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Abstract: We present a rigorous analysis of the Schrodinger picture quantization for
the SU(2) Chern-Simons theory on 3-manifold torus x line, with insertions of Wilson
lines. The quantum states, defined as gauge covariant holomorphic functionals of
5^(2)-connections on the torus, are expressed by degree 2k theta-functions satisfying
additional conditions. The conditions are obtained by splitting the space of semistable
sw(2)-connections into nine submanifolds and by analyzing the behavior of states
at four codimension 1 strata. We construct the Knizhnik-Zamolodchikov-Bernard
connection allowing to compare the states for different complex structures of the
torus and different positions of the Wilson lines. By letting two Wilson lines come
together, we prove a recursion relation for the dimensions of the spaces of states

which, together with the (unproven) absence of states for spins > | level implies the
Verlinde dimension formula.

1. Introduction

Since the Chern-Simons (CS) theory was revisited by Witten in [33], with the stress on
its topological nature, a considerable effort has been made to study different aspects
of the theory. From the point of view of covariant quantization, the CS model was
used to obtain 3-manifold, knot and link invariants, either by surgery [33,22] or in
the perturbative expansion [8, 19, 4].

Here we will discuss a complementary aspect of the CS theory: its canonical
quantization. It has been argued in [33] that the space of Schrodinger states of the CS
theory with a compact Lie group G, in the presence of Wilson lines, is isomorphic to
the space of conformal blocks of the associated group G Wess-Zumino-Witten (WZW)
conformal field theory. The Wilson lines correspond to the insertions of the primary
fields in the two-dimensional model. The conformal blocks are holomorphic sections
of the Friedan-Shenker (FS) [14] vector bundle over the moduli space of complex
structures of a punctured Riemann surface. By definition, they are horizontal with
respect to a flat projective connection. In the WZW model, the latter is a generalization
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[5, 6, 33, 21, 17, 3] of the genus zero Knizhnik-Zamolodchikov (KZ) connection
[24,23].

For the case with no Wilson lines, the argument of [33] goes as follows. Working
on a 3-manifold of the form Σ x R, with Σ a 2-surface and R interpreted as time,
one identifies the phase space of the Chern-Simons theory as the moduli space
of flat G-connections on Σ. The choice of a complex structure on Σ allows to
replace the latter with the moduli space of holomorphic Gc-bundles on Σ [27,9].
It determines, in the geometric quantization jargon, a complex polarization of the
phase space and, consequently, a concrete realization of the space of CS states: they
become holomorphic sections of a power ~ to the coupling constant (level) k of the
determinant line bundle over the moduli space of Gc-bundles. Such sections form the
fiber of the FS bundle for the WZW model with the point in the base given by the
complex structure of Σ. The KZ connection in the FS bundle allows to compare the
CS states for different polarizations.

The presence of the Wilson lines parallel to the time axis, carrying representations
Rn of G, leads to a slight modification of the above picture. If we first treat the
insertions classically then the flat G-connections forming the phase space should
have prescribed holonomies (up to conjugacy) around the punctures and, given the
complex structure of Σ, one obtains the moduli space of holomorphic Gc-bundles
on Σ with parabolic structure at the punctures [25]. The CS states are holomorphic
sections of a power (~ k) of the determinant line bundle over the new moduli space.

Our approach will be somewhat different from the above. First, one may treat the
Wilson lines quantum-mechanically from the start. The space of states which results
then is composed of holomorphic sections of a finite-dimensional vector bundle over
the old moduli space of Gc-bundles on Σ (without parabolic structures). The fiber
of the bundle is the tensor product of the representation spaces VRn, one for each
Wilson line.

The two approaches should be equivalent provided the subtle point of the
behavior of the sections around singular points of the moduli spaces is treated
appropriately (stability, etc.). We shall essentially follow the second approach with
another modification which allows precision and avoids at the onset the subtleties
inherent in the finite-dimensional moduli-space context at a relatively low cost (one
has to work with infinite-dimensional Banach spaces). Namely, we shall define the
CS states as holomorphic maps from the space of G-connections on Σ to ®VRn with
prescribed transformation properties under the complex gauge transformations (gauge
covariant). This infinite-dimensional definition is natural in both the CS setting (where
it corresponds to "quantize first, impose gauge conditions next" approach) and in the
WZW theory (it produces there the solutions of the current algebra Ward identities).
Heuristically, our approach gives sections of a ®VRn -vector bundle over the space
of orbits of G-connections under the complex gauge transformations which coincides
with the moduli space of holomorphic Gc-bundles on Σ.

The rigorous problem addressed is to describe the spaces of states defined as
above, together with the KZ connection, in finite-dimensional terms and as explicitly
as possible. Another open (even at genus zero) mathematical problem which, however,
we shall not discuss below, is to prove that the KZ connection is metric [16, 17, 11].
Verlinde, using the expected factorization properties of the WZW conformal blocks
together with their modular properties has given a formula for the dimension of the
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FS bundles [31] ̂  This formula has been rigorously proven in some special cases and
from various starting points2.

In [7] a proof for the SU(2) case with no insertions but in general topology was
given within the moduli space approach.

Recently, Fallings has announced a proof of the general result [12].
In [18], a reduction of the infinite-dimensional formulation to finite-dimensional

setup was achieved for G = SU(Ί) and genus zero. The spaces of spherical CS
states were realized as subspaces of Inv(®VRn) composed of the G-invariant tensors
satisfying explicit conditions stable under the KZ connection. The factorization
properties of these spaces implying the Verlinde formula for their dimensions were
proven. The present paper is, essentially, an extension of this work to the genus 1 case.
We realize the toroidal CS states as theta-functions satisfying explicit conditions. The
flat (projective) connection allowing comparing the states for different insertion points
and different complex structures on the torus is also constructed. The factorization
properties of the spaces of toroidal states when two insertion points coincide allow
us to prove the Verlinde formula modulo the assumption that there are no states if
one of the inserted spins is larger than k/2. The latter fact has been proven in the
spherical case in [18]. At genus one, it should follow by the factorization when the
torus is pinched to the sphere. We postpone the study of this factorization, more
difficult technically, to a future work.

The organization of the paper is as follows. In Sect. 2 we define precisely the theory
and describe our picture of the Chern-Simons states as given by gauge covariant
holomorphic functionals on the space of G-connections. In Sect. 3 we describe
a stratification of the space of S'L^(2)-connections [== the space of holomorphic
SX(2, C)-bundles]. It is a refinement of the stratification given in [2]. We need a
finer decomposition of the semistable stratum of [2] which then provides the main
tool in the reduction of the infinite-dimensional formulation to a finite-dimensional
one. The reduction associating to every state a set of theta-functions is performed in
Sect. 4. In Sect. 5, we construct the toroidal version of the KZ connection on the FS
bundle with fibers composed of the toroidal CS states and the base given by the moduli
space of punctured complex tori. In Sect. 6, we extend the bundle and the connection
to the component of the boundary of the base corresponding to two punctures coming
together, show the factorization of the fibers there and prove the Verlinde formula for
the dimension of the space of states (all that modulo the assumption that there are no
states with spins > k/2). Finally in Sect. 7 we discuss our conclusions and foresee
future lines of research. Several appendices collect proofs and properties that are used
in the paper.

2. Chern-Simons Theory

We shall study the CS theory on a three-dimensional manifold ^M = Σ x R, where
Σ is a compact Riemann surface without boundary and E plays the role of time. The
action of the theory at level k <E N and with Lie group G = SU(ri) is given by,

(2 υ

1 [31] contains the formula for the case with up to three insertions on the sphere and for the arbitrary
genus but no insertions; its extension to the general case may be found in [26]
2 See [29,30] for the earlier related work
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where B is the Yang-Mills connection on the trivial G-bundle over ̂ , i.e. an sn(n)-
valued 1-form on ^M. We shall also consider the insertion of TV disjoint Wilson lines
Pn x E carrying irreducible representations Rn of G.

In the temporal gauge B0 = 0, the phase space of the theory is the set ̂  of
two-dimensional connections A on the trivial G-bundle over Σ with symplectic

k
form — ftr(δA)2. Due to the remaining gauge freedom, this phase space has to

4π
be constrained further by imposing an appropriate flatness condition on connections
A [33, 10] (see below).

To quantize the theory, one may use the complex structure on Λ> induced by the
complex structure on the Riemann surface: the splitting ̂  3 A = A^dz + Azdz
allows one to identify ̂  with the complex space ^01 of sί(n, C)-valued (0,1)-
forms on Σ. The quantum states in the holomorphic quantization a la Bargmann
of the theory are given (see [15, 10, 16, 17, 18]) by holomorphic functionals \P of

N

AQl = A^dz £ ̂ Ol with values in (̂ ) V^ , where VR denotes the vector space of
n=l

representation R. States H/ must also satisfy the quantum flatness condition

(2 2)

where generators ta of su(n) are normalized so that tΐ(tatb) = | δab,t^ stands for

the action of ta on the nth factor of ( ) V and

^ 7Γ 6
is the curvature of A = Σ Aata with Aa

z replaced by its quantum version — — τ-τ^
a K, osig

To be more precise we will take ^01 to be the L2

ε Sobolev space of (0,1)-
connections (ε > 0). By definition, holomorphic functionals on it are C00-smooth in
the Banach sense with the complex-linear derivative.

The flatness condition (2.2) may be integrated in the following sense. Let .̂ c

denote the space of complex gauge transformations, i.e. of L\+ε maps h\Σ —>
SL(n, C) which act in a continuous way on ̂ 01,

+ /ι5/ι-! (2.4)

with d — dzdz. Note that L\+ε in two dimensions is a Banach algebra and then ί̂ c

is a Lie group, it consists of continuous functions so that evaluation of h at a point
zn is smooth. Then (2.2) is equivalent to demanding that

Φ(hA0ί) = e

fes^w(^ >A^l[h(zn)(n}V(A01), (2.5)
n

for every ft G 5 .̂ Swzw(h, A01) is the action of the Wess-Zumino-Witten (WZW)
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model [32] coupled to the (0, l)-component of the gauge field. Explicitly,

i f - i f
wzw ' 4π J 12π J

Σ Σ
Γ

+ -̂ - / ΐr(hdh~l)A°l (2.6)
2π J

which is defined modulo 2πί and is a smooth functional of h G £^c and A01 G ̂ 01.
The cocycle property of the action

L / λOl\ q (h~l 401^ (Ί Ί\i 1 si ) oW7W^/^ , s± ) \Δ ι )

makes (2.5) consistent under the product of gauge transformations.
If we formally define WZW Green functions by the functional integral

(Φ, , . . . , Φ^} 1|Ao. = (g) fl(^)(n)e-fcS^w(s'Aθl) Π dg(z) (2.8)
J n z

(here g^ stands for the matrix representing g in representation Rn) then, from the
transformation of the action, one derives the Ward identity

(Φ,, . . . ,ΦN)l>hAm = e ^ w z w ^ - ) l[h(zn\n^ . . .,ΦN)lιAθl (2.9)

which makes clear the relation between the space of states of the Chern-Simons theory
and the solutions of the chiral Ward identity (2.9) of the WZW model.

From Eq. (2.5) we see that H/ will be determined once we know its value at a
point of each ^c orbit. However space ^01/S^C is, in general, not a manifold and
the smoothness of ^ is not given for free. In the following section we shall study
the relative positions and codimensions of the &c orbits as an introductory step to
finding the holomorphic functionals Ψ with transformation rule (2.5).

3. Stratification of the Space of Connections

In this section we shall describe a stratification of ̂ 01 into submanifolds of finite
codimension invariant under the action of the gauge group.

First note that the space of smooth (0,1)-connections ̂ ^ may be identified with
the space of holomorphic SL(n, C) bundles [more exactly, of the structures of a
holomorphic 5L(n, C) vector bundle in the trivial bundle Σ x Cn]. For A01 e Λ£,
d+AQl is the holomorphic derivative of the sections of the corresponding holomorphic
bundle. Isomorphic bundles correspond to gauge-related forms so that the space
of orbits ^01/S^C may be identified with the space of isomorphism classes of
holomorphic SX(n, C) vector bundles. Below, we shall use the bundle language
whenever it is more convenient.

We recall from [2] some definitions and results about the holomorphic vector
bundles. Let E be such a bundle, n(E) its rank and k(E) its Chern class [k(E) = 0
if the bundle has structure group SX(n,C)]. The ratio μ(E) = k(E)/n(E) is called
the slope of E. E is called semistable (stable) if for every proper holomorphic vector
subbundle D C E, μ(D) < μ(E) (μ(D) < μ(E)). Every holomorphic bundle E has
a canonical filtration

0 = EQ C El C ... C Er = E
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such that Dτ = Ei/Eί_l is semistable and

l ) , i = l , . . . , r . (3.1)

The ranks n = n(D^) and Chern classes ki — k(Dj), subject to ]Γ n i — n(E) = n,
i

Σ ki = 0 and (3.1), determine the stability type of E. Of course, if E is semistable,

r= 1.
With the use of these data, «^01 is decomposed into submanifolds ̂ ^ formed by

all bundles of type λ = ((n^, fc^), i — 1, . . . , r). As the type of a bundle is canonical,
,s$χ is a union of 5̂  -orbits (isomorphism classes). If 2§ denotes the set of all
possible types λ then

^ = (J X1 . (3.2)

One may partially order SS by setting λ -< μ if ^(λ) C (̂μ), where
is the region in the two-dimensional plane between the horizontal axis and the
convex polygon whose edges are vectors (n^ fc ) taken in order. The decomposition
(stratification) (3.2) has the following property [2]:

For every I c &, tf = \J \J ̂  is an open submanifold of ̂  . (3.3)

The codimension of ^/$ is

where g is the genus of Σ. The stratum *s&Pl

s of semistable bundless, associated to
the minimal element λss = ((n, 0)) of S§, is the only one of codimension zero and is
an open dense subset of ̂ 01. For the genus g = 1 case under consideration in this
paper, we shall need to refine the above stratification, preserving still property (3.3).
This will be done by decomposing the main stratum ^Pl

s into other strata.
From the Weil theorem [20], we know that each isomorphism class of semistable

holomorphic vector bundles of vanishing Chern class (on a general Riemann surface)
has a flat representative (for g = 1 also the converse is true). In other words, for each
semistable A01 there exists an sl(n, C)-valued (1, 0)-form A10 such that A = Al°+A°l

is flat, i.e. F(A) = dA + A Λ A = 0. To each of these bundles (and to the choice of
there corresponds a homomorphism

> SL(n,C)

given by the holonomy of the flat connection A:

A = hdh~l , (3.5)

where the SX(n, C)- valued map h is defined on the universal covering of Σ and

h(aξ)~l = Q(a)h(ξΓl for a e τrγ(Σ) . (3.6)

If the homomorphisms ρ are related by conjugation, then they come from isomorphic
bundles (since the corresponding flat connections are related by an SL(n, C)-valued
gauge transformation). In the toroidal case, i.e. when Σ — C/(2πZ + 2πrZ) for
r = T! -f iτ2, τ2 > 0, we have a specially simple situation as the fundamental group
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of Σ is generated by two commuting elements. Then the representations ρ of the
fundamental group are given by pairs of commuting matrices ρl , ρr £ 5X(n, C).

For the rank n — 2 to which we shall limit ourselves in next sections, we can
distinguish three classes of orbits of equivalent semistable bundles according to the
behavior of ρ for (one of) their flat representatives

Case 1 One of the matrices is diagonalizable, and different from ±7, then both are
simultaneously diagonalizable.

In this case, we may diagonalize by conjugation both matrices and take:

=ίr
0 -χ ' '

We may still use the freedom of choice of the flat representative for given bundle by
replacing the map h of (3.5) by hh, where

~h = e(2π)-

This does not change A01 but changes the transition matrices to

where 2πίu = Xτ - τλ{. One can take

Au = A™ + A°u

l = uσ3(dz - dz)/2τ2 (3.7)

as the associated flat connection.
There are gauge relations between chiral connections A^1 . Let

[ vz — vz
— -ZT2

be a map from the complex plane to SX(2, C). For v = ra + τ n e Z + rZ, hv

defines a gauge transformation on the torus which shifts u of A^ by m + rn.
Also, the constant gauge transformations with values in the normalizer of the Cartan
subgroup map A^1 to itself or to A^n. A direct check shows that for u φ (Z + rZ)/2

these generate the only gauge transformations relating A^'s. To generate all the
gauge transformations relating ^L0 to other A^'s, one has to add the arbitrary
constant gauge automorphisms gQ of Af]1 to hυ's with υ G Z + rZ. To understand the
gauge relations of an arbitrary A^1, u £ (Z + τZ)/2, to other A^'s, notice that for
υ £ (Z + rZ)/2, although hυ φ ̂  if υ <£ Z + rZ as it is multivalued on the torus,
it still defines an automorphism A01 H-> hv A01 of ̂ 01 since hυ is multiplied by ±1
when one goes around the torus' cycles. The action of such hυ still shifts u of A^1 by
υ £ (Z -f rZ)/2 and we may use it to infer all gauge automorphism connecting any
A^1 with u £ (Z + rZ)/2 to any other An's. They are generated by automorphisms
hug0h~l of A^1 (u £ (Z + rZ)/2) and Vs with ^ e Z H- rZ.

It follows that we may split the union of ̂ c -orbits of chiral connections A^1 into
five disjoint sets. ̂ l will contain the orbits of A^1 with u φ (Z + rZ)/2. The orbits
of A^1 's with u 6 α + Z -f rZ, α = 0, 1/2, r/2, (1 + r)/2 will form the sets

2. One of the matrices is not diagonalizable.
Then we can always, by conjugation, reduce the two matrices to the form:

n -- μ~
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If αr 7^ ral then using

h = e(
2^~lza\σ+

as in Case 1 and with a further conjugation, we may equivalently obtain

where all four possibilities of combinations of signs ± are allowed. As the corre-
sponding flat connections we may take

A* = ha(σ+(dz - dz)/(2τ2))h~l + hadh~l ,

where, for α = 0, 1/2, τ/2, (1 -f r)/2 corresponding to signs (+, -f), (4-, — ), (— , +),

(-» -)» ̂  are βiven by (3 8)
The orbits of

A™ = -(aσ3+e ^ σ+)dz/(2τ2)

will form the subsets ^^ 0) °f ^
01 Bundles with ar — τα l 5 excluded from L/^ 0),

are equivalent to those with transition functions ±7, and they are elements of the sets
(̂α i) considered above.

From the remark that the equivalence of holonomies ρ implies that ^401's are
in the same orbit it should be clear that the sets [̂j1 , ̂ ^ ̂  cover the semistable

stratum ^s\ (they produce all possible nonequivalent holonomies). It may be less
clear that they are all disjoint since they were singled out according to the properties
of their (non-unique) flat representatives. Notice however that if A = A10 + A01 and
A' = A'IQ + AQl are two flat representatives of the same AQl, then ω = Aw - AfW

satisfies
dω + A01 Λ ω + ω Λ A01 = 0 .

A direct check shows that for A01 = A^ the solutions are of the form ωa =
ha(aσ+dz)h~l with complex α and all lead to the same behavior of the holonomy

matrices. This demonstrates that sets ^̂  0) are mutually disjoint and disjoint from

the union of orbits of A^'s forming (disjoint) sets ̂ l and ̂ ^ 1}. Orbits -̂ i 0)
consist of indecomposable semistable bundles and they were already described in [1].
There they were obtained as the tensor product of bundles with nontrivial sections
(our ^(oo)) and the four line bundles of order two in the torus.

Now we may assert the main result of this section:

Take the set of indices J# = (J^\{λβJ) U {0} U {(α, 0), (α, 1) | α = 0, 1/2, r/2,

(1 + τ)/2}. Extend the order relation defined in ̂  to J^ by

0 ^ (α, 0) ̂  (α, 1) ̂  λ , Vλ G J^\{λβJ and a = 0, 1/2, τ/2, (1 + τ)/2 .

Then:
a) ^?! for λ G 3§ are connected, mutually disjoint submanifolds of ̂ 01. They are

invariant under the action of &c. ,̂ 01 = \J ,/$^.
b) For every / c J^,

= I ) I ) .x^?1 i s a n open submanifold of .
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Consequently, ̂ ί1 is a closed submanifold of <¥fu{\\ f°r anv niinimal element λ of

c) Codimensions c^ of .s£^ are: c0 = 0 O ]̂1 is an open dense subset of

= 3 and Cλ fθΓ ^ =^\{ΛsS}
 is aS in

J°r6><9/ Let 3?QC be the group of gauge transformations which are the identity at the
origin and W C ̂ 01 the set of constant connections. The elements of the latter may
be written as

M£0ί(2,C). (3.10)

Fix a real number 0 < δ < 1/4 and take the open set U0 C W of constant connections
associated to matrices M £ sl(2, C) such that

= (α + 6τ)2 with α,6 £ (-1/2 + 6, 1/2 - <5) c R. (3.11)

Consider the map

P : 3 x t / - >

It follows then by the inverse function Theorem for Banach manifolds that P0 is a
smooth diffeomorphism onto its (open) image, see Appendix A.

Now take
yo = {A™ G E/o I det(M) ± 0} ,

^(0,0) = {^M ^ ^o det(M) = 0 and M ̂  0} , (3.13)

Then ̂ J } = PoC^ x V(o,i)) and ^0(^0) is an °Pen subset of ./^g1. It follows that

(̂°o,o) and ^(0,1) have codimensions 1 and 3, respectively.
For the three other values of α, instead of constant connections, we take Ua =

hθίU0 with ha given by (3.8) and

*
( }

It is clear that Pa is also a smooth diffeomorphism onto its image. Then, for
Va = ha VQ, we have ^$§ — \J Pa(S^c x Va) and so it is an open manifold dense in

Oί

Λ%1 and, consequently, also in ̂ 01. On the other hand ̂ £ t) =
 hct^φ^ i = 0, 1.

From this, and from the properties of the initial stratification (3.3), a), b), and c)
follow immediately.

The finer stratification we built for the rank two case can be obtained in a similar
way for rank n > 2, it is somehow simpler for the strata of lower codimensions. In
that case the open dense stratum consists of bundles decomposable into n inequivalent
flat line bundles. Besides we have a connected codimension one submanifold made
up of bundles which decompose into n — 2 inequivalent flat line bundles and a rank
two indecomposable flat bundle, such that subbundles of the latter are inequivalent to
the other line bundles in the decomposition. All other strata have codimension higher
than one.
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4. Space of States

With the detailed knowledge of the space ^01 of the chiral sl(2, C) connections
provided by the preceding section, we are in a position to describe more effectively
the Chern-Simons states defined as the holomorphic functional \P on ̂ 01 taking
values in (££) V (jn are spins of the Wilson lines) and transforming according to

n

(2.5) under the (complex) gauge transformations. By considering such a state on the
one-parameter family of connections A^1 of (3.7), we obtain a holomorphic map
7: C —> (g) Vjn given by

(4.1)

The gauge transformations by hm+rn [see (3.8)] and by elements of the normalizer
of the Cartan subgroup give rise to the conditions

(4.2a)

Ί(u + r) = e-
2™^+2^> ]~j (e^nσ3)(n)7(w), (4.2b)

(4.2c)

(4.2d)

where J? is the generator of the Weyl group of SX(2, C). Conversely, a holomoφhic
map 7 on C satisfying the above conditions defines by (4.1) and (2.5) a unique
functional Φ on the open dense stratum ̂ [j1 satisfying there (2.5). We shall see that
such \P is holomoφhic on ̂ [j1 but need not extend to the whole of ̂ 01 [if it does
then the extension is unique and satisfies (2.5) everywhere]. We shall determine below
the necessary and sufficient conditions for such an extension to exist. The results of
the last section will be crucial here.

In the polynomial realization of the spaces VJ of spin j representations of 5L(2, C),
elements of Vi are polynomials of degree at most 2j with the action of the group by

a

c

In this realization, 7(14) is a polynomial in variables v = (vn) associated to spaces
(VJn). Using (4.2c) we can see that j(u) is homogeneous of degree J = Σ jn in

n

variables v. In particular, this implies that J has to be an integer. We may write

m

where the sum is over the TV-tuples ra = (mn) such that 0 < jn — \mn\ e Z and
^ mn = 0. From (4.2d) we infer that
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Finally, from (4.2a-b),

fm(u) — ϋ(u — (4πk)~l y^ znrr
\ n

with ΰ an ra-dependent theta-function of degree 2k satisfying

ϋ(u + 1) = ϋ(u), ϋ(u + r) = e~27rίk(τ+2u}τ}(u). (4.5)

There are 2k independent solutions ϋp of Eqs. (4.5) given by

/ ^
n=—oo

where p = 0, 1, . . . , 2k — 1 and q = e27Γlτ. Consequently, the spaces of analytic maps
7 : C — » ®Vn satisfying (4.2) for fixed r and z_ = (zn), zn £ C, are of finite, constant

n

dimension and form a holomorphic vector bundle W3 over the space ̂  of (z, r) with

zn ^ zn/ mod(2ττ, 2τττ).
The above description of states Φ defined on flat connections A^ has used a

choice of complex coordinates zn whereas the class of connections A^ depends only
on the complex structure of the torus. To exhibit the geometric character of 7's notice
that different choices of zn's are intertwined by the action of the discrete group

ΓN = Si(2, Z) x Z2ΛΓ, where ( ( α ) , (pn, rn) ] G ΓN acts by mapping fe, r)
to (z',τ'), where W c d/ /

r7 = (αr + δ)/(cr + d) , < = (zn + 2πpn + 2πrrn)/(cr + d) . (4.6)

The action of ΓN on bundle W3 which lifts the action (z, r) ι-> (z7, r7) on the base is

given by the formula

where w7 = w/(cr + d). 7's related by this action describe the same state Φ for
different choices of complex coordinates zn [notice that Au = —uσ^dz/(2r2) —
A'u, = —u'σ3dz'/(2τ2)] Dividing bundle W3 by the action of ΓN, one obtains a

bundle W3/ΓN over the moduli space ^/ΓN of tori with TV punctures.

Let us return to discussing which 7's correspond to global states Ψ. By explicitly

conjugating a constant matrix M = ί ° l ) e $1(2, C) such that det(M) ̂  0

and Ml ^ 0 to a diagonal matrix uσ3 and by using (4.1) and (2.5), we obtain the

following expression for Φ(haA^) [see (3.10) and (3.8)]:

JJ (eM(Zn-^/(2r^ha(Zn^n^(haA

x (2Mlu)~J^(u + α)

(M0 - u)t;n))) , (4.8)
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where u — ±(Mg + MlM2)
n and properties (4.2a-d) of 7 insure that the right-hand

side is independent of the choice of the sign. This rather messy expression becomes
fu 2

much simpler for M(u)
0 -u,

01

^
_ πk(u+a)2/τ2 f > - - n n ».
-e e u

x 7(w + α) ((e

(α-^/τ2(l + uvn))) . (4.9)

Notice the negative power u~J on the right-hand side which is entire in u if and
only if

ίfa Ξ «>, . . , dl

v^(u) (v)\ - χp[(_Wr2) = 0

for every TV + 1 -tuple of non-negative integers L = (ln)

N

such that \L\ = ]Γ ln < J . (4.10)
n=0

Conversely, it is not difficult to see that this condition implies that Ψ(haA°j^)9 as
given by (4.8), is analytic on the set of M's with Ml ^ 0. The last requirement may
be relaxed to M ^ 0 by conjugating matrices M. Thus condition (4.10) is necessary
and sufficient for Ψ^Afy) to extend analytically to the codimension 1 stratum of
matrices M ̂  0 with det(M) = 0.

Now using maps Pa of (3.14), we infer the holomorphicity of \P on the open dense
stratum ̂ l and see that it extends analytically to the codimension 1 strata (̂°̂ o)
if and only if the conditions (4.10) are satisfied. The extension to the other strata of
^01, of codimension > 1, follows then automatically by applying inductively the
Hartogs Theorem. It is there that one uses property b) of the stratification of ̂ 01

proven in Sect. 3.

Summarizing. A holomorphic map 7 : C — >• (̂ ) VJn satisfying conditions (4.2a-d)
n

defines by relations (4.1) and (2.5) a (global) Chern-Simons state if and only if it
satisfies (4.10) for α = 0, 1/2, τ/2, (1 +r)/2; besides, every Chern-Simons state may
be uniquely represented this way.

It is not difficult to see that condition (4.10) is preserved by the action of the

discrete group Γ^ (notice that A™(u/} - e(cr+d}l/2^A^(u}e~(cr+d}l/2(r^. If the spaces
of solutions of (4.10) are of constant dimension, they form a holomorphic ("fusion

rules") subbundle WJr of W equivariant under the action of ΓN and consequently

projecting to a bundle over the moduli space ^/ΓN.
As an illustration, let us compute the spaces of Chern-Simons states with zero and

one insertions.

States with Zero Insertions From (4.3) and (4.4) the zero-points states are simply the
even theta-functions of degree 2k since for J = 0 conditions (4.10) play no role. The
space of even theta-functions has dimension k + 1. It is spanned by the Kac-Moody
characters χktj(τ, e2πm) with fixed r and j = 0, 1/2, . . . , k/2.

States with One Insertion. In this case the states with one insertion of spin j G N are

= ϋ(u)υj , (4.11)
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where ϋ is a theta-function of degree 2k with

ΰ(—u) = (—\)3rd(u), (4.12a)

9l

uΰ(u)\u=a =0 for / < j and a = 0 ^ ^, ̂ -̂  . (4.12b)

To study the dimension ̂  of the space of solutions of (4.12a-b) we shall first
focus on the case of even spin, j E 2N. In that case (4.12) requires even theta-functions
for which:

e τ~τ $(u + α) = e τ~^ ϋ(—u -f a), α = 0, -,-, . (4.13)
' 2 2 2

As a consequence of (4.13), vanishing of dl

uΰ(u)\u=0ί for / < 2n <G 2N implies also
vanishing of the same expression for / = 2n-\-1. So in (4.12b), we may consider only
even values of /. Thus we are left with 2j linear conditions on the k + 1 dimensional
space of even theta-functions and we obtain the lower bound on the dimension of the
space of solutions:

^ > k-2j + 1. (4.14)

To obtain an upper bound for J^ , we shall use the fact that the sum of multiplicities
of zeros of a theta-function of degree 2k in any fundamental cell is 2k. Now, if we
have ̂  independent even theta-functions with common zeros of total multiplicity
4j < 2k, by a linear combination of them we can obtain another theta-function whose
zeros have multiplicity at least 4j + 2(^ — 1). Since the latter number has to be < 2k,

it follows that ̂  < k - 2j + 1 and consequently we obtain the expected result

k-2j+l forj<k/2,

0 otherwise.

The case of odd spin j can be treated in a similar way. Now we have k — 1
independent odd theta-functions and (4.12b) gives 2j - 2 independent conditions.
Finally we obtain the same expression (4.15) for the J^.

5. Knizhnik-Zamolodchikov-Bernard Equations

In Sect. 2 we have described how the states of Chern-Simons theory may be identified
with holomoφhic factors of (euclidean) Green functions for the WZW theory given
by a formal functional integral. Using the functional integral representation, one may
deduce equations that describe the behavior of the Green functions under changes
of the conformal structure of the torus and of the insertion points. In the spherical
topology, such relations are known as the Knizhnik-Zamolodchikov (KZ) equations
[24]. They were generalized to the toroidal case in [5] and to general Riemann surfaces
in [6]. They induce a connection which allows comparing spaces of Chern-Simons
states for different punctured surfaces, see [33, 21, 17, 3]. We have included a brief
heuristic derivation of the toroidal equations for the sake of completeness.

First, let us consider twisted toroidal Green functions of the WZW theory coupled
to the (0, l)-component of the connection:

(Φl(zl)...ΦN(zN))ηΛoι = I (^)(glg)(zn\n}Q\p[-kSVfZW(glg,A)]Dg. (5.1)



562 F Falceto, K. Gawedzki

Field g in (5.1) is periodic, i.e. g(z + 2π) — g(z + 2πτ) = g(z) and gl(z + 2π) — gλ(z),

9l(z + 2πτ) = ηg{(z) with twist η e Gc. Also Am(z + 2π) = Am(z\ Am(z + 2πτ) =
AάηA

Ql(z). The WZW action for the twisted fields may be defined [13] so that if

g((z + 2πr) - η1 g[(z\ AQl = glg
/Γld(g(g-1) then

l,A) . (5.2)

In particular, for g((z) = e

σ3(*-*)V(2τ2) = η~lg((z + 2πr) and gl = 1, we have

and we obtain the following relation between the untwisted and twisted Green
functions:

_ πku2/τ2- e / z

As we saw before, Chern-Simons states ^(yl01) have the same transformation
properties under chiral gauge transformation as (. . )ι ^01. Comparing (5.3) and (4.1),
one infers that, similarly, maps j(u) correspond to {. . >)ηuμ for ηu = exp(2πmσ3).

Equation (5.2) implies the following Ward identity for^the Green functions:

On the other hand, correlations (. . .)η^A are generating functionals for Kac-Moody
currents. For example,

where AQl = J](A01)αtα. We shall normalize the Lie algebra generators tα so that
α

trtatb = i δab. Identity (5.4) allows to compute the Green functions with two current
insertions if one solves

A°l=h~ldh, (5.6a)

h(z + 2ττ) = h(z) , (5.6b)

h(z + 2πr) - η'h(z)η~ 1 (5.6c)

for /ι and η1 to the second order in Am. The latter may be expressed in terms of the
fundamental solution ω(z, w \ 77) of the operator 5 with boundary condition

ω(z -f- 2π,w η) = ω(z,w\η) ,

ω(z + 2πτ, tϋ 1 7]) — Ad^ u;(z, tϋ 1 77) — i .

More explicitly

(5.7)
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where q = e2πrr. Now solutions of (5.6a-c) are given by

[ 1 Γ
— / dwAQ\w)
2π J

+ ~ I ί[ω(z, w I η)dwA°l(w), dzA°\z)] +

Γ i ί
h(z) = exp — / (ω(z, w\η} + ω(z, w \ η'))dwA°l(w)

|_4π J

563

(5.8a)

(5.8b)

Using those expressions on the right-hand side of (5.4) one obtains for the Green
functions with two current insertions:

(Ja(z)J\w)Φl...ΦN)ηt0

nz\

N

Σ'
Ln=l

N

Σ
n=l

n, z 1 77) [ω(z, w \

N

n=l

2| η)ta

| ry) [ω(w, z

, w I η)tb η)ta) (5.9)

where ω in action on t^n) should be taken in the same representation, [, ]+ stands for
the anticommutator and 2%x for the Lie derivative in the direction of the element X
of the Lie algebra of G, &xf(η) = d/dt\t=J(etxη\

The energy-momentum tensor of the WZW theory is given by the Sugawara
construction [28]:

= lim
(Z — W)z

(5.10)

Using (5.9) specialized to the SU(2) case and to ηu — exp(2πmσ3), we obtain after

a straightforward algebra explained in Appendix B (ta = \ σα, t± = tl ± it2):

N

,n=l

N

L n = l

N

n=l -I +

π «-—> π

~^L r ~22^ _4πΐu

-k +
rg

I

^

rqr

N

Σ
n=l

24
ηu^. (5.11)
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On the other hand, the Green functions involving the insertion of the energy-
momentum tensor and of the primary fields follow from the covariance of the
theory under diffeomorphisms z f—» z + ζ(z) such that ζ(z + 2ττ) = ζ(z) and
ζ(z + 2πr) = ζ(z) + 2π(τ' - r). To the linear order in £,

w(w) (T(w)Φl(zl)... ΦN(zN))η)0 rdw dw

x (Φ^zt + ζ(zJ)...ΦN(zN +

where the second term on the left arises because the metric dz'dz' develops a non-
trivial gzz part in new variables:

g-- = dzζ. (5.13)

Δn are the conformal weights of fields Φn. Solving Eq. (5.13) for ζ to the first order
in gzz, we obtain

i r
ζ(z) = — I ω(z,w)gql)1I}(w)dwdw, (5.14)

-̂  ί gzz(z)dzdz, (5.15)
4ττ J

where ω(z,w) is as in (5.7) but with Ad^ replaced by 1. Inserting Eqs. (5.14), (5.15)
into (5.12), we obtain

(T(w)Φl...ΦN)ηutQ

/ N \

)-;τ^τ (#ι ΦN)n«. (5.16)

The comparison of the right-hand sides of (5.11) and (5.16), gives an identity
satisfied by the Green functions. It may be rewritten as an identity for the holomoφhic
factors 7 we have introduced earlier:

V(w)7 = 0, (5.17)

where

/ N \
= (fc + 2) Σ(-Andwω(zn, w) + ω(zn, w)dZn)

\n=l )

(k + 2 ( N 1 Vl
-\-Π(u,r)~l< d^ + ( >^ωίz-, w)t^ H d,, \Π(u,τ)

2πί \ ^-^ ( } 4π I
I \n=l / )

N
\Γ^
/ j

_n=l

N

Σ (5.18)
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and

Π(u,τ) = g1/8sin(2πιθ|~[(l - qr)(l - e4πiuqr)(l - e~47Tiuqr) (5.19)
r

corresponds to the solution of (5.17) for the case of k = 2 and only one insertion of
spin j = 1.

Let us discuss the structure of Eq. (5.17). Since 7 is u>-independent, the left-hand
side is, a priori, a meromorphic function of w with poles of at most second order at
the insertion points zn. Equating the coefficients at (w — zn)~2 to zero, we infer that
Δn = jn(jn -f !)/(& -f- 2). Similarly, from the vanishing of the residues, we obtain
equations for the derivatives dZn^. They generalize the KZ equations to the toroidal
case. Finally, the regular part of the left-hand side of Eq. (5.17) is holomorphic and
periodic in w so constant and it gives the derivative dr^.

Explicitly, the different components of the connection are:

2)

7 J
L e /

*

v(m}
\ /

and

2π y^

^T2 ̂m,n=l

i \. \ +?> ~.

, , . . , .*n i»?,.)+, ;4^κ u i , (5.2D± I \ i — e

where

J^ / ίqr Ad^-i . , . iqr Aα . , Λ
ώ(z, w\η) = γl — I—; e"-""-" + — -*-= e"-"-'") . (5.22)

r=l x v — r j - i ^ / (-^^-η ί

To arrive at expressions (5.20) and (5.21) we have used some algebraic relations
satisfied by ω that are listed in Appendix C.

Equation (5.17) has been obtained by manipulating formal functional integrals.
Now, we would like to prove that V(u>) defines a flat holomorphic connection in the
bundle of toroidal Chern-Simons states. In analogy to the genus zero case where the
KZ equations give holomorphic connection in the trivial bundle of invariant tensors
[23], one could expect that V(w) defines a holomorphic connection already in the
vector bundle Wj with the base-space ̂  of points (z, r) and the fibers composed of

maps 7 satisfying conditions (4.2). This is, however, not the case: although formally
the connection given by V(u>) is flat, it does not preserve the analyticity (in u) of
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maps 7 producing, in general, first order poles at u £ (Z + τZ)/2 when acting on

7. This is not a problem if 7 takes values in Wj [i.e. if 7(2, r) satisfy additionally

conditions (4.10)]. We shall see that in this case V(u>)7 is analytic as a function of
u and, for fixed (2, T) and u> 7^ 2n, belongs again to WJr. Consequently, V(u>) will

define a flat holomorphic connection on WJT provided that we prove that the latter is a

holomorphic subbundle of Wj. This is precisely why we need to define the connection

first on a bigger bundle. Given such a connection with parallel transport preserving
conditions (4.10), it would follow that the spaces of solutions of (4.10) have dimension
independent of (2, r) which is all we need in order to show that WJr is a subbundle

of Wj. It is possible to obtain from V(u>) a well defined connection enlarging bundle

Wj by admitting 7*5 with poles at u = (Z + τZ)/2. This gives, however, a connection

in the bundle with an infinite-dimensional fiber where the existence of the parallel
transport does not come for free (it becomes a hard PDE problem rather than an easy
ODE one). Instead, we shall stay in the finite-dimensional setup but modify V(w) to
V(w) by subtracting the pole term so that the modifications disappear in the action

on W^r-valued 7'$ and that V(w) gives a well defined (holomorphic) connection on

WL. -
First, let us show that if 7 takes values in WJT then V(w)7, as a function of u,

has no poles at u = 0. This may be checked directly but may be also understood by
the following argument. If 7 satisfies conditions (4.10) then it defines a global state
Ψ. In particular, for M G s/(2, C) and A^ as in (3.10), we may write

so that, with a slight abuse of notation, ^(u) coincides with 7(M) for M — w3,
see (4.1). Due to (4.10), 7(M) is analytic in M. Besides, it depends only on

Q2πiM Ξ ̂  indeed, if e2πϊMι = e2™M2 then A^ = hA^ for h(z) = exp [\ r^\z-

z)Ml] exp [^ T^OZ —2)M2j. Application of the basic covariance property (2.5) of the
states gives the equality 7(Mj) = 7(M2). Since the exponential map M ι—>• 77 may be
locally inverted around M = 0, it follows that 7(77) is analytic around η = 1 [in fact it
is even globally analytic on SX(2, C)]. Now the terms in V(u>) with the poles at u = 0
came from rewriting J t̂± and J t̂± J?^ in (5.9), see Appendix C. In V(w)/y(u), they
may be reabsorbed into ̂ ±7(77)^^, &t±ω(zn, w | ηu)9 and ^±=^^7(77)! ^, all
three regular in u around u = 0.

To show that the other poles in u are absent in V(u>)7 when 7 satisfies conditions
(4.10), we shall use operators ,̂ i — 1,2, essentially extending the action (2.5) of

gauge transformations to the case of "almost" gauge transformations hv for v = \

and v = ^ , see (3.8) (for the later convenience we shall use the subindex j, in the

notation for ^'s, to keep track of the insertions)

J] t~iz^Ί(u H- r/2) , (5<23)
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and they act at the space of analytic maps C\(Z + rZ)/2 3 u H-> ^(u) G ®V^ n. We
shall also need

^ = d2^ for 2 = 1 2

^ 3 = TT e

ji(-),
1)3 -ί1 (5.24)

with β the generator of the Weyl group of SL(2, C).
These operators satisfy the algebra

and conditions (4.2) can be written as

(^-1)7=1 for i = l , . . . , 4 . (5.26)

Defining

, (5.27)

we may rewrite the conditions of (4.10) in an equivalent way using operators D^a

instead of D^a. From (5.25), (5.26), and (5.27) it is clear that ^^ preserve spaces

Wj(z,τ) and W/r(z,τ). Also

[^7t,V(w)] = 0 for i = l , 2 ,
/c OQ\

[%,V(w;)]=0 for i = l , . . . , 4 ,

so that

(p + rr)/2)

_ -2τri/c(r u+r2τ/4)
= e-MK(ru+r τ,«> Qm^(n)V(w)@P @r Ί(U) (5.29)

As V(iϋ)7 is analytic around w = 0 provided 7 is a Chern-Simons state, it follows
that, in this case, V(w)7 is entire as a function of u.

Let us pass to redefining V(u>) by subtracting "by hand" its poles in such a way that
the modifications vanish when acting on wfr-valued 7's and the new regular V(w)
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defines a holomoφhic connection in W . This may be done by means of operators

x

X (t)mt(m) ~ t ( n ) m t

ι _ ~2πik(r τ—2ru)

e2πin _ gr) (e-2πin _ g-r) (5.3Q)

,

32π

which vanish on Wr(^r) (see Appendix D) and make

α,6=0,l

regular when acting on W^. Note that (̂  - l)Rn = 0 for i = 1, . . . ,4 , and

n = 0, . . . ,7V so that V(ιu) actually defines a connection on W^ . This connection

is not flat any more but, as may be checked, its curvature vanishes on Wfr- valued

sections.
Now we want to show that the connection on Wj defines by parallel transport

an isomoφhism between spaces Wj(z_,τ) for different (z,τ). This comes from the

following relations obtained by commuting Dj"a and V(u>) or its components V Zn , V r

(a long but straightforward calculation which" is detailed in Appendix D)

n^LtD^βΊ for n = l , . . . , Λ Γ ,

(5 32)

where for |L| < J and n = 0, . . . , TV, An^L, is different from zero only if L'| < J.

Thus if D^aj vanish for |L| < J at the initial point of the V-horizontal curve in

W3 they also do along the whole curve. As a consequence, dimensions of spaces

(z,, r) are independent of points (z_, r) and WJr is a holomoφhic subbundle of

j with a holomoφhic (flat) connection V coinciding with the restriction of V.
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Using the properties of ω(z,w\η) under modular transformations, listed in Ap-
pendix C, it is easy to check that the action of the modular group ΓN almost pre-

serves the connection V: V Zn is preserved but the pullback of V r is shifted by

c(cr + d)~l Σ Δn (not very precisely, we may say that 7*5 transform as the product
n

of Zln-forms). As the result, V and V define canonically only projective connections

on W3/ΓN and W/r/ΓN, respectively.

6. Factorization

In this section we would like to derive relations between the spaces of blocks with
different number of insertions. In order to do so we shall study, as in [18], the
behavior of our bundle when two punctures come together. Taking the punctures at
(zι = Z2 + ζ"2(/c+2\ z2, . . . , ZN), we shall let ζ — >• 0. We shall study the case when
j{ = 1/2 and the rest are positive integrable spins, i.e. 0 < jn < k/2, n = 2, . . . , TV.

Let us consider the connection
Λ2/C+3

(6.1)
w

where the path Cl encloses clockwise only insertion at zl ,

(6.2)

and the connection has a singularity when ζ — >• 0. To regularize it we must diagonalize
the singular term. The decomposition

does the job. Explicitly,

3=J2±\/2 1=0

xΎjh JN(U

where the Clebsch-Gordan invariant tensors are given by

* (6.5)

if 3 12 = h + h ~ J3' Ji3 = h + h - ̂  and J23 = h + h ~ h are non-negative
integers and by zero otherwise.

Now we perform a gauge transformation in the 7*5 by the isomorphism (at ζ -φ 0)

= (V ' V ) = (C2h V , C232+2ΊΓ ) , (6.6)

where j± stands for insertions of spins j2± 1/2, j3, . . . , jN. In this way the connection

V^ = ψ~ζlVζψζ becomes regular at ζ = 0.
On the space of states we have
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By the parallel transport with V^ to ζ — 0, we obtain space WJr(Q). Our next goal will

be to show that this space coincides with W?+((z2)..., ZN), τ)®W^((z2,..., ZN\ T).

Let (7 +,7 ), defined for small IζΊ, be V-horizontal and with values in W/r(().j_ j_ j_
First (3°j±ti - l)7j±(C) = 0 for i = 1,3,4 and all ζ ^ 0 so, by continuity, also

for C = 0. As for ̂  2 we have:

(6.8)

where the ^-term is a linear operator and

Then

l2-l)Ί((z2 + ζ2(k+2\z2,...,zN),τ)

^,2 - i)v(C)>(^-,2 - l^j-(Q) = ̂ (C2(/C+1~J2)) (6.10)

We shall study the rest of the conditions that define the space of states, i.e. those
involving operators D^a. Due to the homogeneity of maps 7, we may always take

L in D^a with one of the ln = 0 and obtain an equivalent set of conditions. In the

following we will take L with 12 = Q and to remember this restriction we shall label
such L as L.

Now we are going to examine the behavior of £^α7 near ζ = 0. Let Ln(Ln)

denote multi-index L with ln increased (lowered) by 1 (if ln = 0 then terms with Ln

should be omitted),

" U2d -2Z 1 )-Z 1 (2 -

N

(6.H)

which develops a singularity when ζ" -̂  0. We have used the homogeneity of degree
J in variables (vn) of polynomial 7 and so:

The transformation

for Z 1 = 0 ,

^

for ί1 = l
n=3
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removes the singularity in (6.11). Now if 7 is horizontal with respect to V^ around
ζ = 0, we have

* (6 13)

β,L'

ft ΐ ~ T
with B^L, analytic at ζ = 0. Consequently, we can extend Djj

a^(ζ) to ζ = 0.

Let us introduce

^ _ 2πi/c(n+τ/4) | du f . ,Λ . ,3 ̂  ,3 ,3
C/ — e e — " ~ - -

(6.14)

with φζ&j}2 — (&j+,2 ® &j-,2)Ψζ- ^n terms of states 7^ of (6.6) and for α =

(α1 + rα2)/2, αx = 0, 1, operators βj ̂  are

= (2j2

+ ^'(C2(fc+1"2j'2)) for ^ = 0 , (6.15)

and

= (2j2 - Di-D^^T,- +

+ (2J, + 1)

for i1 = l. (6.16)

But Eq. (6.13) implies that D^a^ = 0 for any \L\ < J and at any value of ζ. For

ζ = 0 we obtain:

α = 0,l/2,r/2,(r+l)/2 (6.17)

and

Dr>"V=° for l ^ l < J 2 - l / 2 + J3 + +^,

α = 0,l/2,r/2,(r+l)/2, (6.18)

which are precisely conditions for bundles W f±. This proves that

V^ r(0) - W+

r((^2, . . . , ZN), r) Θ W_ r ((
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Denoting ̂  — dim W^ r , we thus obtain

JN U2+1/2)J3 JN

The formula of [31,26] that we want to prove is

k/2

j=0

with
S33, = (2/(k + 2))1/2 sin[π(2j + 1) (2/ + l)/(fc + 2)].

Equation (6.20) is a consequence of (4.15) and of the formal factorization property

k/2

&< = y^N •&)• , (6.21)

where N is the dimension of the space of Chern-Simons states in the spherical
topology, see [18].

Now, having under control the factorization when one of the spins is 1/2, we can,
by an inductive procedure, prove (6.20) rigorously, modulo the absence of toroidal
states with spins > k/2. First,

0 otherwise.

Formula (6.19) is a particular case of (6.21) and applying it iteratively we can show
(6.20) for j2 = . = jN = 1/2. For the other cases, we may use an inductive
procedure, in the increasing order of the sums J of inserted spins and, for equal J's,
in the decreasing order of the numbers of insertions. Take jl > 1/2. Then, from
(6.19),

^3\32 JN -~1/2U1-1/2)J2 JN ^(3\-^32 JN '

and on the right-hand side only earlier sequences appear so that we may proceed

inductively. This proves formula (6.20) for the dimension of spaces wfr of SU(2)

Chern-Simons states on the torus.

7. Conclusions

Let us summarize the main results of the paper. First, we have built a stratification of
the space of rank two, topologically trivial, holomorphic bundles on the torus. This
has been a preliminary step in the description of the states of the SU(2) CS theory
in this geometry as polynomials with theta-functions of degree 2k as coefficients. We
have constructed the toroidal Knizhnik-Zamolodchikov connection and have shown
that the parallel transport preserves the spaces of states. Modulo the integrability
condition (if one of spins > k/2 then there are no non-trivial states), we have proven
the factorization property of the spaces of states which implies the Verlinde formulae
for the dimension of the space of toroidal conformal blocks.

As was remarked before, the integrability condition should follow from the
definition of the space of states as it does in the spherical topology or for the toroidal
one-point blocks. We expect to derive it for toroidal TV-point blocks by extending the
bundles of states to the point where the torus degenerates into the sphere (i.e. when
T goes to ίoo). We will address this problem in the future.
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It is also interesting to understand the scalar product turning the space of Chern-
Simons states into a Hubert space. In the context of the conformal field theory,
the scalar product of states gives the pairing of holomorphic and antiholomoφhic
conformal blocks into correlation functions. It should be determined uniquely up to
normalization by demanding its invariance under the parallel transport with respect
to the Knizhnik-Zamolodchikov connection. Up to now we know expressions for the
scalar product at genus zero and one in terms of multiple integrals (see [16,11] for the
spherical case). We expect the integrals to converge if (and only if) we apply them
to Chern-Simons states. The proof of this conjecture (still absent for the spherical
topology, too) should be the goal of future research.
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Appendix A

In this appendix we complete the proof of the stratification of Sect. 3. We refer the
reader to that section for the notations used here. We shall show that the map of (3.12)

Po^xt/o-^01

fo^-M"

is smooth and injective, its differential is invertible everywhere and its inverse is a
bounded operator. Then, by the inverse function Theorem, P0 is a C°° diffeomoφhism
from ,?QC x U0 onto its open image in ,̂ ?01 .

It is clear that P0 is a smooth map from ^gc x UQ to ,̂ 01 with their respective
L\+ε and L2

ε norms. To prove that P0 is injective one has to consider the equation

hA^,=A^ for fceSgc and A™,^, e E / 0 , (A.2)

where A^, A^f are like in (3.10). The general solution of (A.2) is

/ z - z \ / z — z \
h(z, z) = exp ( i - M 0(2) exp - i - ~ M' (A.3)

with g:C — >• 5L(2,C) holomoφhic in the complex plane and

g(z + 2π) = g(z) , (A.4a)

g(z + 2πτ) = exp(-2πiM)g(z) exp(2τr2'M/) . (A.4b)

Upon expanding g in Fourier modes,

Eq. (A.4b) becomes equivalent to the statement that the 2 x 2-matrices gr are
eigenvectors of

gr^ exp(-2πίM)gr exp(2πiM7)

with eigenvalues exp(2πzrτ). But eigenvalues of x are

exp[±2τα(det1/2 M ± det1/2 M')}



574 F. Falceto, K Gawedzki

and, provided (3.11) is satisfied, the only non-trivial solution comes from detM =
detM' and r — 0. This, together with /ι(0) = 1, shows that the only solution of (A. 2)
is h — 1 and, consequently, that P0 is injective.

Now we prove that the differential DP0 is invertible and its inverse is a bounded
operator. First note that, with the use of left invariant vector fields to describe vectors
in

DP0((g, A0^)) (φ, B) = g(-5φ - [A^ φ] + B)g~l = gψg~l . (A.5)

Using the expansion in modes

φ(z, z) = ̂  ψpιr exp[i(r(2 - z) + p(fz - rz))/(r - f)] ,

and the same for φ(z, z), one obtains

nrdz — [AQλ, φ ] for (p, r) / (0,0), (A.6a)

B = ψ0fl + [A^,φofi]. (A.6c)

It is evident that these equations can be solved in φ and B for *φ in T,/-^01 if (A.6a)
can, and this is so if A^ £ UQ. One easily sees, in this case, that the inverse is a
bounded operator from the tangent space T^01 at points of the image of P0 onto
T(^QC x UQ) in the corresponding L2

ε and L\+ε norms. We conclude that P0 is a C°°
diffeomoφhism of Banach manifolds.

Appendix B

Let us explain the passage from Eq. (5.9) to (5.11).
The last term inside (. . .) in (5.9), with the ~ (z — w)~2 singularity subtracted,

gives the last two terms proportional to k/(k + 2) in [. . .] on the right-hand side of
(5.11).

The second and the third term in (...) contribute to the third term in [. . .] the part
00

with Σ.
r=l

The rest of (5.11) comes from the first term in ( . .) of (5.9). The main input is
the covariance of Green functions:

Then, since eεί ηu = Adρ(ε) ηu + &(ε2), where ρ(ε) = e(l - exp[±4πm])"1ί±,

Similarly one shows that

\
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when acting on (Φ^... ΦN)ηu,Q Finally,

, w — 2 tad(l-exp[±4πzu])-1t±'

+ \ω(zn,w\ηu)tfn

, w I ηu)\t(n)

-exp[±4πm])"1^)

'(n)

y-T
l(n)

Appendix C

We will list here, without proofs, some elementary facts about the behavior of
functions ω and 77(tt, r) under products and modular transformations. They are useful
in studying the connection V(u>). First let us introduce some notations:

ω±(z,w\u) = tr

ώ^(z^w u] = tr

) = ώ(z,w\ηu = 1).

One has

ω~(zn,w u)ω+(zπι,w u) = ω(zn, , zn \ u)

(C.I)

for

w)ω(zrn, zn) + ̂ Um, w)ω(zn, z^

- iώ(zm, zn) - iω(zm, w) - iώ(zn, w)

for zmφzn.

The above formulae are (approximate) versions of the identity

(C.2)

(C.3)

which does not hold exactly because boundary conditions of ω are not preserved by
the products. On the other hand, one has

ω+(zn, w\ u)ω~(zn, w\u) = dwω(zn,w) - iώ+(zn, zn u) , (C.4)

ω(zn,w)ω(zn,w) = dwω(zn,w) - iώ(zn,w) - iώ(zn, zn) - 2iώ(zn, w) . (C.5)

Under shifts and reflections in u, quantity Π(u,τ) of Eq. (5.19) transforms by

Π(u 4- r/2, r) = -e-πί(4u+

Π(-u,r) = ~Π(u,r)

(w, r) , (C.6)
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and
ω (X w\ — u) = —ω±(w, z\u) = ω^(z, w\ u) ,

ω±(z, w\u+l/2) = ω±(z, w\ u) , (C.7)

ω±(z, w\u + r/2) = Qi(z~w)ω±(z, w\ύ).

Under the transformations by ί ί J , (pn,qn) ) G ΓN of (4.6),
\ \ c d j J

r -> (aτ + 6)/(cτ + d) , zn -> (zn + 2τφn + 2πrqn)/(cr + d) , u -» u/(cτ + d) ,

cj and Π transform as follows

ω±(zn, zm\u)-* (cr + d)ω±(zn, zm\ u)e±^^(qn-qm)-c(zn-zm)/(cT+d)]

(C8)

The last expression is not uniquely defined because of the presence of a square root.
This is, however, all we need since Π(u, r) appears in V(u>) together with its inverse.

Appendix D

In this appendix we show how operators D^a commute with connection V(w) on

bundle W . This computation allows to complete the proof of invariance of Wj(z_, r)

under parallel transport by the connection.
First we need some simple properties of these operators. Note that generators of

the Lie algebra in the polynomial realization are

*(n) = Vndvn + 2JnVn '

Then from the fact that ]Γ) ^(n)7 = 0 for 7 G W3 (z_, r) one deduces that
n ~

N N

2π(cr + d)

, r) ̂  ±(cr + d)l/2ε**icu2/(cr+d>Π(u, r) .

(Ln, resp. Ln, stands for the TV-tuple which has all elements equal to those of L
except for the nth one that is increased, resp. decreased, by 1). On the other hand
using (4.2d) one has, for |L| - J e 2Z + 1,

2DΪ« + Σ *n(*n - 1 - 2jn)D}ta = BL

υΌ^ , (D.3)
n

where B%, φ 0 only if \L'\ < \L\ - 2.
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Now consider operators Rn of (5.30). Due to (D.2),

L; \ m

|L|=J-1
j , 23 _ z x (D.4)

771 L; \ 771 /

|L|=J-1

and finally for RQ,

" " /π '^^^7, (D.5)

where 5 comes from (D.3), i.e. only |I/| < J will give non-vanishing terms. This

shows that operators Rn are zero for 7 G W/ r as was stated before.

For the rest of the connection we have

= (fc + 2) ω(zm,

^ m

+ 4 - Σ du tr(ί-

T Om

(4π)2(/0 + 1) (/„ + 2)

L

i'α7

ίΓ + 2(/m - jm + δmn)D^)Ί

V - L 0 0 - " , 2(Z _ . )£)L<
3-'a m Jm> ί'

rOOm τ-

/3,L'
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where α, β = 0, -, — ,
T -f- 1

and here and below A represents different matrices with

non-zero matrix elements only for \L'\ < max(|L|, J — I).
With the application of Eq. (D.2), the previous expression reduces to

2) ω(z

x ( J - \L\ - 2(lm -

r O m η

ln(ln-l-2jn)Df»a 7

(J - |L| - 2) (\L\ -J-210- 3)Df>a + ( J - \L\

Note that for |L| < J-2 Eq. (D.7) is equivalent to (5.32). We must still prove that the
latter also holds for \L\ = J — 1. In this case, or more generally for \L\ — J+ 1 G 2Z,
property (D.3) applies and one has

= (* + 2)

2^

4τr(/0 + 2)

;^-i-2*XsW+^M,7. (D.8)

Writing (D.7) and (D.8) in components, one obtains Eqs. (5.32).

References

1 Atiyah, MF.: Vector bundles over an elliptic curve. Proc Lond Math Soc 7, 414-512 (1957)
2 Atiyah, M F , Bott, R : The Yang-Mills equation over Riemann surfaces Phil Trans. R. Soc.

Lond. A308, 523-165 (1982)
3 Axelrod, S., Delia Pietra, S., Witten, E.: Geometric quantization of Chern-Simons gauge theory

J. Differ. Geom. 33, 787-902 (1991)
4 Bar-Natan, D , Witten, E.: Perturbative expansion of Chern-Simons theory with non-compact

gauge group Commun. Math. Phys. 141, 423-440 (1991)
5 Bernard, D.: On the Wess-Zumino-Witten models on the torus. Nucl. Phys. B 303, 77-93 (1988)
6 Bernard, D : On the Wess-Zumino-Witten models on Riemann surfaces. Nucl Phys. B 309,

145-174 (1988)



Chern-Simons States at Genus One 579

7 Bertram, A., Szenes, A.: Hubert polynomials of moduli spaces of rank 2 vector bundles. II.
Harvard University preprint (1991)

8 Cotta-Raumusino, P., Guadagnini, E., Martellini, M., Mintchev, M.: Quantum field theory and
link invariants. Nucl. Phys. B330, 557-574 (1990)

9 Donaldson, S : A new proof of a theorem of Narasimhan and Seshadri. J Diff Geom. 18,
269-277 (1987)

10 Elitzur, S., Moore, G., Schwimmer, A., Seiberg, N.: Remarks on the canonical quantization of
the Chern-Simons-Witten theory. Nucl Phys. B326, 104-134 (1989)

11. Falceto, F, Gawedzki, K., Kupiainen, A.: Scalar product of current blocks in WZW theory.
Phys. Lett. B260, 101-108 (1991)

12. Fallings, G.: Seminar at IHES, July 1992
13 Felder, G., Gawedzki, K , Kupiainen, A.: Spectra of Wess-Zumino-Witten with arbitrary simple

groups. Commun. Math. Phys. 117, 127-158 (1988)
14. Friedan, D., Shenker, S.: The analytic geometry of two-dimensional conformal field theory Nucl.

Phys. B 281, 509-545 (1987)
15 Gawedzki, K.: Wess-Zumino-Witten conformal field theories. In: Constructive quantum field

theory. II. Wightman, A.S., Velo, G. (eds) New York: Plenum 1990, pp 89-120
16 Gawedzki, K.: Quadrature of conformal field theories. Nucl. Phys. B328, 733-752 (1989)
17. Gawedzki, K : Constructive conformal field theory. In: Functional Integration, Geometry and

Strings. Haba, Z., Sobzyk, J. (eds ) Basel, Boston, Berlin: Birkhauser 1989, pp 277-302
18. Gawedzki, K , Kupiainen, A.: SU(2) Chern-Simons theory at genus zero Commun. Math Phys.

135, 531-546 (1991)
19 Guadagnini, E., Martellini, M., Mintchev, M.: Wilson lines in Chern-Simons theory and link

invariants. Nucl. Phys. B330, 575-607 (1990)
20. Gunning, R.C.: Lectures on vector bundles over Riemann surfaces Princeton: Princeton

University Press, 1967
21 Hitchin, N : Flat connections and geometric quantization. Commun. Math. Phys. 131, 347-380

(1990)
22. Jeffrey, L.C.: Chern-Simons-Witten invariants of lens spaces and torus bundles, and the

semiclassical approximation Commun Math. Phys. 147, 563-604 (1992)
23. Kohno, T.: Linear representations of braid groups and classical Yang-Baxter equations Contemp

Math. 78, 339-363 (1988)
24 Knizhnik, V , Zamolodchikov, A B : Current algebra and Wess-Zumino model in two dimensions.

Nucl. Phys. B247, 83-103 (1984)
25. Mehta, V , Seshadri, C.: Moduli of vector bundles on curves with parabolic structures. Math

Ann. 248, 205-239 (1980)
26. Moore, G., Seiberg, N.: Classical and quantum conformal field theory Commun Math. Phys

123, 177-254 (1988)
27 Narasimhan, M., Seshadri, C : Stable and unitary vector bundles on a compact Riemann surface

Ann. Math. 82, 540-567 (1965)
28 Sugawara, H : A field theory of currents Phys. Rev 170, 1659-1662 (1968)
29 Tsuchiya, A., Kanie, Y.: Vertex operators in the conformal field theory on PI and monodromy

representations of the braid group. Adv. Stud. Pure Math. 16, 297-372 (1988)
30. Tsuchiya, A., Ueno, Y., Yamada, Y : Conformal field theory on universal family of stable curves

with gauge symmetries. Adv. Stud Pure Math. 19, 459-566 (1989)
31. Verlinde, E.: Fusion rules and modular transformations in 2-d conformal field theory Nucl. Phys

B300, 360-376(1988)
32 Witten, E.: Non-abelian bosonization in two dimensions. Commun. Math Phys 92, 455-472

(1984)
33. Witten, E.: Quantum field theory and the Jones polynomials. Commun Math Phys 121,351-399

(1989)

Communicated by G. Felder






