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Abstract. We consider the Zakharov equation in space dimension two

tu, = —Au+nu,
1
— Ny = An + Alul*.
%

In the first part of the paper, we consider blow-up solutions of this equation. We
prove various concentration properties of these solutions: existence, characterization
of concentration mass, non existence of minimal concentration mass.

In the second part, we prove instability of periodic solutions.

I. Introduction

We consider as in PartI [7] the Zakharov system in space dimension two,

tu, = —Au+nu, (1.1)
1

(L) 2= Ant Alul?, (1.2)
0

w0) = QSO y n(0) = UL nt(O) =Ny,

where A is the Laplace operator on R?, u:[0,T) x R?> — C, n:[0,T) x R* — R and
@9, Mg, M are the initial data. ¢, > 0 is a fixed number.

Let us recall the main results of part I.

It is known that the local-in-time Cauchy problem of (I, ) is solvable in various
function spaces. Existence of strong solutions of (I,) for regular initial data has been
investigated by several authors (see PartI [7]). You can show that, for initial data

* This work was partially done while the second author was visiting Rutgers University and Courant
Institute
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(¢gs Mg 1) in Hy = H? x H' x L?, there is a unique solution (u,n,n,) in H, on
[0,T,) and
- T, = +o0 or

= |u@®)| g2 + [n@| g1 + [0, (@) 2 — +00 as t — Ty

The question to know if this space is optimal for local existence is open. For
example the case of the energy space FII = H' x L?* x A, (or even H =
H' x L* x H') for the Cauchy problem is unknown, where H~! is the space
of functions u such that 3v:R? — R? such that

n=-V-v and ve L?

and
Inlg—1 = vl
The main result of Part I was to show existence of blow-up solutions of equation
(g,) in H, and H, of a special form which we call self-similar

2 2
_ W <9+4(lT+4) (L;"th)) Tw
u(t,az)—T_te P T-1) (1.3)
2
w Tw
n(t,x) = (T—t) N(T—t)’ (1.4)

where P, N are radial functions and § € S!, w > 0, T > 0 are fixed parameters.
(u, n) is a solution of (ICO) is equivalent to saying that (P, V) satisfies the following

equation:

) { AP —P=NP, (1.5)
A
M(r2N,, 4+ 6rN, + 6N) — AN = A|P|?, (1.6)
where
1
A= —
Cow

ow 1
and r = IZEI, W,,. = E“, AW = W'rr + ; Wr‘
We show in partI that there exist solutions (P,,N,) of the system (II,) for
0 < A < X* such that
- (By,N)) = (@, —Q» as A — 0.
— & is unbounded in R* x H}! x L2, where & is the connected component of the

set
{\, Py, N,), (Py, N,) solution of (II,)}

containing (0, Q, —Q*) € Rt x H! x L2 (L? = L> N {u(z) = u(|z])}) and Q is the
unique radial solution of

(Vh) Q=AQ+|QPQ, @>0, Q@ =Qq(z),

- P, >0.
Solutions of the corresponding Zakharov equation (u, n) defined by (1.3)—(1.4) are
such that .
- fort <T, (u,n,n,) € H NH,
- —tIL%|(u,n,nt)[ﬁl = tli)n%f(u, n,ny)| g, = +00.
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In particular we have the existence of blow-up solutions of (gy)-

In this paper, we are interested in two types of results.
A) Qualitative properties of blow-up solutions of (c,)- That is, if we consider a
solution of the equation (ICO) (u(t), n(t)) which blows up at t = T, what can be said
about the structure of the formation of the singularities?
B) Instability by blow-up of periodic solutions of (ICO) of the form (u(t),n(t)) =
WOV (z — z), —V2(x — 7)), where 2, € R?, w > 0, § € S! are parameters and
V is a solution of the equation

v,) wV =AV + VPV in R%.

I.A Qualitative Properties of Blow-Up Solutions of Zakharow Equation. Let us
consider (¢, ng,n;) € H,, (k > 1) such that the solution (u(t), n(t)) of (ICO) blows

up in finite time 7> 0 in H, where H, = H* x H*~! x H*2, that is
|(u(®), n(®), ny ()| g, — +o0 as t > T.

We are interested in this section in the behavior of (u(t), n(t)) at the blow-up time in
various spaces and in particular in L? for physical reasons.

In the case of the special blow-up solution (u,,n,) of (1.3)—(1.4) associated with
(Py, N,), we remark that
-T=T=T,=...=T, =..., where T}, is the blow-up time in H,.
= |uy@ @) = |Py[326,0 and |ny(t,2)| — [Ny| 16,0 as T — T.

The question is to know if this concentration phenomenon of the self similar
solutions is a general behavior for blow-up solutions or not. That is, given any initial
data (¢, g, n,), are the parameters m,, > 0, m,, > 0 and a function ¢ — z(t) € R?

such that o
VR, h{E}]l:‘lf |u(t, x)|L2(B(m(t),R)) > My,

htrE,le"'lf ]u(t, x)ILl(B(w(t),R)) > m, .,
where |u| 12, ) [resp. L' (B(z, R))] represents the L? norm [resp. L' norm] of the
restriction of u to the ball of center x and radius R?

This phenomenon is known for the nonlinear Schrodinger equation (formal limit
of (ICO) as ¢y — +00):

@) { iu, = —Au — |ul*u, (1.7)
= w(0) = ¢, . (1.8)

Let us consider a solution of (I__) which blows up at time 7' > 0 in H'. Various
properties are known:

1) Mass concentration at the blow-up time (Merle, Tsusumi [18] and Weinstein [29]).
— In the case where ¢y(x) = ¢y(|z|) we have

.. 2 2
VR7112171:1f|u(t’x)L2(B(0,R)) > Q72 -
— In the general case there is a function z(t) such that
. . 2 2
VR ) hgljl;lf Iu(ta x)le(B(x(t),R)) 2 |Q|L2 )

where () is the unique radial solution of (V).
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2) Lower bound for blow-up solutions. As a corollary of property 1) (see also
Weinstein [28]), we have if |@g|,2 < |Q|.2, the solution u(t) is globally defined
in time.
3) Characterization of minimal blow-up solutions and optimality of lower bound
(Merle [14, 15)).

If u(t) blows up in finite finite time 7" > 0 and |¢;|,2 = |Q| 2, then there are
0 € S, zy,z, € R?, w > 0 such that

2

2
w i 0+f:_;;f'L)—(—_‘;—)> (x —zw
) = Sy 0 = (725 t)e< e gty ),

Our goal in this section is to prove similar results for Zakharov equation () with
0 < ¢y < +oo.

The first result is about the relation between the different blow-up times of a
solution in various spaces where a Cauchy theory can be done. We have the following
proposition.

Proposition 1 (H; Control on Higher Derivatives). If (¢y,ng,n;) € Hy for k > 2,
then there is a unique solution (u(t), n(t)) of (ICO) in H, on [0,T}) and if T}, < +o0,
|(u(t), n(2), nt(t))lHlc — 4ooast — 1.

Moreover, (u(t),n(t),v(t)) is bounded in H; on compact sets of [0,T}) and if

T}, < +00, |(u(t), n(t), nt(t))|Hl — +ooast — Tp.

Remark. The uniqueness of the weak solutions is still an open problem.

Assuming that (¢q,ng,m;) € H,, and that we can apply different Cauchy
theories in H, ..., Hy, let T, be the blow-up time of (u(t), n(t), n,(t)) in H;. From
Proposition 1, it then follows that T} = T, = ... = T},.. Thus, we can restrict ourselves
without loss of generality, to the study of blow-up solutions of (I ) in H,. That is,
we consider (u,n,n,), solution of (Iey) such that for T' > 400

|(’U,(t), n(t)) nt(t))lHl — 400 as t—T.

In fact, for the Zakharov equation as ¢ — 7, we have a phenomenon of mass
concentration of u and n.

Theorem 1 (L?-concentration of Blow-Up Solutions). Let (u,n) be a blow-up solution
of equation (ICO) in Hy, That is

ul g1 + |n|L2 +ng-1 — +o0 as t —=T.

Then, there is a constant m,, > 0 depending on the initial data such that the following

properties are Irue:
1) Ifn, € HL

i) Radial case.

VR > O, lltl'll)l’}jlflu(t, m)le(B(O,R)) Z |Q|L2

and
lim inf |n(t, 2)| 1150, Ry = M -

ii) Nonradial case.
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There is a function t — x(t) such that VR > 0

litnlijr}flu(t>x)lLZ(B(z(t),R)) > Q|2 and 1i£i:;1f|n(t,$)| LI(B(t),R) = M -

2) Ifn,€e H ' andn, ¢ B~ There is a sequence t, — T as k — +o00 such that:
1) Radial case.

VR > O, }Ciglgglu(tk,:c)le(B(o,R» Z IQ]LZ

and
}c@lgof'n(tk’ )| 11Bo,R) = M -

ii) Nonradial case.
There is x,;, such that VR > 0,

Llfiglu(tk"r)le(B(mk,R)) > |Ql2 and Llflgln(tmx)lLl(B(mk,R)) = My, .

Remark. We are not able to find a non-zero lower bound of m,, independent of the
initial data. We remark that in the case of the self-similar solution (u,,n,) defined
by (1.3)-(1.4):

— m,, is not necessarily equal to m,,.

- m, — |Q|}, as A — 0 and m,, — 400 as A — +o0.

However, it can be shown using variational arguments that if |<;50|2L2 < M, and
(u(t), n(t)) blows up in finite time, then m,, > K (M) > 0, where K(M,) — O (resp.
KM, — |Q‘2Lz) as M, — +oo (resp. M, — |Ql2Lz)- We do not know if these
results are optimal or not.

Remarks. 1) The proof of parti) of the Theorem 1 follows directly from techniques
of [17,18].

ii) We point out that in the case where n, ¢ H~!, we do not have the conservation
in time of the energy #, which does not allow us to prove the result for the full
sequence. However, we suspect strongly that the result is true for ¢ — T'.

This property of the L*-concentration of u(t,r) at the blow-up time raises an
important question namely, which amount of mass can be concentrated at a blow-up
point.

More precisely, the following question can be asked:

Characterize the set {m} with the property (%), where

(%) There is a initial data (¢, ng, n;) such that
— the solution (u(t), n(t)) of (Ico) blows up in finite time 7" > 0,
= |u(t, z)|* = mé,_o where t — T with m = |u(t, )|}, = @[3,

In fact, using the explicit blow-up solutions constructed in PartI and the concen-
tration results, we are able to give a complete answer to this problem.

Theorem 2. m has the property (%) if and only if m > |Q[3,.

Remark. In particular, there is no quantification of the concentration of mass. Indeed,
the set we obtain in Theorem 2 is (|Q|%2, +00) which has no isolated points.

We want to point out the same problem for the limit equation as ¢, — +oo: (I,)
(nonlinear Schrodinger equation with critical exponent). This problem is open and the
structure of the set of mass concentration is unknown. In particular, we don’t know
whether there is or not a quantification of the concentration of mass.
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Remark. The result is independent of the Cauchy space in the sense that for a given
m > 0, we exhibit a solution in M, for all £ > 1. In addition, the result we obtain in
Theorem 2 is independent of the parameter c, because of the scaling property of the
equation. Indeed, if (u(t, z), n(t, x)) is a solution of (ICO) on [0,T), then Vu > 0,

(u,,(t, ), m,(t, 7)) = (uu(p’t, pr), p*n(p’t, px))
is a solution of (ICO u2) defined on [0,7T'/ 12). It is then easy to check that if
lut, z)|* — m,6,_, and |n(t,z)] —=m, 6, as t—T,
then
|uu(t,:v)|2 —m,6,_9 and [n, @,z —m,6,_, as t— T/u?,
Theorem 2 will be a consequence of the following propositions.

Proposition 2. (Global Existence for |¢g|,2 < |Q|2). Assume |¢y| 2 < |Q|2. Then
the solution (u(t), n(t)) is globally defined in time.

Remark. In the case where n, € A~ (which is not assumed in this proposition), the
result has been proved by C. Sulem, P.L. Sulem [25] and H. Added, S. Added [1].

Proposition 3 (Non-Existence of Minimal Blowing-Up Solutions and Global Exis-
tence for |¢pl 2 = |Q|12) Assume |¢y|;2 = |Q|p2. Then the solution (u(t),n(t)) is
globally defined in time.

Remark. As before, we do not assume that n; € a1

Remark. The result is completely different from the one in the case of Schrodinger
equation. Indeed, for the nonlinear Schrodinger equation, there are minimal blow-up
solutions in L?, that is blowing-up solutions which have minimal mass in L? norm
among the set of blow-up solutions ([14]).

Remark. Let us point out an important corollary of this proposition. Let ¢, be such
that the solution of (I_) (nonlinear Schrédinger equation), u(t) blows up in finite time
and |¢g|;2 = |Q| 2. For all ¢; > 0 and ngy, n,, the solution (u(t),n(t)) is globally
defined in time and does not blow up in finite time.

Let us consider now the explicit solution constructed in Part I,

(=2 1
uy (t, ) = —co/\(T m e <4<—T+t) COZAZ'(—TH)) P, <7co>\(; — t))’ (1.9)
t,z) = ! 2N z (1.10)
T ZAT =0 ) P ehNT -0 )’ '

where T > 0 and (P,, N,) satisfies (II,) and %] be the connected component of
(A, Py, N,) in RT x H! x L2 of solutions of (II,) containing (0, Q, —Q?).

We claim that Vm > |Q|3,, there is a A = X, such that (u, ,n, ) is a blow-up
solution which has the following property:

|u)\m(ac,t)|2 —méb,o as t—T with m=|u, (¢, »’U)|2Lz = |¢g 2Lz-

Proposition 4. 1) There is a sequence (\,,, P,,, N,)) of %] such that |P,|;2» — |Q|,
as n — +0o0.
— There is a sequence (\,, P,,N,) of & such that |P,|;» — 400 as n — 4o0.
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2) Vm > ]Q|2L2 there is A, such that (uy_,n, ) defined by (1.9)~(1.10) is a blow-up
solution of dg,) which has the following properties:

0
— forallt €[0,T), (u/\m(t),n/\m(t), e (W, (t)) € H,Vk>1,
= luy,, @& @) = mb,_y as t — T with |u, (0)]%, =
It is then easy to see that Theorem 2 follows from Propositions 2, 3, 4. Indeed,

from Proposition 4, if m > |Q!2L2’ then m satisfies property (%) and if m < |Q|2L2
then m does not satisfy property (.%).

I B Strong Instability of Periodic Solutions of (). We recall from Part I, that equation
(ICO) has periodic solutions of the form

(u(®), () = (e V(z), —|V(@)?),

where V satisfies the elliptic equation (V) in R?. The set of solutions of (V) for
w > 0 has a minimal element in L?, Q the unique solution of (V*).

More precisely,
- If V # 0 satisfy (V,,) for some w > 0 then |V|,> > |Q| 2.
— If V # 0 is a solution of (V) for some w > 0 such that |V|;2 = |Q| 2, then there
are § € S, z, € R? such that

Vz)= ei9w1/2Q(w(ac —Ty)) .

The question we are interested in this section is to know whether these periodic
solutions are orbitally stable or not in spaces where the Cauchy Problem of (I, ) can
be solved locally in time:

- H = H' x L* x A~ for weak solutions,

- H2 = H? x H' x L? for strong solutions,

~ H, = H* x H*=! x H*=2 for k > 2 for solutions with additional regularity.
That is Vi > 1, Ve > 0, 36 > 0 such that

(0> 1295 1) = (V(@), =V (@)*,0)| y, < 6
Then V¢ € R2,
min |(u(), n(0), n(®) ~ (€V(z — z0), —|V(& — zp)|*,0)| y, <€
€

$0€]R2

We first show that any minimal periodic solution V' is orbitally unstable in A, and
H, (Vi > 1). That is, if V is such that there are 6, € S, w, > 0, z, € R?,

V(@) = e%uw)*Quy*@ — z,)),

then V' is unstable.

We then give a similar instability result for a general periodic solution of equation
{, 0) etV (z), —|V(x)|2, 0) under some nondegeneracy conditions on V.

More precisely, we want to prove that for a given periodic solution of the form

€V (@), = [V@),0)
and ¢ > 1, there is §; such that Ve > 0, 3(¢,, 7., ny.) and ¢, such that

|(Goes ges 1) — V@), =V (@), 0)| g, <&
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and

min
fes!
IOERZ

(ug(te)mg(tg), % (t5)> — (V@ — zp), - V(@ —z)|,0)| >3,

H,

where (u, n,) is the solution of (I,) with initial data (¢, 7, n;.)-
In fact, we show a stronger result (strong instability or instability by blow-up):
There is a sequence of initial data such that

(bor> ks M) — (V(@), —|V(@)*,0) in H; fori>1,

such that (u;,n;) blows up in finite time T, < 400 in H; for ¢ > 1 (in other words,
0, can be taken arbitrary in the definition of instability).

Such results are well known in the case of the nonlinear Schrodinger equation
(I)- Indeed if V is a solution of (V) then Pohozaev identity yields that &(V) =0
where

EWV) = % / |VV (z)|*dx — i / [V (@)|*dz .

R2 R2

Now considering @y, = (1 + &)V, we have ¢y, — V in H! and

(o) <O, /]x|2|¢0€(a:)|2dx < +o0.
R2
Therefore, the solution of (I ) with initial data ¢, u.(¢) blows up in finite time

(see [8] and [23]). We can also mention a similar result obtained by Berestycki and
Cazenave [3] for nonlinear Schrédinger equation for the ground state solution

i, = —Au — [uff"lu in RY
ith 1 + 4 <p< N+2
wi — —_—.
N P N2

The argument will be quite different (argument such as in [3] does not apply) and
uses strongly self-similar solutions of (ITey) constructed in Part I and their asymptotics.

Theorem 3 (Strong Instability of Minimal Periodic Solutions). Let (u(t), n(t)) a non-
zero minimal periodic solution of (1), that is there are 6, € S Lwy >0, 25 € R?
such that '
Viz) = ewow(l,/zQ(w(l)/z(a: — ;).

i) There is a sequence (¢y., ., ny.) — (V, —|V|%,0) in H, Yk > 1 as e — 0 such
that (u,(t),n.(t)) blows up in finite time T, in H,, where (u_,n,) is the solution of
() with initial data (¢o, N, 1y )-

ii) (V(z), —|V(2)|?,0) is orbitally unstable in H,, Vi > 1.

Remark. Part ii) is a direct consequence of parti). In addition, if (u,,n,) blows up

in H, in finite time, then it blows up in H, Yk > 1.
For a general periodic solution, we have the following result.

Theorem 4 (Strong Instability of Periodic Solutions). Let V' a radial solution of
equation (V) and etV (x), ——|V(m)]27 0) the associated periodic solution of (Ic0)~
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Assume in addition that V' is a nondegenerated critical point of the functional

2
& (V)= %/WV(x)]zdrc— %/]V(w)]“dm-i— %/]V(x)izdm
R2 R2 R2

in H' = {v € H' such that v(z) = v(|z|)} in the following sense: the operator
W — —AW +wW —3V2W
is a continuous one to one application from H* N H} to L%, where
L2 = {v € L? such that v(z) = v(|z|)} .
Then the conclusions of Theorem 3 hold.

Remark. We strongly suspect that the result is still true without the nondegeneracy
condition (we in fact conjecture that the set of degenerate solutions of (V) is empty).

Remark. In Part I, we have shown that () is a nondegenerate critical point of &, in
H? N H}. Therefore, Theorem 3 can be seen as a consequence of Theorem 4.

A. Qualitative Properties of Blowing-Up Solutions of Zakharov Equation (I.,)

Let us consider in this section a solution of equation (ICO) (u, n, n,) which blows up in
finite time T' < 4 oo in H,, for k > 1. Existence of such a solution has been proved in
Part I [7]. We show in this section various properties of (u,n,n,) at the blow-up time
T. We first give some general properties of solutions of equation (I¢,)- For blow-up
solutions in H,, we then show some concentration properties at the blow-up time in
Sect. A.1. In Sect. A.2, A.3 we show some properties of the concentration mass. We
conclude Sect. A showing that a solution which blows up in H;, for k > 2 blows up
in H,.

Lét (u,m, n,) solution of equation (ICO) in H,, for k > 1. Let first give a different
formulation of equation (ICO).

If n, € H!, there is a (v, wy) € L? x L? such that
ny = -V - vy+wg. (A.1)
We remark in addition that
— if ny € H*=! for k > 2, we can choose (v, w,) € H¥2 x H*2,
— if n, € A1, we can choose w, = 0.
We can check that (ICO) can be written in the form
iu, = Au+nu,

n, =—-V-v4uw,,
(I::O) 1 t 0
v, +Vn= —V/u)?,
1

with the initial data u(0) = ¢, n(0) = ny, v(0) = v,

We can remark (u,n,n,) is a solution of dg,) in H, if and only if (u,n,v) is a
solution of (I, ) in Hj, = H* x H¥~1 x H*1,

We have the following properties for a regular solution
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Lemma A.L. i) Vt € [0,T), [u(t)| ;2 = |yl 2-

i) vt € [0,T), @ = [wy(n + [ul?,
t
where F#(t) = F(u(t), n(t), v(t)) and
FE(u,n,v) = / (IV’LLIZ + nju* + Lz [v]* 4 1 n2>. (A2)
2c¢; 2

R2
Remark. For weak solutions of (ICO), we can show inequalities, and we can check that
all proofs in this section can be carried out. For simplicity, we will assume that the
solution is regular enough to prove properties i) and ii). We can check directly from
the local uniqueness in time of the solution in H, that if (u(0), n(0),n,(0)) € H,, the
solution satisfies these identities.

Remark In the case wy = 0 (n,(0) =n, € A1), we remark that .7%(t) is a conserved
quantity in time, otherwise it is not.

Proof. Proofs of i) and ii) follow from direct calculations.
A.1 L?-Concentration of Blow-Up Solutions. We consider in this section a solution
(u(t), n(t)) of (ICO) such that
[u@)| g1 + In@®)| 2 + ()| y-1 — +00 as t > T,
or equivalently
lu@®| g1 + [n@®)| 2 + [v@®)| 2 = +00 ast—T.

We want to show concentrations properties of (u,n) in suitable spaces. This result
is obtained using methods similar to those in Merle Tsutsumi [18], Merle [17] and
Weinstein [28].

Proof of Theorem 1. Tt follows from energy arguments. Let us recall the energy
identity:

Lemma A.2. ([28])

1 I
Vue H', 3 lulgs < <| Q|§2>1Vul'iz, (A3)
L2

where @ is the unique solution of (V').

Define for (u,n) € H' x L?,
1
E(u) = / |Vul* — 3 / |ul*
R2 R2

and
1 1
T (u,n) = / |Vul? + 5 / [n|* + /n]u]2 = &(u)+ 3 /(n +[u»)?. (A4
R? R2 R2 R2
We consider several cases. R
We first consider the case where (u,n) radial functions and n, € H~!. We can

remark (u,n,v) are radial functions for all ¢ € [0,T) if (¢, ny,n,) belongs to H,
and is a radial function (uniqueness of the Cauchy in suitable space H,, k > 2).
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We then consider the general case.

Casel. n, € H~' and (u,n) radial.

In this case, the functions are radial and V¢ € [0,T), .#(t) = 7#(0). We argue by
contradiction following [17]. Assume there are ¢, > 0 and R, > 0 and a sequence
t, — T as k — + oo such that

/ ulty, ©)Pdz < |Q[32 — & (A.5)
|z|<Rg
or
Iikiminf( / |n(tk,x)|dx>J —0 as R—0. (A.6)
|z|<R

Step 1. Scaling arguments. We consider
w () = A ulty, ALY,
n(T) = A;zn(tk,xklzl),

where A, = |Vu(t,, )| ;2. By direct calculations, we have

/ VuP =1, / g = (o
R2 R2

1 1 1 (AD
E(uy) = v ( / [Vu(ty, z)|*dx — 3 / |u(tk,x)|4da:> =7 E(ulty,))
k k
R2 R2
and :
%1 (Uk, nk) = /\—2 %I(U(tk)a n(tk)) .
k
From the fact that 7%(t) = .74(0) where
1 2
HH) = E®t) + 5 / (n(®) + [u@®)]*) + 92‘2 / @),
R2 R2
we have
E(ulty)) < F,(ulty), n(ty)) < H#(t,) < F#(0)
and .
E(uy) < Hy(uy,ny) < )\—2%(0)—>0 as k— +oo. (A.8)
k

In particular, (A.8) yields
limsup &(u,) <0 and limsup 7 (uy,n,) <0.

k—+ o0 k—+ oo
Therefore,
liminf/|uk|4 > 2 lim inf [/]Vuklz - g(uk)] >2 (A9)
k—+ oo k—+ oo
R2 R2
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and
lim sup I:/(nk + Juy [ —/Iukl“} <0
k—+ o0
R2
or
limsup [ |n,|? <211msup/|u,c|4 <ec. (A.10)
k—+ oo ; k—+ 0o
R

Moreover, property (A.5)—(A.6) and the fact that \, — 400 as k — + oo imply
VR > 0,

lim sup / ]uk|2<lQ| -6y or hmsup / [ngl =0. (A.11)

k—+ oo
lz|<R |z|<R

Step 2. Compactness procedure. Let us obtain a contradiction by compactness pro-
cedures. Using classical compactness procedures from (A.7), (A.10), we can assume
that there is a (U, N) € H! x L? such that u, — U in H', n,, — N in L?. Since

is a radial function, a compactness lemma (see Strauss [24] yields v, — U in LA,
We then have from (A.9)

(/WﬁZZam U#0. (A.12)

R2

Let k going to + oo in (A.11), we have

/wﬁqq;orN=u (A.13)

Indeed, VR > 0,

/lUlzsllciggxg / Jul* < 1QIZ2 — &

[z|<R lz|<R

/|N|§liminf / Ing| =0.
k—+ o0

|z|<R lz|<R

or

Letting R — + oo, we obtain (A.13).
Furthermore, since u2 — U? (v, — U and L*) and n, — N in L?, we have

/%mﬁﬁ/mwzaka+w. (A.14)

R2 R2
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We deduce from (A.8), (A.14) that

1
F,(U,N) < liminf %, (u,,n,) = liminf/quk|2+ = /n§+/nk|uk|2 <0
k—+ oo k—+ o0 2
R? R2 R2

or equivalently
)+ 5 [+ 0P <o, (A1)
R2

- If [|UP <|QJ3, — &, we have
R2

g(U)z/]VUIZ—%/]Ur‘SO and U #0

R2 R2
which is a contradiction (Lemma A.2).
— If N =0 then %, (U,N) = [ |VU|? <0 and U # 0, which is a contradiction.
R2
Therefore, there exists a constant m,, > 0 such that VR > 0,

L. 2 > 2 L. >
llgglf( / lu(t, )| dﬂ?)_lQILz and llmglf( / ln(t,x)|dx>_mn.

|z|<R |lz|<R

General case. We now do not assume that #(t) is a conserved quantity nor the
functions (u(t), n(t), v(t)) are radial.
Let us give a crucial estimate.

(|¢ol 2) > O such that the following property is
a sequence such that

Proposition A.3. There is m,, =m

true: Let u, € H', v, € L*, n;, € L2

|ug 72 = |ol72 -

Let assume in addition that there are R, > 0 and 6, > 0 such that

sup / luklz < IQ|2LZ - 50
Yy
ly—=z|<Rp

or
<sup / |nk<x>|dx> < my(Bolz2) — 6o -
Y |a—gl<Ry

There are then constants ¢, > 0, ¢, > 0 such that

Vk, —c + 02</ [V l* + |ny,|* + |”k|2> < H (U M5 V) -
]RZ

Remark. We can replace the condition [u,|?, = [¢|%, by [u[2, < |¢o|3,.

Before proving this crucial estimates, let us conclude the proof of Theorem 1.

Case n; € H™'.
In this case we have V¢, #(t) = F (u(t), n(t), v(t)) = F(0).
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Let m,,(|@y|2) defined by Proposition A.3. Assume there is a sequence t, — T'
as k — 400, Ry > 0, §; > 0 such that

}Ciminf (sup / [u(ty,, )| dm) < lQ|2LZ - & (A.16)
Y Ja—yl<Rq
[;cimjnf <sup / [n(t, )| dm)} <m,(|dglr2) — - (A.17)
Y le-yl<R

We then apply Proposition A.3 with (u(t,), n(t,), v(t;)) and we obtain

/|Vu(tk)|2 + [t ))? + vt <c and t, — T,
RZ

which is a contradiction. Thus, there is x,,y,, R, — 0 such that

k—+ oo

liminf( / lu(tk,w)lzdw>2|Ql"’Lz
|z—zk | <Ry

and

k—+ oo

[lim inf ( / [n(ty, )] d:c)} >m,, (|¢ol2) >0,
le—yg|<R

which concludes the proof.

Casen, ¢ H™'.
Assume that there is no sequence ¢, — T such that VR > 0,

lim inf (sgp / Iu(tk,x)lzda:> > Q7. (A.18)
lz—y|<R
or
L‘L“J‘éf <s1;p / |n(tk,x)[daz>l > m,(|ég]12) - (A.19)
lz—y|<R
Then there are R, > 0, 6, > 0 such that Vt € [0,T),
<sup / iu(t,x)|2d:c> <1Qf3. — & (A.20)
Y |z—y|<Ro
or
(sup / [n(t, z)| d:c) <m, (|¢g]z2) — & - (A.21)
! lz—y|<Ro

We apply Proposition A.3 and we obtain Vt € [0,T),

/ IVu@®)* + [n@®))* + [v(@t)]* < cg F@) + ¢, - (A.22)

R2
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In addition, from Lemmas A.1, A.2, Vt € [0,T),

t t

FH(t) S%(O)—k/d—dfé(S)ds < 0<1 +/ </|wo|(n(8)+ Iu(8)|2)> d8>
R2

0 0

t
< c<1 +/Iwo|3:2 + In(s) + [u(s)|* |32 ds)
0
t
< c<1 + / ()2, + IVU(S)|2Lz)d3>
0

t
< c<1 + / M(s) ds>, (A.23)
0

M(t) = [Vu®)[7 + [n®)32 + [v@®)f3. -
From (A.22)—(A.23) we have

where

t
vt € [0,T), M(t)§c<1+/M(s)ds>,
0

this implies from Gronwall lemma that V¢t € [0,T), M(t) < c or equivalently
vee[0,T), |(®),n®),n, )|y, <c,

which is a contradiction.

We remark that in the radial case, obvious symmetry reasons and the conservation
of the L? norm implies that we choose z, = 0 in Theorem 1.

This concludes the proof of Theorem 1.

Proof of Proposition A.3. It is based on similar ideas of Lieb [12] and Weinstein
[28] for the nonlinear Schrodinger equation. The proof we present here is based on
a lemma which was presented by Merle in a seminar as an alternative proof of the
result of Weinstein in [28].

We first remark that it is sufficient to prove that there are constants c;, ¢, such that

Yk, —¢ +C2</|Vuk|2 + |"k|2) < F (g, )
R2
where .7, (u, n) is defined by (A.4).

Step 1. Scaling arguments.
We argue by contradiction. Assume that the conclusion does not hold for a
subsequence (uy,n,;). Then

1
/\%c=/lvuk'2+§/|nk|2—’+00
R2 RZ
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and ”
1imsupﬂ2cik) <0 as k—+.
k—+ oo /\k

Indeed,

— if A, <¢, then |[7| < ¢ and the conclusion is obvious,
i T (g, ny,)

32 — ¢ > 0 as k — + oo, then for k large,
k

c 1
T (uy, ny,) > —2—</|Vuk|2+§/|nk|2),
R2 R2

L. Glangetas, F. Merle

which is a contradiction (since Proposition A.3 will be satisfied with ¢, = 0 and

c = g) Consider

Uy(z) = )\,Zluk(x)\,zl) and  Ny(z) = \; 2z h).

We have by direct calculations

1
Jwil = [iop wa [vvp+s [iME=1. @2
R? R? R? R2

‘We remark that

lim sup (1 +/Nk|Uk]2> = lim sup 9%, (U,,, N},)
k
R2

k—+ oo —+ 00
= limsup 20" (A.25)
k—+ 0o >‘k;
Since f NklUk]2 < ¢ by Sobolev estimates, we can assume that
R2
/Nk]Uk|2—>c§-1 as k— +o00. (A.26)
R2
In addition, we have from the assumptions of the proposition,
VR >0, liminf (sup |Uk12> <1Q3, -6 (A.27)
k—+ o0 y
lz—y|<R
[liminf (sup / INk|>} —0 a R—0. (A.28)
k—+ 00 y
lz—y|<R

Step 2. A non-vanishing property of (U, Np).
Let us give a crucial lemma which rules out the case of a
W,,N,)in L* x L.

vanishing sequence
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Lemma A.4. (Merle) Assume there is a sequence (U,,N,) € H' x L? such that

1
/|Uk|2—>cl >0, /lVUk|2+§/|Nk\2—>cz>0, /Nk|Uk|2—>—c3<0
R2 R2 R2 R2

as k — +oo.
Then there are a constant c, = c,(c;, ¢,,¢3) > 0 and a sequence x,, such that

/ [Nl > ¢y
lz—zE|<1

Remark. For Schrodinger equation, we apply this lemma with N, = —|U, k|2.

Proof. We use here some ideas of Lieb in [12]. Clearly, there exists some x, such
that for large &,

/ —N U > a(C/ (IVU;CF +[U+ % |Nk|2>>, (A29)
C &

where C), is the square of center z; and a = Indeed, by contradiction we

obtain from (A.29),

1
R s(/ (|VUk|2+|Uk|2+5|Nk|2)>.
R2

Ry

3
2(c; + &)

c . . ..
As k — + 00, we deduce ¢; < a(c; +¢,) < —23- which is a contradiction.
We claim now that there exists ¢ > 0 such that

/—NklUklz >c and /IUk|4 >c. (A.30)
Cy Cy

Indeed, by Sobolev identity on C,; there is s, > 0 independent of & such that

1/2
JLCARA: 2s0</|Uk|4> .
Ck Ck

Equation (A.29) gives then

2 a 2 2 2
asolUk|L4(ck) + 5 |Nk L%(Cy) < /"Nk|Uk| < |Nk|L2(Ck)|Uk|L4(ck)-
Ck
Thus |Ug|z4c,) = v/850a and [ =N, |[U,[* > ¢ > 0.

Cr
Assume by contradiction for a subsequence N,,

/|Nk[—>0 as k— +oo. (A31)
Ck
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We can assume that
Ny@y+)—N inL? and Uy, +)—U inH'.
Then Uy (), +-) — U in L} and |U,|* — |U|? in L? . From (A.31), N(z),+-) — 0
in L*(C,) and
/N,CIU,C|2 = /Nk(xk +2) |Up(xy, +2)* -0 as k— +o0o.
Ch Co
A contradiction follows from (A.30) and the lemma is proved.

Step 3. Conclusion of the proof.
Let us now conclude the proof of the proposition.

Case A.
VR >0, {hmﬁnf <sup / INk|>

|z—y|<R

—0. (A.32)

We apply Lemma A.4 and we obtain a contraiction with (A.32) with R = 1.
Case B.

k—+ o0

VR >0, ‘liminf <sup / |Uk|2> <1QP, — 6. (A33)
Y leyi<R

We apply the same procedure then in [28] to obtain a contradiction. In this case, we
have from (A.25) and from the fact that

1
U N = EUY + 5 / CARUACH

limsup &(U,) < llmsup%(Uk,Nk) <0.

k—+ oo k—+ oo

We now can conclude the proof. Indeed, we apply Lemma A.4 (and proof of
Lemma A.4), and we obtain dichotomy

1 1
U, =Ul +ULg,
where for a sequence x}c,
Uz, +2) — ¢, in H' and  |Ul|pagp—g, <y = ¢ > 0.

Therefore, by Sobolev estimates, there is a §; > 0 (depending only of |¢,|;2) such
that

1
’Uk|L2(|m—m}C|<l) > 6.
On one hand, from (A.33),
VR >0, liminf |Ug@, + )2y < QI — 6
By usual techniques of concentration compactness method (see Lions [13]), we have
by a suitable choice of U},

|Uxi iz + IUIiRIiZ — |9 2Lz and ¢ < k_lffrnoolUli ZLZ < |Q|2Lz = -
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On the other hand,
&) + lim sup g(UkR) < lim sup g(Uk) + lim sup g(UkR) <limsup &(U,) <0.

k—+ oo k—+ oo k—+ o0 k—+ oo

Therefore, from Lemma A.2, since &, < |1, ZLZ < |Q|22 — &,

lim sup g(U,iR) <-=&@) <O0.

k—+ oo

Thus, extracting a subsequence, we have

|U£R‘iz —¢ < IQIZM — 6, and limsup Z(UkR) < =&y <0.

k—+ 00
We iterate the same procedure and define
Uir = Ui + Uir
with |U, (23 + Nr2z—az < = 61

Let us define p such that —pé, + ||, < |Q[%,. Applying the same procedure at
most p times, we find for a ¢ < p and k large a function U,i R such that

EUig) < — %<¢1><0 and |Ujgl3, <|Qf2,

which is a contradiction with Lemma A.2. This concludes the proof of Proposition A.3.

A.2 Non-Existence of Minimal Blowing-Up Solutions in L?. Let (¢g> g, ;) € H| and
(u,n,n,) the associated solution of (ICO). From Theorem 1 and the conservation in

time of the |u(t)| 2, we derive easily that if

[polr2 < 1Qlr2

there is no blow-up in time in H, of (u,n,n,) and the solution is globally defined in
time (see also Sect. A.4).
The Question is to know if there are solutions which blow-up in H; such that

|¢0|L2 = |Q|L2~

We see in the next section that for all m > Q|2 there is (@, , Py, Pim) SUch that

- |¢)O'm|L2 =m, . . .
= (Up,,n,y,) blows up in time [where (u,,,, n,,) is the solution of (I, ) with initial data

(Dom> om» M1 Then the question is to know if there are minimal blow-up solutions
of the Zakharov equation and to characterize them (if they exist). In fact, we claim
that there are no blow-up minimal solutions in L.

Proof of Proposition 3. Let us prove that if |@y|;2 = |Q| 2, then the solution does
now blow-up in H; (Sect. A.4 will imply the result). Let us argue by contradiction:
assume there is 7' > 0 such that

[Vu@)| 2 + [n@®)| 2 + [0, g-1 — +00 as t—>T,
or equivalently

[Vu@)| 2 + [n@®)| 2 + [v@®)|2 = +00 as t—T. (A.34)
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Step 1. We claim there is a ¢ > 0 such that

vte[0,T), &) <c, /Iv(t,x)lzdw <ec,
R2

(A.35)
/ (n(z, t) + |ut, ©)|H? dz < c.
RZ
— If n, € H~', then F#(0) = F(t), where
2
Hb) = E@ie) + 5 / (0 + [u®P + 2 / pOP.  (A36)
R2 ]R2
Since from Lemma A.2,
2
E(ult)) > (1 - l“(t)zl’“ ) [Vu@®)|3. >0, (A37)
|Q|L2

we have from (A.36), Vt € [0,T),

2
3 / I < #0), % / (n(®) + [u®) < F©0),  E(u(t) < H ).
R? R2

-Ifn ¢ A~ let us show that Vt € [0,T), #(t) < c and then conclude as before.
We have from Lemma A.1, V¢ € [0,T),

d.%
dt(t) = / wo(n(t) + [u@®)|).
]R2
Thus by Cauchy-Schwarz,
dﬁ“) <ct / (n(®) + [u®)P)?
RZ
and
t
HW) < |FW)| < et / / (n(s) + [u(s)P)? ds . (A38)

0 R2

In particular, from (A.36)-(A.37),
t

vt e [0,T), / (n(t) + Ju®)?? < c + / / (n(s) + |u(s)|?)*ds
R2

0 R2

and the Gronwall lemma yields

Vi€ [0,T), / (n(®) + [u®P < c.
]R2

Using again (A.38), Vt € [0,T), #(t) < c.
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Thus as before there is a ¢ > 0 such that Vvt € [0,T),

L) <c, / lu(t, z)|* dz < ¢, / (n(t, ) + |u(t, )[)? dz < c.
R2 R2

Step 2. Let us show that there is a ¢ > 0 such that V¢ € [0,T), ||u(®)]?| -1 < c.We
have Vt € [0,T), n, = V - v + w,, where w, € L?,

t
Vte[0,T), |nt)|g-1 < c+/|nt(s)|H_1 ds
0
t
<ct [QV- ol + fuoly_)ds
0

t
<c+ /(]v(s)]Lz + lwpl2)ds < ¢ (A.39)
0

from Step 1.
Since |u(t)|* = (n(t) + |u(t)|?) — n(t), we have from (A.35) and (A.39),
Vte[0,T), [Ju®Pg-1 < |n®)|g-1 + [n@) + |[u@®)*|g-1
<c+ @) + Ju®)?2 <c.

Step 3. Let us obtain a contradiction with the concentration property of u proved in

Theorem 2.
We have Vt € [0,T), &) < ¢, |u®)|2 = |Q|2. We claim that

[Vu(t)|2 = +oo as t—T.

Indeed, assume there is a ¢ > 0 such that [ |Vu@®)?> < c, then [ |u(t)|* < ¢, and
R2 R2?
from (A.35), [(|Vu(t)|? + n?(t) + v*(¢)) < ¢, which is a contradiction with (A.34).
R2
Thus from Proposition A.3, there is a x(t) such that

lu(t, 2(t) + z)|* — |Q|2Lz‘5z=o as t—T,

in the distribution sense.
Let h(t, ) = |u(t, z(t) + z)|>. We then have

|h(t,x) g1 <c and ht,z) — [QP326,_y as t—T
in the distribution sense. Therefore considering weak limit of A(t),
’leLz(Sz:o eH™!

which is a contradiction since there is a bounded sequence of continuous functions
z, in H ! such that 2,(0) — + co. Therefore there is no blow-up solutions of minimal
mass and Proposition 3 is proved.

A.3 Proof of Proposition 4 and Theorem 2. Let us prove now Proposition 4.
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Proof of Proposition 4. 1) Let us consider %, be the connected component of
(\, Py, N,) in R* x H! x L2 of solutions of equation (II,) containing (0, Q, —Q?).
From Sect. 3 of Part I, we know

(P\,N,) = (Q,—-Q*» in H'xI* as A—0,

and in particular [Py|;2 — |Q|z2 as A — 0. Moreover from Sect.5 of Partl, we
know that %] is unbounded in R™ x H'! x L2. This yields to the following alternative:
There is a sequence (X, P,, N,)) € & such that
— Case 1: There is a 0 < A** < 400, A, = A**, and |P, |1 + |N,|[2 — +o0.
— Case 2: A, — +o0.

We recall from Part I (Sects. 2 and 5), that we have the following identities.

Lemma A.S. Let (Py, N,) # 0 a solution of the equation (I1,) with A > 0. We then

have

i) [|VP(@)dr+ [ PXz)dz = [ —N,(z)P(z)dz,
R2 R2 R?

i) [PHa)de =3 [(\|z]+ )N}()dz,
R2 R2

iii) [ P2(z)dz > [ Q*(z)dz.
R2 R2

We claim that
Lemma A.6. We have
|P,|p2 = +00 as n— +4o00.

Proof. Assume by contradiction that for a subsequence also denoted (A,,, P, N,),
we have

/ P <ec. (A.40)
R2
We claim from Pohozaev and energy identities (Lemma A.5) that
/|VPn]2+/P§+/N§ <c. (A41)
R2 R2 R2
Indeed, we have from Lemma A.51i)
/ N2 < / P2, (A42)
R2 R2
In addition, from Lemma A.51) and Gagliardo-Nirenberg inequality,

/IVPnIZJr/P,%g (/N721>1/2</Pﬁ>1/2SC(/P,?)VZ
R? R2 R2

R2 R2

1/2 1/2 1/2
)=

R2
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and
/ VP <c. (A.43)
R2
From (A.40), (A.42), and (A.43) we have
/|VP,§[+/P,§+/N§ <ec. (A.44)
R2 R2 R2

Let us consider the two cases.
— Case 1: (0 < A\** < +00). We have directly a contradiction since

/[VP,ZLH—/P,%—F/N,ZL—»—I—OO as n— +00.
R2 R? R2

— Case 2: Using Lemma 2.2 of Part I, from (A.44) we have that |P,|; < c.
Moreover from Lemma A.5, Ve > 0,

/|VP§|+/P§S / —N,P? + / —N, P?
R2 R2

|z|<e jz|>e

1/2 1/2
Sc/anl+</Ni> (/P:t)
|z|>e |z|>e

|z|<e

vz, 1/2
Scs( / N§> +g< / |x12N§>

lz]<e |z|>e

¢ 2012772 & ¢
Sce+x<//\n|$|Nn) Seet

n
|z|>e

Since A, — + oo, we have Ve > 0, limsup [ P? < ce and
n—+ 0o p2
/P2—>0 as m— +00.
R2

This is a contradiction with Lemma A.5iii). This concludes the proof of the lemma
and Part 1) of Proposition 4.

2) We consider (u,,n,) defined in (1.9)~(1.10) for (A, P,,N,) € &*, where
7 = £\{(0,Q, —Q*»}. We have from Part I, (or we can check directly)

Vt<T, Vk, (%%%) €H,, (A.45)
lus(t, )> — |Py[226,_o as t—T and [uy(®)|2=|Py|2. (A46)

Let us consider I = {|P,|;2, where (\, P,,N,) € %*}. We want to show that
I'= (@2, +00).
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Since %;* is connected set in R* x H'! x L? (see Sect. 4 PartI) and the application
(A, P,N) € Rt x H' x L?> — |P|;. is continuous, we have that I is a connected set
of R, thus an interval.

From the facts that
- Y\, P,,N,) € &%, [ P2 > [ Q? (Lemma A.5),

R?2 R2
— there is a sequence (\,,, P,, N,) € %" such that |P,|;» — |Q|2,
— there is a sequence (\,,, P,, N,,) € &* such that |P,|;» — + oo, we have that

[ = (lQ‘LZ,"'OO),

and Part 2) follows from the properties of (u,,n,) (A.45)—(A.46). This concludes the
proof of Proposition 4 and Theorem 2 follows from Proposition 2, 3, 4.

A4 H, Control on Higher Derivatives. We assume in this section that different
Cauchy theory can be done (H,,k > 2) and we show that the blow-up times in
H,, for all k are the same. More precisely, if a solution blows up in H,, (for k£ > 2),
it blows up in H,:

Jim [(u(®), n(®), 7y ()], = lim (@), 1), v,(E)] gy = + 00.

Proof of Proposition 1. The existence and uniqueness and the alternative in H, for
k > 2 has been proved by Ozawa and Tsutsumi [20]. The H, control of H, norms
follows from the two next lemmas.

Lemma A.7. Let (u(t), n(t), n,(t)) a solution of (ICO) on [0,t,] such that
vt € [0,t0],  |u(),n(®),n,(t))]g, < c

and
((u(0),n(0),n,(0)) € H, for k>2.

There is a constant ¢ > 0 such that ¥t € [0,%,], |(u(t), n(?), nt(t))lHk <ec
Lemma A8. Let (u,n,n,) a solution of (ICO) in H, such that
[(u(0),(0), 7, (0)| g, < ¢y
There is a 6, > 0 and c, depending on c, such that
vt €[0,6,], |(u®),n(®),ny)|p, <o,

Proof of Lemma A.7. The lemma follows from the following property: Assume there
is ¢, > 0 and c¢ > 0 such that

VEE[0,t),  |(u(®), n(®),n, )]y, <c and (u(0),n(0),n,(0)) € H,. (A47)

Then there is a constant ¢ such that V¢ € [0, ], |(u(t), n(t), n,(t))] m Sc

The cases k = 2, 3 follow directly from [1]. The cases k > 4 use similar techniques
than in [1].
a) Uniform bounds in H, imply uniform bounds in H, (k = 2). From the same
argument as H. Added and S. Added in [1], we show that if

vt € [0,t0], [(ut),n®),n, )|y, <c and (u(0),n(0),n,0)|p, <c

then
Vvt € 0,21,  |(u®), n(t), n, )|y, < c.
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We recall that H. Added and S. Added use some energy estimates of C. Sulem
and P. Sulem [25] and the following lemma:

Lemma A.9. (Brezis and Gallouet [5]). For v € H? we have
D) |u|peo < 1+ |ulgi/log(l + |Aul2)),
i) if |ulg1 <ec, then |u|poo < c(1 4 y/log(l + |Aul;2)).

b) Uniform bounds in H, imply uniform bounds in H; (k = 3) (see [11]). Let us
consider now the case k = 2p and k = 2p + 1 where p > 2.
¢) Uniform bounds in H,, | imply uniform bounds in H,, (k = 2p). Let us first

assume that k = 2p. We have by a recurrence and direct calculations that (with the

. 0"
notation u® = %> vt € [0, 1],
|APu(t)] ;2 < a|luP@)|;2+b and  [uP(t)|2 < a|APut)|;2 +b.  (A48)

We then remark that

p—2
w®t) = Au® + nu® 4 pn,u®~D + Z cn® Py ® (A.49)
k=0
Thus
-2
d @ (1)]2 (p—1),,(p) X (p—k), k), (p)
alu”(t)legc nuP”uP| 4+ nPTH P
R? k=0 R2
p—2
S P oo + [y B 2 + [P DB <
0

yields with (A.50)
vt € [0, ¢ 4 PDR, < duP @)
S [ 9 0]’ E IU ( )ILZ = C|'U, (t)|L2a

and we conclude from Gronwall’s lemma that V¢ € [0, ¢,], |u(’”)(t)|i2 < ¢ and in
particular from (A.48),

Vi €[0,60], |u®)|ge < c. (A51)

To conclude, we have from (1.2) that
1
vt € [0,,], = (A7), — A(AP2p) = AP |uf?.
0

Therefore

1

%/ (g 4%, 4 V(AP )) <2 / | A% |uf A% 2, |
0

R2 >

<2 AP || 2| AP0y o
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From Galiardo-Nirenberg and the Gronwall lemma,
d
di / (42720, 2 4 [V(AP ) < o] APy o,
R2
Vvt € [0,1,], / (2%, P + VAP )P) < e and [, v(t), ()], < c.

R2
d) Uniform bounds in H,, imply uniform bounds in H,, ., (k = 2p+1). From (A.49),

otk

_ %(/lvu(p)IZ_,_/nlu(p)lZ)
R2

R2

k—2
= Re (p/n(l)u(p’l)ﬂ(p“) + ch ./n(p~k)u(k)ﬂ(p+1)>
0 R2

R2

d
E</|Vu(p)|2+/n|u(p)l2
R2

R2

. ) oF
we have (wuh the notation v® = —

or

k—2

+p / nOug® 1 3, / n(p—mu(k)a(p))
R2 0 g
—Re ( / P@Ou®=D 4 Dy @50
R2
k-2
3¢ / (@R D) n(p—k+1>u(k))ﬂ<p)> .

0 g

Using direct estimates as in [1], we can easily conclude that
Vvt € [0, 4], / [VuP @) < c.
R2
Thus using the equation,
vt €10,t], [u®)|gz <c.

From the fact that

0—12 V(AP n,,) — V(A%n) = V(AP |ul?),
0

d /%%[V(AZP_IT%)F +/[A(2p)n|2 < /V(AZ(p—l)nt)A2p+l|u|2
R2

dt
1/2
Sc(/]V(Az(p—l)ntM) ,
R2

R? R2
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we obtain V¢ € [0, %], [n(t)| g2 + |n,(8)| g2p—1 < ¢, which concludes the proof for
k =2p+ 1 and Lemma A.7 follows.

Proof of Lemma A.8. It follows directly from the techniques used by Merle in [16].
Assume ¢, > max(l, ENE 72) and |(u(0), n(0), v(0))| H < ¢,. Let ¢, such that

V€ [0,4], (), @), v)ffy < and |(ulty), nlto), vtz < ¢,

100
[o]53
[0,%,] and let us show that t, > &6, > O where 6, depends only on c,, which will
concludes the proof of Lemma A.8.

Step 1. Estimates on |w(t)| 4.
Let S(t) the Schrodinger group. We have

Lemma A.10. For ¢ € H', we have
i) |SB¢l L2 = 4] 2,
i) [VS®l2 =[VlLa,

1
iii) |S(t)¢|L4 < W |¢|L4/3-

where ¢’ = ac% and o = max (100 ) From Lemma A.7, (u,n) is defined on

From (1.1) and Lemma A.10, we have V¢ € [0, t,],
¢
u(t) = S(t) — i/S(t — s)n(s)u(s)ds

and Vt € [0, t,],

t

[u)| e < |SEPglps + / |St — s)n(s)u(s)| 4 ds
0

1/2
“ o7 / T O

1

%
7 /(t 7 M2 [us)] s ds

IQI
1
- 'QI‘/2< " / t— )1/4'”<8>IL2lu(s)l”ﬂvu(s»‘/zds>
1 2
th1/2< 1 /(t_8)1/4 ) " l1/2 @ + 328/
_| |11/2 +‘3‘31153/4. s
L2
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Step 2. Conclusion.
For t € [0,¢,], we have

t
F() = F0) + / / wo(n(s) + |u(s)[*) ds

< FO) + | ()| + [ws)34) ds

< F#(0) + c(cloﬂ/2 + cf)a ds

|
/

< FO0) + cty(c,a'/? + Ea) < A1+ cty) . (A.53)
From (A.52)~(A.53), for t € [0,1,],

1
|waxmow@m§u§w0;+¢%m+~wwm;

< A1+ ctg) + = () + ety * )

IQI

<A +cty) + —0 |2 @+ ctd* B

IQ

+ ety + 148

<

NI'—‘

Therefore, ¢, > &, where §, > 0 depends only on ¢, [6, such that %cz =
(6,3 + &*)]. Thus, vt € [0,6,],

|Cut), (), v) gy < 05,

which concludes the proof of the lemma and Proposition 4.

B. Strong Instabilities of Periodic Solutions of (I.,)

We consider in this section the periodic solutions of (ICO) of the form

(u(t), n(t)) = (0t (z), —|V(2)|?),

where V' is a radial solution of the elliptic equation (V,, ). We want to prove the

strong instability (instability by blow-up) of this periodic solution in H, for k > 1.
We consider two cases:

— The case of minimal periodic solutions (in L? sense) that is there are 0y € St

wy > 0, zy € R? such that

Viz)= e’e"wl/zQ(wl/z(az —Ty)) .

— The case of multiple solutions where an extra nondegeneracy condition is needed.



Concentration Properties of Blow-Up Solutions 377

B.1. Case of Minimal Periodic Solutions. This section is devoted to the proof of
Theorem 3.
Let us assume that V' is a minimal solution of (V,, ), that is there are 6, € S,

wy > 0, 7, € R? such that

V(z)= eie‘)wé/zQ(wé/z(x — ).

Part ii) of Theorem 3 follows directly from Part i). Therefore, we restrict ourselves
to the proof of Part i). We want to show that there is a sequence
(Poes Moo 1) — (Vo —=|V[2,0) in H,,Vk>1 as €—0
such that (u,(t), n.(t)) blows up in finite time T}, in H,, where (u,,n,) is the solution
of (ICO) with initial data (¢, n,,n;.). To prove this instability result, we use in fact
the explicit blow-up solutions constructed in Part I; for a fixed € > 0,

u (t _’L’) _ We ei(05+4(—|;‘—|:+t)_(—_’;§+_t))P wex (B 1)
o (I, -1t T -bv)’ '
2
W, w.T
n.(t, ) = ((Ts—t)) N€<(Ts_t)>, (B.2)

where w, = Coig and the parameters 6,,7T, will be carefully chosen and (P, N,)
satisfies the following equation
AP—-P=NP, (B.3)
{ eX(r’N,, + 6rN, + 6N) — AN = A|P|*. (B.4)
Indeed, if we can show that as ¢ — 0
(b0es ges 1) — (V, = [V [,0)

(IL,)

in Hy, Vk > 1, where

w i(05+¢__wg_> w.T
doel@) = 7= e\ T TS Ps(—;, ) B.5)
€ £
2
w w.x
nge(T) = (f) N€<TL>, (B.6)
£ £
1 /w )\’ w.T 2uw? w.x
— [z N/ £ w N £ . .

Then the uniqueness in time of solutions of equation (ICO) implies that (u,.,n,)
defined by (B.1)~(B.2) is the solution with initial data (¢,,,n,,n,;.). The result
follows from the fact (u,,n_) blows up in finite time 7.

The proof of this result is done in several steps.

— Step 1: Reduction to the case V(z) = Q(x).
— Step 2: Choice of the parameters 0_,w,_,T.

Several steps and then needed to the proof of the convergence of (¢, 1., n;.)
to (Q(z), —Q*(2),0) in H,, Yk > 1 as £ — 0.

— Step 3: Uniform convergence on bounded sets of R? as ¢ — 0.
— Step 4: Uniform estimates at infinity in R? as € — 0.
— Step 5: Conclusion of the proof of Theorem 3.
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Step 1. Reduction to the case V(z) = Q(z). We claim that showing the result for
V(z) = Q(z) is enough from the scahng properties of the equation. Indeed, assume
for all ¢; > O there is a sequence (qS(C)g, nOE, ny E) € H,, Vk > 1, depending on c; such
that

(¢057n057n11) - (Qa _QZ,O) in Hk, for k > 1.

(uEC](t)7 cc; (t)) blows up in finite time 7, in H, where (uecl(t),ngcl(t)) is the

solution of (I, ) with initial data (BoL, ngl, nib).

Let consider a given V(z) = ewowl/ ZQ(wl/ 2z — z)). We fix ¢; = cyw, and let

¢05(x) = 6100w1/2 o (wl/Z(x - ‘TO))’
N (T) = wonoé(wo/ (z — xy)),

3/2 1/2

N, (z) = w 1(w (x — xy)) .

We have by direct calculations that
(¢06’n06’n16) - (V7 _IVI2aO)
in Hy, Vk > 1 and

iy 1/2 1/2
u (t,z) = ewowo/ Ecl(wot wO/ (T —xp),

n(t,z) = wongcl(wot wO (:c Zy)),

is solution of equation (ICO) with initial data <u 0), ns(O), e (O)) = (Pge> Mpes Mie)

which blows up in H, at Z—Z < +o00.

We now consider the case V() = Q(z).
Step 2. Choice of the parameters §_,w,, T, in formula (B.5)—(B.7).

We consider solutions (u,,n,) of (Ico) of the form (B.1)-(B.2) with w,_ = 555 and
(P., N.) solution of (IL,) such that (P., N,) — (Q,—Q?) in H' x L* as ¢ — 0. We
have to choose T, §, such that the initial data of (u,,n,):

gr’e

b (x) = Ye o (05+—|§|;5+%§>p W
Oe T € T ’

€ €

o= () (%)
o= () [()om) o ()

converges in H, as ¢ — 0 to the initial data (Q, —Q?,0) of the periodic solution. Let

| —

|

1 W -1
ngwszz and 062 IL:)e:;
0 € 0
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We have
% ﬁ coE
$oe(@) = (‘;:) ¢ P (), (B.8)
Ny () = N (2), (B.9)
Ny () = coe(|z|NL(z) + 2N (), (B.10)

and the associated solution of (ICO)

. |z]2c5 t )
o= () ) (2 )

1 — et N1 — cyet

1 2 T
n(t,x) = (1 — cost> N, <1 — coet>' (B.12)

We know from Part I that (P., N,) converges in H! x L? to (Q,—Q% as &€ — 0.
Therefore, (¢, ., 1) converges to (Q, —@?,0) in distribution sense. From the fact
that (P_, N,) satisfies equation (II,) we are able to prove a more accurate convergence
of (@9 ¢, Ng,e» M ). Indeed we show in the following steps that

(@05 M0,6:M1,6) = (Q,~Q%,0) in HF Wk >1.
This allows us to conclude the proof of Theorem 3.

Step 3. Uniform convergence (P., N,) to (Q, —Q?) on compact set of R2.

Let us prove some uniform estimates in ¢ on (P.,N,) in H*(B,), where
B, = {z € R?, |z| < A}. We then conclude by compactness arguments that (P., N,)
converges to (Q, —Q%) in H¥(B,) forall A >0, k > 1.

Proposition B.1. i) For A > 0 and k > 1, there is a ¢ 4 and €, such that for
0<e<ey,
|P ke + [ Nelars ) < Choa - (B.13)

ii) VA > 0and k > 1, we have that (P.,N,) — (Q, —-Q% in Hk(BA).

Proof. i) Let us fix A > 0 and prove the result by recurrence on k. We know from
Part I (see Theorem 4.2 and Corollary 4.3):

— There exist £, > 0 and a constant ¢ such that for 0 < € < g, the solution of (IL,)
constructed in Part I is such that

|P_| g2 + |N|L* < ¢, (B.14)
- (P,N)—(Q,—Q» in H' x L? as € — 0.
Define € 4 = min | &g, 5%) From (B.14) and Lemma 4.8 in Part I, we have that
(B.13) is true for k =1,
1Pl i) + Vel < ¢ and [Pfpeo + [Nl <. (B.15)

By recurrence, assuming (B.13) for £ > 1, let us prove the property for k+ 1. We
estimate |P,|pk+1p ) using the elliptic regularity theory. We have
AP.=P(N_+1) in By,
P.=P,(A) on 0B,.
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We then deduce
IPalHk+1(BA) < C(|P5N5|Hk—1(BA) + IPelHk—l(BA))
< C(lPslHk—l(BA)INslHk—l(BA) + ]PalHk—1<BA)) <c,

since (B.15).
We now estimate |V, |gx-1(p ) from the integral formula (2.4) given in Part I:

/ 2P.(s)P(s) (28> — 1)'/%ds. (B.16)
1/e
Thus the Leibnitz formula gives Vr € [0, A],

N.(r) = @ 1R

1/e

/ P.(s)P!(s) (1 — €2s*) /%5 ds

|N(k)(7‘)| < '(——)Uc)
€ - a- 627‘2)3/2

|(P.(r)PLr)®|. (B.17)

k-1 1 (k—1-1)
+ CZ ((1 _ 527'2)3/2)

1=0

We remark that for ;7 > 0 and a > 0,

N @y
dri\l1—ex2) — " dyi\1-92/)"

where y = ex with |y| < Aey < % and

& 1 “ &’ 1\

dri \ 1 —g?r? dyi \ 1 — y?
From (B.17)—(B.18) and again Leibniz formula,
k-1 '
IN® @) < c<1 +) I(PE(T)P;(T))(’)|> < c(l + > |P®)| ]Pg@]).

i=0 p+q<k

j <e (B.18)

Le(By )

Lo(By)

Therefore

|Ns(k)fL2(BA) < C<1 + Z IPéP)ILz(BA)IPéq)ILZ(BA)) <c.
p+q<k

This concludes the recurrence and the proof of Part i).
ii) Let A > 0 and k > 1. Let us prove by compactness arguments

(P.,N,) = (Q,—Q% in H¥B,) x H*B,).
We already know that

(P.,N,) = (@Q,—Q% in L*B,) x L*(By).
From Part i), there is a ¢ > 0 such that for 0 < e < g4,

IPEIHk'H(BA) + 'NEIHI“‘H(BA) S C.



Concentration Properties of Blow-Up Solutions 381

Therefore by compactness arguments for each sequence €, — 0 as n — + oo there
is a subsequence (denoted ¢,,) such that

(P,,N,)= (P, ,N.)— (P,N) in H¥B,) x HB,) as n— +oo.
Thus (P,, N,) — (15, N)in L3(B 4) X L*(B 4). From the uniqueness of the limit, we
have (P, N) = (Q, —Q?). We conclude that

(P.,N) = (Q,-Q%) in H"B,) x H*(By),
and the proof of Proposition B.1 follows.

Step 4. Uniform estimates of (P., N,) at infinity in R? as ¢ — 0.
In Part I, we obtain some estimates on (F,, N,) at infinity for a fixed ¢ > 0. We
prove in this step these estimates uniformly for € small.

Proposition B.2. There exist constants 6 > 0, €, > 0 and c;, for each k < 1 such
that V0 < e <e, Yk > 1,Vr >0,

PP < ee™,

k Ck
|Né )('f')| < W

Proof. We prove in fact by recurrence on k the property:
[Pél)(r)| < c,ce“” for 0<I<k+2,

o) Ck
IN(r)] < o for 0<I<k.

%)

a) We prove (7). We begin by estimates on P,.

Lemma B.3. There exist constants 6 > 0, €, > 0 and c such that for 0 < € < ¢,
Vr >0,

i) |P.(r)] < ce?".

i) |PL(r)| + |P(r)| < ce™ %"

Proof. i) We need a crucial estimates on /N, proved in Part I (see Proposition 4.12):
There exists constants €, > 0 and A > 0 such that for 0 < e < ¢,,

1
INelLoo(qlef>ap < 3+
From Proposition B.1, there exist constants £, > 0, c such that for 0 < e < ¢,
1P| poo(p ) S C- (B.19)

Therefore we only have to estimate P._(r) for r > A.
We consider the elliptic problem on (A, + c0),

1
Pe”+;PE’=(NE+1)PS.
We have for 0 < e <, and r > A,

[P <, P(+00)=0 and ;< N.(N+1<3.
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Thus by usual techniques of maximum principle, there exists a constant ¢ and § > 0
which does not depend on ¢ such that for 0 < e < ¢,

Vre[A,+00), |P.(r)| <ce?" (B.20)

and Part i) follows.
ii) Let us prove the same estimate for P, and P!

Writing (rP.(r))’ = r(N_(r) + 1)P_(r) and integrating on (r, 4+ 00), we obtain (by
decay of P! for a fixed e proved in Part I)

+ oo
rPl(r)=— /(Na(s) + 1P.(s)sds. (B.21)
It follows from (B.20) and (B.21) that
Vr>A, |rP.r)| <cre”®". (B.22)
We conclude from (B.22)
YO<e<e,Vr>0, |PAr)|<ce®.

The estimate on P.’ follows.
— on one hand, from the uniform bound of P!’ on [0, A],
— on the other hand, from the relation on [A, + c0),

/

—P
P! = TE + (N, + 1P,

and estimates on P, and P.. This concludes the proof of Lemma B.3.
We now estimate V.

Lemma B.4. There is ¢ > 0 such that for € > 0 small,
c

Proof. We use for this estimate the integral formula (B.16) of N_,

N.(r) = @19 K. (r),
where i,
K.(r)= / P.(s)P!(s) (2> — 1)!/% ds. (B.23)
1/e
We remark that Vr,
r r
K ()| <c / e 252 — H/2ds < ¢ / e 25 (es + 1) ds
1/e 1/e
< c/e—ﬁs ds < c(e%é +e70m). (B.24)

1/e
Therefore



Concentration Properties of Blow-Up Solutions

—forogrgi,
2¢e

c

= —or
IN.(")| < c|K.(r)] < cle® +e7%) < =t

™ N

— forr

AV

1

| K, (r)| <e e or c
(E2r2 —1)3/2 = T (€2r2)3/2 T 1413

IN.(m)| <c¢

—forigrgzand£>05mall
2e €

r
/6—258(6282 _ 1)1/2 ds
1/e

= T
ec 1/2
S G (1 1 el /(es' D' ds
1/e

[N.(m)] < @ 1)n

-5
¢ (er—12 =8
( ) <oe® <

This concludes the proof of the lemma.
b) Property (7},) implies property (7}, ).
We first prove the estimates on N, and then on P..

Lemma B.S. There is a constant c;, such that
c

YO <e<e,Vr, |[N¥D@) < ﬁ,’f‘m .

. . 1 2

Proof. 1) Estimates for 0 < r < 7% and r > =

Writing again N, (r) = b_(r)K_(r), where
T

K.(r) = / P.(s)P.(s) (e¥r? — 1)'/? ds,

1/e
1

bi(r) = (627‘2 _ 1)3/2 :

Leibniz formula yields

k
INFD()] < e )] (1 = 212 P,(r)PUr) )|

=0
+ [BF )| |K ()] .

c

- 7 < .

e (er—13/2— 1\> " 1473
1+< )

383

(B.25)

(B.26)
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1
— From (B.24) and direct calculations, we have for 0 < r < 7% orr > —,
€ €

b9 ()| < c, (B.27)
-6
|K.(r)| <cle® +e ). (B.28)
— From estimates on P_,..., P**D  and again Leibniz formula we have Vi =
0,....k
[((1 — 2 2P.(r)PL(r)*F | < ce™0". (B.29)
— We claim that
1 c
fi —1]>= W) < ——— B.30
or fre=112 3. OIS T (8.30)
Indeed,
plktD — gkt dk“b(y)
e dyF+T
1
where b(y) = (yz—l)—3/7 and y = ex. From direct computations, for |y — 1| > 1

dk+lb(y) - 1
dylc+1 ~— 1+ Iy|k+4 ’

and therefore

C€k+1 c

b(kt+1) <
o ()] < (1 + [er[FH4) = (1 + r)k+4e3

which proves (B.30).
We then deduce from (B.27)—(B.30) that for |er — 1] > 1,

=

(1) ¢ e € __

2¢’ €
We write N_(r) = a (r)Y_(r) where

1
e+ 12
T

1 1 1/2
Y.(r) = ﬁ / Z_(s) (5 — E) ds,

(Y

Z.(r) = 2P.(r)P.(r) er + 1)/%.

1 2
ii) Estimates for r € [—, -

a(r)

Leibniz formula yields

NG < ( @) IY;‘”(rn).

p+q=k+1



Concentration Properties of Blow-Up Solutions 385

On one hand
c, eP
la® ()| = —F——. (B.31)
eer+ 1217

1 2
On the other hand, Lemma 2.9 in Part I and estimates for r» € [2—, —},
e e
-6
|P(r)| + ...+ |PE2D ()| < ce? |

we deduce
—6

Yool sz ( ) <ce% . (B.32)

LR

1
2¢e’

2
From (B.31) and (B.32), Vr € [i, —},
2¢’ €

-6
k+1 —1,% c
INFHD@r)| < e E : efle < 1+ rkta”
0<p<k+1

which concludes the proof of the lemma.
We now estimate P+,

Lemma B.6. There exists c such that for all 0 < e < ¢,

Ipék+3)(,’,,)| < C€_6T )
Proof. From Proposition B.1, there exists a constant ¢ such that for 0 < e < ¢,

k+3

|Pa( * )|L°°(Bl) sc.

Let us estimate P**3(r) for r > 1. We derive (k + 1) the following relation:
1
Pellzpe_;PE/-i_NEPe’

and we obtain

(2]
1
[PEG)| < |PED@) +e S (F) POm|+e Y INPOPOw).
pt+q=k+1 p+q=Fk+1
From the estimates on P.,..., P**? and N_,..., N**D we deduce

vr>1, |P¥I(r)| < ce™.

Thus the lemma and property (73,,) is proved.
This concludes the proof of Proposition B.2.

Step 5. We are now able to prove (¢,.,n.,n;.) — (@, —Q*0) in H*, Vk > 1,
which with Step 2 concludes the proof of Theorem 3.

Proposition B.7. Let p,q > 0. We then have as € — 0:
i) 2P P9(z) — zPQW(z) in L,

i) N9(z) — —(Q)?P(z) in L?,

iii) zN9(z) —» —z(Q*)D(z) in L.
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Proof. i) Let p,q > 0.
On the one hand, from Proposition B.2 there is a constant ¢ such that

VO <e<e,VzeR?, |zPP9x)| < clzPedle]

which belong to L?.
On the other hand from step 3, P. — @Q in HF, for k > 0. Therefore
P9(x) — Q9(z) on compact sets and

vz, P9(z)— Q).

The convergence dominated theorem allows us to conclude to the proof.
Proofs of Parts ii) and iii) are similar.
Let us now conclude the proof of Theorem 3.

Proof of Theorem 3. We recall that

zI2
ooy = 8

€

N () = N(z),  ny(x) = coe(|z| N.(x) + 2N (2)),

P (x),

and the proof of Theorem 3 is reduced to the proof of the convergence of
(Boer Moe> M) o (Q, —Q%,0) in H for k > 1, that is

i) ¢p. — 0in HF,

i) ng. — —Q* in H*1,
iii) n;, = 0in H*2ifk>2,in A" if k= L.

i) Let us prove that ¢, — Q in H* for all k > 0: Yk >0, ¢ — Q® in L2. By
Leibniz formula and from Proposition B.2,

—ilzlzc

i
# - PPlp<e Y |l POl <ce.

prg=k

Furthermore from Proposition B.7 and the dominated convergence theorem,

—ilzlche
e ¢+ PPQ® in L* as e—0.

Therefore ¢’ — Q® in L? and this concludes the proof of Part i).
ii) ng, = N, — —Q?* in H* by Proposition B.7.
iii) Case k = 1. We have by definition

(@) g-1 = |ve]p2,
where V - v, = n,_. By direct computations (see Part I),
v (x) = exN ().
Therefore |n, (x)|g-1 = €|zN, |2 < ce = 0ase — 0.

Case k > 2. |ny(z)|gr—2 < coel |z|Ni(x) + 2N, (2)| gr—2 < ce by Proposition
B.7, that is |n, (@) gx-2 — 0 as € — 0.
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B.2 Case of Multiple Periodic Solutions. We consider as in Theorem 3 a real radial
solution of

V) wV =AV +|V]*V in R?
and (u(t), n(t)) = (e**V(z), —|V(x)|*) associated periodic solution of (L)
We assume that V' is a nondegenerated in the following sense: the operator
Ly:W — AW — wW 4 3V*W
is a continuous one to one application from H? to L2 with continuous inverse.

By a similar proof to the one in Part I, we can prove that, for € € (0,¢,) small
enough, there exists a radial solution (P, , NV75) of

APVE - PV,E = NV,&‘PV,E’ (B.33)
0? 0

2
€ ( o 2NV6+6T87~

such that (Py, ., Ny..) — (V,=V?)in H' x L? as ¢ — 0.
In addition,

(II€)
Ny, + 6NV,€) — ANy, = AP, [,  (B34)

2

2
w oy lzl2 _wL) w
ugmw=Tjte(4‘“”<Tm R@( EJ,

T —
w, 2 TwW,
D =\7—7) Mel 70 )

1
where w, = ac: T > 0, and § € S', is a blowing up solution in H, of equation
).
Indeed, we only use in Part I
— exponential decay at infinity of V' (which is still true — see Berestycki-Lions [4]),
— the nondegeneracy condition,
to be able to prove that the operator

Ty () = Ly, ((V + WAV +h)D) + V3 +3V?h)

has a unique fixed point hy, . in a neighbour of 0 in H? = H} N H? for & > 0 small
enough.
We remark then (P, ., Ny ) = (V + hy ., SV + hVE)z)) is a solution of (II,).

Moreover we have P;,, — V in H 2 as ¢ — 0 and there exists constants &, > 0 and
A > 0 such that for 0 < ¢ < gy,

1
INy el pooqz)>ap < 3 -

We now apply the same procedure as the one of B.1 to prove the instability of the
periodic solution (e*“*V(x), —|V(x)[?,0). As in Sect. B.1, we prove that the initial
data R

w, 122
boe(@) == Py (@),

nge(@) = Ny (z),
N (x) = COE(I"EINV,E(‘T) + 2Ny (2)),
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of the associated blowing up solution

|2

A zl|“cpe t
u(t,x) = < 1 )61(4(60“_1)4—“405”) PV,S( ; )’

1 — cypet 1 —cyet

2
1 x
t,r)=| — | N s
"e(t: ) <1 —coat) N’€<1 —cost)’

converges to (V, —|V|2,0) in H,, Vk > 1 as e — 0.

This concludes the proof of Theorem 4.
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