s — \ (Nι — N2). The Pauli
principle requires the wave function to be antisymmetric in N{ and antisymmetric
in the other N2 fermions. In order to be an irreducible representation of S^N also
symmetrisation in the way how to pick up any N2 fermions out of TV is necessary.
This, however, makes every polynomial PM with minimal degree a superposition
of products of two determinants, hence it does not change anything on the degree
M(NUN2).

Remarks (5.4). i) As numerical example we compute that for N = 1000, M0(1000)
is given by 2#(500) = 9360, whereas #(1000) = 12155. However, (5.28) yields,
rewritten for #(500) resp. #(1000),

4667.103 < #(500) < 4680.1235 ,

12142.16 < #(1000) < 12162.82.

Similarly, for N = 20, M0(20) = 2#(10) = 30, #(20) = 45 we find

15 - (2.19 10~6) < #(10) < 15.98 .

45 - (8.69 10~7) < #(20) < 46.54.

ii) The behaviour of g(N) ~ 7V4//3 reminds oneself on Thomas-Fermi theory although
no energy consideration has been made.
iii) Note that for atoms M0(N) is a lower bound to the order of vanishing of a many-
fermion wave function at 7V-fermion CPs. Certainly it is not always attained - atoms
with ground states with total spin > 1/2 exist, but we believe that it is of the right
order of magnitude for TV —>• oo, though we have no clue how to prove this. For other
systems our lower bound is attained: Take an isotropic N-particle harmonic oscillator
with Hamiltonian

N

H = Yj(-Δι + x2

ι), (5.31)
2 = 1
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then with PM being any harmonic homogeneous polynomial in 3N variables,

u = e~\χ\ /2PM> *S a n eigenfunction so that

Hu = (2M + 3N)u.

iv) In our construction of a "minimal" polynomial D<<N\x{1..., xN) we have chosen
the JV-fermion CP, x c p , to be the origin. It is easy to see that (5.7) is translationally
invariant, i.e.

D(N\xx + α, x2 + α , . . . , xN + a) = D(N\xx ,x2,...,xN). (5.32)

This follows immediately from the construction of D^N\ since adding a constant
vector to any coordinate xi changes the rows of the determinant (5.7) by adding a
multiple of another row, which leaves the determinant invariant. Furthermore, D^
also reproduces the correct behavior of wave functions at N — 1 fermion CP's if
one changes one coordinate, e.g. xN, to xN + α. This can be easily checked since
then D^N) contains either all the monomials (xN + a)^N\ i = 1,2,3, or one or
two of the monomials (xN -f α)f( iV)+1, depending whether TV is one of the iVz in
(5.17) or not. The minor of these elements is given exactly by one of the equivalent
D^N~ι\xι,... ,xN_ι), therefore the lower bound to the order of vanishing of the
wave function is g(N — 1) as required. Analogously, one can easily conclude from
the behavior of D ( i V ) at (N — n)-fermion CP's the lower bound to the order of
vanishing of the wave function to be g(N — n).

Finally, let us note we can easily generalize our results for antisymmetric wave
functions for a system of TV identical particles living in v space dimensions. Since our
Theorem 1.0 for Λ^-particle wave functions holds also for systems of N' identical
z/-dimensional particles (under suitable assumptions on the two body potentials), we
can generalize (5.1) and (5.2) to this case. Suppose the wave function φ{rx,..., rN,),
where the τi G R^ denote the i/-dimensional position vectors, is totally antisymmetric
with respect to N < Nf particles, then it must vanish again for TV -particle CP's at
least like (^(iV) given by

where k = k(N) = [ α j , and a^(N) is the unique positive root of the z/h order
equation

Considerations analogous to Corollary 5.1 and subsequent paragraphs lead to bounds
for gv(N):

(5.37)
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As an example, let us consider the cases v — 1,2 separately. Here, the bounds need
not to be expanded in powers of N but can easily be given explicitely. For particles
living on a plane, we get

27V j 1 /

— χ/2N + 1/4 - N < g2{N) < - χj (2N + 1/3)3 - N,

whereas for v — 1 we get the trivial result
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