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Abstract: Correlation functions of the Edwards model of polymers at weak coupling
are defined and studied at the critical point, in dimension four, by a rigorous renor-
malization group method which validates, at any order, perturbative renormalization
group results on their behaviour at large distances. Remainders are controlled by a new
argument which enlarges the use of methods of constructive field theory to models
of statistical physics.
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1. Introduction

Edwards model [1] of polymers in a random potential and the alternative perturbatively
equivalent [2, 4] Edwards model [2] of (possibly weakly) self-avoiding polymers play
an important role in polymer theory. From the viewpoint of perturbative field theory,
they coincide [3, 4] with φ4 "at N = 0 components" (i.e. TV is fixed at zero in
perturbative formulae which a priori apply to strictly positive integer values of N).
At the critical point (i.e. for theories with arbitrary size of the polymers) the basic
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question is the behaviour of relevant quantities for large distances, or for large size
of the polymers, which corresponds from the viewpoint of field theory to the infrared
limit. In this paper, correlation functions of the above Edwards models are defined
and studied at the critical point, in dimension four, by a rigorous renormalization
group method which shows that perturbative renormalization group results are correct
at any order, and provides in fact a rigorous control of remainders for sufficiently
small couplings (depending on the order). Dimension four is not physical. However
the stable fixed point of lower dimension is non-trivial, the large distance behaviour
has an anomalous dimension (see Remark 3 below) and the theory cannot be treated
rigorously so far.

Perturbative results of the type we are interested in have been obtained either in
the framework of field theory (see [5]) or directly in polymer theory in [6]. (Results
of field theory provide desired results at the perturbative level, by simply putting
N = 0 in perturbative formulae for φ4.) Concerning rigorous results, the situation
that arises from previous works is the following. First, results on the Edwards model
of (weakly) self-avoiding polymers have been obtained in dimension 2 and 3 in
[7] and [8] respectively, but the problem treated so far in these dimensions is the
ultraviolet (UV) limit, with a fixed infrared (IR) cut-off corresponding to a maximal
finite length of polymers. In works in dimension 4 and above, there is on the contrary
so far a fixed UV cut-off (corresponding e.g. to replace continuous space by a given
lattice) and the problem treated is indeed the IR limit. For dimension 5 and above
the model is superrenormalizable at large distances and the existence and behaviour
of the correlation functions are known via the so-called lace expansion [20, 21]. On
the other hand in dimension 4, in which the model is just renormalizable, methods
of [9, 10], based on probabilistic methods or on correlation inequalities respectively,
provide bounds on probabilities of intersections of Brownian paths [9] and in [10]
estimates on the β function of the Edwards model are established. However, these
results do not prove the existence and behaviour of the theory for arbitrary large
length of the polymers. (Methods of [9, 10, 20, 21] apply on the other hand to values
of the coupling that are not necessarily small.)

Rigorous results related to ours follow in constructive field theory, for "infrared
φ\" (φ4 in dimension 4 with mass zero and fixed UV cut-off), from the methods of
[11, 12]. However, φ4 "at TV — 0 components" is no longer a field theory and, in
contrast to the perturbative situation recalled above, these methods do not provide
rigorous results "at N = 0." Although the general spirit remains close to that of [11,
12], our methods will thus differ in various respects. In particular, the "domination
procedure" used in [11, 12] to cure crucial divergence occurring in the analysis of
bosonic models like φ4 (and linked to the divergence of the perturbative series)
will be here replaced by a new argument which is in some sense the main point of
the proof. This new method should also allow the use of techniques inspired from
constructive field theory for the rigorous treatment of other models of bosonic type
requiring a renormalization group analysis, either in statistical physics or in field
theory.

To be more precise on the scope of this paper, let us now give some further
indications on the general physical background and on the type of results to be
established. The Edwards model of self-avoiding polymers, introduces an interaction
factor:

T T
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with g = oo; after one or more renormalization group steps g takes finite values
depending on the ultraviolet cutoff. The weakly self-avoiding model corresponds to
g small enough. The parameter a depends on g at the critical point. The 2-point
correlation function F(x,y) is then formally a functional integral with the usual
Brownian measure over all paths f subject to the condition r(0) = x, r(t) = y,
and a further integration over all possible lengths T of the polymers. The problem of
interest to us in that framework, is then, the derivation of results on the large distance
behaviour of F as \x — y\ —• oo, as also of 2n-point correlation functions. The
perturbatively equivalent model of polymers in a random potential can be formally
defined by its correlation functions. The 2-point function F is e.g. given formally, up
to inclusion of a fixed UV cut-off as described later, by the formula

F(x,y) = Jj 2 +

! . σ Wy) exp j (iaσ(u) + y J du\ dμ(σ). (1)

In (1) g is the coupling constant and a is again a function of g to be chosen in
order to obtain the critical theory; σ is a random (real-valued) function, dμ(σ) is the
normalized quadratic measure of covariance δ(x—y) (i.e. with propagator 1 inp-space)

and < —z >(x, y) is the kernel of the operator ((—Δ) + iqσ)~ι\ in view of the
\v2 + igσ\

later introduction of the UV cutoff, this operator will also be written I — + ίgσ

\ c J
where C is the operator whose kernel C(x, y) is the Fourier transform (in x — y) of
the propagator C(p) = l/p2 and σ is here the operator with kernel σ(x)6(x — y).
At g = 0 one recovers the usual propagator l/p2 corresponding to Brownian
motion. The 2n-point function is formally defined similarly, {.. .}(#, y) being replaced
by Y\{.. .}(xi,yi). (The interaction between the n polymers is generated by the

i

contraction between σ's in denominators.)
Results that will follow from our methods e.g. in the critical or "zero-mass" theory

include the existence of correlation functions with the known perturbation series of
the Edwards models and their behaviour at large distances e.g.:

*•<* y) = (ι + +

In (2) the remainder R(x,y) is well defined and is shown to decrease at large
distances at least like l/(ln|x — y\)2; λ1? λ2 are "universal" constants, independent
of the bare coupling g and of the ultraviolet cut-off. (This is not the case of the
constant K = 1/Cren

: s e e (78)). Similarly, the (amputated, connected) 4-point function
ϊ

H(τxλ..... TXΛ) behaves as — 1 + —r 1 \, where β7, βn are standard
-/3 2 lnr L β\ lnτ J

constants of the model (also independent of g and of the ultraviolet cutoff).
In this paper, correlation functions will be defined as the limits of functions FΛjρ

of the form (1) with cutoffs Λ, ρ, described in Sect. 2.
Remarks. 1) Our methods allow one to construct also the theory away from the
critical point, for any positive mass m (a depending on g and ra), and to study the
approach to the critical point following methods of [19].
2) The leading behaviour in (2) is in cst/|x — y\2 rather than (\n\x — y\)/\x — y\2

as would be expected in some related situations. This is linked [13] to the fact that
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the anomalous dimension in 4-ε dimensions is here proportional to ε2 or, as we shall
see, to the fact that the renormalization of the coupling constant is in g3 and the wave
function renormalization in g4.
3) In dimension 3, the two-point function at large distances is expected to decay like:

i/\χ-y\ι-η,

where η is the anomalous dimension (instead of l/\x — y\ in the free theory); 77,
which is independent of g, is quite well known experimentally as well as by numerical
simulations, ε-expansion and high temperature expansion [5].

The precise statement of the result is given in Sect. 2. As we shall see, F is initially
defined in a finite box A and with a further IR cut-off in the propagator. The A —• 00
limit, in the theory with both UV and IR cut-off in the propagator, will be studied in
Sect. 3. An introduction to the infrared limit is given in Sect. 4. More details on the
various procedures will be needed, in particular renormalization and resummation of
low momentum contributions are given in Sect. 5 to 7. The subsequent derivation of
the existence of the correlation functions in the infrared limit and of results on large
distance behaviour is outlined in Sect. 8.

2. The Model and Results

Theorem 1. a) There exists a function of g : F(x, y, g) the perturbation series of
which in g is that of the two-point correlation function of the Edwards model at the
critical point with the propagator:

V(P)/P2 ,

where η is a C°° function, positive, equal to one at the origin and with sufficient
decrease at infinity. Moreover the asymptotic behaviour of F is given by Eq. (2).
b) F is C°° in g > 0 and is Borel summable.

F is thus the unique function with the above perturbation series, analytic in
argg < τr/4 for small enough complex values of g, with n t h derivatives bounded
uniformly by cstn(n!).

Theorem 1 is stated here for two-point functions but it extends similarly to 2n-point
functions.

Part b of the theorem will not be proved in this paper. It follows from the
construction given below and from a combinatorial argument in [11]. On the other
hand, the proof of part a will be given for a specific cutoff 77, of the form:

V(P) = η'(p)/a + εη'(p)), ε small enough, 7/ = pw[(l/p10) - l/(p 1 0 4- 1)],

but the proof can be extended to more general choices.
In order to give meaning from the outset to the expression obtained, one first

considers the theory in a finite volume A in a -space: the integrals Jaσ(x)dx and
f a2 f a2 \ A

\ — d x \ = —\A\\ are then finite. A will later tend to infinity. On the other
A

hand, it is convenient to introduce also an auxiliary infrared cut-off, e.g. by using

the propagator C{ρ)(p) = ps[(p10 + M " 1 0 ^ ) " 1 - (p 1 0 + l ) " 1 ] , where M > 1 is a
given (arbitrary) constant: momenta p are then roughly limited to values such that
\p\ > M~Q\ ρ will later tend to infinity. It is then useful to decompose C in momentum
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space, e.g. in the form:

C(<)(p)=p8[(p10 + M-1 0 <)"1 - (pl0 + M-m-ιy1]. (4)

The two-point function for the theory for A, ρ is then given at that stage by the
formula:

σ C j (z ,2/)exp^α / σ(z) dz + *^-\A\ > dμ(σ), (5)

where crC^λρ) is the operator with kernel σ(x)C(Λρ)(x,y), and

M^ 1 7 2 M^Ϋ'Hz,y)dz ifx,

and zero otherwise.

For various technical reasons, our starting point will as a matter of fact be slightly
different. Equation (3) is first rewritten in the form (leaving A and ρ implicit)

where the "field" operators A and B have the respective kernels:

AΛρ(ί, x; y) — A(ι\x, y) if x,y G A and zero otherwise,

BΛρ(x; i, y) = E ( 2 )(x, y) if x, y e A and zero otherwise,

with A(ί\x,y) = B{i)(x,y) = {CfQ\)^2{x, y), and AσB in (4) is the operator with

kernel / A{.\ z)σ(z)B{z\.) dz, i.e.:

AσB(i, x\ j , y)= A(i, x\ z)σ(z)B(z\ j , y) dz.

(A and B are distinguished to make clear later composition rules of operators.)
On the other hand, in view of the treatment of the ρ —> oc limit, it will be

technically useful to replace the denominator 1 + igAσB by

((1 - ε) + εVA.VB + igAσB

for some fixed small ε > 0.
This new denominator would be formally identical to the previous one in the

absence of UV cut-off (i.e. with the propagator l/p2). This is no longer strictly true
in the presence of the UV cut-off, which will not be removed, but it corresponds to
a new, slightly different choice of the latter. (In the Λ, ρ —* oo limits the UV cutoff
will then be the cutoff η indicated previously.) For simplicity, we shall also replace
1 — ε by 1 in this new denominator. Then the "true" coupling constant is g/{\ + ε).

Our starting point will thus be for the two-point function:
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where

FΛ,ρ,i,j(
χ'> V)= I Fij,Λ,β(χ> y> σ > e x P \ { I aσ(z)dz + / y dz

^ A '

= (BΛJX; i,.)

V 1

In the same way the 2n-point function is given by:

FA,ρ(Xl' ' >X2Ή) — Z_j FΛ,ρ,iu i2n (Xl» ' * * ' X

AAtQ(j,.; y)). (8)

Γ n ( Γ Γ 2
= y ΠFΛiβίikίJ2k(χk>x2k>σ)exP yj aσ(z)dz + J γ

k=\ \k=\

We shall prove:

Theorem 2. For ε, # sufficiently small, there exists a constant a(g/l+ε), correspond-
ing to the theory at the critical point, such that:

exists and the asymptotic behaviour given by (2) holds with:

\(R(x, y)\ < C(g/l + ε)(ln \x - y\y2 .

Remark. C(g/1 + ε) —> oo when g —> 0.

The proof of Theorem 2 and related results is the content of this paper, and a will
be explicitly constructed.

The limits as Λ, ρ —• oo of the derivatives in g of FΛ ρ are formally the successive
terms of the perturbative series of the Edwards model. The proof of part a) of
Theorem 1 is then achieved by applying our construction to the derivatives of
FΛ ρ(x, y)\ see [11] for a similar analysis in the case of infrared φ\ .

The following bounds will be useful:

\C{ι\x,y)\ < cstM~2iexp { - M^\x - y\},

\A(i)(x,y)\ <cstM~3 iexp{ -M'^x-yl}. (10)

First and second derivatives of A^ι) will on the other hand satisfy the bounds

-M-|*-y|5 ( Π )

where da/dxa stands for d/dxv, if a = 1, and d2/dx2

v or d/dxvd/dxv, if a = 2.
We also note for later purposes that the L2 norm of the function A^\xOy.), for

any given x0, satisfies

ί\A(ί\xo,y)\2dy<cstM-2i.
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3. Infinite-Volume Limit in the Theory with IR and UV Cut-Off

In this section ε is fixed at zero for simplicity and our aim is to study the A —>• oo
limit in a theory with fixed UV and IR cutoffs in the propagator. We first state

Proposition 1. For ε = 0 and \g\ < c(a)M~2ρ, with c(a) small enough
lim FΛρ(x,y) = Fρ(x, y) exists and satisfies the bound:

\FQ(x,y)\ <cstexp{-cst 'M-* |α:-2/ |} .

This result is without interest in the ρ —> oo limit (since \g\ < c(a)M~2ρ) and we
omit the proof, which is similar to that of Proposition 2 below. As an introduction to
the next section, we shall as a matter of fact prove the analogue of Proposition 1 for
the two-point function F^ defined by the formula:

x exp I{ia{ Jσ{z)dz+^-\Λ\\ dμ(σ), (12)

I A J
obtained by putting in (8) ε — 0 and i = j and removing all internal summations over
momentum indices of the A and B's (all fixed here to i); ai will be taken equal to
a0M~2\ which is the correct order of this parameter as will be checked in the next
sections. We then prove:

Proposition 2. For \g\ < c(ao,ε'), with c(ao^εf) small enough, uniformly in i.

lim Fyϊ\x, y) = F^τ\x, y) exists for each i and satisfies the bound:

\F(i)(x,y)\ < cst(εf)M~2i exp { - ( 1 - εf)M~ι\x - y\) (13)

with cst(ε7) —> oo and c(α 0, ε1) -^ 0 when ε' —>• 0.

Proof. The analysis is based, as in related problems in constructive field theory, on
a "cluster expansion" [14]. There will be, however, some specific aspects in our
framework. This expansion will be convergent at small coupling, in contrast to the
perturbative expansion, and will still provide, as the latter, a set of explicit propagators
that will link x and y, possibly through intermediate boxes. The cluster expansion
that seems simplest for our purposes is an expansion with respect to a paving of A by
boxes Δ, e.g. a (hyper)cubic paving. The size of boxes in this paving is cstM 2 (i.e.
a volume cst4 M4τ of each box) which is convenient in view of purposes of Sect. 4
to 8, in connection with the bounds (9), (10). It will ensure bounds of the form

e x P { ~ Λ^~* d(Δ, Δ;)} < cst independent of i. (14)
A'φA

In the remainder, the index % will be left implicit unless otherwise stated.

A real variable hΛΔ, is associated to each pair (Δ, Δ') of boxed of A (Δf φ Δ).

Let h = {hΛ Δt} and let A(h) = B(h) be defined by the relation

A(h)(x, y) = hΔίΔ,A(x, y) if x e Δ, y e Δ'

or vice-versa with by convention hΔ Δ = 1. (15)
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FΛ(x,y;h) is defined as in (12), with A, B replaced by A(h), B(h) in the

denominator D — 1 + igAσB. The actual FA is reobtained when all hΔ Δ, are equal

to one, while fixing some hΔ Δι at zero amounts to decouple A and Δl\ in particular,

if A is divided into two decoupled regions Λl9 A2 {hΔΔ, = 0 if A G Λl9 Δ! e Λ2),

then 1/D(h) factorizes into a corresponding product of orthogonal operators:

D(h) D(h) \Λι D(h)
(16)

Through Taylor expansion of order 1 around the origin in all variables hΔ Δ,, we
then express FA(x,y) = FΛ(x,y; {1, ---, 1}) as a sum of terms associated to all sets
P of pairs of boxes of Λ, with integration (from 0 to 1) over all hΔ Δ, such that
(Δ, A1) e P, all other variables hΔΔ, {A ^ A') being fixed at zero. For each P, the
set of pairs of P will link the external points x and y. The integrand will be expressed
as a sum of contributions in which (due to derivatives in the variables hΔ Δ/) the
resolvent D~ι is replaced (up to unessential aspects) by operators of the form

D-ιg(AσB)ιD-ιg(AσB)2 D~ι.

The general idea will be to use the fall-off properties of A and JEΓs in numerators
to make all needed summations and obtain bounds on FΛ that will be uniform in A
at small enough g (The existence of the A —• oo limit will follow similarly, e.g. via
expansions of FA, — FΛ, A' D A). To that purpose, it is convenient to first write the
expansion of FΛ provided by previous procedures in the form:

Σ
P i<k<d sets of triplets (A1 ,Δ,Δ"}nO)

2 compatible with P j—ί, ,k

1 1

/ •• / Π dkΔ,Δ> / dzl—dzk / dμ(σ)

(Δ,Δ')eP Λ(P)
σ{zx)---σ{zk)

D

expίi fσ(z)dz+γ\Δ\\. (17)

{ J

Δ J
In (17), d= | P | , and Λ(P) is the set of boxes that belong to a pair of P. The third

sum runs over sets of triplets (A\ A, A!') of Λ(P)3, one for each j = 1,. . ., k, with
for each j specification of one among three classes (n^ = 1,2 or 3) corresponding
to derivations with respect to hΔ Δ,, hΔ Δ,, or both respectively. In the first class,
(Δ, Af) e P and either (Z\, A!') φ P or A!' = A, In the second, the roles of Af and
A" are exchanged. In the third, (Z\, Af) and (Δ, A") are different pairs of P. We
also write below (A',A,A"), (A',A,A") and (Δ\Δ,Δ") triplets with the further
specification of class 1, 2 and 3 respectively. A set of triplets is compatible with P
if each pair of P occurs once, and only once, as a non-underlined pair (obtained by
derivation with respect to the corresponding variable h^) in one of these triplets.
Finally, the operator Vj(Zj) is defined as follows for each j = 1,.. ., h. If n3• = 3, it
is the operator with kernel A{x,z-)B{z^y) if x e A\ z^ e A, y e A", where A\
A, A", are the boxes of the triplet (A\ A, Aπ)-, and zero otherwise. If a pair (.) is
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underlined (n^ = 1 or 2), there is a further multiplicative factor fy ^ (equal to one if
the two boxes coincide).

The restrictions of dμ(σ) to A(P) and of the last product in the integrand to boxes
A of A(P) are due to the following facts:
(i) given P, values of σ at points x that do not belong to A(P) occur only in the

factor e

ιaίσ(z)dz (since all hΔΔ, have been fixed at zero in other factors when
(A Δ') f P), and
(ii) the integral

/

Γ Γ 2 p

exp ia / σ(z) dz + — /
L Λ\Λ(P) Λ\Λ(P

dz

Λ\Λ(P) Λ\Λ(P)

\Λ\Λ(P)

where A \ A{P) is the set of boxes of A that do not belong to Λ(P), is equal to one

(as is checked by using, e.g. the equality / eι$ σ^f^dz dμ(σ) = e ϊ ' , where
C is here the covariance of the measure dμ(σ), i.e. C(x, y) = δ(x — y)).

I Δ

a2

Remaining factors exp ^ ί j σ{z)dz Λ \Δ\ I in the integrand of (17) will later

a2'
be bounded in modulus by factors exp \\Δ\— for each box A of A(P), where

| z 4 | = c s t 4 M 4 i .
The use of fall-off properties of the A and B's contained in the operators V's,

and of the bounds 11 ̂Z3> x 11 < 1, do not yet allow one to get uniform bounds in A as
\Λ\ -> oo:
(i) because we have not made a momentum decomposition of the σ(z{),..., σ(zk)

"fields" in the numerator of (16), and thus these σ have not momentum centered
around M~%.
(ii) because there are a priori too many terms, due to the k\ possible permutations of
numerators V l 5..., Vk, for each given (non-ordered) set of triplets.

Removal of σ's. The most convenient method to treat the first problem is to
remove all factors σ(zλ),... ,σ(zk) from numerators. This can be achieved through
contractions of these σ's either together or with those of the denominators D or with
exp ia f σ, namely through repeated use of the usual formula f σ(z)F(σ) dμ(σ) =

F(σ)) dμ(σ) (where the fact that dμ(σ) has covariance δ(x - y) has been
δσ(z)

used).
The result is analogous to (17), with now a number k + 1 of resolvents D(h)~ι

(separated by k operators V{.){z-)) which can be larger than d+1 (namely d/2 < k <
Id) as the consequence of possible contractions of σ(z) with σ's involved in D~ι.
These contractions yield new operators Vj(Zj) associated with triplets (A', A , A")
(without constraint on the boxes A\ A, A!' in A(P)). These triplets belong by
definition to class 4 (rij — 4). On the other hand, ^-functions δ(za — Zβ) "pairing
together" two operators V's are obtained from contraction of σ's (of numerators)
either together or with those of D~ι. In particular any triplet in class 4 is thus
associated with a given triplet (Δ',Δ, A") in class 1, 2 and 3. Points za which are
not paired with other points Zβ can arise from contractions with exp ia J σ, in which
case multiplicative factors ia are obtained.
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Cauchy Formula. The second problem can be treated by regrouping together terms
D~ιV^D~ιV^y .. associated with all permutations corresponding to a given, non-
ordered, set of triplets. To that purpose, their sum will be written in the form

=0, 3 = 1, ,k

and will in turn be expressed (via a Cauchy formula) as an integral over a suitable
set of contours, chosen to be circles of radius r- around the origin in the space of
complex T^'S. AS will appear below, a convenient choice of the r^'s is:

τ3 = χniΔjΓ'M2' exp{M-*(l - η)[d((Δ, Δ')ό) + d((A 4'%)]}, (18)

with some sufficiently small constant χ > 0 and some small given η, 0 < η < 1 (e.g.
η = 1/10). In (18) n(Δ) is the number of pairs of P containing Δ so that, for any
box the total number of indices j with Δ- = Δ is bounded by 2n(Δ).

This choice of the r^ 's will first ensure that:

7 y.
h J < 1/2, (19)

because uniformly in the ft's (which are all between 0 and 1):

Thus || (D + ^ T ^ O - i l l will still be uniformly bounded. On the other hand,
(exponential) fall-off factors between boxes will be reobtained from bounds on the
integrals over 7^ ,\lj\~ rj»which will include a product of factors 1 /r-, in view of the
exponentially increasing factors included in the r^ 's (as d((Δ, Δf)j) and d((Δ, Δ")^)
tend to infinity). These factors will allow one to make all remaining summations, first
over possible positions of boxes Δf, Δ" belonging to triplets of class 4 and then over
the number and position of boxes corresponding to triplets of class 1, 2 or 3, and
over the set of all possible P's. The fact that non-underlined pairs are distinct two by
two and form a connected set (linking the external points x and y in FΛ(x,y)) will
be used. The uniform bound (13) will then be obtained on FΛ.

As already mentioned, the actual existence of the A —>• 00 limit is proved in a
similar way, e.g. by treating differences FA, — FΛ, A! D A.

We give below more details on the proofs of (19) and of the uniform bound (13)

on Ff.
Proof of (19) Let H = Σ T ^ The most elementary bound | | # | | 2 <

3

f \H(x,y)\2 dxdy is not adequate. (The right-hand side tends to infinity with A)
We shall instead use the following slightly more refined result which applies to any
operator H with (regular) kernel H(x,y).

Lemma l||fT|| < C(H)ι/\ (20)
where

C(H) = SuPj/ J dxQ(x)\H(x, y)\, (21)

Q(x) = J\H(x,y')\dy'. (22)



Polymers in Weak Random Potential in Dimension Four 95

Proof. The inequality |(/, Hg)\2 < C ( # ) | | / | | 2 | | # | | 2 is easily derived from the relations

Jf(x)H(x,y)g(y)dxdy < J \f(x)\2dxί dx'\ j H(x'\y)g{y)dy

and \g(y')g(y")\ < \{\g{yf)\2 + \g(y")\2). Q.E.D.

The bound (19) follows easily: it is shown that C(H) is finite when H = Y^^jV-

and |7 | = r •; C(H)1/2 is moreover smaller, e.g. than 1/2 if the constant χ included in
the definition of r- is small enough. We explain below how bounds on Q(x), uniform
in x, can be obtained. The bound on C(H) follows similarly. The result is based
on the exponential fall-off factors e-M~^((A^'%) i n t h e bounds on the A and B's
involved in each Vj. Similar exponential fall-off factors still hold for r^V^ in spite
of the exponential increase of r , and will allow one to obtain uniform bounds on the
sum, independent of the number of terms.

More precisely:

/
~6iM2idyM~6iM

x exp { - 77[M-M(Z\O, Δό) + d{A^ A")} }, (23)

where Δo is the box that contains x. Since the total number of j with Δj = Δ is
bounded by 2n(Δ),

ί dyΣlrjVjix^l < cst^exp{-ryM-M(zl0,^)}.
J j Δ

(24)

By scaling Σexp{-ηM~ιd(Δ0, Δ)} is bounded by a constant independent of i
A

(and Δo). Q.E.D.

Proof of (13). We finally give some indications on the subsequent proof of (13). It
is first convenient to write FΛ(x,y) as a sum of contributions F^Pk)9 where k is
the number of operators V obtained after removal of σ's from numerators. F^Pk^ is
written, following previous formulae, as the integral

F p , k ( χ > V ) = I F p , k ( z ι , - " , z k , x , y ) [ δ ( z a - z β ) ] d z u . . . d z k ,

where the δ functions are those pairing points za,Zβ. It is then shown that

<M-2i(cstgM~2i)h Y[ n{Δ)2n{Λ)

ΔeΛ(P) (A,A')eP

as a direct consequence of bounds of the form

ι|β(<)(χ,.)iιμ(i)c,y)iι

on contributions to FPk.

Ί3
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A part of the exponential decay is used to compensate the n(Δ)2n^Δ\ which is
bounded by (n(Δ)\°^ι\ via the following result:

Lemma 2.

exp{ -
A pairs (A,A') A

Lemma 2 which is proved in Lemma 18.7.2 in [14] (see also Lemma III. 1.3 in [15])
allows one to get rid of unwanted factorials n(Δ)\ via the use of a small part of the
available exponential fall-off factors. The (fixed) constant 0(1) for each relevant box
Δ (appearing in the right-hand side of (25)) will not cause problems for g sufficiently
small.

One gets in turn, for any Λo such that x and y belong to boxes of Λo,

Y^ FP(x,y)

P Λ(P)=Λ0

< cst ^/(g)\Ao\-2M-21 e x p t - c s ί ' M ^ L ί ί A Δ G Λo})], (26)

where FP = Σ Fp k and L is the minimal length of all trees joining the boxes of Ao.
k

Since L is larger than \x — y\9 a common exponential fall-off e~cst M %\χ~y\ can be
factored out. The remaining factors allow one, in the usual ways, to sum over all Λo,
i.e. all number and positions of boxes [16]. (To that purpose, one may, e.g. replace
the factor corresponding to the minimal tree by a sum over all trees joining boxes of

A) )

4. The Infrared Limit: Introduction

The method of Sect. 3 can be applied to the theory with propagator C^ρ) for any given
ρ, and this proves Proposition 1. However the latter applies to couplings g less than
cstM~ 2 ρ and is thus without interest in the ρ —*• oo limit. On the other hand, results
of Sect. 3 for each i, apply to couplings whose maximal values are now uniform in i.
(As we have seen, this is because, in the bounds on C^ (x, y), the factor M~2% is in
direct correspondence with the rate M~% of exponential decay in \x — y\.) In order to
keep the benefit of this result, we are thus led to consider the actual theory as a set of
theories, for all values of i, that are coupled together. This is achieved via a "multiscale
analysis", or phase-space expansion, which will be obtained through the momentum-
space decompositions of A and B in terms of A^ and 5 w ' s . Cluster expansions will
be made, for each i, with respect to a paving Ώ)i of A by boxes of size M \ as in
Sect. 3, and as becomes now crucial in this section, in agreement with renormalization
group ideas. Further (Taylor) expansions with respect to couplings between boxes of
different slices will moreover be performed as in related problems for bosonic models
of field theory. Besides "horizontal" variables h{ι)\ {h{2Δ,,Δ φ Δ\ Δ, Δ' e D J for

each i a. complementary set of "vertical" variables υ^\ with one variable vΔ for each

box Δ of Ώi9 is introduced to that purpose, and we define: υ^\x) = vΔ if x £ Δ,

Z\ G D^ Fixing one v^ at zero will now amount to decouple locally, in Δ, slices

j < i from slices j r >i+ 1.
Finally, in view of getting desired factorization properties between slices, (non-

independent) random variables σi will be introduced for each i, with a corresponding
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probability measure dμ(σ,υ) that will depend on the variables v,σ = ( σ 1 , σ 2 , . . .)•
Although other approaches can be considered, it seems most convenient to keep here
the "ultralocal" character of all these σ's: the covariance of the σ's will be:

- fc-l

/ σά(x)σk(y) dμ(σ, υ) = δ(x -y)J\ v{rn\x) for j < fc,
J m=j

= δ(x - y) for j = fc,

and the vertex at point z with legs of indices i and j : A(i,x;z)σ(z)B(z;j,y) =
A^σB^ is replaced by: A^σ-mi^ ^B^\ (The introduction of these new σ's will not
modify the original correlation function when all h and υ's are equal to one.)

Details on these general aspects of the phase-space expansion will be given in
Sect. 5. At that stage, the result is an expansion of correlation functions as a sum of
diagrams which are here sets of boxes (in various slices) with explicit links produced
by derivations with respect to horizontal and vertical variables: explicit A and B's
in each slice and links between slices when A or B's of different slices are attached
to the same vertex z (here A and B's are those of the numerators before the Cauchy
formula).

However, in order to obtain a uniformly convergent expansion, two a priori possible
sources of divergences, which were not present in Sect. 3 and are linked respectively
with renormalization problems and with the divergence of the perturbative series, will
have to be treated:
1) For each i, we shall have to consider connected parts in slices < i with outgoing
legs A or B 's in slices > i. Problems linked with renormalization occur because the
number of outgoing legs may be less than 5.
2) Even though the number of explicit A and B's occurring in each box in a given
slice is under control (as in Sect. 3), other A and JB'S attached to the same vertices
may occur in lower momentum slices and their number, in a given box, may then be
arbitrarily large, since e.g. a box in slice ρ contains MAρ boxes of slice 1. (A similar
problem occurs for bosonic models of field theory. It is removed for fermionic models
in connection with the Pauli principle.)

The treatment of both problems will be inductive, from slice 1 to ρ, with at each
stage corresponding reorganizations of the expansion. (Note that a Cauchy formula
analogous to that of Sect. 3 is not applied at each stage but will be applied only at the
end.) On the one hand, local parts (with 2 and 4 outgoing legs) at the origin of the first
problem, will be "absorbed" in a redefinition of effective parameters (depending on the
slice i). This procedure will allow one (as in field theory) to eliminate corresponding
divergences if, as will be our case, effective coupling remain uniformily small as
i —> oo.

The second problem comes from the fact that previous procedures have led to
expand too much relatively to the low momentum fields A and B's. To solve this
difficulty we will first rewrite at each step i each term of the expansion in a way such
that each vertex will now involve only high momentum fields (of index smaller or
equal to i) or only low momentum fields (of index larger than i), whereas vertices
involve initially, at each scale, both low and high momentum fields; this can be
achieved up to error terms with better properties. Then we use integration by parts
to replace each "half-vertex" A(.,z)B(z,.), where A and B are low momentum, by
a low momentum σ (of momentum roughly smaller than M~ι) that we express as a
σ averaged in the box of Bi containing z. These averaged σ, in contrast to the σ of
the vertices AσB coming from derivations in the /ι's or v's, will not be integrated or
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removed and they will have at step i the power counting corresponding to a "half-
vertex" AB of slice i, i.e.: M~2τ.

Uniform bounds and convergence are then ensured by methods using, as in Sect. 3,
exponential fall-off factors associated in each slice to explicit A and B's, the smallness
of the coupling, and on the other hand exponential fall-off factors M~ ( ϊ ~% ) between
slices will allow one to make relevant summations over slices (rigorous "power
counting").

Some more precise indications on these two problems are given below, more details
being given in Sect. 6 and 7 respectively. The global Cauchy formula and subsequent
results are given in Sect. 8.

At each stage i of the inductive procedure, % + 1 slices denoted below 1,2,... i
and i + 1 respectively occur. They correspond roughly to momenta in the regions
1 > |p| > M~\ M~ι > \p\ > M-2,...M-{i-l) > \p\ > M-{ and M~l > \p\ >
M~Q r e s p e c t i v e l y , i . e . m o r e p r e c i s e l y t o h a l f - p r o p a g a t o r s A ( j ) ' s , j = l , . . . , z a n d

+ ) ' a n d the analogous £Γs. At each stage, a new expression of the
k=i+\

(same) 2 point function will be obtained. Taylor expansion will now be made around

the origin in all variables h^Δ/, and v^, Δ e Bi. The order of the expansion in

each h^2 A> c a n a β a m >̂e chosen equal to one. It will be chosen, e.g. equal to 5 in
the υ^9s in view of making explicit 2 and 4 point functions of slice i (i.e. functions
with a total number of 2 or 4 outgoing A and B's occurring in slice i -f 1) to
which "renormalization" will apply; this will allow one to compute coefficients ai,
Sgi = gi+1 —gi (with g1 = g) and 6e{ — ει+ι —εi (with εx = ε). The coefficients ai9 δgi

and δεi correspond to mass, coupling constant and "wave function" renormalization
respectively, and will be defined inductively in terms of g in a way such that the 2 and
4 point functions, as also the second derivative of the 2 point function, are equal to

oo

zero at zero momentum. These conditions will ultimately define a = a(g) =Σai'

Concerning the second problem, the "domination" procedure used in [11, 12] in
the treatment of infrared φ\ (and making recourse to the minus sign in the exponent
of the factor exp { — λ f φA(x) dx} involved in the functional integral that defines the
model) is no longer relevant. Here, we shall systematically proceed to "resummation
of low momentum contributions, " namely we shall remove, at each stage i, A and
B's (as also their first derivatives) of the last slice i + 1. This will be achieved by
simple techniques, in particular "integration by parts" as already indicated. One will
finally be left with contributions in which the numerators involve only:

(i) "Well localized fields" A, B, or their first derivatives, of indices less than or equal
to i. (Their spatial exponential fall-off factors will allow summations over boxes of

(ii) Second derivatives of A and S's of arbitrary index k = 1,2... ,i + 1. They
decrease at least like \x — y\~5 so that summations over boxes of ID̂  are still possible,
whatever k is. (The actual method used later will be different, but relies on similar
ideas.)

(iii) Factors —— f σ^(z)dz, ZlGlDj coming from the removal of low momentum

vertices after integration by parts. In contrast to actual values of σ's at given points,
the "power counting" factor induced by such a mean value in a box of D i is M~1%

and is in fact satisfactory (it is independent of the index of σ, here equal to i + 1,
and is a consequence of the ultralocal character of the measure).
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To achieve this, it seems simplest from a practical view point to first remove all
σ's from numerators as in Sect. 3, but not the averaged σ's coming from previous
removal of low momentum fields. New fields A, 5 , . . . of index i-\- \ will then be
added to those already produced previously. All of them (apart possibly from two) are
then eliminated: pairs A, B are replaced by mean values of the product A(., z)B(z,.)
in boxes Δ and in turn by mean values of σ's, modulo contributions involving first
derivatives of A or B. The treatment of the latter amounts to dominate \7AVB vertices
by the ε\7AVB vertices introduced in the ansatz (8); this will be done up to terms
involving second derivatives of A and B's which, as indicated above, will not cause
problems. (A related procedure, more satisfactory from a conceptual viewpoint, would
be to first replace σ's involved in numerators by their mean values plus fluctuations,
and then to treat the latter by contractions).

The methods above, applied inductively from ί = 1 to ρ, yield (as mentioned
above) the definition of ai9 gi+ι, εi+ι at each step. Relevant bounds, such as:
\θίi\ < cstg\M~1%, \δg{\ < cstg*, δεi < cstgj, and thus \g{\ < cstinf(g,i~1/2)
are established at each step and allow one to establish further uniform bounds and
convergence properties of the expansion. In each case, the smallness of all couplings
gi9 εi for small enough g and ε is used. More precisely, the full factors gτ, εi are
not available. Part of them will "disappear"in the replacement of pairs A, B of index

i + 1 by mean values of σ's: integration by parts leads in fact to —r- σ().
9(-)\Δ\J

A

Each A or B of the pair is on the other hand associated to a vertex g^A^ V( )Bi+ι,

i' < i, so that a factor g^y does remain available. (Note that there is a similar loss of

AQ in the domination procedure used in the analysis of infrared Xφ\). Actual factors
remaining available are here g^, g^ , 5Γo/-v/^)» Λ/^O' w m c n a r e s t ^ sufficiently
small for adequate choices of g and ε.

The more detailed analysis of the flow of gi yields the relation

9i+ι =9i + \β<i) ln(M)^3 + Ί(i) ln(M)g5

ι + Oigf) (27)

in which the remainder is controlled (by the same methods), and where β(i), η(ϊ)
converge exponentially in i, as i —• oo, towards standard constants β2 and 7 = β^—β\-
The coefficients β2 and β3 are those such that the Euclidean Feynman diagrams

at zero external momenta and cutoff

M ρ behave respectively like β2\r\Mρ and β3\nMρ. As a consequence:

Γ 3 T 1 / 2

9i= 1-^ lnM+^lni + CΊ . (28)

Whereas gi then tends to zero as i —> 00 (asymptotic freedom), all ε^'s remain close
to ε in view of the bounds |<5εJ < cstg*. Because gi = g, C is of the order l/g2.
Thus C —> 00 as g —>• 0. The expressions obtained for gi and δεi allow the derivation
of formula (2) and related results.

More details on the various aspects that have been mentioned are given in the
next sections. Part of them are close to those encountered in field theory (rigorous
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"power counting," analysis of the flow of coupling constants,...) and will only be
briefly treated. For more details on those aspects, the reader is referred, e.g. to [15]
(where the part on the domination procedure, which is not relevant for our purposes,
can be omitted).

Remark. To be fully complete, the dependence on A should a priori be kept, the
A —• oo limit being ultimately treated. This is at the origin of some new problems,
besides those occurring in Sect. 3. They are unessential and can be treated in various
ways. For conciseness, this will not be discussed.

5. Phase-Space Expansion: Preliminaries

We first describe below the measure <iμ(σ, v) involved at each stage i of the induction.
The phase-space expansion obtained at the first step before renormalization and
resummation of low-momentum contributions is then presented. The corresponding
procedure to be carried out at stage i (after renormalization and resummation of low
momentum contributions in previous steps) is outlined at the end.

The measure dμ(σ,υ) at step i. The measure dμ(σ,v), σ = ( σ 1 ? . . . , σ i + 1 ), will be
defined at each stage i of the inductive procedure by its covariance

σ^σ^y) dμ(σ, v) = vjk(x)δ(x - y), (29)

SupO,fc)-l

υm(x) iίkφ j , (30)

m—(mf(j,k)

υjij(x)=l, (31)

where vm(x) — v^ if Δ is the box of D m that contains x: fixing some υ^ at zero
will then decouple locally higher and lower slices (Vjk(x) = 0ifx G Δ, j < m < k).

Variables υ^ι) will vary between 0 and 1, so that dμ(σ, v) will always be a well defined
probability measure: its convariance is of a positive-type as a simple consequence of
the identity

N N N

ίk=j

(32)

Sup(j,/c)-l

where υ0 = 0, Vjij = 1 and vjik = j[ υm.

First step of the induction. The first step (i — 1) involves σ1? σ2, with
fσι(x)σ2(y)dμ(σι,σ2;v) = vx(x)δ(x,y) and J σJ(x)σj(y)dμ(σι, σ2; v) =
δ(x — y), j = 1,2. We rewrite F(x, y\ σ)

(Bι+B2)(x;.) =

f A2).V(Bι + B2) + ig(A1 + A2)σ(Bι

x{Ax+A2)(.;y)\,
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Q

where Ax is equal to AS* and, A2 = Σ A(m,.;.) respectively and the analogs for
m=2

B, VA, VB. Then we make the following changes:

A(., z) -> Ax{., z) + vx(z)A2(., z\

with similar changes for B, VA, VB. In each term gAjσBk in the denominator (with
so far j , k = 1,2), σ is then replaced by σ ^ fc^, # is replaced by g^^ g), and the
new term

g2 / dz(l - vx(zf)A2{., z)σ2(z)B2(z,.),

which vanishes if ^ = 1, is added. Consequently, gAσB(— g f dz(A(., z)σ(z)B(z,.)
is replaced by

f
gx / dz[Ax(.,z)σx(z)Bx(z,.) + A2(.,z)σ2(z)vx(z)Bx(z,.)

j

+ g2 j dz{\ - Vι(z)2)A2(., z)σ2(z)B2(z,.),

an expression also written in the form

gι[AισιBι + vιA2σ2Bι + υιAισ2B2 + υJA2σ2B2] + ^2(1 — υ\)A2σ2B2 .

If υ ^ = 0 for some box A of D 1 ? the integral over z in Δ reduces to

0! / dzAι(.,z)σι(z)Bι(z,.) + g2 / d^A2(.,2;)σ2(^)B2(^, .)•

Δ Δ

The term εV^4.V5 is replaced by a similar sum (without σ's), namely

(., z) + vλ

J
/

As already indicated dμ(σ) is replaced by dμ(σ, ̂ j), σ = (σ1? σ2). On the other hand,

the term exp \ia σ -\ / M s r e p l a c e d by

expi^α^ / σx{u)du + α 2 / σ2(ti)<iiiH / du-jr-^ / dw + α 1 α 2 / v {u)du.

As explained below, α^ will be determined at the first step, while a2 will be
determined only at later stages and will be equal to: a2 + a3 + . We note that
the expression obtained coincides, as is easily seen, with the previous one if υx = 1,
whereas there is decoupling between slices 1 and 2 if ^ t = 0 .

A dependence of Ax, Bx, VA{, \7BX on variables h^Δ/ is then introduced as in

Sect. 3, namely:

Ax(h)(x, y) = h^Δ,Ax(x, y) and (VAx)(h)}(x, y) = h(2Δ,(VAx)(x, y)
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if x e Δ, y e Δ' or vice-versa for Δ φ Δ!\ h(2 Δ, = 1 for Δ = Δ!. (The definition
of ( V i ^ / i ) given here seems simplest and most convenient. Note that (VAx)(h) is
then different from V(Ax(h)).) The above procedures define F(x,y;hίι\ i>(1)) with

Taylor expansion (of order 1 or 5 in each h^ Aι and v^ respectively) and

elimination of σ's from numerators then lead to a sum of contributions with integrands

involving resolvents — separated by numerators. Examples of numerators obtained

before removal of σ's, by derivation in one variable v^ are shown in Fig. 1, where
z e Δ and the dependence on A', ΔI' is left implicit. The term shown in figure 1-a
is e.g. equal to gιAισ1B2. Each derivative in υx yields at least one "leg" A or B of
slice 2.

slice 1 A

slice 2

Fig. 1.

After removal of σ's from numerators, and putting together all A and B's paired
by δ functions δ(zf — z"), numerators are (after simple regroupings) of the following
form:

(i)

(ii)

with (z 1 ? . . . , z4) = 1 or 2 and at least one index equal to 1.

(9l~92)9l \

or (0!-02)02 \ Aiι(.,z)Bi2(z,.)Ai3(.,z)Bu(z,.)

or (g\-gz)2 /

without condition on inf(z l 5..., i4).

(iii) ελVAX V 5 2 , or εxVA2VBx, or (εx - ε2)VA2VB2 .

(iv) Other terms arising from the factors afσ (which are not paired)

91 \ A\B2 \ ,^ , ,

> (α2 + vxax)
or (91-92)) (or A2Bλ) J

gxAxBx(pίx +υxa2)

(with e.g. gxAxB2(a2 + vxax) = ^A x(., z)B2(z, .)(α2 + ^ ( ^ α ! ) .

(v) Terms arising from the derivation of the measure dμ(σ,υx) with respect to the

variables vΔ are of the same form as above or of the form: axg2A2B2.
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The vertices (i) to (v) are obtained from the formula

- ^ - / F(σ) dμ(σ, v) = f V - ^ ^ (-^— —£—F(σ)) dμ(σ, v) dx, (33)
dυΔJ J ^ dvΔ \δσj(x)δσk(x) )

where the factor δ(x — y) of the covariance has been used to put x = y in (5/δσ •(#))

(δ/δσk(y)), and where in the first step now considered — j is equal to one if
dvΔ

x £ A and zero otherwise.
The main conclusions are these:

(i) Each numerator is "attached" to slice 1 (i.e. there is at least one Al9 Bι, VA1?

VB{) apart from terms including factors δgx(= g2 — g\) or δε[(= ε2 — ει) or ax which
will be of higher order in g, as will appear below.
(ii) Given each box Δ in D l 5 there is only, as in Sect. 3, an "essentially finite"
number of vertices z involved in numerators: more precisely, this number may be
arbitrarily large, as in Sect. 3, since there may be many A or B's joining A to other
boxes, but needed resummations will again be possible due to their exponential fall-off
properties.

The following definition and results will be useful in view of the subsequent
procedures of Sect. 5.2, 5.3.: for a given contribution, two boxes Δ, Δ! of Ώι such
that h(

Δ Δ, is not fixed at zero belong by definition to the same connected component
S: boxes in each connected component are linked together by explicit A or B's
(in numerators) of slice 1. In contrast to Sect. 3, there may be several connected
components in slice 1, which are disconnected from each other and are connected
together through slice 2: see Fig. 2.

slice 1 ^--J-~ *

slice 2 A2 .

• — - ^

| 1
1 1

— B2 1 I

1

1

7)
1
1

CO|
1

Fig. 2. Several connected components in slice 1 linked by lines - - - to slice 2. Legs A, B of slice 1
and 2, have been left most of the time implicit, as also boxes in slice 1 in each connected component
(joined by explicit A or £?'s of slice 1).

A connected component S is moreover factorized if vΔ is fixed at zero for all its
boxes Δ. (There may have been previous derivatives in these variables υ's.) Given a
factorized connected component, its external legs in slice 2 correspond by definition to
A or B's, or VA, V,B's, of slice 2 belonging to a vertex z attached to slice 1: i.e. there
is a corresponding leg of slice 1 in S, or the vertex is of the form δgιA2B2 created by
the action of d/dvΔ, Δ £ S, (after contraction of σ's). The number of external legs
is close to the number of links between slice 1 and 2. (It may be somewhat larger in
view of the vertices such as δgxA2B2 with one link and 2 external legs.)

Given sets Sλ, 5 2 , . . . of boxes of slice 1, the following factorization is easily

checked if h^Δ Δ, = 0 whenever A, Δ! do not belong to the same set, and υ^Δ = 0

for all boxes Δ of the sets Sβ, β G 5§ for some S§\
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where Dβ is the restriction of D to Sβ when all h^ Δ/ are fixed at zero if Δ, Δr do

not belong to Sβ\ and Dβ1 is the inverse of Dβ restricted to Sβ.
The expansion obtained so far has still to be modified by the procedures described

in Sect. 6, 7 (so far at the first step) before coming to the second step.

General Step. The ith step is analogous to that above, with by convention:

Q

Aj = A<» for j < i, and Ai+ι = £ A(m,.; .)•
m=i-\-\

Each field Ai is replaced by Ai + vτAi+ι. In the resolvent, σ ( ) is replaced by
σi+x if the highest new index (either of A or B in AσB) is z + 1. The new
term gi+λ{\ — vj)Ai+ισi+ιBι+ι is added. Similarly VA and VBt are replaced by
VAi-\-viVAi+1 and VBi-\-vi'VBι+ι respectively and a new term (\-v])VAi+ιVBi+ι

is added. The dependence of variables h^ is then introduced and the various
procedures analogous to that above are carried out.

We note that it will be convenient, at step i, to adopt the following "weak"

definition of a connected component. First a connected component in a strong sense is

defined as follows. Two boxes Δ, Δf in the same slice j such that h^ Δ, is not fixed

at zero belong to the same connected component. Two boxes Δ e D^ and Δl e JD>J+1

such that Δ C Δ\ and such that there has been at least one derivation d/dυ^, also
belong to the same connected component.

The definition of a connected component in a weak sense is obtained as follows.
Given a connected component in a strong sense containing a box of Dfc, all other
boxes Δ of Ώk that contain a box Δ! of D m , m < k, belonging to the connected
component in the strong sense are added. The use of connected components in the
weak sense allows one, at each stage i9 to introduce an a la Mayer procedure, see
Sect. 6, only relative to the cubes of slice i. It will not give problems in the analysis
of convergence properties, because exponential fall-off factors in slices with lower
indices, will yield required exponential fall-off factors in slices with higher indices,
following the usual methods. A factorized connected component is defined as in the
first step: all υ^Δ are fixed at zero if Δ belong to a factorized connected component.

We give the v dependence of the resolvent at step i (where the dependence in the
h's is left implicit, υ is for v(x) and v0 = 0 by definition):

/ ^ / j (1 ~~ Vk-u9kVk,mf(mJ)Vinf(mJ)+l,sup(rnJ)^rnσmf(rn,j)-^j
k=\

+ Σ Σ ( 1 ~ Vl-l)εkVkMf(rnJ)Vinf(rn,j)+l, sup(m,j)^Am^Bj '
k=l ι+\>m,j>k

The term in a is:

i+l

rv I

And the expansion consists at each step of a Taylor expansion to the first order
in each hΔΔ, and to the fifth order in each vΔ. Then as explained below, an
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a la Mayer procedure is applied to the two and four point functions which are
then renormalized, thus defining the values of the effective parameters. The main
new ingredient compared to the similar expansion being the replacement, done by
integration by parts of the low momentum fields by averages of σ fields.

6. Renormalization

Renormalization Equations (First Step). Consider a product of the form

.. . A2(., z)Bι(z1.)-... -A x ( . , zf)B2(z',.)...,

such that both z and z' belong to boxes in a common factorized connected component
Sβ and such that all A and B's (in numerators) between the two resolvents D~ι (that
have been explicitly exhibited above) belong to slice 1. In view of (34), it is easily
seen that these resolvents can be replaced by Dβl and that in fact everything between
the points z, z' also belongs to Sβ. Given a set Σ of boxes of slices 1, let FΣ(z, z')

be the sum over all contributions B^z,.)— —Aγi^z1) of the form above and

with the same "support" Σ, i.e. corresponding to various possible 5^'s having that
support. A first regrouping of terms in the expression of the 2-point function then
leads to new contributions whose integrands include now parts of the form

...A2(.,z)FΣ(z,zf)B2(z\.)...

with z9 z' in boxes of the set Σ. It will be useful to rewrite this part as a sum of
terms in which A2 and B2 are attached to the same point z, or z', plus contributions
involving gradients VΆ 2, VB2, taken again at the same point z, or z', and terms
involving at least three derivatives of A2 or B2,

A2(.,z)FΣ(z,z')B2(z',.)

= 1 A2(., z)FΣ(z, z')B2(z,.) + \A2(., Z')FΣ(Z, zf)B2(z',.) + — - . (35)

If we consider e.g. the terms A2(., z)FΣ(z, zf)B2(z,.), we would like to now sum
over z' and all possible supports Σ (attached to z). This is not directly possible
because there are non-overlap conditions between boxes belonging to supports of
various weakly connected components. This problem can be treated via a procedure a
la Mayer, inspired from statistical physics, intended to "free" all boxes in Σ (except
that containing z) from other boxes. If two weakly connected supports Σ and Σf

overlap, then it is because they have a box of D^ in common by definition of weak
connectedness; so at step i the Mayer procedure concerns only the non-overlapping
conditions between boxes of D .̂ We write each non-overlap factor χ(Δa, Δβ) between
two boxes Δa,Δβ eBi (x = 0 if Δa and Δβ coincide, χ = 1 if Δa φ Δβ) in
the form 1 -h (x — 1). All relevant products are then expanded. A new expansion is
then obtained with new links (x — 1) between some boxes (x — 1 = 0 if Δa φ Δβ,
X — 1 = — 1 if ^ = Δβ), besides the links associated to explicit A and B's (of slice
1). Although the new expansion is somewhat more complicated, this does not lead
to important problems and this aspect will not be developed here. We only note that
some care is needed in the derivation of final bounds: suitable regroupings of terms
have to be made. (There would be otherwise too many terms leading to unwanted
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factorials.) See, e.g. the treatment of these problems given in [17]. Possible "Mayer"
links between previous connected components will create new contributions with more
than two external legs (in slice 2). Here, we are only interested in cases corresponding
to two external legs, at the same point z (or z') of a box Δo. Resummations previously
mentioned then lead to contributions whose integrands will no longer contain parts of
the form mentioned at the beginning of this section but instead to parts of the form

V r Ί
A,(.,£) / dz'Fiι\z,z')\B2(z,.), where F{ι)(z,z') is here the 2-point function of

L J J
A

slice 1 obtained by summation over all possible (connected) components involving
z, z'. The integral / dz;F^\z, zf) is convergent in the A —> oo limit, as checked by
the methods of Sect. 3. It does not depend on Δo or on the point z in Δo in that
limit, and is equal to F ( 1 )(0).

The value of ax will be chosen such that F ( 1 )(0) = 0 ("mass renormalization").
Contribution terms of lowest order in g — gx (and έ) are
(i) axg2, corresponding to the vertex

A 2 A— B,

From later analysis, g2 is itself equal to gλ up to higher order terms in g.
(ii) —cxg\, where

cx == f Bι(z,u)A1(u,z)du = ίC(l)(p)dp, (36)

corresponding to a diagram of the form

with two vertices that have been identified through contractions of σ's. Namely one
starts from an original part of the form

A2(.,z)\J du(gισ(z)B1(z,u^g.A^u, z')σ(z'))]B2(z',.),

where the resolvent \/D between the two AσB's has been replaced by its lowest
order contribution in g, and ε, i.e. 1. Contractions of σ's yield the 6 function δ(z — z').
This will provide the first equation:

a\9\ ~ c\9\ + higher order terms = 0. (37)

Vertices involving gradients are treated similarly. One is then led to the second
equation:

εx - ε2 — c2g\ + higher order terms = 0, (38)
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where ε{ — ε2 is in fact the original factor in front of VA2. Vi?2 and

( 3 9 )

i.e., c2 in the second derivative at zero momentum (in momentum space) of the graph
with propagators C ( 1 ) on each line. This graph is associated after contractions of σ's
to the diagram

σ *

z 7
1

> A!

>

B i

B i A i

A l
I

slice 1

More precisely, the previous mass renormalization has led one to subtract from
this diagram its value at zero (in momentum space) with a result of the form
G(z,zf)VA2(.,z)\7B2(z,.) up to terms involving more derivatives. (Note that terms
with only one gradient vanish.) The coefficient c2, obtained after the further procedure
now considered, is equal to G(0) = / G(z, zf) dzf.

At this stage, there are no longer 2-point functions except those with a total number
of at least 3 gradients (or derivatives) which will not give problems. (One derivative
is equivalent to one external leg from the viewpoint of power counting.)

The 4-point function is in turn treated similarly. Points z's involved are again
brought together. A new a la Mayer procedure is also applied. The constant g2 is then
chosen in a way such that the total 4-point function (attached to a given point z) is
equal to zero.

This leads to the third equation:

9\(9\ ~ 9i) ~ c?>9ι + higher order terms = 0, (40)

where (1)

) (0) = /( 1 ) _ ^ ^ J

The relevant diagram is in fact here

and c3 is its value at zero in momentum space (after contraction of σ's).
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Equations (37), (38), (40) are a set of three coupled equations, all of them involving
all relevant quantities. However, these equations become decoupled at lowest order,
so that simple solutions are obtained. In particular

= cι9ι + O(g\), (41)

Ϊ ΐ (42)

O{g\). (43)

Renormalization Equations (General Step). The general procedures are similar to the
above. They now yield the following results (with new higher order contributions):

Γi)
\ (44)

ft-ft+i= <Z Z> Si + O(g}), (45)

- ( i )

. ( i )

7. Resummation of Low Momentum Contributions

We now describe the procedure of resummation of low momentum contributions
at stage i, after all previous operations have been carried out. They have allowed
one to express, e.g. the 2-point function (for given, arbitrary Λ, ρ) as a sum of
contributions with integrands involving products of operators, namely numerators
separated by resolvents R = 1/Zλ Initially, numerators were of the form A(., z)B(z,.)
with the vertex z in a given box Δ (with possible pairings between vertices) and
VA(.,z)VB(z,.), arising from the supplementary term εVAVB (that has been
introduced in D) through derivations in variables hofv's. The various procedures that
have already been carried out have led to a somewhat different situation (as will appear
from the analysis below, concerning resummations of low momentum contributions
carried out at earlier stages), but the analysis is not substantially modified. As a matter
of fact, numerators may now involve also fields dA, d2A and dB, d2B (meaning
one or more derivatives of A of B) and the intermediate point in A and B (or their
derivatives) may be distinct although they lie in the same box Δ (e.g. A(.*z)B((z, .)»
z £ Δ, may be replaced by A(., za)B(Zβ,.), za,Zβ £ Δ with possibly za φ Zβ). This
will be made more precise later.

Elimination of Low Momentum A and B's (in numerators). We start with the
elimination of "low momentum" or "badly localized fields" Aι+ι, Bi+ι, and will
come back later to the treatment of other ones (derivatives of A and B's).

Given a term contributing to the 2-point Green function and a box Δ in slice i,
let us first consider fields Ai+ι(., z), Bι+ι(z'',.) in numerators with vertices z, z',
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in A If there is only one Ai+l9 or one Bi+ι, or Ai+ι and one Bi+ι involved in Δ,
this term is kept without change. Otherwise the following procedures are used:
(i) Reversal procedure. Consider e.g. a term of the form

-—RAi+ι(.,za)Bi,(za)R—-RAi+,(.,zβ)Bi//(zβ,.) -

with i', i" < ί. This term can be written in the form

—RAi+ι(., za)Bi+ι(z0, jR—RA^., zJB^zp,) —

as a consequence of the relations Rtτ = R, where tr is transposition, since in particular
(AσB)tr = AσB and Atr(., z) = B(., z). (These relations, directly checked, are linked
to the existence of the square root of C and, as matter of fact, to the stability of the
φ4 theory.)

It will then also be useful, for za, Zβ integrated in the same box Δ, to write

—RAι+ι(.,za)Bι+ι(zβ,.)R—

A

1

—R ί dt-^- [(z~^ί)V Ai+\.,tza + (1 - t)z)Bi+ι(zβ1 .)dz)R—

A

t-^- j 4 + 1 ( , za)(zβ - z)

0 A
1

x VBi+ι(tzβ + (1 - t)z, .)dz)R— . (47)

We recall that gradients (or derivatives) of A's or £Γs will induce a better "power
counting."
(ii) Elimination of "low momentum" Ai+1 and Bi+ι's. The following identity, which
follows from usual contractions of σ's with those in the denominator of R, will be
used:

/ dμ(σ)σi+ι(z)R(xι,yι) R(xn, yn)

= - / dμ(σ) Σ RfrvVi)''' Rfrm> z')At+ι(z', z)gi+x(z)Bι+ι(z, z")
J m=l

x R{z", ym) R(xn, yn) dz dz' dz"

+ terms involving A and B's, one of which at least has index < i, (48)

where

Repeated use of the procedures above allows one to replace all fields Ai+ι(., z) or
Bi+ι(z, ) with vertices z in Δ by products of:

- mean values —— f σi+ι(z')dz' of σi+ι in Δ

- factors ai+ι because in the functional integral there is also the eι f at+lCTz+1 term

- factors M~1% because mean values of σ can contract together.
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We get one of these factors for each pair Ai+ιBi+ι that has been removed, at the cost

Γ i Ί " 1

of some multiplicative factors — - / ^gi+x{z') dz' and modulo the introduction of

"better" terms involving more derivatives of Ai+1 or Bi+1

9s (the number of which
will remain limited and under control).

Γ i Γ 1

It can be shown that the factor —- f *gi+ι(z') dz' is less than l/gi+\ by taking
l\Δ\ Δ J

into account the fact (to be checked) that gi+ι < g- if j < ί and the identity

Σ
ra=l

(l-υ2

m Λυ2---v2=l.

For each vertex involving initially one A or B of index j < i and one A or B of
index i + l, which has been eliminated, factors arising in later bounds from coupling
are as follows:
a) a factor l/y/gϊ^ϊ arising from the elimination of the A or B of index i+\ (since
the elimination of the latter and of another B or A of index i + l induces a factor

l/ffi+l);
b) the initial coupling of that vertex, namely.

j

Yj(l-vn_λ(z)2)gnvl(z)-—vj_ι{z)2υj{z)-—vτ{z).
π=l

The latter will be bounded by gm^ zy where

m(i, z) = inf{£;; no vm(z) is fixed at zero if k < m < i}. (50)

As a result of a) and b) the factor arising in the bounds will be gm^ z)/y/g^~i =

(9m{i,z)/9i+i)ι/29l£itZy
 τ h e factor gl^z) will be bounded by g\/2 and will thus be

arbitrarily small if g is small enough. The factor gm(iz)/gι+ι is > 1. It may become
large but this fact will remain under control, as will appear in Sect. 8.

Treatment of Remaining Low Momentum Fields. After the elimination, described
previously, of low momentum A and J3's, the situation is the following. Apart possibly
from at most one Ai+ι of Bi+ι for each box A of D f, numerators are either of the
form A(.,za)B(Zβ,.) with "well localized" A and J3's (of index < i) and za, Zβ in
the same box Δ of D^ (za = Zβ or za ^ Zβ), or either A or B, or both are replaced
by derivatives of A and B's. In the latter case, fields involved may have the index
i + 1. As above, intermediate points may or not coincide but belong to the same box
Δ of D r

Low momentum derivatives of A and B's cannot be eliminated as previously
through the replacement of pairs by mean values of σ's (since e.g. terms in the
resolvent in V'A.VB do not involve σ's). However, repeated use of some of the
procedures above (reversal procedure, replacement of a point Zβ in a box Δ by za,
up to some derivatives, mean values in boxes Δ) allows one to get a new expansion;
numerators in the new integrands involve only well localized A and B's or their
derivatives, or have one of the two following forms:
(i)

±. J
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(ii) numerators of the form d2A(., za)d2B(Zβ,.) involving seconded derivatives of A
or B's of index i+l (za9 Zβ in the same box A of D^).

For reasons already explained, terms (ii) will not give problems. Terms (i) will
later be "dominated" by similar terms involved in the resolvent, with coefficient εi+l9

arising from the introduction of the supplementary term εVAVB at the outset: see
Sect. 8.

We conclude this section with the following remark: in correction terms, one
has also to take into account the fact that a σ can be contracted with the factor

eίΣ,J<χj<r3 [in which case terms of the type Oί,-— Jυi+ι Λu)du, ΔeΏi9(j <i + l)
\Δ\ Δ

will occur], or with other σ's already present. In the case of a contraction with

7-77 / σj+ι(u)du, terms induced involve factors M~Λtυi j which can be written
1̂ 1 Δ'eDά

in the form: M~2ιM~2j M'2(ι~j) multiplied by a product of υk

9s. The factor
M~2%M~2i corresponds to the correct power counting.

8. Bounds, Convergence, Large Distance Behaviour

The aim of this section is to give details (Sect. 8-1, 8-2) on the way uniform bounds
on F are now established in the ρ —> 00 limit. Convergence is established similarly
(from related bounds on Fρ, — Fρ9 ρ' > ρ). Large distance properties are proved (in
Sect. 8.3) by first extracting explicit contributions of lowest orders and then applying
previous methods to obtain bounds on remainders.

Let us summarize the situation arising from previous sections. The inductive
procedure, carried out from slice 1 to ρ9 yields a sum of terms each of which is
associated to a connected component with horizontal and vertical lines joining boxes
in various slices. They include indications of the various derivatives in variables h
or υ's that have been made and further indications related to the various procedures
that have been carried out. Regroupings of terms associated with permutations of
numerators are made in Sect. 3. For each multiscale support, one is led to an integral:

over variables h^ A, and v^ not fixed at zero with the measure

Π
i;(Δ,Δf) i,Δ

over σ's with the measure dμ(σ, υ), σ = (σv ..., σρ),

over vertices z (integrated in relevant boxes), and

over variables t (between 0 and 1) arising from formulae such as (47).

d 1
Besides a derivative of the form to be treated as in

Sect. 3 by a Cauchy integral over circles of radius ra in the space of complex 7^'s,
the integrand will include all other factors such as {zf — z")v, products of variables υ9

of effective couplings g%^y ε

τ{τy ^ft(/o f° r m e v a r i ° u s vertices Ψ' involved, as also
/ Λ \ rι(Δ)

mean values I ——- J σι+λ j and inverse coupling arising as explained in Sect. 7

from the resummation of low momentum contributions. And for each vertex ^
is the largest index i such that there has been a derivative at that stage.
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Leaving aside unessential factors, one obtains thus as the result of the expansion
in the form of a sum of terms:

a

and therefrom a bound of type:

We first recall the type of operators Va involved and indicate relevant choices of
the r α ' s which will ensure first (Sect. (8.1)) that \\(D + ΣjaVa)~ι\\ is bounded by
a constant (e.g. 2) and will allow one to obtain bounds on F, uniform in ρ, through
bounds on the factors \/ra (Sect. 8.2):

8.1. Choice of the ra's and Bounds on

As in Sect. 3, the dependence in the ft's of the V's plays no role, since these variables

are bounded by one, and e.g.: \A (x,y,h)\ < M~3je~M °\χ~~y\ uniformly in h.
We now list the different kinds of V s and give the corresponding r's:

a) Operators V's of the form A •(., z)Bk{z,.) or Aj(., zι)Bk(z2,.), j , k < ί + 1, z or
zx, z2 in a box A of D i (j and fc equal to i + 1 for at most one A or one 5 in A as
a consequence of Sect. 7).

They are characterized by the indices i, j , k, boxes A', A, A!' and points z or zx,
z2 in A. We then choose:

r = cn(AΓlMJMkM-εf(i-j)M-ε'{i-k)

x exp {(1 - η)M-id(zγ,Δ
f) + (1 - η)M'kd{z2, A")}, (51)

with some small fixed ει > 0 and 0 < 77 < 1. The constant c in front of the right-hand
side will be chosen small enough as in Sect. 3. Points zx, z2 in d{zX) A

1) or d{z2A")
can be equally replaced by the box of D J ? or Dfc that contains zx or z2.

For all vertices of this type, the analogue of the bound (19) holds equally as we
now explain. To show this, a slight adaption of Lemma 1 of Sect. 3 will be used.
Namely if j , k denote supplementary discrete variables and if, on the other hand, a
is any strictly positive function (chosen equal to M 2 j in the application), one has for
any operator H with regular kernel H{x,j\ y, fc),

Lemma 3.

\\H\\ < C(H)X/\

where C(H) = sup ̂  / dxE(xJ)a(y,k)\H(xJ;y,k)l (52)

E(x,j) = Σ f\H(xJ;y,k)\a-l(y',k')dy'. (53)
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In the application H = Σ^% ^ w n e r e e ach H^ = H(x,j;y,k) is of the form
i'

Aj(x, z)Bk(z, y) and corresponds to a vertex produced at step i, so that j , k < ί + 1.
Integrals over y' and then over x are made in the same way as in Sect. 3. Putting in
(53), summations over k' and i' are made, at any given j , with the help of the factors
M~ε ^ ~^M~ε ^ ~k :̂ E is then shown to be bounded by cstM"2-7. For any given
k, the treatment of the remaining sum in (52) over j and i is made similarly. It is
then shown that C(H) is finite and less than any given constant if c is small enough,
b) For vertices in which Aj or Bk, or both, are replaced by some first or second
derivative, the choice of ra is similar with the following changes: the factor M 7 is
replaced by M2-7 or M3j respectively and Mk is similarly replaced by M2k or M3k. In
view of the bounds (11), the previous argument on the norms of Σ r

aK* *s unchanged

and these choice of r α ' s will later be adequate in power counting arguments.
c) We next consider vertices involving "badly localized" legs, of index> i + 1 and
start with vertices of the form d2Aj(.,z)d2Bk(z/,.) j,k > i + 1, z,z' G Δ(e D2).
They are first regrouped for each given i, and we are thus led to actual vertices of
the form Σ ^ Λ Σ d2βk~

The radius r α , is then conveniently chosen of the form

ra=cM6i(n(Δ)y\ (54)

If H denotes here the sum of previous operators for given z, J \H(x, y \ dy is bounded
by

ΔβDτ

 v 7 j,k

where Δ! is the box that contains x. Using the fact that Σ e~M Jd(Δ 'Λ) *s bounded
A

by c s t M 4 0 " ^ (since boxes Δ belong to L> ) and that / e-M-kd(Δ',y) dy i s bounded
by cstM4 f c (for any given Δ), one finally obtains factors M~^k~ι)M~~^~ι) which
allow one to make remaining summations over k and j (> i).
d) Remaining V's will be, after simple partial resummations, of the form

.,_ ..- AϊΛvflkiί*.-)**, (55)
A J .

where

VVVA", i = V A n + ΐλ +i A V A , 9 H h i I I υ m Λ | VA.M H . (56)

\m=i+l

It will also be convenient to rewrite it in the form:

Σ v ^5 y)
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where m(i, z) is defined in (50). Let us now define L\ Δ and L" Δ as follows:

Σ

z, .)M dz, (58)

(59)

where ε1 > 0 will later be chosen sufficiently small. Li Δ, L\ Δ and L"Δ are all
positive operators. We then state:

Lemma 4.

ι,Δ ^

Γ 1 Γ
r^Λίr'Λ I M2ε/(i-ηrn(i>z

csty£ ) T^T / M

ίϊ1

(60)

Proof. We substitute (57) in (55) and then apply Schwarz inequality on each term
of the sum obtained. The sum over one of the indices is made by using a factor

M " e ' ( i " m ( z ) ) . QED

We now explain how the relevant norm bounded for a suitable
a ||

choice of r α . Here there is one a for each choice of: an index i, a box Δ (Δ G D%)
and one of the at most 2n(Δ) operators of the form L Δ that can be produced; ra

will be chosen, as is natural, to depend only on i and Δ. As a matter of fact, it is
sufficient for our purposes to treat Σ(Re7Q,)Lα, which is bounded in the sense of

a

operators by ^ r α L α . In view of Lemma 2, the latter itself satisfies the bound,

n(Δ)riΔ cst(ε;) (^- ί M2ε'^-™^ dz\ M~4ί

(61)

We then choose ri Δ so that the first bracket in the right-hand side of (61) will be
less than some small constant independent of z, Z\, namely:

= cst c(n(Z\)) 1 f M2ε\t-m(ttz)) dz

\Δ\ J
Δ

- 1

(62)

We then note that

(i)

^ Σ

(63)
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The operators in the right-hand side of (63) in ]ζ are those occurring in the resolvent
3

with a coefficient εi+ι that will remain close to the initial given ε, as a consequence
of the initial introduction of the supplementary term εV A.VB. This fact will allow
one to "dominate" the corresponding contributions,
(ii) The contribution associated to the parts L" Δ can be bounded in norm by

jvA^zWBfa.)Σ I VA,(., z)VB,-U, ,)M-£f(i-m^z)) dz.

The sum over i (at given j) is controlled by the factor M ε ( ϊ m ( 2 ' 2 : ) ). A bound on
relevant norms is then obtained from Lemma 3.

8.2. Bounds on F and Related Results

As a result of previous analysis, the 2-point function F appears, for any given ρ,
as a sum of contributions Fβ associated with diagrams β (connected components
with adequate specifications). Each Fβ is an integral, over variables h, v, t, z, of an
integrand satisfying bounds including essentially the following factors:

O(l)n(Δ)

ΠW4)!)O ( I )

Δ

T T -h/r—(j(leg))( 1 +number of derivatives)

ell localized
legs

rivatives)

badly localized
legs

(products of factors (z - z)) J J J J exp { - M~\\ - 2η) d(Δ, Δ ' ) } .
i (Δ,Δ')ePι

where s(Δ) is the number of mean values of σ in Δ, s(Δ) < 5 + (3/2)n(Δ) and
Pi is the set of the pairs of D^ with their /ι's different from zero. Products over Δ
run over boxes Δ of the diagram under consideration. The second factor (n(Z\)!)0(1)

arises from the fact that each factor 1/r gives one n(Δ) and that there might be (at
most) 2n(Δ) such factors for each given Δ.\ for each vertex 3^, i(9^) is the largest
index i such that there has been a derivative at that stage and j(leg) is:

for a well localized leg equal to its index,

for a badly localized leg belonging to a vertex 9^ equal to i(90,

z-p) for a vertex 7/* localized at z^. Finally, factors (z — zf) that
have been indicated are all those arising from e.g. the renormalization procedure,
involved in correction terms after replacement of some Zβ by za,... .

The following lemmas will be useful
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Lemma 5.

/ λ Γ \ 2s{Δ) 1 1 / 2

Π Π 7 r d^ ^ Π Π( c s t ) n ( Δ ) ( M ~ 2 ^ s ( ^[( 3 / 2 ) n (^ !

i ΔeDt \ { ) J i Δ
(64)

Factors of the form shown in the left-hand side of (64) will arise from Schwarz
inequalities. Lemma 5 is proved by explicit contractions, e.g.

ϊjσw\lσdμ{σ)=^ iίΔ'cΔ

Δ A'
= 0 if A Π Δ' empty, (65)

where 4 £ D t, 4 ' E D , as a straightforward consequence of the δ functions
in J σtσjdμ(σ). In the general case, it is convenient to start by contracting σ's
corresponding to the smallest boxes. QED

The n(Z\)!'s will be as before controlled by Lemma 2.
We will extensively use the standard inequality (see [22]):

β β

if Σ a β

ι < l (aβ > 0). (66)

We will apply (66) to the sum over all terms that contribute to F (i.e. all connected
components with adequate specifications) first for given positions of all boxes
involved. Summation over the latter is made in turn later.

A convenient choice of aβ is

aβ= JJ exp {ε'M^diΔ, Δ')}aβ

explicit A or β ' s
in each slice

joining boxes A, A'

0(1) Π (67)
A £ connected
component β

where: h{9^) = %{Ψ')—u(β/'), where u(W) = (the smallest index of the legs of 9^)
The fact that Σa^1 is finite will be established in the usual ways. The exponential

fall-off factors in distances d{Δ,Δf) allow one to control the number of terms
generated by the cluster expansion. For %{Ψ") given, the factors M~εh^ allow one
to control the sum over the slices of previous derivatives (a vertex 9^ could have
been derived at any slice between z(9Π and i(9O — h(Ψ*)). We note that, though we
have mainly considered the 2 point function F for definiteness, the analysis is similar
for TV-point functions and the discussion below is given for general TV.

Let us come back to the TV external legs A and B which appear in the expression
of the (connected) TV-point function (9). Each A or B has been decomposed into
Σ A1 or^2Bτ. We first treat separately contributions corresponding to given values

i i

i1,...<iiN. (We shall later use factors Mlχ,..., M%N occurring in bounds for each
ik.) We then note that by construction:

Inf u(9^) < * ! , . . ,iN< S u p u(9^). (68)
vertices vertices
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In fact, if e.g. Infu(<^) is equal to some index 7, all variables vΔ of index 7 — 1
vanish so that corresponding contributions also vanish. Formula (68) allows one to
show that ^ α ^ 1 is indeed finite for given ik

9s.
β

From (66), a bound on Σ \^β\ *s obtained by taking the Sup over β of the
β

following bounds on \aβ^Sβ\:

vertices ..--*: —

Π ί 1 Γ < • < ^

vertices
O(l)n(Δ)

f a c t o r s (z _

explicit A and .B s
of the cluster expansion

when iVjO') is the number of A, B and derivatives of index j corresponding to "well
localized" legs (j < i + 1 if i is the last stage where some procedure has been applied
to one of the legs of the vertex), and N2(i) is the number of A, B, V corresponding
to A or B of slice> i that have been eliminated, or to A, B in terms NVVA'(+ι ^
that have been "dominated," or in terms Σ ^2Ak, Σ ^2^k

k>i k~>ι

Remark

9m(ι,z)

9i

where the inequality on the left is due to results on the behaviour of gi. The rough
inequality on the right, valid for any ε" > 0, will be sufficient for our purposes.

We next use

Lemma 6.

< J ] J ] [O(1)(Π(Δ)\)41 (69)

Remark. The factor n(Δ)l4 will later be "absorbed" by the exponential fall-off factors,
following Lemma 2.

Λn(Δ)
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On the other hand, denoting below Λi the set of boxes of Pi,

Σ ]X\ f Mε{t-m(i>z)) dz <Σ Σ /M- ( 4- ε»- ε m ( i ' z ) dz

= Y f M-(4-ε)i-εm(i'z) dz<YY f M-(Λ-ε)(i-j)M-4i dz

^ Σ Σ Σ M-(4-^^} < Σ 0(1). Q.E.D
y ι>j A

We now briefly describe the following usual procedures that can be used to
get bounds on the N point function Fτ % , with external A and B's of indices
ili...,iN. The following inequalities will be useful:

- y)} < f | e x P { -O(l)M-j\χ-y\}. (70)

Equation (70) will allow one, given an exponential fall-off factor at a given slice i, to
attribute similar factors to all slices j > ί. These exponential decrease factors allow
one to get rid of factors z — z1 modulo factors Mj:

Wl <cstM'", (71)

where j is the slice at which the operation giving rise to z — z' has been made:
integration over variables z is then made inductively from slice 1 to ρ with, at each
stage i, a "fixed" vertex for each connected component of slices less than ί. Integration
over other vertices is made with the help of exponential fall-off factors which allow
to sum over the box containing each vertex. There is no fixed vertex if the component
contains some external legs. Factors M4% namely the volume of the box in which a
point has been integrated (in slice i) are obtained. They are conveniently written in
the form:

Q

M4i = MAρ

Factors Mι or M~\ arising e.g. from (71) or from gradients respectively, are similarly
written

Q Q

M.

Factors Mρ and M~ρ cancel each other and one finally obtains the following powers
of M:

M~ίι M~ίN TT TT /j^-4([number of vertices of Gβ — l

j connected
components GA

X Λ/f ~ [ n u m b e r °f factors (z — z')\ 7i^[number (A,B, gradients)]\
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which can itself be bounded by

M-e(Gβ

j G A that do not include G ? containing

external legs external legs

where e(Gj) is the number of outgoing legs (legs of indices larger than j) of G^ , and
in turn by

i M~lN [[ M-
vertices 9^

The final uniform bound on F^ ^N (independent of ρ) follows:

\Fiu ) ^

xsup

SUp(iι, AN) T ίnr> nr> \\ fΊOΛ

where L is the minimal length of all connected trees joining xι...xN and possibly
intermediate points.

As already mentioned, convergence in the p —> oo limit is established similarly.
At that stage the following bounds are obtained (in the ρ —• oo limit) on e.g. the 2
point function

(i) i = i = i cstM-2ie~cstM~τ\χ-y\.
(ii) iγ 7̂  i2. There are in this case at least 2 couplings and one obtains the bound

\Fiui2(x,y)\

x exp { - cstM- s u p ( i l ' * 2 ) | x -y\}. (73)

Similarly, the following bound is obtained for the 4-point connected function

F i u M(xV'-ix4)\

< cst M- 2 *i . . . . M-2i*gmii^ ; Z 4 )M

xexp{-cs tM~ s u p ( i l ' ^L(xu...,x4)}. (75)

However, these results are not sufficient for the analysis of the large distance
behaviour of F to any order. To get better results (at order n in (In \x — y\)~ι) it is
sufficient to put aside, in the expansion, terms with a number n of vertices less than
any given n 0 (n < n0). The remainder will be bounded as above. The bound will
now include the factor:

no/2

Bounds on the terms that have been put aside include factors (ftn f ( i l j ,iN))n> n < n o

The leading behaviour is then obtained up to order no/2.
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8.3. Large Distance Behaviour: Proof of the Theorem.

The large distance behaviour will then be obtained up to order n o / 2 . For the 2-point
function, the theorem will be obtained, after resummation over il9 i2. With so far il9

i2 given, one has:
(i) ίι — i2 = %, The lowest order contribution gives a result in

A i B i

M~2ιe~M τ\χ~y\. The bound on the remainder includes the further factor g2 of the
order of l/i.
(ii) ix φ i2. These contributions will be included in higher order terms when
summation over ix, i2 is made as now explained.

Let us in fact consider the actual 2-point function F(x,y) — Σ i^ i2(x,y).

Explicit lower order terms are resummed, while bounds obtained previously allow
one to treat remaining sums. Given x, y, let i — i(x,y) be the best integer such
that \x — y\ ~ M \ Let j = Sup(i1,z2). For j < i, the exponential fall-off factor

exp{—M~i\x — y\} is used and provides a very small factor e ~ M , allowing one
to make the summation with a result much smaller than explicit terms.

For j > i and if e.g. il9 i2 > i, one may write: M~lχM~%1 =
M-2iM-{i{-i)M-{i2-i)^ w h e r e M-iτ ^ i/|x _ y|2 a n d factors M-^~l) and

M~ ( Z 2~z ) allow one to sum over iλ, i2. A similar analysis holds in other cases.
The result stated in Theorem 2 is then obtained by estimating the leading

contributions to F(x — y):

,

(76)

We use now that δζj = agA- In M+higher terms, where a is the constant corresponding
to the lowest order diagram contributing to the wave function renormalization, and
get:

F(x,y)= ^Vl+αln(M)V ( ^ V + O(Γ2)

(77)
By summing over j , we obtain with i « In \x — y\/1nM:

F{x, y) = . , l

 | 2 (l + - \ - + - A ^ L + O(Γ2)O(l/g2)) , (78)
Crenk-2/l

where Λ! and λ2 are depending only on α, /?2 and /?3.

Remark More generally, for an TV-point function the natural expansion that one
obtains is an expansion in terms of the effective parameters and where subdiagrams
are renormalized (by definition here a subdiagram has its internal legs of higher
momentum than the external ones) [18, 15]. The large distance behaviour at a given
order is then obtained by resumming the first order contributions and using the
behaviour of these effective parameters, following the analysis of [19].
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