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Abstract: Let f(Q) be odd and positive near -hoc. Then the non-linear wave equation
Θ2Q/dt2 - d2Q/dx2 + f(Q) = 0, considered on the circle 0 < x < L, can be written
in Hamiltonian form Q - dH/dP, P* = -dH/dQ with

L L

and H = \ J(Qf)2 + J
0 0

the corresponding flow preserves the (suitably interpreted) "petit ensemble"
e~HdΌ°QdooP\ and, for L j oo,Q settles down to the stationary diffusion with
infinitesimal operator - d2 jdQ2 + m(Q)d/dQ, m being the logarithmic derivative of

the ground state of —d2/dQ2 \ F(Q). This diffusion is the "Brownian motion with
restoring drift"; see McKean-Vaninsky [1993(1)]. For reasons suggested by the paper
of Lebowitz-Rose-Speer [1988] on NLS, it is interesting to study the "micro-canonical

L

ensemble" obtained by restricting to the sphere J Q2 = N and making L ] oc with
o

fixed D = N/L. Now, for F(Q)/Q2 —> oc, the same type of diffusion appears, but
with drift arising from the modified potential F(Q) + cQ2,c being chosen so that
the mean of Q2 is the assigned number D. The proof employs Doblin's method of
"loops" [1937] and steepest descent. The same is true for F{Q) = m2Q2, only now
the proof is elementary. The outcome is also the same if F(Q)/Q2 —> 0, provided
D is smaller than the petit canonical mean of Q2; for D larger than this mean, the
matter is more subtle and the outcome is unknown.

This work was performed at the Courant Institute of Mathematical Sciences, with the partial support
of the National Science Foundation under NSF Grant NO. DMS-9112664 which is gratefully
acknowledged by H. P. McKean
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1. Introduction

Q
Let f(Q) be odd and positive near +00 and let F(Q) = J f. The recipe

0

L/2L/2 Λ

-\ J [Q'{x)fdx\
-L/2 JdML = exp { - I F[Q(x)]dx } x ( 2 πo+)oo/2 " d°°Q

defines a measure on the space of continuous paths x —+ Q(x) of period L. The
second factor is "circular" Brownian measure, obtained by conditioning the "standard"
Brownian motion so that Q(L/2) = Q(—L/2) and distributing this common value
h over the line according to the infinite measure (2πL)~1//2 x dh, i.e., if Eoo is the
"tied" Brownian mean and if I(Q) is any reasonable function of the path, then

exp{-i/(Q')2} 7

The first factor is a mere density; it controls the partition function ZL = the total
00

mass, the latter being finite or infinite together with f e~LF^K)dh. This type of measure
0

figures in the (petit) canonical ensemble for the classical wave equation Θ2Q/dt2 —
d2Q/dx2+f(Q) = 0: in fact, with the Hamiltonian H=\ J P2+\ / ( Q 0 2 + / F(Q),

you have Q = P = dH/dP and P9 = Q" - f(Q) = -dH/dQ, and the canonical

measure

is invariant under the flow, suitably interpreted; see McKean-Vaninsky [1993(1)].
ZL < 00 for L t 00 is now assumed, and ML is re-expressed in terms of

a Brownian motion with (restoring) drift. ZL < 00 implies F(±oo) = 00, so
0 O = -(\/2)d2/dQ2 + F(Q) has pure point spectrum λ o (0 o ) < A^ΦQ) < etc. | 00
and (positive) ground state ψ0 with f^(Q)dQ = 1, say. Let m be the logarithmic
derivative of φ0, compute d\gψo[Q(x)] in the Brownian manner:

dlg φo[Q(x)] = (lg ΦOY (Q)dQ + \ (lg ψof (Q) (dQ)2

= m(Q)dQ - \ m2(Q)dx + [F(Q) - λo(Go)]dx , ι

and integrate from -L/2 to +L/2, noting that f dlgψ0 = 0. It follows that

m(Q)dQ- \ I m2{Q)dx\

J )

(2τrO+)°°/2

= dx, in accord with Itό's lemma: in fact, under the conditioning Q{L) = Q(0),
B(x) — (x/L) 5(L) with a standard Brownian motion B
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up to a numerical factor which is dropped, and here you recognize the law of
the (circular) diffusion with infinitesimal operator 0 = (\/2)d2/dQ2 -f m(Q)d/
dQ2 conditioned as before so that Q(L/2) = Q(—L/2), this common value being
distributed over the line according to the finite measure p(L, ft, h)dh.3 The total mass
is now

ZL

r

=

with λn((S) = — λ n ( 0 o ) + λ o (0 o ), as appears from the similarity —Ψ0&ΨQ1 =
Go - λ o (β o ), and from λo(<5) = 0 it is plain that ZL = 1 + o(l) for L | oo.
The drift m{Q) is odd and negative for large Q > 0, i.e., it pulls Q back to rest
(Q = 0), and it comes as no surprise that, for L f oo, ML tends to the laws M^
of the stationary diffusion with infinitesimal operator G and invariant distribution
Φl(Q)dQ\At see McKean-Vaninsky [1993(1)].

The same ideas apply to the nonclassical wave equation NLS (= cubic Schrό-

dinger) for L < oo. Now v ^ d Q / d t = -Θ2Q/dx2 ± \Q\2Q with Hamiltonian

H = J \Qf\2 ± i J |Q | 4 , 5 and the canonical measure

e-Hdvol = βτd/2) JiQ!4 exp{~ / 1QΊ} d o o ( r e a l Q ) d o o ( i m a g Q )

(2πθH-)°°

is invariant under the flow,6 with this difference: that, with the lower (focussing)
sign, ZL = oo. This divergence prompted Lebowitz-Rose-Speer [1988] to introduce
the micro-canonical ensemble, obtained by conditioning the canonical measure upon a
fixed value N of the constant of motion / |Q| 2 , and to speculate that the temperature-
dependent micro-canonical ensemble with e~H/τ in place of e~H might exhibit a
phase transition in the thermodynamic limit as L | oo with fixed D = N/L, favoring
solitons/radiation at low/high temperature. Their program is in its infancy and it
seemed profitable to make a trial run with the canonical measure ML introduced at the
start, artifically conditioned upon J Q2 = N". Denote this micro-canonical ensemble
by MN/L=D and take the thermodynamic limit, as above. The result is as predicted
by Gibb's principle of equivalence of ensembles (maximal entropy production): as
L t oo with fixed D — N/L, the micro-canonical ensemble MN/L=D approaches the

petit ensemble M^ based upon F*(Q) = F(Q) + cQ2, the number c being adjusted
so that M^iQ)2 = D. The rest of the paper is mostly occupied by the proof of this
fact under the (more or less) necessary condition that Q~2F(Q) tends to -foo with
Q9 but see Sect. 2 which deals with the special case F(Q) = m2Q2/2.

What happens for Q~2F(Q) = o(l) is, in part, more subtle. The recipe stands with
a suitable choice of c > 0 if D < MO O(Q2), but if D > M^iQ2) it cannot be so.
Then c could only be negative and F*(Q) = cQ2[l -f o(l)] acts as a repulsive force
far out; as such, it is incapable of producing a stationary diffusion, so while the micro-
canonical ensemble makes sense and its thermodynamic limit surely exists, something
else must come out. The same problem arises in an aggravated form, for KdV with

2 This is the Cameron-Martin formula [1945] as adapted to diffusions by Girsanov [I960]; see, for
example, McKean [1969]
3 p is the transiton density of the diffusion, i.e., it is the (smooth) elementary solution of dp/dx = 0p
4 0tψ§ = o
5 \ZIΓΪQ* = dH/dQ* with * = conjugation
6 McKean-Vaninsky [1993(2)]



618 H. P. McKean, K. L. Vaninsky

F(Q) = - Q 3 , and for focussing NLS with F(Q) = -Q4 and a 2-dimensional
Bessel process in place of the Brownian motion. Both cases fall naturally into the
micro-canonical format, J Q2 being a constant of motion, and the micro-canonical
ensemble makes sense since E[exp J Q6~ \ f Q2 = N] < oo,7 but the outcome of
the thermodynamic limit is unknown.

The present condition Q~2F(Q) f oo permits a simple attack (steepest descent)
capitalizing upon the diffusion format expounded above and an allied method (loops)
of Doblin [1937]. The next section (2) presents the explicitly solvable example
F(Q) = πι2Q2/2; it is a continuous analog of the spherical model of Berlin-Kac
[1952], for which see also the finer results of Molchanov-Sudarev [1975]. Section 3
is preparatory to the main computation (Sect. 4). Section 5 isolates the local limit
theorem which lies at the bottom of it all and places it in the context of Martin
boundaries. Gibbs' principle occupies the final section (6); compare, esp. Kolmogorov
[1949] and also Dobrushin-Tirozzi [1977] for its novel insistence upon the fact that, for
Gibbsian-Markovian lattice fields, the local central limit theorem and its superficially
weaker integral form are really one and the same.

2. An Example

The micro-canonical ensemble for the Ornstein-Uhlenbeck process with mass m
provides the simplest illustration; it corresponds to F(Q) = m2Q2/2. The petit
partition function is found to be

f
J
J ( 2 O ) ° ° / 2 ^(2πO+)°°/2 ^ 2sh(raL/2)'

Fix a compact test function φ and, to evaluate the micro-canonical mean

M

take the transform
oo

/ •

o-(l/2)JKQ')2+mlQ

= (1/2) JφKφ 1

2sh(m+L/2)

in which K is the (periodic) Green's function for -d2/dx2 + ra+, and invert it with

respect to the variable s = c2/2 to obtain

!_ T
^ΓΛ J

7 See Lebowitz-Rose-Speer [1988]
8 M(I) and the like are expectations M(I) = JldM; M[J Q2 = N] = (d/ΘN) M[J Q2 < N] and
the like stand for densities
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Now comes the descent:

esN eL(sD-(l/2)λ/m2+2s)

2sh(ra+L/2) j

is analytic in the s-plane cut from — oc to —m2/2, and the integral is controlled by the

contribution from the critical point s = l/SD2 — m2/2 of function sD - | Vm2 + 2s

figuring in the top exponent,9 with the result that

LToo

where K is now the whole-line Green's funtion for —d2/dx2 + m\ with m* = 1/2D,
i.e., the thermodynamic limit simply changes the mass from m to m* = 1/2D.

This agrees with the statement of Sect. 1: for mass ΪΠ,ΨQ(Q) = (m/π) 1 / 2 e~ m ( ^
and f ΨQQ2 = I/2m so that mass 1/2D produces mean square D. The genereal
computation is, naturally, more difficult; it is carried out in the next two sections
under the stated condition Q~2F(Q) j oo.

3. Preliminaries

The restriction of the petit measure to the micro-canonical ensemble and the
implementation of the thermodynamic limit require a few preparations, both general
and technical.

Generalities. The first task is to explain why the conditioning by the value of
/ Q2 = N makes sense, x —> Q{x) is the diffusion with infinitesimal operator

Γ x 1
0 = (\/2)d2/dQ2 + m(Q)d/dQ. The motion x -> \Q(x)J(x) = JQ2\ is also

L o J
a diffusion, but now its infinitesimal operator 0 + = 0 + Q2d/dl is degenerate
in that d2/dl2 is missing from the top of it. This is not troublesome: the double
commutator [d/dQ, [d/dQ,Q2d/dI]] = 28/dl reproduces the missing vector field
and now a deep theorem of Hormander [1967] guarantees that the joint density 1 0

Γ x 1
p(x,A,B,I) = P\Q(x) = BJQ2 = I Q(0) = A is smooth in all its variables

L o J
and also positive, provided only that x > 0 . u This fact dispels any anciety as to the
propriety of the micro-canonical ensemble: for example, if 0 < xx < x2 < L, then
the micro-canonical measure of the event {ax < Q(xλ) < b{) Π (α2 < Q(x2) < b{) is
nothing but

+oo hi b2
ί dQ0 ίdQx ί dQ2 ί d2l

a2

9 (sD - \ Vetc~.)" = 1/16D3 > 0 at the critical point; the line of integration is bent so as to pass

through the latter

10 p Q(X) = Q,fQ2 = I means (d/dQ) (d/ΘI) P \Q(X) < Q,JQ2 < I . This kind of
o L o

unconventional but handy notation is used throughout
1 1 Krylov [1987] can be consulted for such matters
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with normalizer

Z

oo

• /

Now the statement to be proved is that, for any nice function H(Q) depending upon
a limited sample of the path, such as Q(x)\ 0 < x < 1, the micro-canonical mean

EQ H, Q(L) = dQ

tends, as L j oo with fixed N/L = D, to the mean

oo

= ί[φo(Q)fdQE*(H)

for the stationary diffusion with infinitesimal operator 0 * arising from F*(Q) =
F(Q) + cQ2, the number c being adjusted so that M^(Q2) = J[ΨQ(Q)]2Q2 takes
the prescribed value D.n Naturally, it is necessary to check that this adjustment can
really be made. The fact is plain if F(Q) = m2Q2/2 since M^iQ2) = l/2ra, as
noted before. Now consider the general case Q~~2F(Q) | oo. For c | oo, the ground
state ψ0 for F*(Q) = F(Q) + cQ2 satisfies

< \

for any nice function ψ with J ψ2 = 1, from which it appears that D = j Q2ΦQ can
be made as small as you like: just concentrate ψ in the vicinity of Q = 0. Contrariwise
for c I — oo the same appraisal shows that J Q2ΨQ can be made as big as you like by
spreading ψ2 out. Now pick c so that / Q2rφ\ = D and note that the micro-canonical
ensemble is not changed by the adjustment F(Q) —> F(Q) + cQ2: because of the
conditioning / Q2 = N, it washes out above and below. This means that the proof
needs to be made only for c = 0, i.e., when N/L — D is already the mean M^iQ2)
for the original petit ensemble.

Idea of the Proof This is easy to describe if
Q(x):0 <x<l, say. Then

= D. Let H depend upon

OO p LJ

J EQ H, Q(L) = Q,JQ2 = dQ

oo oo N

Q
ί dQ f dQ' fdlE,

- o o 0

L - l

Q(L - 1) = Q, / Q 2 = iV -

JφlQ2 < oo as soon as Q~2F(Q) t oo in view o § = λo(0o)
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It is to be shown that, for L | oo with fixed N/L = D,

L

0

is proportional to L 1^2ΨQ(Q) x [1 + o(l)], with the result that

oo oo

J dQ J dQ' J
— oo —oo 0

oo oo
MN/L=D{H) £*

J dQ J dQ'
— OO —OO 0

= MOQ(H).

Let Lo be the passage time from Q(0) = Q1 to Q = 0 and let Lx > Lo, L2 > Lx

etc. be the successive "loop times" for passing from Q = 0 to Q = 1 and back; see
Fig. 1.

Q(0) = Q

Fig. 1
n-l *- n

The individual loops Q(x):L n _ 1 < x < Ln are independent and identically
distributed;

D =

L L

2) = lim L- 1 / Q 2 = lim L~x Q1 =
Lfoo y ntoo J

EJLJQ2

0(^1) '

by the law of large numbers; and the diffusion settles (exponentially fast) into its
stationary regime, so it is natural to hope that

PQ'

= N

Lo

Q(L) = Q xPQ,[Q(L) =
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in which the first factor simplifies itself, in response to the law of large numbers and
the (local) central limit theorem, as follows:

Γ L

[Q2 = =PQ,

= Pn>

ί (Q2-D) = 0 with n = [L/EO{LX)]

(Q2 -D) =
In

i.e.,

Q(L) = Q, = χ$(Q).

It remains to hope, in addition, that the shift L —• L - 1 and N -+ N — I will not
disturb this appraisal, and it is the content of Sect. 4 that this is perfectly correct,
but be warned: if the adjustment M^Q2) = D is ftoί mαde beforehand, the present
method predicts that c = —ΔD/2σ2, and this is not correct as it takes c —> oo to
make D j 0 - in short, the conditioning Q(L) = Q must now distort the Gaussian
law, and that is not so easy to track.

Technicalities. These are needed in Sect. 4; at a first reading, just note the facts and
pass on. Q(0) = 0, T is the passage time to 1, Q is a free variable, and t(x, Q) is the
local time lim ε" 1 meas(0 < x' < x: Q < Q(xr) < Q + ε). 1 3

Item 1. E0(erT) < oo for small values ofr>0.

Proof. 0 has pure point spectrum and it is the same if you kill the particle at Q = 1,
only now the ground state is displaced from λ o (0) = 0 to c < 0. The rest follows
from

P0(T = x) = -φ/dx) j p(x,0,Q)dQ
1

= - ί

= - \ p3(x, 0,1) < constant x ecx ,

p being the transition density for the killed diffusion.14

1 3 See Ito-McKean [1965] for such matters
1 4 See Ito-McKean [1965] for details
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1

Item 2. J50[t(T,Q)] = / φ^2 x 2φ\(Q) for Q < 1, Q+ being the larger of Q and
Q+

0; also E0[ί2(T, Q)] = f φ~2 f φ~2 x φ4

0(Q).
Q+

oo

Proof E0(t) — f p(x,0,Q)dx is nothing but the Green's function G(0,Q) for
o

the operator 0 1 5 restricted to Q < 1, with killing at Q = 1, and from 0 =
(l/2)ψQ2(d/dQ)ψl(d/dQ), it is easy to see that

1

G(Qf,Q) =

"spot" being the larger of Q and Qf. The second evaluation is similar.

Item3. E0\]xdί(x,Q)\ <}φ^2}φ^2 / 2φ2x2φ2(Q).
Lo Jo - o o

oo 1

Proof £0(etc.) = / xp(x,0,Q) = j G(0,Qf)G(Qf\Q)dQ'\ now use the explicit
0 - o o

form of G from Item 2.

Item 4.16 E0\fI(x)di(x,Q)} < f φ'2 fφ~2 f Q22φ2 x 2φ2(Q).
Lo Jo -oo

Proof See Item 3.

Item 5. E0[e~aT'ί3I(<T)] is of modulus < 1 for a and β in the closed (right-hand)
half-plane, the origin expected; moreover, it vanishes as a and/or β tend to oo in that
region.

Proof The expectation can be of modulus 1 only if both a and β are real and
PQ[aT + βl e 2πZ] = 1 . π But a typical path starting at 0 and hitting 1 for the first
time will immediately overshoot, so that if Q is such a path with aT -f βl = 2πn,
then it is the same for any nearby path. But this is manifestly wrong if it would happen
with positive probability. The rest follows from the deeper fact that T and / = I(T)
have a joint density: indeed, h(Q) = EQ[e~aT"βI] satisfies 0ft = (α + βQ2)h for
Q < 1, which is to say that the (possibly fictitious) density p = PQ[T = x, I = N] is
a weak solution of dp/dx = (5p — Q2dp/dN, and now Hormander [1967] guarantees
that p is an honest function.

15 < 5 G = - 1
16 I(x) = jQ

o
17 Z is now the integers
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4. The Thermodynamic Limit

Fix a nice function H depending upon Q(x):0 < x < 1, say, and form its micro-
canonical mean

MN/L=D(H) = Z- 1 / E{
J

Q

N

= Z~X j dQ ίdQ' ί dN'

= N dQ

xE
Q

PQ>

L-U

Q(L -L') = Q, ί = N-Nf

with 1 < V < 2 < L, say. Now the micro-canonical mean of Q2(x) is D = N/L,
independently of 0 < x < L,1 8 so only a small error is incurred if the integration is
restricted to a big box in QQW-space; in particular, it is permitted to replace the
QQ'-density in the top of the micro-canonical mean by the double convolution

L N

o o

L'
γ

IdNfEQ H,Q(L') = Q', ίQ2 = Nf A(Lf)B(Nf)

L-L'

Q(L -Lf) = Q, ί = N-Nf

in which A and B are smooth compact functions, with A vanishing outside [1,2],
2

/ A = 1, and B = 1 on a long interval containing iV; = 0.
1

The introduction of A and B and the integration over 1 < L' < 2 looks artificial
but is essential to the method. It makes I smooth and compact, with transform

oo oo

I = J J e~aL ~βN IdL'dN' which is both analytic in C2 and class C™(Λ/^ΛR2).
o o

This decay, or something like it, must be present to justify the descent: without it, the
inverse transform simply masks the realities; moreover, it cannot be obtained from
II, as is easily confirmed for the case of pure Brownian motion: in fact, with positive

1N/L: ,D[Q2(χ)] = - J M[Q2(x')]dx' = L~{M
o

JQ2\=N/L =
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imaginary a = y/^Λp and β = y/^

625

oo oo

-i"dipa Q(x) = 0, = /

/shmx
with m = y/lβ = ge v Λ~T π /

/πm

9-(p/q)Xev

/shx

behaves like q χl2 or like p χl1 according as p/q is of moderate size or p/q ] oo.
Now, in the language of the local time,

ϊ(x, Q) = lim ε" 1 meas(0 < xf < x: Q < Q(xf) < Q + ε),
ε|0

/ / =

OO

/

- o

e~aLe o dt(L,g)

This may be put into a convenient form by cutting up the half-line 0 < L < oo
according to the passage time Lo = min[x:Q(x) = 0] and the succeeding "loop

X

times" Lx < L2 < etc. depicted in Fig. 1. Write I(x) — J Q2 and In = I(Ln) for
o

n = 0,1,2,3, etc. Then

II = EQI
e-axe-βI(x)dί(x,Q)

L o

EQ,[e-aL°-βI°]

-βIdi

In] x Eo

n=0 L 0

L o

EQ>\J<
LL0

ίv,

in which the independence of loops was used to reduce the sum in line 2 to a
geometrical series, and the outlying factors, representing the initial passage from Qr

Γ i

to 0 and the final passage from 0 to Q, were combined to produce E\ J etc. dί .

^ °
Now the technical Items 2, 3,4 show that /// is of class Cι(\^ΪR2), so the same
is true of the product / ///, with the added feature that this product and its gradient
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are summable. It follows that

4π 2 J

this estimate being independent of QQ1 in the samll, as you will readily check. The
same remarks apply, in part, to IIV, only now the inverse transform must be taken
as in Fig. 2a to avoid the root of e(a,β) = E0[e~aLι~βl1] = 1 at a = β = 0; see
Item 5. Now comes the descent.

2b 2d

Fig. 2

t •? 15 •:> I Θ I
α β α β

Step 1 removes the vertical α-segments in Fig. 2a with an error of magnitude L ι,
as above, leaving the integral depicted in Fig. 2b. Step 2 distorts Fig. 2b into Fig. 2c.
Step 3 removes the vertical /^-segments at like cost, leaving the integral depicted
in Fig. 2d. Step 4 distorts Fig. 2d into Fig. 2e. Now e(α, β) — 1 has, for small real
β, a simple root a = a(β) = -βD + σ2β2/2 + etc. with positive σ2 = EO(IX -
L1D)2/E0(Lι), as you will check,19 and you may take the ^-segment in Fig. 2e so
short that a(β) lies inside the α-circle seen there. Step 5 estimates the integral over
the omitted left-hand arc ofjhat with the aid of technical Items 1 and 2: if the radius
r is small, then the top of IV is of magnitude < EQf(erL°)E0[erLΠ(Lv Q)], and as

3π/2

this is finite, so the integral is controlled by J ercosθLdθ = O(L~ι). Step 6 is now
π/2

permitted, which is to integrate as in Fig. 2f, evaluating the α-integral as 2π\/—ϊx the
residue at the pole a{β) = —βD -f σ2β2/2 + etc.: up to errors of magnitude L" 1 ,

I * IV = - -1 ί eβNdβ ί
* Θ

eaLdaΐ- IV

4π 2

in which the o(l) is controlled by the size of the /^-segment. But N = DL, so the
/3-integral is nothing but

1— I
v — 1 J— v — l o o

= del da at a = β = 0 does not vanish. α'(0) = - EQ = -D



Brownian Motion with Restoring Drift 627

up to an exponentially small error; also, E0[ϊ(Lι,Q)]/E0(Lι) — ΨQ(Q), as you may
check either by the technical Item 2 or by the law of large numbers;20 and all this
estimation is independent of QQ' in the small, so that the density 7 * 7/ in the top
of the micro-canonical mean can be replaced by

oo oo

ί dL' ί dNf

0 0

EQ

L'

H, Q{Lr) = Q' A(L')B(N')^β
2πσ2L

You can even remove the B and integrate over all QQ' G R2, at the cost of a small
error relative to Z, and so obtain

x (2πσ 2 L)" 1 / 2

MN/L=D(H) *

Z=

the same principles having been applied to the bottom as to the top. The proof is
finished.

5. Martin Boundaries and the Local Limit Theorem

Amateurs of the Martin boundary 2 1 will recognize the ratio

L'

Q(L-L') = Q1 ί Q
2 = N-N'

assuming it has a limit h{L\ Q', N') for suitable, L | oo, N j oo, and Q, you expect
this function to solve

0 =

Now for fixed l < L / < o o , L | o o , and general N/L = D, the micro-canonical
mean

L'

= j EQ Jff, Q(L') = Q\

x Z~ιPn,

L-L1

Q(L-L') = Q, ί Q2 = N-N'

20 E0[i(Lι,Q)]/E0(Lι)= \im L-1 fp(
Lf oo Q

21 See Williams [1979] for such matters
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tends to the petit mean M^(H) corresponding to F*(Q) = F(Q) + cQ2, c being
adjusted so that M^(Q2) = D. The latter can be expressed as

Lf

= JD(H) = JE H, Q(Lf) = Q',

-LiV' (A*-AΠ)Z/

since the density UPQ/UPQ restricted to the field of Q(x):0 < x < L' is

[
τ I T I -i r r ' j I

f m*dQ- \ /(m*) 2 exp
o

o 0

• v v
exp I / mdQ — i f m2

.o o

Γ v
exp fd\gψo(Q)-fF(Q)

L 0

in which Q = Q(0) and Q' = Q(L'\ so for fixed Q, L ] oo, and AΓ/L = D, you
expect that

lim Z~lPo,
Ltoo ^ -n-v.

This is the "local limit/renewal theorem"; compare Feller [1971]. The function h
is, in fact, a solution of (d/dU + <S+)/ι = 0, and the formula is perfectly correct:
indeed, the results of Krylov [1987] show that the functions Z~ 1PQ /[etc.] form a
locally compact family and, to identify the limit unambiguously, you have only to
choose H to be a general test function in the variables Q,Q\ and TV7, L' being fixed.
These remarks suggest that it may be interesting to study the full Martin boundary

Γ x I

of the space-time diffusion x —> \x,Q(x),I(x) = J Q2\ with infinitesimal operator

. f = d/dx+\ d2/dQ2 + md/dQ + Q2d/ΘL This is left to the future except

to note that for the Ornstein-Uhlenbeck process with mass m, the minimal space-time

functions are of the form

= Qxp\aQernx - —
a2 e2m x - 1

2m'
-βx + βj2 - ηI/2

with 7 > —m2, 2β = m ± ^ 7 + m 2, and either a = 0 or else m' —
=F(l/2)>/7-hm2; in particular, the boundary is a topological plane. Note that the
function h is more general than the "micro-canonical" functions suggested by the
thermodynamic limit; the latter arise precisely for a = 0. It is natural to conjecture
that the general boundary is similar, but nothing more is known about it.
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6. Gibbs' Principle

Let P o be the law of the original stationary diffusion of the petit canonical ensemble
for L = oo, and let P be the law of any other stationary process (Markovian or
not). Let A be the density of P with respect to P o, both restricted to the field of
Q(x):0 < x < L. The rate of entropy production of P relative to Po is

h= lim —ί [ Δ\gΔdP0 = lim -\ ίlgΔdP;
Lfoo L J LToo L J

h < 0 in any case, with the understanding that h = — oo if Δ does not make
sense. Gibbs principle22 asserts that, in the class of all laws P with fixed mean
square J Q2dP = D, the micro-canonical ensemble makes h biggest. This is easy to
prove.23 Let A* and h^ be the corresponding objects with the micro-canonical
ensemble P* in place of PQ. Then

h-h*= lim j flg^-dP
LToo L J Δ

is independent of P: in fact, using for reference the free Brownian motion with starting
point distributed by the infinite measure dh, the density of P o is 2 4

Q/)e~SiF~λo) w i t h Q'

so
4 * = dP^ = ψo(Q)ψo(Q') e - c

and

= 0(1) + L(λ0 - \* - cD).

But then it is the same to maximize h* as to maximize h, and it is easy to see that
h* < 0 unless A* — 1, i.e., unless P = P*.
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