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Abstract. We investigate the local behaviour of solutions of a nonrelativistic Schro-
dinger equation which describe Coulombic systems. Firstly we give a representation
theorem for such solutions in the neighbourhood of Coulombic singularities gen-
eralizing previous results (Cusp conditions) due to Kato and others. Secondly we
investigate the influence of Fermi statistics on the local behaviour of many fermionic
wave functions, showing that e.g. an /N-electron wave function must have zeros of
order at least N*/3 for large V.

0. Introduction

In a recent paper [6] the local behaviour of a real valued local solution u to the
Schrodinger equation

(—A+Vu=0, =zef2, NCR", n>3 0.1)

under rather weak assumptions on the real valued potential V' was investigated. It
was shown that in the neighbourhood of a point z;, € {2, assuming that u vanishes
there at most polynomially that

u(r) = Py(z — zy) + Pl — z) , 0.2)

where P,,(z) # 0 is a harmonic homogeneous polynomial of degree M and
&(x) = o(|z|M). (See Sect. 1 for a precise statement.)

The purpose of the present paper is twofold. Firstly we give a detailed account of
the local behaviour of solutions to the Schrodinger equation for Coulombic systems,
e.g. atoms and molecules, especially in the neighbourhood of the singularities of the
potential. Secondly (see Sect.5) we investigate the influences of Fermi statistics on
the local behaviour of many particle Fermionic wave functions. These results are
consequences of (0.2) and some symmetry considerations and are not tied only to the
Coulombic case.

Some of our results were recently announced in [7].
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1. Preliminaries and Statement of the Results

We consider Coulombic Hamiltonians of N -particle systems with Hamiltonian

N A, ) )
H=-)" V(T T (1.1)

2m,

i=1

where 7, € R? denotes the position of the i particle, m,; > 0, denotes its mass

and A, denotes the 3-dimensional Laplacian with respect to the coordinates of the i™
particle. The potential

N
Qs

Ve ...iy) =) ———5= 1.2

o) Ty ZV_T‘, (1.2)

1<j 7

where the o;; # 0, ¢ = 1,..., N denote the charges of the particles.
We shall describe the local behaviour of real valued solutions 1 of the Schrédinger
equation H1 = E1, where E € R, in the neighbourhood of coalescence points (CP),

where the potential Vi is unbounded. Let p(7y,...,7y) = [[ |7; — 7;|. A point
i<j
PP = (7,7 € RY, d = 3N, is a CP if p(7 P, ..., 7)) = 0. Obviously

V- is real analytic away from the coalescence points and hence any local solution
is real analytic there by elliptic regularity.

Before we can state our results on Coulombic systems we have to recall some
notation and a result obtained in [6].

Let £2 be an open set in R%, d > 3 and let V € L} _(£2) be a real valued function.
We require that

V e K%%() for some § > 0, that means (compare [17, 5]) that

. V)

lim su ——=—dy =0, Al

lim mfd / Xo®) o= y|27 Y (A1)
lz—yl<e

where X, denotes the characteristic function of 2. We consider a real valued

distributional solution u # 0 of the Schrodinger equation (—A + V)u = 0 in (2,

so that Vx € C5°(12), /u(—A +V)xdzr =0. (1.3)

The assumption on V' is well known (see [17] for a detailed discussion). For § = 0
(A.1) defines the Kato class K¢ first introduced by Kato [12]. For § > 0 it was shown
that a solution of (1.3) is locally Holder continuous [2, 17]. Now let u be a real valued
solution to (1.3) and assume without loss that we consider the local behaviour near the
origin O and that 2 = By, where By = {z € R%:|z| < R}, for R > 0 sufficiently
small. We further assume that

u € CUBr) N W' (Bp), (1.4)
where W2 denotes the usual Sobolev space. Moreover we assume that u vanishes

at most polynomially in 0, i.e.

sup { im =24 /uz(y)dy < oo} < 00. (1.5)

v20] 70
By
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One of the main results in [6] on which our present investigations of Coulombic
systems are based on is

Theorem 1.0. Let
Ve Kd’5(BR) for some 6 >0, (1.6)

and let u # 0 be a real valued solution of (1.3) in By, satisfying (1.4) and (1.5). Then
there exists a harmonic homogeneous polynomial P,; # 0 of degree M € N, such
that

w=Py,+& with &=O0(z|M™ Y for |z| -0, for & <6. (1.7)
Let us first note that V, given in (1.2) satisfies (1.6), in fact (see [17])
Vo€ K% for §<1. (1.8)

Furthermore it will be shown in Sect. 4, Lemma 4.1 that the Schrodinger operator
H — FE with H given in (1.1) has the strong unique continuation property, so that
a solution ¢ # 0 of (H — E)y = 0 satisfies (1.5). Hence Theorem 1.0 is applicable
after some easy coordinate transformations (see below) to the Coulombic case.

Before we state our results for the Coulombic case we reformulate the problem
and introduce some notation:

Let V- be given according to (1.2) and suppose that ¢ # 0 satisfies

(H-Ex=0 in B.(7) 1.9)
with B_.(F?) = {7 € RY||7 — 7P| < ¢}, e > 0, a neighbourhood of the CP,
FOP = (7P P 7). Every CP induces in a natural way a partition of the

set of indices of the N particles in m = m(7°?) clusters %, 1 < k < m, where
1 <m < N — 1, namely: 4,5 with 1 <, j < N belong to the same cluster if and
only if 7 = 7. Therefore we can split the potential V;, uniquely into the part
U (7) denoting the interactions between different clusters and the rest describing the
interactions in each cluster with more than one element, so

o,
Vo =Uo,. P+ Y. > | ]‘l' (1.10)

ro—7.
k| %5122 1<y,i,5€%,

2

<

Furthermore we note that since Uq (7, . . ., 7§ is bounded there is some Bp, ("),
R, < &, where U remains bounded. Now let
z, = 2my(7 - 7)), 1<i<N. (1.11)
Then (1.9) becomes
(—A+Vep — EYep =0 in Bg(0), (1.12)
where Yep(y, ..., z5) = P, ..., 7y), and
Vep@y, - szy) = Ugplzy, .., zy)

—1
Z; Z,

Z Z 1,:
I 2m A/2m
k6122 i<j,i,5€%, m, J

with  Uep(@y, ..., 25) = Up(F), ..., Tx)

< -
and R < /ZIér;lSnNm]e. (1.13)
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So to every fixed coalescence point 7F we associate the coordinate transformation
(1.11) and obtain an equation for ¢p so that Theorem 1.0 is applicable (once we know
that  — E has the strong unique continuation property).

To obtain more detailed and sharper results it will be convenient to use d-
dimensional polar coordinates = rw, where r = |z|, w = z/|z| € S with
S9! the unit sphere in R%.

Let P,/ (x) be a harmonic homogeneous polynomial of degree M so that
APy, =0and Py,(\z) = AMPM(x) for A € R. Then we have (see [18]): Py, (rw) =
cMrM Y, (w), where Y,, is a real valued normalized surface harmonic,

Y, [*dw = 1 and ¢,,; € R. The Laplacian in polar coordinates reads
i M M
gd—

@ d-10 12

or? r Or r?

with —L? the Laplace Beltrami operator on S?~!. We have
L*Y,, = M(M +d —2)Y,, .

Equation (1.13) reads now in polar coordinates

A=

1
Vep(rw) = Ugp(rw) + - Wep(w),

Wepw) = Z Z ;o C

; 2m.  +/2m.;
k)| % |22 1<3,i,j €%, i J

. 1’1 :EN
with w=(w,...,wy) = <7”_7"—>

—1
w, u@

(1.14)

Our main result about the local behaviour of Coulombic wave functions near a
coalescence point can be formulated now.

Theorem 1.1. Let pcp # 0 be a real valued solution to (1.12) on a neighbourhood
of the origin with Vip given according to (1.14). Let Py, = cMrMYM Z 0 be
the harmonic homogeneous polynomial of degree M which determines according to
Theorem 1.0 the behaviour of 1qp for 1 — 0. Then

Yep(rw) = Py, (1 +a,, + O@H) +n(rw) for 7 —0 (1.15)
with )
Y / Y, Wepdw (1.16)
gd—1
and
n =0y, where 1= — Yy / Y (@)ep(rw)dw (1.17)

and [ Yymdw = 0. Wep is given according to (1.14).
Sd—1

Corollary 1.1. For 9cp given by (1.15) let

1/2
z/)ai”)(r):rM( / zb%pdw) :
Sd—l
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Then
(d% zﬂ%))(o) = a, Y (0). (1.18)

To see this note that by Theorem 1.1

/ PYepdw = r*M(1 + 2a,,r + O@?))A, + O M+2) |
Sgd—1

so that M (r) = (1 4+ ay,r + O(?)) |c),| from which (1.18) immediately follows.
Some remarks might be appropriate:

Remark 1.1. Suppose we consider the Schrodinger equation of a molecule or atom
with fixed nuclei. It can be easily seen that the potential can be transformed so that
Theorem 1.1 holds. This kind of result was given in [7].

Remark 1.2. Let us point out that the splitting of ¢p into Yy, [ Y}, ¥cpdw and n
Sgd—1

is natural since a,, is uniquely determined by P,, whereas 7 is not. This can be seen

as follows: Suppose we have another solution v, # 1)p of (1.12) with the following

; . - M+1
behaviour for r — 0: For some Py, ; = ¢y Yy 7 we have

V1= Yy / Y1 Y dw + 4
Sd—l

with 7, = O(rM*?) and Yy, [ Yy ¥dw = Py (1 4+ O@)). (In fact it
gd—1

was shown in ([6], Theorem 5.1) that given any P, then a solution satisfying

Y =P, +o(r*) exists in a neighbourhood of the origin.) Now P, =1, +1ep isalsoa

solution to (1.12) and ¢, = Py, (1+a,,7+O0(r?))+n,, but n, = n+Py,,  +OrM+2).

Remark 1.3. 1f 7P is not a coalescence point, then Vi is bounded in a neighbourhood
of this point and in (1.14) Wp = 0. So Theorem 1.1 remains valid, but with a,,; = 0.

Remark 1.4. The nonanalyticity of solutions to Schrodinger equations with Coulombic
potentials is already evident for the Hydrogenic case. The first rigorous results about
the behaviour of wave functions in the neighbourhood of 2-particle coalescence points
date back to the work of Kato [11] in 1957 where for the case that (7<) # 0 the
nonanalyticity was analyzed; essentially with a result corresponding to Corollary 1.1
with M = O though with a different averaging. This was generalized for /V-particle
coalescence points in [8] still assuming (7<) # 0.

The nonanalyticity of v at CP’s is also believed to be the main reason for the
slow convergence of the usual variational schemes to compute energies of atoms and
molecules. There have been successful attempts to incorporate the results of Kato [11]
to accelerate the convergence of various numerical schemes for such computations;
see e.g. [13].

Another strand to investigate the nonanalyticity of ) near coalescence points runs
under the name Fock-expansions where one tries to find a kind of a generalized
power expansion of Yp in terms of powers of r and Inr with coefficients that are
functions in the angles w. Most of these results concern 2-electron atoms, see [3, 1, 14,
15] for some recent results. According to these investigations the first nonvanishing
term, where logarithms show up is O(r™*2| Inr|) (in the notation of Theorem 1.1).
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Clearly such a series must have the properties stated in Theorem 1.1 and in particular
in Corollary 1.1 so that this first logarithmic term obviously stems from 7).

Remark 1.5. Since the Coulomb potential given in (1.2) depends only on the
interparticle distances we immediately see (compare (1.14)) that

Wepw) = Wep(—w). (1.19)
Without this symmetry property Theorem 1.1 would not hold true. For example take
d=3and V = z,(z? + 23 + z3)~!, where (z,,z,,7;) € R>. Then we can show: Let
1 be a solution of (—A + V)¥ = 0 in a neighbourhood of the origin, then for some
harmonic homogeneous polynomial P,, # 0, we have for r — 0,

=Py (1+ayr+ O(r2] Inr|)) +7n

with 7 =O0@M*|Inr]) and /YMndw =0
(1.20)

ap = 2M+ ) /(YMW) (w)dw with W(w) =rV(rw).

To clarify this different kmd of local behaviour we shall proceed in the following
manner: We shall investigate not directly the Schrédinger equation with the potential
Vep as defined in (1.14) but rather a more general class of potentials and obtain a
representation theorem for solutions u of (—A + V)u = 0, with V belonging to this
class. Theorem 1.1 and also (1.20) of the above example will then be special cases.

For this purpose we introduce a Morrey space (see e.g. [4]). Let {2 be a bounded
domain in R% and V € L'(£2). V is said to belong to MP(§2), 1 < p < co if there
exists a constant £ such that

/ [V]dz < ke ~'/P  for all balls B, . (1.21)
2NB,

B, denotes an arbitrary ball of radius g in R%. The norm [|V|| y/p g, is the infimum of
the constants & so that (1.21) holds. This and the following proposition can be found
in ([4], Lemma 7.18).

Proposition 1.1. Let 2 C R?, 2 bounded, V € MP(§2), 1/p < u, then

/lw YD V) dy < = //p (diam Q)2 VPV, ae. (2).  (1.22)

Next we set p = d and p = 2/d. We assume
VeMAD), ie. / |V]dz < ko?™! (A2)
2nB,

for balls B, of radius g in R
Noting that V2" C £, |V 374(0ry < [Vl a4(2) We obtain from the above

Proposition 1.2. Let V € M%(£2), 2 C R%, 2 bounded, then for ' C (2

/ lz =y~ V(y)ldy < (d — 1) (diam 2) |V ]| pa ) ae. (7). (1.23)
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Remark 1.6. As can be seen from the definition of the Kato class K¢, (1.23) provides
us with an explicit estimate for the integral in (A.1) and will be especially useful for
potentials like the Coulombic one (see Proof of Lemma E in Sect. 3).

Before we can state our generalization of Theorem 1.1 we have to collect some
basic facts on surface harmonics. Let {Y; ,,} be an orthonormal system of real valued

surface harmonics of degree [, [ € Ny, and m =0, 1,...,h() — 1 with
Q+d-2)(+d-3)!
h(l) = 1.24
© (d—-2!! (1:24)
such that
/ Y, Y pdw =06, ;6,1 - (1.25)
Sgd—1
We note that every Y, , satisfies
LY, =ll+d-2Y,,,, (1.26)

where L? was defined above. Let u € C%(Bp) for some R > 0 and with B, C R?
a ball with radius R centered at the origin. We introduce the following orthogonal
projections on S~

(%’mu) (rw) := Yl’m(w) Ylym(w)u(rw)dw (1.27)
gd—1
forl € Njand m =0,1,...,h(I) -1, and

k h()-1

G ) =D Y (ARuww), keN,

=0 m=0
(Gpw) (rw) = u(rw) — (Fu) (rw) .
Theorem 1.2. Let B, = {z € R%:|z| < e}, ¢ > 0, and let V € L'(B,) be real
valued. Assume that V satisfies the assumptions (A.1) and (A.2) with 2 = B, and
further that V can be represented as
W)
Ty

(1.28)

V(rw) + U(rw) in B, with U bounded in B, and W € L*(S*™'). (1.29)

Let u # 0 be a real valued distributional solution of
(A+V)u=0 inB,. (1.30)

Then for r — 0 either u = O(r®) for all o > 0 or the behaviour of u near the origin
is determined by some harmonic homogeneous polynomial

Pyrw)=cyuym™Y,, cy #0, MEeEN,, / Yidw =1, (131
gd—1
in the following way:
u= Py (1+ayr+mn+mn)
hM+1)—1
+ M Z (CMaM+1,mln7'+¢M+1,m)YM+1,m +7

m=0

(1.32)
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with

1 2
o= mrra=t | VYR

. sat (1.33)

aM+l,m = 2M +d / YM+1,mYMde’
Ssd—1
and where n; = n,(rw), 1 <1 < 3, satisfy

O(|Inr|r?) if max a #0,
m = | | 1I<m<h(M+1)—1 | M+l,m| n = O(,’_Z), (134)
0 otherwise ,
Ppry1m =00) and ny=0(1) (1.35)
and
/ 13 (rw)Yy (w)dw = / MY a1 mdw =0
i1 si (1.36)
for m=0,1,...,h(M +1)—1.
In particular
1/2
( / U2d“)> () = leagr™ (1 + apr + py + 1)
gd—1
with

odrlnr? i 0
- { (r2nr?) i maxlay,, | #0, and iy (r) = O(r?) (1.37)

0 otherwise ,
As an immediate consequence we obtain

Corollary 1.2. Suppose that the assumptions of Theorem 1.2 hold and assume that
W(w) = W(—w) for w € S L. Further let u be a solution of (1.30) which does
not vanish faster than polynomially for r — 0, then for some harmonic homogeneous
polynomial P,

u(rw) = Py (1 +ayr + O@?) +1
with n=0@M*Yy  and / nYydw =0 (1.38)

Sd—1
with a,, as above. Furthermore

1/2
( / uzdw) = ch]rM(l +ayr+ or?). (1.39)
S 1

d—

Remark 1.7. Comparing the results of Theorem 1.2 with the example given in
Remark 1.5 [see (1.20)] it now becomes obvious where the logarithms come from.
(It is easy to see that the potential in this example satisfies the assumptions of
Theorem 1.2.)

We also see that Corollary 1.2 coincides with the results of Theorem 1.1 if we set
u=Yep and W = W,
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We shall organize the proofs of Theorem 1.1 and 1.2 as follows: In Sect.2 we
shall prove Theorem 1.2 with the help of some lemmas which are proven in Sect. 3. In
Sect. 4 we shall show that V-, satisfies the assumptions of Theorem 1.2 and the strong
unique continuation property for solutions to the Coulombic Schrodinger equation,
hence proving Theorem 1.1.

2. Proof of Theorem 1.2

Suppose u does not vanish faster than polynomially in the origin, then by Theorem 1.0
there is a harmonic homogeneous polynomial P,; # 0 of degree M € N, such that

u=Py,+& with &=00"*") for r—0

2.1
with v = min(1, &), V&' € [0,6). @1

We denote Py, (rw) = ¢, 7MY, (w) with ¢,,; # 0 and Y,, normalized to 1.
To verify Theorem 1.2 we proceed similarly as in the proof of Theorem 1.0 (see
[6]): We present u by

M+1 h(D)—1
u(rw) = z Z Ul,mY},m + @M+1u7
=0 m=0

(2.2)
where Ulm(r):( / qu’mdw>(r)
Sd—1

and Y, ,,, and &), o are defined according to (1.25), (1.26) and (1.28), and without
loss we take Y),, = Y,,. We shall investigate the behaviour of each term in (2.2)
forr — 0 separately For the 1nvest1gat10n of U, ,,, we use the following Lemma A
(which is an analogue to Lemma A in [6], but ylelds more information due to the
already obtained result (2.1)).

Lemma A. Let V satisfy the assumptions of Theorem 1.2 and let u be a real valued
solution of (1.30) with the property (2.1). Then Ul,m,UlCm (defined in (2.2), with '
denoting d/dr) are continuous for r < R and

Uy (1) =T VR0 () (2.3)
satisfies
-1
_u;:m + /BL/QTZ,E——_) ul,m = E,m in (07 R) (24)

in the distributional sense, where 3, =1+ (d — 1)/2 and

Fl‘m(r)=—< / Yl,mVudw>(r)r(d_”/z,
S

d—1
for m=0,1,...,h()—1, and (=0,1,....M+1. (2.5)
Further U, ., has the following behaviour for r — 0:
forl < M —1
Uy = O™ vm; (2.6)
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forl=M
Upn = O™, m=1,2,... k(M) -1, 2.7)
Uy =Upp=cyr™U+ayr+@,) with &), =00c"");  (2.8)
forl=M+1

Untsiym = M Cprpgan,m 07 + Sory1 )
forr m=0,1,...,hM(M+1)—1, with Py, =0(). (2.9)
Thereby ay; and apy.y ., are defined in (1.33).
Lemma A, which is proven in Sect. 3 directly implies the following

Proposition A.

h(M)—1 hMM+1)—1
u=Py ut Y. Py u+tUyYy+ S Pymt+ Oyt (210)
m=1 m=0
with
Pry_u = O@rMHhy, (2.10a)
h(M)—1
> Pymu=0aM, (2.10b)
m=0
Uy (1) = cpr™ (A +apr + @) with &, = O@F'H), (2.10c)
and
h(M+1)—1 h(M+1)—1
Z Prtsi e =M Z (Crr@rrr,m 07T + Loy )Y ar41m
m=0 m=0
with ®ppy o =01), m=0,1,....,A(M+1)—1. (2.10d)

In the second part of the proof of Theorem 1.2 we show

Proposition B.
Oyt = O@M*hy 2.11)

To verify this we again proceed as in [6]: we first show (Lemma B and C) that
rM+1 is an upper bound to &), u in the L2(S%~!)-sense, and then we conclude

(Lemma D and E) that r™*! is also a pointwise upper bound to 7, +1u- The lemmas
are proven in Sect. 3.
Define

1/2
w(r)=< / I@Mﬂu]zdw) Fd=D/2 (2.12)
sd—1

then ¢ satisfies a differential inequality given in

Lemma B. Under the assumptions of Lemma A, Oy, u is continuous in By, for R <
&, V(O w)| € LZ(BR), @ is continuous in [0, R, ©(0) = 0 and ¢’ € L*((0, R), dr).
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Furthermore ¢ satisfies for some ¢ > 0,

/(X(p)’go’dr+,8M+15M+2/XT_2@2d7" < E/rﬁM—lgoxdr forall x>0,

x € Wo*(0,R).
(2.13)
Therefrom we obtain via a comparison argument
Lemma C. Under the assumptions of Lemma A,
@ = O@MTHE=Dy for 0. (2.14)

To proceed from this L?-bound to a pointwise bound to &, ;u We use

Lemma D. Suppose the assumptions of LemmaA hold, then for some c;(d),
c,(d, M) > 0 we have for |x| =7, 7 < R/2,

2r
(Ohpa ) (@)] < ¢ @72 / @t)dt +c, sup |u(y)| sup / |z —y¢
2 ly|<2r I$!=TB
()
x <1v<y>l+ / 1v<|y|w>1dw)dy. @.15)
Sd—l

Thereby B,(z) = {y € R¥||z —y| < 1}.

We note that for the proof of Lemma D we adapt a subsolution estimate of Hinz
and Kalf ([5], Lemma 1) to our problem.

Finally we give upper bounds to the integrals occurring in (2.15):

Lemma E. Under the assumptions of Lemma A we have

SUP/ (IV(y)I+/
|z|=r J Br(z)

gd—1
for r<R/2. (2.16)

|v<|y|w>|dw> & — gy < o(d, Ryr

Finally combining the foregoing considerations Lemma C, D and E imply
(G w) @) < er™¥ for |z| <r < R/2 (2.17)

with ¢ = ¢(d, M, R), which verifies Proposition B.
The third (and last) part of the proof of Theorem 1.2 will now be established via
Proposition A and B: The propositions immediately imply that for » — 0,

R(M+1)—1
u=UyYyu+ D, Dpmti+ 2
m=0
with  Z(rw) = O¢rM*!)  and (2.18)
/%Ydez /%YMH’mdwzo, m=0,1,...,h(M +1)—1.
sd—1 sd—1
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Inserting (2.10c) and (2.10d) in (2.18) we obtain

u(rw) = cp M+ ayr + )Y

(M +1)—1
+7,M+1 Z (CMaM+1,m lrl'r+QSM-{—I,m)YM+1,m + .7
m=0
with @y, =O00) for m=0,1,...,hA(M+1)—1,
and &, = O(r"+™ L) forall & € [0,6). (2.19)

Now we compare (2.19) with the statements (1.32)—(1.36) in Theorem 1.2. Identifying
78 with n3rM *+1 it obviously remains to show that

&, =m +n, withn,n, satisfying (1.34). (2.20)

This will finish the proof of the theorem. Clearly (1.37) is just a straightforward
consequence of (1.32)—(1.36).
So finally we prove (2.20): Note first that due to (2.8) and (2.19),

u="Uy,Y,y+p with / wYpdw =0 (2.21)
Sd—1
and
1/2 R(M+1)—1
( / u2dw> < constrM*1 ( Z |aM+1’m| [Inr| + 1). (2.22)
gd—1 m=0

Since up; = upy satisfies (2.4) it is not difficult to see (see also the proof of
Lemma A) that

Upr(r) = ™ (cpp — Ty (1)

where
T

t
() = / =261 / Fop(s)s®™ ds dt (2.24)
0 0

with Fy; = FM70 defined according to (2.5). Inserting (2.21) into (2.5) we obtain (by
taking into account (1.29))

—Fy (ryr= @02 = / Yy V(Up Yy + wdw
gd—1

= /YI@ (¥ + U) dwU +/YMVpdw

= <r—1/Y,$4de+fY§4wa>

X CMTM(l +ayr+P,) +/YMV,udw, (225
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where we made use of (2.8) in the last step. Hence
—FM(T) = ZCI\IIBMG;MTHM-l + TﬁM'f] ;

where for some constants C,, 1 <i <4,

s faser (o) (f20)

which by (2.22) gives

h(M+1)—1
nl <C3+ Gy Z lapss1,m! - [nr].

m=0
Combination of (2.26) and (2.24) yields

T

~Jy(r) = /t~2ﬁM

0

§2PM (2¢,, Brranss ™ + n(s)) ds dt

=cppay + [ t7HFM /stn(s)dsdt,

0

/
o

but due to (2.27)

T

t
/t_Z'BM /smM]n(s)lds dt
0

0

T t

h(M+1)—1
< /t“wM/szﬁM <C3+C4 Z lans i1 ml |lns|>dsdt.

0 0 m=0

By partial integration we easily conclude from (2.29),

r ¢ MM +1)—1
/t"mM /szﬁM|n(s)| dsdt < Cs Z lanri1ml |nr|r? + Cgr?.
0 0 m=0

Combination of (2.23) and (2.28) with inequality (2.30) gives

UM(T) = CMT'M(I + U/MT + 771 + 772)

197

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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with 7, and n, satisfying (1.34). Since U, (r) = cM'r’M(l +a,,r+9P,,) due to (2.10c),
this together with the above implies (2.20) finishing the proof of Theorem 1.2.

3. Proof of the Lemmas

3.1. Proof of Lemma A. The proof mimicks the proof of Lemma A in [6]. Therefore
we give just the main steps.
Let 0 < R < ¢, then due to our assumptions u satisfies

(=A+ V)yu = 0in By in the distributional sense
and u € C%(Bp) N W' (Bp). (3.1

Define for I € Ny and m € {0,1,...,h() — 1}, x(rw) = Y, (w)n(r), where
n € C§°((0, R)), then

/quda: = /XVuda:. (3.2)

Taking into account (1.26) and the definition of U, ,.(r) (see (2.2)) resp. u; ,, (see
(2.3)) we obtain for 7 = r(@=D/2p,
- B, -1 5
/ Hhm ("” - ﬁﬂ%—) 77) dr = — / NE AT (3.3)

where F; (1) (defined in (2.5)) is bounded due to the assumption (1.29) on V. Hence
(3.3) verifies (2.4).
Now let without loss § < 1 and define

T

vg(r) ::/tH / |V (tw)| dw dt , (3.4)

0 gd—1

which is finite since

vs(r) < /t1_6< / |W |dwt ™! +const)dt,

0 gd—1
so by (1.29)
vs(r) = O(r'~%). (3.5)
Therefore
t t
/ |y (8)]ds = / / VY, uldws®=D/2ds
0 0 gd—1
t
Sconst/( / |Vldwsl"5>sﬁM_l+5ds
0 \gd-1

< constt7M =10y ¢y, (3.6)
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where we used that v = O(r™) due to (2.1), and (3.4). Further with

T

t
Ty () = / =20 / Fy o ()sPtdsdt for 1< M, (3.7
0 0

we obtain via (3.5) and (3.6) that

T
[} (M) < const/tM_l‘1+5z/5(t) dt
0

M—1+6

< const vg(r) m < constr

M=+l gor <M. (3.8)

By variation of constants the solution u, ,,, of (2.4) can be written as

Up oy = el (Cl,m — Jl,m) for <M (3.9

with some constants ¢, . € R.
Further because of (2 2) and the orthonormality of the Yz m S we have

M+1 h()—1

/ viwydw =Y Y U2+ / (O W) dw (3.10)

gi-1 1=0 m=0

which together with (3.9) and (2.1) immediately implies that Clm = Oforl < M—1,
m=20,1,...,h(l) —1 and for l =M, m=1,...,h(M) — 1. Hence for r — 0,

I<M-1, m=0,1,....h(1) -1
=O0(rM*) f ’ e 11
UmM=00770 T\, m=1,.mop -1 Y
verifying (2.6) and (2.7).
Further by (3.10) and (2.1),
Uppo1m@ =0@M*™) for m=0,1,....h(M+1)—1, (3.12)

with v given in (2.1) and v = §' since § < 1. Finally from (2.1), (2.2), (2.6), (2.7)
and (3.12) we get

Orpou = O™y (3.13)
To verify (2.8) we give a refined estimate for F, = F); and Jy, = Jy g

(replacing (3.6) and (3.8)). Note first that due to (2.2), (3 11)—(3 13) u can be written
as

u=Uy,Y, +p with /uYM do=0 and p=O0@FM*). (3.14)
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Therefrom we conclude

—FM(r)r_(d_l)/2 = / Yy VWU, Yy + 1) dw
gd—1

= /Y@ (—‘i—/ +u)dwUM -I—/YMV,udw

=Uy () (M +d — Day,r~!

+/Y]\24wa)+/YM<KT/—+U)udw.

Since I [ Yy, U dw’ = O(1) and since by (3.14)

l/YMVde < const (T—1/|W|dw+/]U|dw)rM+”=O(TM+V—1),

we conclude from the above
—Fy,(ryr~9=Y2 = U, (M + d — Day,r~t + O) + O™t (3.15)
Further since by (2.1)

Uy (r) = / (Py + DY, dw = cpr™ + O(MY) | (3.16)

(3.15) and (3.16) yield
—Fy(r) = @M +d — Va1 40, with 1y, = O@PM-147) 0 (3.17)
Insertion of (3.17) into (3.7) for [ = M, m = 0, gives

T

t

Jyr) = — /t_ng /((2M +d — DayyeysPM=1 4 n,,(s)sPM ds dt
0 0

= —ayepr + 0. (3.18)

Application of (3.18) to (3.9) leads to
Upy(r) = rM(ch +ayepr+ oy,

and because of (3.16) ¢, o = ¢y # 0 verifying (2.8).
Finally we show (2.9): Analogously to (3.9) it is not difficult to see that for
m=0,1,...,h(M+1)—1,

Ungr,m ™) = TPy Daggt () (3.19)

with some constants ¢, ,,, € R and with

R t
Iy m(™) = / 204 / Frpyrm(s)sPM+1 dsdt . (3.20)
r 0
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Similarly as above we conclude via (3.14) that

“FM+1,m(7”)7‘_(d_1)/2 = / Yiror,m VWU Yy + ) dw
gd—1

= U, (r) <'r_1 /YMYM+],mW dw +/YMYM+1,mU dw)
+/YM+1,mV,udw.
But [Y,,Y,,,Udw = O(1) and due to (3.14),

./YMH’mVude =O0@M~1*vy,

therefore
—Fy oy O = (@M + dyayy, T+ O, + O 1Y) (3.21)
follows and further again by (3.14),

__FM+1,m(T) = (2M + d)aM+1,mCM7’BM“ + nM+1

(3.22)
with 7, = O(@PM-1%7),
Insertion of (3.22) into (3.20) leads to
R t
I m() = / t=20M+1 / SOMA (=M + d)Cpg@ppyg ™1+ 140 (8)) ds dt
T 0
= —ap1mCy(In R —In7r) +O(1)
= Apri mCy InT + O(1). (3.23)

Finally combining (3.23) with (3.19) we arrive at
UM+1,m(7") = (a’M+1,mCM Inr + O(l))rﬁM+1 ,
which verifies (2.9) and finishes the proof of Lemma A.

3.2. Proof of Lemma B. Since the proof of the lemma follows directly the proof of
Lemma B in [6] we only indicate the main steps here.

First we recall that u satisfies (3.1). Then due to the assumptions on V' we obtain
that

Onipt € COBR) "W (Bg) and ¢ € CO(0, RDNWH((0,R)).  (3.24)
From now on ¢ = 2, . Clearly ¢©(0) = 0. Then we conclude from (3.1) that

A(Cu) = & (Vu) in By in the distributional sense,
with O(Vu) € L'(Bp), (3.25)

and observe that
CLM0 > (M +2)(M + d)¢ (3.26)
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in the quadratic form sense on L?(S9~!). The above observations lead to (compare

[6D)
/ Y@ dr + Brr1Barsa / @°r xdr < / X / |Ou| - |O(Vu)| dw™dr
Sd—l

for all x >0, x € W0, R). (3.27)

But

/X / |l - ]@(Vu)ldwrd”ldr
gd-—1

S/X / |Ou| ((Vu| + | Py (V)| dwr®t dr
a1

S
/ V| dw) dwr®1dr
Ssd—1

1/2 1/2
gconst/x sup |u(:1;)|g0<r“l( / w? dw) + ( / U? dw) )dr
|z|=r

sd—1 gd—1

x|=r

< const/x sup |u(x)] |@U|(|V1 +
Ssd—1

< const/xgorﬁM—l dr, (3.28)

where we used W,U € L*(S%"!) and (2.1) in the last step. Equation (3.27) together
with (3.28) finishes the proof of Lemma B.

3.3. Proof of Lemma C. We shall obtain the upper bound to ¢ by a comparison
argument: Let

h(r) = erfM+ (1 + g) (3.29)

where € is the constant occutring on the r.h.s. of the differential inequality (2.13), and
b > 0 is a parameter. We have for r > 0,

s ﬁM+;25M_+2 h=cb@M +d+ Dyrfu-1, (3.30)
so that h satisfies
1

M+ + = ————
B B 1/6M 2 h>erBM-1 £ r>0 d b> . 3.31
+ 72 =¢ or > an T2M+4+d+1 ¢ )

Multiplication of this inequality with x ¢, where x > 0, x € WOM(O, R) leads to

/(ch)’h’ dr + / —————'BM“L;fM“ hx dr > é/rﬁM“Xap dr, (3.32)

which together with inequality (2.13) of Lemma B yields

/ (@) (p — hY dr + / %—;E—Mtz (¢ — h)xpdr <0. (3.33)
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Now we choose

b =max(2M +d — 1)7!, p(R) (eRPM+1)~1h)
so that ¢(R) < h(R) and (clearly) ¢(0) = h(0) =0. (3.34)

Suppose indirectly that in some interval (a;,a,) C [0,R], ¢(r) > h(r) and
p(a;) = h(a;), i = 1,2. Since h(r) > 0 in (0, R] and h vanishes polynomially
for r — O we can pick x = np~! with n € C°(a,a,), n > 0 and obtain from
(3.33),

/n’(go—h)'dr%—/%((p—h)ndr <0. (3.35)
Hence ¢ — h satisfies
o " ﬁM+1/6M+2 .
(p—hY' + 2R (o~ h) <O in (ay,a)) (3.36)

in the distribution sense. But ¢ — h € Wol’z((al, a,)), so (3.35) holds also in the weak
sense and we arrive at

az az
/(w — h)*dr + / % (p—hydr<0 (3.37)
aj aj

which is a contradiction. Therefore
o)y < h(r) for r<R,
finishing the proof of Lemma C.

3.4. Proof of Lemma D. This lemma can be considered as the homogeneous version
of LemmaD in [6] and its proof remains the same, therefore we indicate only the
main steps: Starting with Eq. (3.25) we obtain by Kato’s inequality (see [10, 12])

—A|Ou| - |@(Vw)| <0 in Bg (3.38)

in the distribution sense. Mimicking the proof of Lemma 1 in [5] we conclude from
(3.38) that for some c,(d), c,(d) > 0,

[(Cu) (z)| < cr? / l(Qw) ()| dy + ¢, / lO(Vwy @) - |z -yl *dy (3.39)

Br(x) Br(z)

for © € By, and r < dist(z, 0Bp). But for |z| = r < R/2 clearly

/ (@Vu) )| - |z —yl**dy

Br(iv)
M+1 h()—1
< / lx—ylz‘d<2 > Vil / |Yz,m(VU)(|ylw)|dw+|(Vu)(y)')dy
Br(z) =0 m=0 gd—1
</ |x—ysz-d<c<M,d> / |v<|y|w>|dw+|v<y>|>dy-|slup ()] . (3.40)
y|<2r
Br(z) sd—1
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Also via Cauchy-Schwarz’s inequality

2r 2r
[ 1ol s [ [ 1@t a < qan-r / o(t)dt . (3.41)
By (x) 0 gd—1 0

Combining (3.39) with (3.40) and (3.41) we finish the proof of Lemma D.
3.5. Proof of Lemma E. Let |x| =r < R/2 and define

IO (@) := / |z —y[* / V(Jylw)| dw dy,, (3.42)

Br(x) gd—1
then because of assumption (1.29) on V' we have
J V() < K\(d, R) / |z =y~ fyl " dy. (3.43)
BZT(O)

It is lengthy but straightforward to work out that

/ |z =y~ dw, = K(d) (max(t, |z]))* "¢, (3.44)
lyl=t

and therefore for |x| = r < R/2,

2r
JV(@) < K| K, / (max(t, [z)))”" 42 dt < K(d, R)r, (3.45)
0
where K, K, and K are some positive constants.
To bound
TP = / lz =y~ V)l dy (3.46)
Br(x)

for |z| = r < R/2 from above we use assumption (A.2) on V, i.e. V. € M%(B_(0)).
Since B.(z) C Br(0) C B,(0) for R < ¢,V € M 4(B,(z)), and we obtain via
Proposition 1.2

/ le =y~ V@)l dy < d - Dr|Vliyagge, for lzl=r<R/2. (3.47)
BT(I)

We note that (3.47) holds pointwise since V € K% B (0)), which implies that the
integral on the L.h.s. of (3.47) is continuous in = (see [17]). Hence

JP(@) < cd,Ryr for |z|=r<R/2. (3.48)
From (3.45) and (3.48) we obtain
JV(@) + JP(x) < e(d, Ryr for r < R/2,

finishing the proof of Lemma E.
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4. Proof of Theorem 1.1

As already indicated in Sect. 1 the proof of Theorem 1.1 will be organized as follows:
(i) We show that H — E [H given in (1.1) and (1.2)] has the strong unique
continuation property. This will imply that ¢)cp(rw) vanishes at most polynomially
forr — 0.
(ii) We show that V = V|, — E satisfies the assumption of Theorem 1.2.
Suppose (i) and (ii) is proven, then we apply Theorem 1.2 to the Schrdodinger
equation (1.12) and therefore the behaviour of 1-p(rw) for r — 0 is characterized by
(1.31)—(1.37) with W(w) = Wp(w) given according to (1.14). Noting that clearly

Ww)=W(-w) for we S !, (4.1)
/ Yy m¥yuWdw=0 for m=0,1,...,h(M +1)~1 4.2)

gd~—1

follows due to the symmetry properties of the Y, ,’s. Therefore we obtain (compare
(1.33))
apry1m =0 for m=0,1,...,h(M +1)— 1. 4.3)

Taking this into account in (1.31)—(1.37) the result coincides with the statements
(1.15)~(1.17) and finishes the proof of Theorem 1.1.
Hence it remains to show (i) and (ii):

ad (i).

Lemma 4.1. Let 7@ = (7, ..., 7Y) € RN and B,(7©) = {7 € R¥V||F - 70| <
e}. Let =0, ¢ € COB(FONNWI2(B (7 Q) be a real valued distributional solution
of

(H-Eyp=0 in B.(F?) (4.4)

with H denoting the N -particle Hamiltonian given in (1.1) and (1.2), and E € R. If

YHF)dF = O(0*) forall a >0, 4.5)
Bo(7O)
then 1 = 0 in B_(7©).
As an immediate consequence we obtain

Corollary 4.1. Let 9p be given according to Theorem 1.1, then if 1qp(rw) vanishes
faster than polynomially for r — 0, i.e. if (4.5) holds, Ycp = 0 in B(0).

Proof of Lemma 4.1. Equation (4.4) explicitly written reads

n Ai n Y . ) . j
<—;2ml+§ J !_E)¢:0 for 7’=(T1>~~,7”N)€BE(T(O)). (4.6)

e

We reformulate (4.6) by making the following ansatz:
p=el'd, (4.7
with

N -1
" " L 1 1
F,...,fy) = E a,a,m, |7, — 7| and m, = (;L— + m_) . 48

1<g
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As will be seen from the following this kind of ansatz is particularly adapted for the
Coulomb potential, it was introduced by Leray in [14]. Actually it turns out (by a
simple calculation) that since 4, |z; — ;| = 2|z; — z;|™",

N N
]
Z o Z —7 (4.9)
=1 1<j J
and
|V,F| € L®(B. 7). (4.10)
By a further calculation we obtain
Mo WA
F _ F
> 5 Aile" D) = @Z T + AF)e

i=1 g
+2>:

and because of (4.6) and (4.9) this yields
i=1 2 1=

Yo
(St e)enc

=1
N
with

To Eq. (4.11) we can apply a strong unique continuation result of Hérmander (see
[9]) and obtain: If @ vanishes faster than polynomially in a point then & = 0. But
since ef > 0 and (4.7) holds the same is true for 9 ending the proof of Lemma 4.1.

ad (ii).
V = Vp — E is given according to (1.13) and (1.14). In (1.29) we therefore identify

FZ2 @,

+ E € L®(B.(F?)). (4.11)

U(rw) = Ugp(rw) — E  and W(w) = Wep(w).

Due to (1.8) V satisfies assumption (A.1). To verify that V' has property (A.2) we use
Proposition 4.1. Letd =3N,y = (y,...,yy). ¥; €R, 1 <i< N, B, ={y €
Ry — | < o} with o > 0, 7 € R*N, then for some c(d) > 0,

/ l—lx—l dz < c(d)e”" VB, CR?,Vj. 4.12)
R

Bo(®)

Proof of Proposition 4.1. Without loss let i = 1, j = 2.
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Suppose first that § = 0: Then with z = (z,...,zy) = (rw), w = (Wy, ..., Wy),
W, ::vj/r,

J
1 / 1 d
/ ————dfﬂ:/ / '—dLL)'I'n_ld’l‘z CO( ) Qd_l
|z, — 2, rlw; — wy d-1
0 gd-1

By (0)
2327 3d=1/2
r@d-1/2)

with  ¢y(d) = 4.13)
follows as can be seen from [8].

Now suppose that § # 0: The case g, = g, reduces to the foregoing case since by
the coordinate transform y = z — ¢,

1 1 d
/ —  dz= / dy = 9D -1 (4.14)

. lz) — @, lvi = vl d—1

Bo(@) By(0)
Finally let g, # ,: By the transform y = x — § we obtain
1 1
JQE / ——dz = / —~ — dy . 4.15)
T v — v, + 9 — Bl
Bo(®) Bo(0)

N
If o < |7, — §,1/(2v/2), then since Y- y? < ¢* we conclude —y,| < 0 and
7=1

1
\/E ]yl
further (because of the assumption on 9) |, — 7,| — |y; — ¥,| > v/20. Hence for some
c(d) < oo,

1
J, < / e dy < ¢y(d)o® . (4.16)
17 — B = vy — vl
By(0)
If 0> |, — ,|/(2v/2), then .
J, < JPJS 4.17)
with
TP = 4y, v, 4.18)
¢ [y, — v + 7, — B
<o
and

J@ — dys . ..dy, = cy(d)o*°. (4.19)

1=
S T %
N +
<
LS) NN

Further by the transform z; = % W1 — Y)s 2o = —\% (y; + y,) we obtain with

2= 7 @~ T,

Ty = / dads o / 9 / dz,
|2y + 2| |2y + 2]

VAr<e fz11<e [z2l<e
dz dz
= / i es(d)e® < / B cy(d)o® = c,(d)e’, (4.20)

lz=211<e [z]<4e
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where in the last step we used that due to the assumption on g, |Z;| < 2¢.
Combining (4.18)—(4.20)
J, < c(d)o?!

follows. This proves Proposition 4.1.
Proposition 4.1 clearly implies that V, given in (1.2) satisfies assumption (A.2) for

all £2 C R%. Since Vep(zy, ..., z5) = V(R ..., Fy) with z; = +/2m, (7, — 7P,
1 < ¢ < N it follows immediately that Vi, satisfies also (A.2), and further since
E = const, V = V;p — I has this property.

Further we note that due to the definition of Ugp, Uqp is bounded, and finally
we observe that Wep € L*(S%7!) since |z; — z,;]™" € Ly (R°Y) and 77! €

L2([0, R], %" dr). Hence V = V, — F satisfies the assumption necessary to apply
Theorem 1.2.

5. Fermionic Wave Functions

In this final section we investigate the influence of the Pauli principle on the local
behavior of fermionic wave functions. Let

Hy=Ey in QRN
where
N/

A
H==Y " —“4V(#,...,7x), (5.1

2m,

i=1

7, € R3, m,>0fori=1,2,...,N', E€R, and

Nl
V=> V,(F, 7D,

1<J

where V satisfies the assumptions of Theorem 1.0, so d = 3N’. The Hamiltonian H
in (5.1) describes a N’-particle system and in particular with V' = V, as in (1.2)
atoms and molecules. Now suppose N < N’ particles are fermions of the same
kind e.g., electrons and without loss we denote the coordinates of these particles by
(7,...,7y). Then we have m, = m for some m >0 for 1 <4 < N and

Vlj(r)lez(r), Vr>0, with 1<i<j<N,
and Vy,(r) =V, (r), Vr>0 with 2<j<N,N<k<N. (52

Then the wave function has to transform with respect to these coordinates according to

a specific representation of .3, [10]. This property will imply that such a wave function

has to vanish at least of some order (depending on N) at coalescence points 7P,

where the coordinates of the fermions coincide. We make a coordinate transformation
as in (1.11) (with N replaced by N’) so that (5.1) becomes

(—A+Vep— Eoep =0 in Bp(0). (5.3)

If 1cp does not vanish faster than polynomially in 0 than by Theorem 1.0 we have
for some homogeneous harmonic polynomial P,; # 0,

Yep(T (s s Tn> Ty o s Tr)

:PM(:cI,...,a:N,xN+1,...,:cN/)—l—o(|a:|M). (5.4)
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We first consider the case that ¢ is totally antisymmetric with respect to 7, ...,y
(this corresponds to the case that the total spin of the N electrons is s = N/2). But
due to the foregoing coordinate-transformation this implies also that 1).p is totally

antisymmetric with respect to z,...,Zy, i.e.
Yep(@yy oo Ty Ty BN TNy TN)
= —Pep(Trse e s Tyy ooy Ty TN TNy o TN7)
for 1<i<j<N. (5.5)
But because of (5.4) this implies that
Py(@y, ...z Ty TN Ty Tr)
M
+ P (@ Ty Ty S BN T Ty) = 0[]
for |z —>0 for 1<i<j<N. (5.6)
Hence P, is totally antisymmetric with respect to z,,...,Zy.

Remark 5.1. Other symmetry properties of vp (e.g. angular momentum and parity)
will carry over to P;; according to (5.4) analogously.

Therefore to determine the minimal order of vanishing of v, in 0 it suffices to de-
termine the minimal degree of P,, # 0, and obviously it suffices to consider homoge-
neous harmonic polynomials which do not depend on the coordinates T (..., T .

Lemma 5.1. Let Py (xy,...,zy) # O be a totally antisymmetric harmonic homoge-
neous polynomial with degree M. Then M is greater than or equal to the degree of
the totally antisymmetric harmonic homogeneous polynomial

N
1
D( )(ZL'I, e ,CCN) = \/'.—]v_‘_ sgnao (pi(xo(’i)) . (57)

T oEYN =1

Thereby the functions ¢, = ¢,(y), y = (Y, ¥, y3) € R are monomials ordered such
that their degree is monotonically increasing:

01 W) =1, 0(y) = Yy, P3Y) = Yo, 04Y) = Y3,

PsW) = Yt P6¥) = Yi¥as -, P10) = 43 (5.8)

Cnw) =yl p® = Y1y, .- -
Remark 52. D™(z,... z5) in (5.7) is the well known Slater determinant of
®,---,pn. Note that the ordering of the ¢, is of course not unique but this is

irrelevant for our considerations.

Proof of Lemma 5.1. Clearly D™)(x,,...,x ) is a totally antisymmetric homoge-
neous polynomial. To see that it is harmonic note that

N
1
ADM (.. oy = A —= Z sgno H o)

N gESN i=1
1 N N
= 7N > > senodieg @) [ [eap@)-
"=l oevN i#]j

But for each j, A 1 %o((@,) is a linear combination of monomials in 2 ; which already
occur amongst the other monomials of lower degree, hence AD)(z,,...,z5) = 0.
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Let g(N) denote the degree of DY), then clearly g(IV) is equal the degree of
H ¢,(x,). Now let P, be given according to our assumptions, then we have to verify
=1

that M > g(N). PM can be represented as a finite sum of monomials g;(z,,...,Zy)
of degree M and since P, is antisymmetric it follows that

N
q;(Ty, ..., Ty) = Hqij(xj)
j=1

with the ¢;; being monomials in z;, where for each ¢ at most one of the g;, equals
a constant. Comparison with our construction (5.8) clearly implies that the degree of
g; > g(IN), verifying our lemma.

Denote by n,,, the cardinality of the subset of monomials ¢;, 1 <¢ < N as given
in (5.8), which have a given degree m; then clearly

My = 5 (M + 1) (M +2). (5.9)
Define
k
k(N)=max{keN0 > n, SN}, (5.10)
m=0
and let
k(N)
N)=N-> "mn,,. (5.11)
m=0

Suppose P,, has minimal degree, then if b(IN) = 0, P,, clearly is uniquely

determined (up to a multiplicative constant), whereas otherwise there are k+l
such polynomials.
Theorem 5.1. Let Py (x,,...,xzy) Z O be a totally antisymmetric harmonic homo-

geneous polynomial of degree M(N), then

M(N) > g(N) where g(N)= % kk+1Dk+2)(E+3)+0N)(k+1) (5.12)
with k(N) = [a(N)], the integer part of a(IN), and o(IN) is the unique positive root
of the cubic equation

(a+1D)(a+2)(@+3) =6N, and b(N)= N—é k+1)(k+2)(k+3). (5.13)

Proof of Theorem 5.1. With g(IN) denoting the degree of D™ (x,,...,x ) as given
in (5.7), Lemma 5.1 implies that (5.12) holds. Further with k(N) and b(N) given
according to (5.10) and (5.11), we obtain

k(N)

gN) = " mm+ bW (k + 1). (5.14)
m=0
But,
k(N)
> nm=gk(k+1)k+2)k+3),
= (5.15)
k(N)

S on,=tk+D)k+2)(k+3).
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Therefore, by (5.10) we conclude £(IN) = [a(N)] with « given as above. This proves
Theorem 5.1.

To make the foregoing results more transparent particularly with respect to large
N-behavior we replace g(INV) by g(z) for the real variable x > 1 and derive upper
and lower bounds B, to g which have the same leading order.

Let g(1) = 0 and let g(IV) be given according to (5.12) for N > 2. We define

gx) = gN)+(@IN+1)—gN) (x—N) for z € [N,N+1], VN eN. (5.16)

Then due to (5.13) the slope of the line segment between (IV, g(NV)) and (N +1, g(N +
1)) is given by g(/N 4+ 1) — g(N) = k(IN) + 1. Next we define a sequence of integers
{N,;}, I € N, recursively:

NO = 1 5
N, =min{N € N|k(N) = k(Ny + 1} =4, 5.17)
Ny = min{N € N| k() = k(V)) + 1}.
Therefore, recalling the definition of k(V), Eq. (5.10),
k(N ) =kWNp+1=14+1, VIEN,. (5.18)

From the above we conclude that {(z, g(x)) |z > 1} is a polygonal path joining the
points (N}, g(V})) by straight lines with slope k(IV;, ;). Also, it is easy to check that
our construction implies for all z,y > 2,

oz + 1) > g@) + gly) > 29(%—?’). (5.19)

Corollary 5.1. Let g(z) be given according to (5.16). Then,
B_(z) < g(x) < B, (x) for z>1,
where

B_(z) = za(a),

B,(@) =3 2h@) + & (Bx) +2)* —
with a(x) given according to (5.13) (with N replaced by x), and (3(x) is the unique
positive root of the cubic equation

B+DB+DB+3)—;(B+2) =6x. (5.21)

Proof of Corollary 5.1. Note first that it is not difficult but lengthy to verify that both
B, are convex functions in z (this can be done using the chain rule for B_(z(c))
with z(c) being the inverse function to a(z), and analogously for B, (z(53)). Further,
due to the foregoing considerations [see Eq. (5.19)], also g(z) is convex. Now we
take into account that obviously

a(N) =k(N) and b(N) =0 VIeN,, (5.22)
so that due to (5.13),

(5.20)

B_(N)=3:Nk=gk(+1D)(k+2)(k+3)=gWN,) with k=k®,). (523)

The above implies that the line segments of g are secants to B_ and therefore
g(x) > B_(z) for all x > 1. To verify that also g(z) < B, (z) for z > 1 we
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show that there exists a monotonically increasing sequence {z;} with z; € (N, N;,))
such that
B (z) = g(z) (5.24)

and dB d
ety _ 99 _
T @) == (@) I+1, (5.25)

which implies that B, is the envelope of the line segments of g. To show this, we
define for L € Ny, 8, =1+ % and [compare (5.21)]
2= (B +2(B+ DB +3) - 5).

Then,
2 =5 Q+5)+51+5). (5.26)

Obviously, z; ¢ N, and due to (5.21), 3, = B(z)).
Now we show that z; € (N}, N, ,): Let k(z;) = [a(z;)] with « satisfying

(a+D(a+2)(a+3)=06z,.
With k& = k(z;) we obtain via (5.26)
E+D(k+2DE+F3)<A+5/2CP+51+5 < (k+2)(k+3)(k+4),

and this implies
laz)l =1 VIEN,. .27

Since a(z) is monotonically increasing, and due to (5.17) and (5.22) a(N;) =1 we
obtain z; € (IV;, Ny, ).
Calculating now g(z;) and B, (x;) we arrive at

B (x) = 53 L+ 1)*31* + 181 + 26) = g(z)),

verifying (5.24). Furthermore, we find by a straightforward but lengthy calculation

dB, <dB+(w(ﬁ)) (dw(ﬁ))“)
B, . _ . =141
dz @) ag dp B=l+1/2 T

verifying (5.25) and finishing the proof of Corollary 5.1.

Remark 5.3. Obviously, B, (IN) can both be given explicit by using Cardano’s
formula for cubic equations, but to make their asymptotic behavior, and hence also
the behavior of g(/V) for large N more transparent, we expand these bounds in powers
of N, estimate the remainder and get

1 2/3 1 —-2/3 1 4/3
55 ON)Y? — 22 (6N) 7/ < g(N) — £ (6N)¥/

3 5 2/3 23 125 —2/3
+3IN < 26N+ 325+ 525 (6N) 2. (5.28)

It is now easy to generalize Theorem 5.1 for general spin states, taking into account
well known properties of the representation theory of the symmetric group .%y [10].

Theorem 5.2. Let cp(Ty, ..., Tp, Ty, -->Tr) be given according to (5.3) and
(5.4) and let N, > N, > 0 such that N, + N, = N. Suppose that 1p is totally
antisymmetric with respect to the coordinates ...,z y and to the coordinates
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TN, 115+ - > TN 4N, - Then the order of vanishing of Yp in the N-fermionic coalescence
point 0 — which equals the degree M of the polynomial P, — is at least

M(N,, N,) = g(N,) + g(I,). (5.29)

Furthermore, for fixed N the minimum value of the degree is given by

N
29(—2—>, N even

N +1 N -1
g<—2—> +g<—§——>, N odd.

Proof of Theorem 5.2. Analogously to the foregoing considerations (compare (5.4),
(5.5), (5.6)) the polynomial P,, is totally antisymmetric with respect to the coordinates
Ty,...,2zy and to the coordinates zy ,;,...,Zy 4y, According to Lemma5.1
such a polynomial with minimal degree can be constructed as a product of two
Slaterdeterminants of degrees g(/V,) and g(V,). This yields (5.29), whereas (5.30) is
an immediate consequence of the convexity of g(x) (compare (5.19)).

We note that the setting of Theorem 5.2 corresponds to a wave function of a system

with N = N, + NV, identical fermions whose total spin is s = % (N, — N,). The Pauli
principle requires the wave function to be antisymmetric in /N, and antisymmetric
in the other IV, fermions. In order to be an irreducible representation of .%%; also
symmetrisation in the way how to pick up any NN, fermions out of IV is necessary.
This, however, makes every polynomial P,, with minimal degree a superposition
of products of two determinants, hence it does not change anything on the degree

M(N,,N,).

My(N) = | min M(N,,N,) = (5.30)

Remarks (54). i) As numerical example we compute that for N = 1000, M,,(1000)
is given by 2¢(500) = 9360, whereas g(1000) = 12155. However, (5.28) yields,
rewritten for g(500) resp. g(1000),

4667.103 < ¢g(500) < 4680.1235,
12142.16 < ¢(1000) < 12162.82.

Similarly, for N = 20, M;(20) = 2¢(10) = 30, ¢(20) = 45 we find

15— (2.19-107%) < g(10) < 15.98.
45— (8.69-1077) < g(20) < 46.54..

ii) The behaviour of (V') ~ N*/3 reminds oneself on Thomas-Fermi theory although
no energy consideration has been made.

iii) Note that for atoms M,(/V) is a lower bound to the order of vanishing of a many-
fermion wave function at N-fermion CPs. Certainly it is not always attained — atoms
with ground states with total spin > 1/2 exist, but we believe that it is of the right
order of magnitude for N — oo, though we have no clue how to prove this. For other
systems our lower bound is attained: Take an isotropic N -particle harmonic oscillator
with Hamiltonian

N
H=) (A +a}, (5.31)

i=1
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then with P,, being any harmonic homogeneous polynomial in 3N variables,
2 . . .
u=elzl”/ 2PM, is an eigenfunction so that

Hu=@2M+3N)u.

iv) In our construction of a “minimal” polynomial D@ Nz, ...,x,) we have chosen
the N-fermion CP, zp, to be the origin. It is easy to see that (5.7) is translationally
invariant, i.e.

DNz, +d,xy+d,...,xyn +8) = DM@, 2y,...,25). (5.32)

This follows immediately from the construction of DY), since adding a constant
vector to any coordinate z,; changes the rows of the determinant (5.7) by adding a
multiple of another row, which leaves the determinant invariant. Furthermore, D@
also reproduces the correct behavior of wave functions at N — 1 fermion CP’s if
one changes one coordinate, e.g. =, to , + d@. This can be easily checked since

then DY) contains either all the monomials (z N+ a);c (N), 1 = 1,2,3, or one or
two of the monomials (z + a)f(N)H, depending whether N is one of the IV, in
(5.17) or not. The minor of these elements is given exactly by one of the equivalent
DWN=D(z,, ..., xy_,), therefore the lower bound to the order of vanishing of the
wave function is g(N — 1) as required. Analogously, one can easily conclude from
the behavior of DY) at (N — n)-fermion CP’s the lower bound to the order of
vanishing of the wave function to be g(IN — n).

Finally, let us note we can easily generalize our results for antisymmetric wave
functions for a system of NV identical particles living in v space dimensions. Since our
Theorem 1.0 for N’-particle wave functions holds also for systems of N’ identical
v-dimensional particles (under suitable assumptions on the two body potentials), we
can generalize (5.1) and (5.2) to this case. Suppose the wave function (7}, ..., 7y/),
where the 7, € R” denote the v-dimensional position vectors, is totally antisymmetric
with respect to N < N’ particles, then it must vanish again for N-particle CP’s at
least like g, (V) given by

vk +v)!
k-D'@w+ 1)
where k = k(N) = [o,], and o, (N) is the unique positive root of the v order
equation
INa,+v+1) | I'k+v+1)
—r - =yIN d b (N)=N — .
Tatn VY, and 0,() Ttk + DI+ 1)

Considerations analogous to Corollary 5.1 and subsequent paragraphs lead to bounds
for g, (IV):

9,(N) = +0,(N)(k+ 1), (5.33)

(5.36)

V(l/ - 1) ' 1-1/v V(l/_ 1)(’/2 - 9) ' 1-3/v ' 1-5/v
T (!N) + o0 (W!N) + OW!N)
14 1

< g,(N) — INHFY L N
< g,(N) (V+1)!(v ) +2

v(v +2) -1/
< T2 ) v
S W

v(iv =1 (w+2) v+ 14/3)
1920v!

WIN)=3Y £ OWIN) 37v (5.37)
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As an example, let us consider the cases v = 1,2 separately. Here, the bounds need
not to be expanded in powers of /N but can easily be given explicitely. For particles
living on a plane, we get

2—3]! VIN +1/4 ~ N < g,(N) <

QN +1/3% - N,

W —

whereas for v = 1 we get the trivial result

g (N) =3 NN - 1).

References

1.

10.
11.

12.
13.

16.

17.
18.

Abott, P.C., Maslen, E.N.: Coordinate systems and analytic expansions for three-body atomic
wave functions. I. Partial summation for the Fock expansion in hyperspherical coordinates. J.
Phys. A 20, 2043-2075 (1987)

. Aizenman, M., Simon, B.: Brownian motion and Harnack’s inequality for Schrddinger operators.

Commun. Pure Appl. Math. 35, 209-237 (1982)

. Avery, J.: Hyperspherical harmonics: applications in quantum theory. Dordrecht: Kluwer

Academic Publishers 1989

. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations, 2" ed. Berlin, Heidelberg,

New York: Springer 1983

. Hinz, A.M., Kalf, H.: Subsolution estimates and Harnack’s inequality for Schrodinger operators.

J. Reine Angew. Math. 404, 118-134 (1990)

. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: Local properties of solutions of Schrodinger

equations. Commun. Partial Diff. Eq. 17, 491-522 (1992)

. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Stremnitzer, H.: Electronic wave functions

near coalescence points. Phys. Rev. Lett. 68, 3857-3860 (1992)

. Hoffmann-Ostenhof, M., Seiler, R.: Cusp conditions for eigenfunctions of N-electron systems.

Phys. Rev. A23, 21-23 (1981)

. Hormander, L.: Uniqueness theorem for second order elliptic differential equations. Commun.

Partial Diff. Eq. 8, 21-64 (1983)

Judd, B.R.: Operator techniques in atomic spectroscopy. New York: McGraw-Hill 1963

Kato, T.: On the eigenfunctions of many particle systems in quantum mechanics. Commun. Pure
and Appl. Math. 10, 151-171 (1957)

Kato, T.: Schrodinger operators with singular potentials. Israel J. Math. 13, 135-148 (1973)
Kutzelnigg, W., Klopper, W.: Wave functions with terms linear in the interelectronic coordinates
to take care on the correlation cusp. I. General theory. J. Chem. Phys. 94, 1985-2001 (1991)

. Leray, J. In: Ciarlet, P.G., Roseau, M. (eds.): Trends and applications of pure mathematics to

mechanics. Lecture Notes in Physics, 195, pp. 235-247. Berlin, Heidelberg, New York: Springer
1985

. Morgan, J.D. III: Convergence properties of Fock’s expansion for S-state eigenfunctions of the

He-Atom. Theor. Chim. Acta 69, 181-223 (1986)

Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, selfadjoint-
ness. New York: Academic Press 1975

Simon, B.: Schrodinger semigroups. Bull. Am. Math. Soc. 7, 447-526 (1982)

Stein, E.M., Weiss, G.: Fourier analysis on Euclidean spaces. Princeton, NJ: Princeton University
Press 1971

Communicated by B. Simon








