Representations of Quantum so(8) and Related Quantum Algebras

Vyjayanthi Chari ${ }^{1, \star}$, Andrew Pressley ${ }^{1}$
${ }^{1}$ Department of Mathematics, University of California, Riverside, CA 92521, U.S.A.
${ }^{2}$ Department of Mathematics, King's College, Strand, London WC2R 2LS, England, U.K.

Received: 30 November 1992/in revised form: 2 June 1993

Abstract

We study irreducible representations of the quantum group $U_{\varepsilon}(\operatorname{so}(8))$ when $\varepsilon \in \mathbb{C}^{*}$ is a primitive $l^{\text {th }}$ root of unity. By a theorem of De Concini and Kac, there is a finite number of such representations associated to each point of a complex algebraic variety of dimension 28 and the generic representation has dimension l^{12}.

We give explicit constructions of essentially all the irreducible representations whose dimension is divisible by l^{8}. In addition, we construct all cyclic representations of minimal dimension. This minimal dimension is l^{5}, in accordance with a conjecture of De Concini, Kac and Procesi.

1. Introduction

If g is finite-dimensional complex simple Lie algebra, there is a well-known family $\left\{U_{q}(\underline{g}) ; q \in \mathbb{C}^{\times}\right\}$of Hopf algebras over \mathbb{C} which "tend" in a precise sense, to the universal enveloping algebra of g as q tends to 1 . The algebra $U_{q}(g)$ is generated by elements $e_{i}, f_{i}, k_{i}^{ \pm 1}, i=1, \ldots, \bar{n}=r k(g)$, satisfying certain relations which may be found in Sect. 2.

If q is not a root of unity, the representation theory of $U_{q}(\underline{g})$ is the "same" as that of $\underline{g}[8]$. On the other hand, if $q=\varepsilon$ is an $l^{\text {th }}$ root of unity, where we assume that l is odd and greater than 1 , there are finitely many finite-dimensional irreducible $U_{\varepsilon}(g)$-modules associated to every point of a certain complex algebraic veriety of dimension $m=\operatorname{dim}(\underline{g})$ [5]. All such representations have dimension at most $l^{(m-n) / 2}$. Although the results of [5] give an adequate parametrization of the set of irreducible representations of $U_{\varepsilon}(g)$, they do not give any explicit description of the representations themselves (except in the $s l_{2}$ case). It is of interest to give such descriptions, partly to test certain conjectures made in [5 and 6], and also because of certain analogies between the representation theory of $U_{\varepsilon}(\underline{g})$ and that of \underline{g} over

[^0]a field of finite characteristic. Although there are several deep general results concerning the latter theory, there seem to be almost no explicit constructions of the representations in the literature.

The generators e_{i}, f_{i} act injectively on the generic $U_{\varepsilon}(g)$-module: such modules are called cyclic. It was shown in [2 and 3] that, if g is of type A_{n}, B_{n} or C_{n}, the minimal dimension of a cyclic module is l^{n}, and all minimal cyclic modules were described explicitly. In the remaining cases, the minimal dimension is divisible by, and strictly greater than l^{n}, and the minimal cyclic modules appear to be much harder to construct.

In this paper, we study the prototype of the remaining cases, namely $\underline{g}=\operatorname{so}(8, \mathbb{C})$. We reduce the study of cyclic $U_{\varepsilon}(s o(8))$-modules to that of a certain auxiliary algebra $\mathscr{A}_{\varepsilon}$. More precisely, we construct a homomorphism from $U_{\varepsilon^{2}}(s o(8))$ to the tensor product of $\mathscr{A}_{\varepsilon}$ and a Laurent quasi-polynomial algebra on 8 generators. It is well-known (and easy to prove) that every irreducible representation of the latter algebra has dimension l^{4} and depends on 8 parameters. Pulling back a tensor product of irreducible representations of $\mathscr{A}_{\varepsilon}$ and of the quasipolynomial algebra gives an irreducible representation of $U_{\varepsilon^{2}}(s o(8))$, and all cyclic $U_{\varepsilon^{2}}(s o(8))$-modules arise in this way (certain noncyclic representations can also be obtained). In fact, this reduction to an auxiliary algebra can be carried out for arbitrary g. To illustrate the technique, we start with the simpler case $g=s l_{3}$, where we recover very easily certain results of Arnaudon [1]. In the so(8) case, we show that the minimal dimension of representations of $\mathscr{A}_{\varepsilon}$ is l, so that the minimal dimension of cyclic representations of $U_{\varepsilon^{2}}(s o(8))$ is l^{5}. We construct all such representations, as well as representations of dimension $d l^{5}$ for $1 \leqq d \leqq l$. As a further illustration of the method, we construct representations of $\mathscr{A}_{\varepsilon}$ of dimension $d l^{4}$ for $1 \leqq d \leqq l$, by reducing to a second auxiliary algebra. Since several of our results depend on straightforward, but very tedious, computations, we have omitted many of the details.

2. Notation and Preliminaries

In this section, we recall certain basic facts about quantum groups and their representations. See [5] for further details. We also introduce some closely related quantum algebras and study their representations.
2.1. Let q be an indeterminate. For $n, r \in \mathbb{N}$, let

$$
\begin{aligned}
{[n]_{q} } & =\frac{q^{n}-q^{-n}}{q-q^{-1}} \\
{[n]_{q}!} & =[n]_{q}[n-1]_{q} \ldots[3]_{q}[2]_{q}[1]_{q} \\
{[n ; r]_{q} } & =\frac{[n]_{q}!}{[r]_{q}![n-r]_{q}!}
\end{aligned}
$$

It is known [8] that these are all elements of $Z\left[q, q^{-1}\right]$, and hence can be specialized by letting $q=\lambda$ for any non-zero complex number λ. The resulting complex numbers are denoted $[n]_{\lambda}$, etc.
2.2. Let g be a complex simple Lie algebra of rank n, and let $\left(a_{i j}\right)$ be the Cartan matrix of g. In this paper, we shall only be concerned with cases when the Cartan matrix is symmetric. Let ε be a primitive $l^{\text {th }}$ root of unity, with l odd, greater than 1 and coprime to the determinant of $\left(a_{i j}\right)$. Then $U_{\varepsilon}(g)$ is the associative algebra over \mathbb{C} with generators $e_{i}, f_{i}, k_{i}^{ \pm 1}, i=1, \ldots, n$, and the relations:

$$
\begin{gathered}
k_{i} k_{i}^{-1}=1=k_{i}^{-1} k_{i}, \\
k_{i} k_{j}=k_{j} k_{i}, \\
k_{i} e_{j} k_{i}^{-1}=\varepsilon^{a_{l j}} e_{j}, \\
k_{i} f_{j} k_{i}^{-1}=\varepsilon^{-a_{l j}} f_{j}, \\
{\left[e_{i}, f_{j}\right]=\delta_{i j} \frac{k_{i}-k_{i}^{-1}}{\varepsilon-\varepsilon^{-1}},} \\
\sum_{r=0}^{1-a_{1 j}}(-1)^{r}\left[1-a_{i j} ; r\right]_{\varepsilon} e_{i}^{r} e_{j} e_{i}^{1-a_{i j}-r}=0, \quad i \neq j, \\
\sum_{r=0}^{1-a_{l j}}(-1)^{r}\left[1-a_{i j} ; r\right]_{\varepsilon} f_{i}^{r} f_{j} f_{i}^{1-a_{i j}-r}=0, \quad i \neq j
\end{gathered}
$$

It is well-known that $U_{\varepsilon}(\underline{g})$ has a Hopf algebra structure, but we shall make no use of it in this paper.
2.3. Let U_{ε}^{+}be the subalgebra of $U_{\varepsilon}(g)$ generated by the $e_{i}, i=1, \ldots, n$, and define U_{ε}^{-}similarly. Let U_{ε}^{0} be the subalgebra of $U_{\varepsilon}(g)$ generated by the $k_{i}{ }^{ \pm 1}$. Multiplication induces an isomorphism of vector spaces,

$$
U_{\varepsilon}(\underline{g}) \cong U_{\varepsilon}^{-} \otimes U_{\varepsilon}^{0} \otimes U_{\varepsilon}^{+}
$$

Let ω be the conjugate-linear anti-automorphism of $U_{\varepsilon}(\underline{g})$ defined by

$$
\omega\left(e_{i}\right)=f_{i}, \quad \omega\left(f_{i}\right)=e_{i}, \quad \omega\left(k_{i}\right)=k_{i}^{-1}
$$

This is called the Cartan involution of $U_{\varepsilon}(\underline{g})$.
2.4. Let Br_{g} be the braid group associated to g. Thus, Br_{g} is the abstract group with generators $T_{i}, i=1, \ldots, n$, and the following defining relations:

$$
\begin{gathered}
T_{i} T_{j}=T_{j} T_{i} \quad \text { if } a_{i j}=0, \\
T_{i} T_{j} T_{i}=T_{j} T_{i} T_{j} \quad \text { if } a_{i j} a_{j i}=1 .
\end{gathered}
$$

2.5. Lusztig showed in [6] that $\mathrm{Br}_{\underline{g}}$ acts as a group of automorphisms of $U_{\varepsilon}(\underline{g})$. In fact,

$$
\begin{aligned}
& T_{i} e_{i}=-f_{i} k_{i}, \quad T_{i} k_{j}=k_{j} k_{i}^{-a_{i j}} \\
& T_{i} e_{j}=\sum_{s=0}^{-a_{1 j}}(-1)^{s-a_{1 j}} \varepsilon_{i}^{-s} e_{i}^{\left(-a_{1 j}-s\right)} e_{j} e_{i}^{(s)}, \quad i \neq j
\end{aligned}
$$

where $e_{i}^{(s)}=e_{i}^{s} /[s]_{\varepsilon_{1}}!$, and the action of $\mathrm{Br}_{\underline{g}}$ on f_{i} is determined by

$$
T_{i} \omega=\omega T_{i}
$$

Note, in particular, that if $a_{i j}=-1$,

$$
T_{i} e_{j}=-\varepsilon^{-\frac{1}{2}}\left[e_{i}, e_{j}\right]_{\varepsilon^{\frac{1}{2}}},
$$

where

$$
[x, y]_{\lambda}=\lambda x y-\lambda^{-1} y x, \quad \lambda \in \mathbb{C}^{\times}, x, y \in U_{\varepsilon}(\underline{g}) .
$$

2.6. The braid group allows us to define (non-canonically) root vectors e_{α}, f_{α} in $U_{\varepsilon}(g)$ corresponding to every positive root α. Let s_{1}, \ldots, s_{n} be the fundamental reflections in the Weyl group W of g. Let

$$
w_{0}=s_{i_{1}} s_{i_{2}} \ldots s_{i_{N}}
$$

be a reduced expression for the longest element w_{0} of W. Then the positive root vectors are

$$
e_{i_{1}}, T_{i_{1}} e_{i_{2}}, T_{i_{1}} T_{i_{2}} e_{i_{3}}, \ldots, T_{i_{1}} \ldots T_{i_{N-1}} e_{i_{N}}
$$

and $f_{\alpha}=\omega\left(e_{\alpha}\right)$. For any choice of w_{0}, the positive root vectors are in U_{ε}^{+}, and the negative root vectors in U_{ε}^{-}.
2.7. The following formula is useful and follows immediately from the definition of the braid group action:

$$
T_{i} T_{j} e_{i}=e_{j} \quad \text { if } a_{i j}=-1
$$

If w is any element of the Weyl group and

$$
w=s_{j_{1}} \ldots s_{j_{r}}
$$

is a reduced expression for it, then the element

$$
T_{w}=T_{j_{1}} \ldots T_{j_{r}}
$$

of $\mathrm{Br}_{\underline{g}}$ depends only on w, and not on the choice of reduced expression. In particular, there is a well-defined elelment $T_{0} \in \mathrm{Br}_{g}$ associated to $w_{0} \in W$. If α_{i} and α_{j} are simple roots and $w\left(\alpha_{i}\right)=\alpha_{j}$, then $T_{w}\left(e_{i}\right)=e_{j}$, cf. [4].
2.8. Let $\operatorname{Rep}\left(U_{\varepsilon}(g)\right)$ be the set of isomorphism classes of finite-dimensional irreducible representations of $U_{\varepsilon}(\underline{g})$. Let Z_{0} be the subalgebra of $U_{\varepsilon}(\underline{g})$ generated by the elements $e_{\alpha}^{l}, f_{\alpha}^{l}$ for all positive roots α of \underline{g}, and by the $k_{i}^{ \pm l}, i=1, \ldots, n$.

Proposition (cf. [6]). Z_{0} is a Hopf subalgebra of $U_{\varepsilon}(g)$ and is contained in the centre of $U_{\varepsilon}(g)$. Assigning to an element of $\operatorname{Rep}\left(U_{\varepsilon}(g)\right)$ its Z_{0}-character is a finite-to-one surjective map $\operatorname{Rep}\left(U_{\varepsilon}(\underline{g})\right) \rightarrow \operatorname{Spec}\left(Z_{0}\right)$.

Note that if we define $Z_{0}^{ \pm}=Z_{0} \cap U_{\varepsilon}{ }^{ \pm}, Z_{0}^{0}=Z_{0} \cap U_{\varepsilon}^{0}$, then

$$
Z_{0} \cong Z_{0}^{-} \otimes Z_{0}^{0} \otimes Z_{0}^{+}
$$

2.9. Let G be the adjoint group of g, and define maps

$$
X: \operatorname{Spec}\left(Z_{0}^{+}\right) \rightarrow G, \quad Y: \operatorname{Spec}\left(Z_{0}^{-}\right) \rightarrow G, \quad K: \operatorname{Spec}\left(Z_{0}^{0}\right) \rightarrow G,
$$

as follows. Let $e_{\beta_{1}}, \ldots, e_{\beta_{N}}$ be the positive root vectors of $U_{\varepsilon}(g)$ in the order in which they appear in (2.6), and let $x_{\beta}=e_{\beta}^{l}$. Let E_{β} be the root vectors in \underline{g} obtained
from simple root vectors by the same procedure as in (2.6) (note that $\mathrm{Br}_{\underline{g}}$ acts as a group of automorphisms of \underline{g}). Define $y_{\beta}=f_{\beta}^{l}$ and F_{β} similarly. Then,

$$
Y=\exp \left(\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{l} y_{\beta_{N}} F_{\beta_{N}}\right) \exp \left(\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{l} y_{\beta_{N-1}} F_{\beta_{N-1}}\right) \ldots \exp \left(\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{l} y_{\beta_{1}} F_{\beta_{1}}\right)
$$

and $X=T_{0}(Y)$, the action of T_{0} on Y being

$$
T_{0}\left(\ldots \exp \left(\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{l} y_{\beta} F_{\beta}\right) \ldots\right)=\ldots \exp \left(\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{l} T_{0}\left(y_{\beta}\right) T_{0}\left(F_{\beta}\right)\right) \ldots
$$

Finally, identify $\operatorname{Spec}\left(Z_{0}^{0}\right)$ with the Cartan subgroup H of G in the natural way; if $h \in \underline{h}$, the Lie algebra of H, then

$$
\exp (2 \pi \sqrt{-1 h})\left(k_{i}^{l}\right)=\exp \left(\alpha_{i}(h)\right)
$$

Define $K(t)=t^{2}, t \in H$.
Proposition. The map $Y K X: \operatorname{Spec}\left(Z_{0}\right) \rightarrow G$ exhibits $\operatorname{Spec}\left(Z_{0}\right)$ as an (unramified) covering with 2^{n} sheets of the big cell $G_{0} \subset G$.
De Concini, Kac and Procesi make the following important conjecture in [6]:
Conjecture. Let V be an irreducible representation of $U_{\varepsilon}(g)$, and let g_{V} be the image under the map $Y K X$ of the Z_{0}-character of V. Let $2 d_{V}{ }^{-}$be the dimension of the conjugacy class of g_{V} in G. Then, $\operatorname{dim}(V)$ is divisible by $l^{d_{V}}$.
2.10 .

Definition. A quasi-polynomial algebra is an associative algebra over \mathbb{C} with generators $x_{i}, i=1, \ldots, r$, and relations:

$$
x_{i} x_{j}=\lambda_{i j} x_{j} x_{i}, \quad i<j,
$$

for some scalars $\lambda_{i j} \in \mathbb{C}^{\times}$(cf. [7]).
Denote by $\mathbb{C}_{\varepsilon}[x, z]$ the quasi-polynomial algebra with generators x, z, and the relation:

$$
[x, z]_{\varepsilon}=0
$$

where the ε-bracket is defined by

$$
[x, z]_{\varepsilon}=\varepsilon x z-\varepsilon^{-1} z x
$$

The Laurent quasi-polynomial algebra $\mathbb{C}_{\varepsilon}\left[x, z, x^{-1}, z^{-1}\right]$ is now defined in the obvious way.

To describe the irreducible representations of the algebra $\mathbb{C}_{\varepsilon}[x, z]$ (resp. $\left.\mathbb{C}_{\varepsilon}\left[x, z, x^{-1}, z^{-1}\right]\right)$, let $\left\{v_{0}, \ldots, v_{l-1}\right\}$ be the standard basis of \mathbb{C}^{l} and, for each λ, $\mu \in \mathbb{C}^{\times}$, define operators $X_{\lambda}, Z_{\mu} \in \operatorname{End}\left(\mathbb{C}^{l}\right)$ as follows:

$$
\begin{aligned}
Z_{\mu} v_{i} & =\mu \varepsilon^{2 i} v_{i} \\
X_{\lambda} v_{i} & =v_{i+1}, \quad i<l-1 \\
X_{\lambda} v_{l-1} & =\lambda v_{0}
\end{aligned}
$$

Proposition.

(i) The elements x^{l}, z^{l} are in the centre of $\mathbb{C}_{\varepsilon}\left[x, z, x^{-1}, z^{-1}\right]$ and hence act as scalars on any irreducible representation of both $\mathbb{C}_{\varepsilon}[x, z]$ and $\mathbb{C}_{\varepsilon}\left[x, z, x^{-1}, z^{-1}\right]$.
(ii) Any irreducible representation of $\mathbb{C}_{\varepsilon}[x, z]$ on which x^{l} and z^{l} act as non-zero scalars is of dimension l. The action of x and z on \mathbb{C} is defined by:

$$
x \rightarrow X_{\lambda}, \quad z \rightarrow Z_{\mu}
$$

for some $\lambda, \mu, \in \mathbb{C}^{\times}$. Further, these representations extend naturally to representations of $\mathbb{C}_{\varepsilon}\left[x, z, x^{-1}, z^{-1}\right]$ and exhaust all the irreducible representations of $\mathbb{C}_{\varepsilon}\left[x, z, x^{-1}, z^{-1}\right]$.
(iii) Any finite-dimensional irreducible representation of $\mathbb{C}_{\varepsilon}[x, z]$ on which either x^{l} or z^{l} is zero is one-dimensional.
(iv) Let W be any finite-dimensional representation of $\mathbb{C}_{\varepsilon}[x, z]$ on which $x^{l}=\lambda$ and $z^{l}=\mu$ for some $\lambda, \mu \in \mathbb{C}^{\times}$. Then

$$
W \simeq \mathbb{C}^{l} \otimes W^{\prime}
$$

for some vector space W^{\prime}. The action of x (resp. z), is given by the operator $X_{\lambda} \otimes 1$ (resp. $Z_{\mu} \otimes 1$).

Proof. The proof of parts (i) to (iii) is straightforward (see also [7]). For part (iv), note that the action of z on W is diagonalizable and that the only possible eigenvalues of z are among the $l^{\text {th }}$ roots of μ. Let W^{\prime} be any eigenspace of z. Since $[x, z]_{\varepsilon}=0$ it follows that $x^{i} W^{\prime}$ is an eigenspace of z for all i and so,

$$
W=\bigoplus_{i} x^{i} W^{\prime}
$$

Pick a basis $\left\{w_{1}, \ldots, w_{r}\right\}$ of W^{\prime}. Since x is injective on W and x^{l} is a scalar on W the elements $\left\{x^{i} w_{1}, \ldots, x^{i} w_{r}\right\}$ form a basis of $x^{i} W^{\prime}$. Thus, we can write

$$
W \simeq \mathbb{C}^{l} \otimes W^{\prime}
$$

That the action of x and z is as given is now clear.
For brevity of notation we shall often omit the parameters λ, μ from the operators X, Z, but it should be kept in mind that X then defines a one-parameter family of operators, and similarly for Z.

Corollary. Let W be any finite-dimensional representation of $\otimes_{i=1}^{r} \mathbb{C}_{\varepsilon}\left[x_{i}, z_{i}\right]$, on which x_{i}^{l} and z_{i}^{l} act as non-zero scalars for all $i=1, \ldots, r$. Then,

$$
W \simeq\left(\mathbb{C}^{l}\right)^{\otimes r} \otimes W^{\prime},
$$

where W^{\prime} is a common eigenspace of the z_{i}. The action of $x_{i}\left(\operatorname{resp} . z_{i}\right)$ is given by the operator $X_{i}\left(\right.$ resp. $\left.Z_{i}\right)$. Here X_{i} etc. means the operator X in the $i^{\text {th }}$ place and 1 elsewhere.
2.11. The quantum Heisenberg algebra $\mathscr{H}_{\varepsilon}$ is the associative algebra over \mathbb{C} with generators a, b and the single relation

$$
[a, b]_{\varepsilon}=\varepsilon-\varepsilon^{-1} .
$$

Before discussing the representation theory of $\mathscr{H}_{\varepsilon}$, we prove:

Proposition.

(i) The elements $\left\{b^{r} a^{s}: r, s \geqq 0\right\}$ span $\mathscr{H}_{\varepsilon}$.
(ii) The elements a^{l} and b^{l} lie in the centre of $\mathscr{H}_{\varepsilon}$.
(iii) Let $c=a b-1$. Then $c^{l}=a^{l} b^{l}-1$.

Proof. This is immediate from the next lemma, which is easily proved by induction.
Lemma. In $\mathscr{H}_{\varepsilon}$, we have, for $m \geqq r \geqq 1$,
(i) $\left[a, b^{r}\right]_{\varepsilon^{r}}=\left(\varepsilon^{r}-\varepsilon^{-r}\right) b^{r-1}$,
(ii) $\left[a^{r}, b\right]_{\varepsilon^{r}}=\left(\varepsilon^{r}-\varepsilon^{-r}\right) a^{r-1}$,
(iii) $(a b-1)^{m}=\sum_{r=0}^{m}(-1)^{m-r} \varepsilon^{(m-1) r}[m ; r]_{\varepsilon} a^{r} b^{r}$.

Remark. Note that $[a, c]_{\varepsilon}=0=[c, b]_{\varepsilon}$.
2.12.

Proposition. Let V be a finite-dimensional irreducible representation of $\mathscr{H}_{\varepsilon}$. Let $a^{l}=\lambda, b^{l}=\mu$ on V, where $\lambda, \mu \in \mathbb{C}$.
(i) $\operatorname{dim}(V) \leqq l$.
(ii) If $\lambda \mu \neq 1$, then $\operatorname{dim}(V)=l$.
(iii) If $\lambda \mu=1$, then $\operatorname{dim}(V)=1$.

In each case, V is determined uniquely (up to isomorphism) by λ and μ.
Proof. Let $v \in V$ be any eigenvector of a. By Proposition 2.11(i), (ii) the elements $\left\{v, b v, \ldots, b^{l-1} v\right\}$ span V, thus proving (i).

Next suppose that $\lambda \neq 0$ and $\lambda \mu \neq 1$. By Proposition (2.11)(iii), $c^{l} \neq 0$. The result follows by applying Proposition 2.10 (ii) to the subalgebra of $\mathscr{H}_{\varepsilon}$ generated by a and c.

If $\lambda \mu=1$ and $\lambda \neq 0$, then $c^{l}=0$. Since a preserves $\operatorname{ker}(c)$, we can choose a common eigenvector v of a and c. But, as a is invertible on V, v is then also a common eigenvector of a and b, proving that $\operatorname{dim}(V)=1$.

If $\lambda=0$, let $0 \neq v \in \operatorname{ker}(a)$. By Proposition 2.11(i), (ii), the vectors $b^{r} v, 0 \leqq r<l$ span V. Suppose that there is a linear relation

$$
b^{r} v=\sum_{p=0}^{r-1} \beta_{p} b^{p} v
$$

where $\beta_{p} \in \mathbb{C}$ and $\left\{v, b v, \ldots, b^{r-1} v\right\}$ are linearly independent with $r<l$. Applying a to both sides and using Lemma 2.11(i) gives a contradiction. Thus, $\left\{v, b v, \ldots, b^{l-1} v\right\}$ is a basis of V, and $\operatorname{dim}(V)=l$.

The uniqueness statement is clear from the above constructions.
Remark. The elements a^{l-1}, b^{l-1} act as non-zero operators on any finite-dimensional representation of $\mathscr{H}_{\varepsilon}$. The proof for an irreducible representation is clear from the preceding proposition, and since any finite-dimensional representation contains an irreducible representation, the statement follows in general.

3. Construction of Cyclic Representations: Reduction to an Auxiliary Algebra

We begin this section with the representation theory of $U_{\varepsilon^{2}}\left(s l_{3}\right)$, which serves as a simple example of the methods used for the so(8) case and which can be also used in general. The $s l_{3}$ theory is due to Arnaudon [1], but we state and prove the results in a slightly different way.
3.1. Let \mathscr{I} be the subcategory of the category of finite-dimensional representations of $U_{\varepsilon^{2}}\left(s l_{3}\right)$ on which the $l^{\text {th }}$ powers of $e_{1}, f_{2}, k_{1}, k_{2}$ act as non-zero scalars.

Let $V \in \mathscr{I}\left(s l_{3}\right)$. Regarded as a module for the quasi-polynomial algebra generated by $k_{1}, k_{2}, e_{1}, f_{2}$, one proves as in Proposition 2.10 (iv) that V is isomorphic to $\mathbb{C}^{l} \otimes \mathbb{C}^{l} \otimes W$, for some auxiliary vector space W, the action of these generators on the tensor product being

$$
\begin{gather*}
e_{1}=X_{1}, \quad f_{2}=X_{2} \tag{1}\\
k_{1}=Z_{1}^{2} Z_{2}, \quad k_{2}=\left(Z_{1} Z_{2}^{2}\right)^{-1} \tag{2}
\end{gather*}
$$

where as usual X_{1} etc. means the operator $X \otimes 1 \otimes 1$ normalized so that $X^{l}=e_{1}^{l}$.
To find the action of the remaining generators, say f_{1} (and similarly for e_{2}), we write f_{1} as a polynomial with coefficients in $\operatorname{End}(W)$ in the noncommuting variables X_{i}, Z_{i}. The relations $k_{i} f_{1} k_{i}^{-1}=\varepsilon^{2 a_{1}} f_{1},\left[e_{1}, f_{1}\right]=\frac{k_{1}-k_{1}^{-1}}{\varepsilon^{2}-\varepsilon^{-2}}$ and the Serre relation $\left[f_{2},\left[f_{1}, f_{2}\right]_{\varepsilon}\right]_{\varepsilon}=0$, imply that:

$$
\begin{align*}
& f_{1}=-\frac{X_{1}^{-1}}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2}}\left(\left\{Z_{1}^{2} Z_{2} \varepsilon^{-2}\right\}+a_{1} Z_{2}+b_{1} Z_{2}^{-1}\right), \tag{3}\\
& e_{2}=-\frac{X_{2}^{-1}}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2}}\left(\left\{Z_{2}^{2} Z_{1} \varepsilon^{-2}\right\}+a_{2} Z_{1}+b_{2} Z_{1}^{-1}\right), \tag{4}
\end{align*}
$$

for some $a_{i}, b_{i} \in \operatorname{End}(W), i=1,2$. Here and elsewhere we use the following notation: for any invertible operator A on a vector space $V, A+A^{-1}=\{A\}$.

Imposing the relation $\left[e_{2}, f_{1}\right]=0$ and the remaining two Serre relations, we find that the operators $a_{i}, b_{i}, i=1,2$, must satisfy:

$$
\begin{gather*}
{\left[a_{i}, b_{i}\right]_{\varepsilon^{2}}=\varepsilon^{2}-\varepsilon^{-2},} \tag{5}\\
{\left[b_{j}, a_{i}\right]_{\varepsilon^{2}}=\varepsilon^{2}-\varepsilon^{-2}, \quad i \neq j} \tag{6}\\
{\left[a_{1}, a_{2}\right]=\left(\varepsilon^{2}-\varepsilon^{-2}\right)\left(b_{2}-b_{1}\right),} \tag{7}\\
{\left[b_{1}, b_{2}\right]=\left(\varepsilon^{2}-\varepsilon^{-2}\right)\left(a_{1}-a_{2}\right) .} \tag{8}
\end{gather*}
$$

Notice that these relations are completely independent of the auxiliary space W. So, if we define $\mathscr{A}_{\varepsilon}\left(s l_{3}\right)$ as the associative algebra over \mathbb{C} with generators a_{i}, b_{i} subject to the relations (5)-(8), then W is a representation of $\mathscr{A}_{\varepsilon}\left(s l_{3}\right)$. Further, if V^{\prime} is any proper $U_{\varepsilon^{2}}\left(s l_{3}\right)$ sub-representation of V then this argument also proves that W must have a proper sub-representation. Conversely, given any representation W of $\mathscr{A}_{\varepsilon}\left(s l_{3}\right)$ we can define a representation of $U_{\varepsilon^{2}}\left(s l_{3}\right)$ on $V=\mathbb{C}^{l} \otimes \mathbb{C}^{l} \otimes W$ by the formulas (1)-(4). Clearly $V \in \mathscr{I}$.

Thus we have shown that V is an irreducible representation of $U_{\varepsilon^{2}}\left(s l_{3}\right)$ if and only if W is an irreducible representation of $\mathscr{A}_{\varepsilon}\left(s l_{3}\right)$. The above results are summarized in the following proposition.

Proposition

(i) The map

$$
\pi: U_{\varepsilon^{2}}\left(s l_{3}\right) \rightarrow \mathbb{C}_{\varepsilon^{2}}\left[x_{1}, z_{1}, x_{1}^{-1}, z_{1}^{-1}\right] \otimes \mathbb{C}_{\varepsilon^{2}}\left[x_{2}, z_{2}, x_{2}^{-1}, z_{2}^{-1}\right] \otimes \mathscr{A}_{\varepsilon}\left(s l_{3}\right),
$$

given by the formulas (1)-(4) (with X, Z replaced by x, z) defines a homomorphism of algebras.
(ii) Let W be an irreducible representation of $\mathscr{A}_{\varepsilon}\left(s l_{3}\right)$. Tensoring W with an irreducible representation $\mathbb{C}^{l} \otimes \mathbb{C}^{l}$ of $\otimes_{i=1}^{2} \mathbb{C}_{\varepsilon^{2}}\left[x_{i}, z_{i}, x_{i}^{-1}, z_{i}^{-1}\right]$ and pulling back through π gives an irreducible representation of $U_{\varepsilon^{2}}\left(s l_{3}\right)$. All irreducible representations of $U_{\varepsilon^{2}}\left(s l_{3}\right)$ in $\mathscr{I}\left(s l_{3}\right)$ arise in this way.
3.2. Arnaudon [1] constructs representations of $\mathscr{A}_{\varepsilon}\left(s l_{3}\right)$ directly, but it is simpler to observe that $\mathscr{A}_{\varepsilon}\left(s l_{3}\right)$ is essentially $U_{\varepsilon^{2}}\left(s l_{2}\right)$:

Proposition. There is a one-parameter family of homomorphism of algebras $\pi_{\lambda}: \mathscr{A}_{\varepsilon}\left(s l_{3}\right) \rightarrow U_{\varepsilon^{2}}\left(s l_{2}\right)$ given by:

$$
\begin{aligned}
& a_{1} \rightarrow \lambda^{-1} k^{-1}(1+e), \\
& a_{2} \rightarrow \lambda^{-1}\left(k^{-1}-\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2} \varepsilon^{2}\left(1+\varepsilon^{2} \lambda^{3} k\right) f\right. \\
& b_{1} \rightarrow \lambda k
\end{aligned}
$$

with b_{2} determined by (7), and $\lambda \in \mathbb{C}^{\times}$.
Proof. Direct verification.
Pulling back irreducible representations of $U_{\varepsilon^{2}}\left(s l_{2}\right)$ by π_{λ} gives rise to a oneparameter family of representations of $\mathscr{A}_{\varepsilon}$ of dimension d, with $1 \leqq d<l$ and a four parameter family of representations of dimension l. These representations are irreducible for generic values of λ and are the representations that Arnaudon constructs.
3.3. We now turn to the general simply-laced case. Choose a partition of $\{1, \ldots, n\}$ into disjoint sets I, J, such that:

$$
a_{r s}=0, \quad \text { if } r, s \in I \text { or } r, s \in J, \quad r \neq s
$$

Let $\mathscr{I}(\underline{g})$ be the subcategory of representations of $U_{\varepsilon^{2}}(\underline{g})$ such that the $l^{\text {th }}$ powers of the elements, k_{i}, e_{r}, f_{s} act as non-zero scalars on any répresentation of $\mathscr{I}(\underline{g})$ for all $i=1, \ldots, n, r \in I$ and $s \in J$. Let $V \in \mathscr{I}(g)$. Regarding V as a representation of the quasi-polynomial subalgebra generated by k_{i}, e_{r} and f_{s}, where $i=1, \ldots, n, r \in I$ and $s \in J$ we can write V as:

$$
V \simeq\left(\mathbb{C}^{l}\right)^{\otimes n} \otimes W
$$

with the action of the generators given by:

$$
k_{i} \rightarrow \prod_{r \in I} Z_{r}^{a_{r i}} \prod_{s \in J} Z_{s}^{-a_{s l}}
$$

and

$$
e_{r} \rightarrow X_{r}, \quad r \in I, \quad f_{s} \rightarrow X_{s}, \quad s \in J
$$

To determine the action of the remaining Chevalley generators, we proceed as in the case of $g=s l_{3}$, and find that their action on V is of the form

$$
-\frac{X_{i}^{-1}}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2}}\left(\left\{\prod_{r \in I} Z_{r}^{a_{r i}} \prod_{s \in J} Z_{s}^{-a_{s i}} \varepsilon^{-2}\right\}+\text { linear polynomial in }\left\{Z_{j}^{ \pm 1}: a_{i j}=-1\right\}\right)
$$

where the polynomial has coefficients in $\operatorname{End}(W)$. Again, the relations between the coefficients of the polynomials is independent of W (this essentially follows from the $s l_{3}$ case) and so we can associate an auxiliary algebra $\mathscr{A}_{\varepsilon}(\underline{g})$ to $U_{\varepsilon^{2}}(\underline{g})$, so that any representation of $U_{\varepsilon^{2}}(g)$ from $\mathscr{I}(g)$ arises from a representation of $\mathbb{C}_{\varepsilon}\left[x_{i}, z_{i}, x_{i}^{-1}, z_{i}^{-1}: i=1, \ldots, n\right] \otimes \mathscr{A}_{\varepsilon}(g)$.

We do not write down the defining relations of $\mathscr{A}_{\varepsilon}(\underline{g})$ in the general case. In the next section, we do so for $\underline{g}=\operatorname{so}(8)$.

4. Quantum so(8)

In this section, we identify the algebra $\mathscr{A}_{\varepsilon}(s o(8))$.
4.1. The nodes of the Dynkin diagram of $s o(8)$ are numbered $1,2,3,4$, with 4 being the middle node.

Definition. $\mathscr{A}_{\varepsilon}$ is the associative algebra over \mathbb{C} with generators $a_{i}, b_{i}, c_{i}, i=1,2,3$ and the following relations:

$$
\begin{gather*}
{\left[a_{i}, a_{j}\right]=\left[b_{i}, b_{j}\right]=\left[c_{i}, c_{j}\right]=0,} \tag{9}\\
{\left[a_{i}, b_{i}\right]_{\varepsilon^{2}}=\varepsilon^{2}-\varepsilon^{-2}=\left[c_{i}, a_{i}\right]_{\varepsilon^{2}}} \tag{10}\\
{\left[a_{i}, b_{j}\right]=\left[a_{j}, b_{i}\right], \quad i \neq j,} \tag{11}\\
{\left[b_{i}, c_{i}\right]=\left[b_{j}, c_{j}\right],} \tag{12}\\
{\left[b_{i}, c_{j}\right]_{\varepsilon^{2}}=0, \quad i \neq j,} \tag{13}\\
{\left[b_{1},\left[a_{2}, c_{3}\right]\right]_{\varepsilon^{2}}=\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2} .} \tag{14}
\end{gather*}
$$

Remark 1. Relation (14) implies, together with the other relations, that

$$
\left[b_{i},\left[a_{j}, c_{k}\right]\right]_{\varepsilon^{2}}=\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2}
$$

whenever i, j, k are distinct.
2. For any $\sigma_{1}, \sigma_{2}, \sigma_{3} \in\{ \pm 1\}$,

$$
\begin{equation*}
a_{i} \rightarrow \sigma_{i} a_{i}, \quad b_{i} \rightarrow \sigma_{i} b_{i}, \quad c_{i} \rightarrow \sigma_{i} c_{i} \tag{15}
\end{equation*}
$$

is an automorphism of $\mathscr{A}_{\varepsilon}$.
Introduce the following elements of $\mathscr{A}_{\varepsilon}$:

$$
\begin{align*}
c_{0} & =\frac{1}{\varepsilon^{2}-\varepsilon^{-2}}\left[c_{i}, b_{i}\right] \tag{16}\\
d_{k} & =\frac{1}{\varepsilon^{2}-\varepsilon^{-2}}\left[a_{j}, c_{i}\right], \quad i, j, k \text { distinct }, \tag{17}\\
d_{0} & =\frac{1}{\varepsilon^{2}-\varepsilon^{-2}}\left[a_{i}, d_{i}\right] \tag{18}
\end{align*}
$$

It follows from relation (12) that c_{0} is well defined. That d_{k} is well-defined follows by taking the bracket of both sides of Eq. (19) below with a_{j} and using (9) and (11). For d_{0}, one uses (9) and the Jacobi identity.

Proposition. The following relations hold in $\mathscr{A}_{\varepsilon}$:

$$
\begin{align*}
& {\left[c_{0}, a_{i}\right] }=\left(\varepsilon^{2}-\varepsilon^{-2}\right)\left(b_{i}-c_{i}\right), \tag{19}\\
& {\left[b_{i}, d_{0}\right] }=\left(\varepsilon^{2}-\varepsilon^{-2}\right)\left(a_{i}-d_{i}\right), \tag{20}\\
& {\left[d_{j}, b_{i}\right] }=\left(\varepsilon^{2}-\varepsilon^{-2}\right) c_{k}, i, j, k \in\{1,2,3\} \text { distinct }, \tag{21}\\
& {\left[b_{i}, c_{0}\right]_{\varepsilon^{2}} }=0, \tag{22}\\
& {\left[b_{i}, d_{i}\right]_{\varepsilon^{2}} }=\varepsilon^{2}-\varepsilon^{-2} \tag{23}\\
& {\left[c_{0}, c_{i}\right]_{\varepsilon^{2}} }=0, \tag{24}\\
& {\left[d_{i}, d_{0}\right]_{\varepsilon^{2}} }=0, \tag{25}\\
& {\left[c_{i}, d_{j}\right]_{\varepsilon^{2}} }=0, \quad i \neq j \in\{1,2,3\}, \tag{26}\\
& {\left[d_{i}, a_{j}\right]_{\varepsilon^{2}} }=0, \quad i \neq j \in\{1,2,3\} \tag{27}\\
& {\left[d_{0}, a_{j}\right]_{\varepsilon^{2}} }=0, \tag{28}\\
& {\left[c_{0}, d_{i}\right]_{\varepsilon^{2}} }+\left[c_{i}, c_{k}\right]_{\varepsilon^{2}}=0, \quad i, j, k \text { distinct }, \tag{29}\\
& {\left[c_{i}, d_{0}\right]_{\varepsilon^{2}}+\left[d_{i}, d_{k}\right]_{\varepsilon^{2}}=0, \quad i, j, k \text { distinct }, } \tag{30}\\
& {\left[c_{0}, d_{0}\right]_{\varepsilon^{2}}+\left[c_{j}, d_{j}\right]_{\varepsilon^{2}}+\left[c_{k}, d_{k}\right]_{\varepsilon^{2}}+\left[d_{i}, c_{i}\right]_{\varepsilon^{2}}=\varepsilon^{2}-\varepsilon^{-2}, i, j, k \text { distinct } . } \tag{31}
\end{align*}
$$

Corollary. The $l^{\text {th }}$ powers of the elements $a_{i}, b_{i}, c_{i}, d_{i}, i=1,2,3, c_{0}$ and d_{0} are all in the centre of $\mathscr{A}_{\varepsilon}$.
4.2. The analogue of Proposition 3.1 for so (8) is:

Theorem.

(i) Let $V \in \mathscr{I}(s o(8))$. Then,

$$
V \simeq\left(\mathbb{C}^{l}\right)^{\otimes 4} \otimes W
$$

for some W, and the action of the Chevalley generators is given by:

$$
\begin{aligned}
k_{i} & \rightarrow Z_{i}^{2} Z_{4}, \quad e_{i} \rightarrow X_{i} \\
k_{4} & \rightarrow\left(Z_{1} Z_{2} Z_{3} Z_{4}^{2}\right)^{-1}, \quad f_{4} \rightarrow X_{4} \\
f_{i} & \rightarrow-\frac{X_{i}^{-1}}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2}}\left(\left\{Z_{i}^{2} Z_{4} \varepsilon^{-2}\right\}+a_{i} Z_{4}+b_{i} Z_{4}^{-1}\right) \\
e_{4} \rightarrow & -\frac{X_{4}^{-1}}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2}}\left(\left\{Z_{1} Z_{2} Z_{3} Z_{4}^{2} \varepsilon^{-2}\right\}\right. \\
& +Z_{1} Z_{2} Z_{3}\left(c_{0}+\sum_{i} c_{i} Z_{i}^{-2}\right) \\
& \left.+\left(Z_{1} Z_{2} Z_{3}\right)^{-1}\left(d_{0}+\sum_{i} d_{i} Z_{i}^{2}\right)\right)
\end{aligned}
$$

where $i=1,2,3$. The operators $a_{i}, b_{i}, c_{i}, d_{i}, i=1,2,3$, and c_{0}, d_{0}, satisfy relations (9)-(14) and (19)-(31).
(ii) $\mathscr{A}_{\varepsilon} \simeq \mathscr{A}_{\varepsilon}(s o(8))$.

Sketch of Proof. The fact that the image of the generators has the general form above follows from the discussion in Sect. 3.3. The relations

$$
\left[a_{i}, a_{j}\right]=0=\left[b_{i}, b_{j}\right], \quad\left[a_{i}, b_{j}\right]=\left[a_{j}, b_{i}\right],
$$

ensure that the copies of $U_{\varepsilon^{2}}\left(S l_{2}\right)$ corresponding to nodes 1,2 and 3 of the Dynkin diagram of $s o(8)$ commute. The other relations follow from the $U_{\varepsilon^{2}}\left(s l_{3}\right)$ relations between nodes i and $4, i=1,2,3$.

Part (ii) is now clear from the definitions of $\mathscr{A}_{\varepsilon}$ and $\mathscr{A}_{\varepsilon}(s o(8))$ and Proposition 4.1.

The proof that any irreducible representation of $U_{\varepsilon^{2}}(s o(8))$ on which the e_{i}^{l} and f_{4}^{l} act as non-zero scalars is equivalent to one of these pull-back representations is as in [3] and Sect. 3.1.
4.3. It is interesting to compute the Z_{0}-characters of the representations of $U_{\varepsilon^{2}}(s o(8))$ described in Theorem 4.3. For this, we must first choose a set of root vectors. We take the following reduced expression of the longest element w_{0} of the Weyl group of so(8):

$$
w_{0}=s_{2} s_{4} s_{2} s_{3} s_{4} s_{2} s_{1} s_{4} s_{3} s_{2} s_{4} s_{1}
$$

We then find that the positive root vectors, in the order described in (2.6), are

$$
\begin{gathered}
e_{2}, T_{2}\left(e_{4}\right), e_{4}, T_{2} T_{4}\left(e_{3}\right), T_{4}\left(e_{3}\right), e_{3}, \\
T_{4} T_{2} T_{3} T_{4}\left(e_{1}\right), T_{2} T_{3} T_{4}\left(e_{1}\right), T_{3} T_{4}\left(e_{1}\right), T_{2} T_{4}\left(e_{1}\right), T_{4}\left(e_{1}\right), e_{1}
\end{gathered}
$$

The negative root vectors are obtained by replacing e 's by f 's.
The action of the non-simple root vectors in the representations described in Theorem 4.2 is as follows:

$$
\begin{aligned}
T_{4} e_{i}= & \frac{1}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)} X_{4}^{-1} X_{i} Z_{i}\left(\left(c_{0}+\varepsilon^{-2} Z_{4}^{2}\right) Z_{j} Z_{2}+c_{j} Z_{j}^{-1} Z_{2}\right. \\
& \left.+c_{2} Z_{j} Z_{2}^{-1}+d_{i} Z_{j}^{-1} Z_{2}^{-1}\right), \\
T_{2} e_{4}= & \frac{\varepsilon^{-2}}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)} X_{4}^{-1} X_{2} Z_{2}^{-1}\left(\left(d_{0}+\varepsilon^{2} Z_{4}^{-2}\right) Z_{1}^{-1} Z_{3}^{-1}\right. \\
& \left.\left.+d_{3} Z_{1}^{-1} Z_{3}+d_{1} Z_{3}^{-1} Z_{1}\right)+c_{2} Z_{1} Z_{3}\right), \\
T_{2} T_{4} e_{i}= & -\varepsilon^{-2} X_{4}^{-1} X_{2} X_{i} Z_{2}^{-1} Z_{i}\left(c_{2} Z_{j}+d_{i} Z_{j}^{-1}\right), \\
T_{3} T_{4} e_{1}= & -\varepsilon^{-2} X_{4}^{-1} X_{1} X_{3} Z_{1} Z_{3}^{-1}\left(c_{3} Z_{2}+d_{1} Z_{2}^{-1}\right), \\
T_{2} T_{3} T_{4} e_{1}= & \varepsilon^{-4}\left(\varepsilon^{2}-\varepsilon^{-2}\right) X_{4}^{-1} X_{1} X_{2} X_{3} Z_{1} Z_{2}^{-1} Z_{3}^{-1} d_{1}, \\
T_{4} T_{2} T_{3} T_{4} e_{1}= & \frac{\varepsilon^{-4}}{\varepsilon^{2}-\varepsilon^{-2}} X_{4}^{-2} X_{1} X_{2} X_{3} Z_{1}^{2}\left(\varepsilon^{-2} Z_{4}^{2} d_{1}+\varepsilon^{2}\left[c_{0}, d_{1}\right]_{\varepsilon^{4}}\right. \\
& \left.+\left[c_{1}, d_{1}\right]_{\varepsilon^{2}} Z_{1}^{-2}\right),
\end{aligned}
$$

where $\{i, j\}=\{1,3\}$.

For the negative root vectors we have,

$$
\begin{aligned}
T_{4} f_{i}= & -\frac{1}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)} X_{i}^{-1} X_{4}\left(b_{i}+\varepsilon^{2} Z_{i}^{-2}\right) Z_{4}^{-1} \\
T_{2} f_{4}= & -\frac{1}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)} X_{2}^{-1} X_{4}\left(a_{2}+\varepsilon^{-2} Z_{2}^{2}\right) Z_{4} \\
T_{2} T_{4} f_{i}= & \frac{\varepsilon^{2}}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2}}\left(X_{i} X_{2}\right)^{-1} X_{4}\left(\frac{\left[a_{2}, b_{i}\right]_{\varepsilon^{2}}}{\varepsilon^{2}-\varepsilon^{-2}}+Z_{i}^{-2} Z_{2}^{2}\right. \\
& \left.+\varepsilon^{2} a_{2} Z_{i}^{-2}+\varepsilon^{-2} b_{i} Z_{2}^{2}\right), \\
T_{3} T_{4} f_{1}= & \frac{\varepsilon^{2}}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2}}\left(X_{1} X_{3}\right)^{-1} X_{4}\left(\frac{\left[a_{3}, b_{1}\right]_{\varepsilon^{2}}}{\varepsilon^{2}-\varepsilon^{-2}}+Z_{1}^{-2} Z_{3}^{2}\right. \\
& \left.+\varepsilon^{2} a_{3} Z_{1}^{-2}+\varepsilon^{-2} b_{1} Z_{3}^{2}\right), \\
T_{2} T_{3} T_{4} f_{1}= & -\frac{\varepsilon^{4}}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{4}}\left(X_{1} X_{2} X_{3}\right)^{-1} X_{4}\left(\frac{\left[\left[a_{3}, a_{2}, b_{1}\right]_{\varepsilon^{2}}\right]_{\varepsilon^{2}}}{\varepsilon^{2}-\varepsilon^{-2}} Z_{4}\right. \\
& +\frac{\varepsilon^{2}\left[b_{3},\left[a_{2}, b_{1}\right]_{\left.\varepsilon^{2}\right]}^{\varepsilon^{2}-\varepsilon^{-2}} Z_{4}^{-1}+\varepsilon^{-2}\left[a_{2}, b_{1}\right]_{\varepsilon^{2}} Z_{3}^{2} Z_{4}\right.}{} \\
& +\varepsilon^{-2}\left[a_{3}, b_{1}\right]_{\varepsilon^{2}} Z_{2}^{2} Z_{4}+\varepsilon^{2}\left(\varepsilon^{2}-\varepsilon^{-2}\right) a_{2} a_{3} Z_{1}^{-2} Z_{4} \\
& +\left(\varepsilon^{2}-\varepsilon^{-2}\right) a_{2} Z_{1}^{-2} Z_{3}^{2} Z_{4}+\left(\varepsilon^{2}-\varepsilon^{-2}\right) a_{3} Z_{1}^{-2} Z_{2}^{2} Z_{4} \\
& \left.+\varepsilon^{-4}\left(\varepsilon^{2}-\varepsilon^{-2}\right) b_{1} Z_{2}^{2} Z_{3}^{2} Z_{4}+\varepsilon^{-2}\left(\varepsilon^{2}-\varepsilon^{-2}\right) Z_{1}^{-2} Z_{2}^{2} Z_{3}^{2} Z_{4}\right), \\
& +\frac{\varepsilon^{2}}{\left(\varepsilon^{4}-\varepsilon^{-2}\right)^{3}}\left(X_{1} X_{2} X_{3}\right)^{-1} X_{4}^{2}\left(\frac{\left[b_{3},\left[a_{2}, b_{1}\right]_{\varepsilon^{2}}\right]}{\varepsilon^{2}-\varepsilon^{-2}}\right. \\
T_{4} T_{2} T_{3} T_{4} f_{1}= & \left.\left.b_{3}, a_{2}\right] Z_{1}^{-2}\right) Z_{4}^{-1}
\end{aligned}
$$

To compute the action of the $l^{\text {th }}$ powers of the root vectors, and hence the Z_{0}-characters of the representations, we must, of course, construct some representations of $\mathscr{A}_{\varepsilon}$. The next two sections are devoted to this problem.

5. Small Representations of $\mathscr{A}_{\varepsilon}$

5.1. From the results of [5], we know that every finite-dimensional irreducible representation of $U_{\varepsilon^{2}}(s o(8))$ has dimension at most l^{12}. It follows from Theorem 4.9 that any finite-dimensional irreducible representation of $\mathscr{A}_{\varepsilon}$ has dimension at most l^{8}. As to the minimal possible dimension of representations of $\mathscr{A}_{\varepsilon}$ we have:

Proposition. Every irreducible representation of $\mathscr{A}_{\varepsilon}$ has dimension at least l.
Proof. Let W be a finite-dimensional irreducible representation of $\mathscr{A}_{\varepsilon}$. If some $b_{i}^{l}\left(\right.$ resp. $\left.c_{i}^{l}\right)$ is zero on W, the result follows by applying Proposition 2.12 to the
quantum Heisenberg subalgebra generated by a_{i} and b_{i} (resp. c_{i} and a_{i}). Thus, we are reduced to the case when $b_{i}^{l}, c_{i}^{l} \neq 0, i \in\{1,2,3\}$. Since, $\left[b_{1}, c_{2}\right]_{\varepsilon^{2}}=0$ the result follows from Proposition 2.10.

5.2. We first look for l-dimensional representations of $\mathscr{A}_{\varepsilon}$.

Proposition. Let $\rho: \mathscr{A}_{\varepsilon} \rightarrow \operatorname{End}(W)$ be an l-dimensional representation of $\mathscr{A}_{\varepsilon}$. Then, possibly after composing ρ with one of the automorphisms (15) of $\mathscr{A}_{\varepsilon}, \rho$ factors through the quotient of $\mathscr{A}_{\varepsilon}$ by the relations:

$$
\begin{equation*}
a_{i}=a_{j}, \quad b_{i}=b_{j}, \quad c_{i}=c_{j}, \tag{32}
\end{equation*}
$$

for $i, j \in\{1,2,3\}$.
Proof. By Proposition 5.1, W is necessarily an irreducible representation of $\mathscr{A}_{\varepsilon}$. Assume first that $b_{1}^{l} \neq 0$ on W. By Remark $2.12, c_{2}^{l-1} \neq 0$ on W. We can therefore choose an eigenvector w of b_{1} such that $c_{2}^{l-1} w \neq 0$. Thus, the elements $\left\{w, c_{2} w, \ldots, c_{2}^{l-1} w\right\}$ are non-zero and form a basis of W since they belong to distinct eigenspaces of b_{1}. As $\left[b_{1}, b_{3}\right]=0, w$ is also an eigenvector for b_{3}, and since $\left[b_{3}, c_{2}\right]_{\varepsilon^{2}}=0$ it follows that b_{3} acts as a multiple of b_{1} on all of W. One proves similarly that b_{2} is a multiple of b_{1}.

We are therefore reduced to the case $b_{i}^{l}=0$, for all $i=1,2,3$. Choose $0 \neq w$ such that $b_{i} \cdot w=0, i=1,2,3$. By applying Proposition 2.12 to the quantum Heisenberg algebra generated by a_{1} and b_{1}, we find that the kernel of b_{1} on W is onedimensional, and that the elements $\left\{w, a_{1} w, \ldots, a_{1}^{l-1} w\right\}$ form a basis of W. Since [$\left.\left[a_{1}, b_{i}\right], b_{1}\right]_{\varepsilon^{2}}=0$ the operator $\left[a_{1}, b_{i}\right]$ preserves the kernel of b_{1}. So, there exists scalars $v_{i}, i \in\{2,3\}$, such that $b_{i} a_{1} \cdot \mathrm{w}=v_{i} w$. Lemma 2.11 now shows that

$$
\begin{aligned}
b_{1} \cdot a_{1}^{r} w & =-\varepsilon^{2 r}\left(\varepsilon^{2}-\varepsilon^{-2}\right)[r-1]_{\varepsilon^{2}} a_{1}^{r-1} w, \\
b_{i} \cdot a_{1}^{r} w & =v_{i} \varepsilon^{2 r-2}[r-1]_{\varepsilon^{2}} a_{1}^{r-1} w .
\end{aligned}
$$

Thus b_{2} and b_{3} are scalar multiples of b_{1}. Note that in both the cases considered above, the multiples must be non-zero since b_{i} cannot be the zero operator on W.

We have thus shown that $b_{i}=\mu_{i} b$ for some non-zero scalars μ_{i} and some non-zero operator b on W. Similarly one can show that

$$
a_{i}=\lambda_{i} a, \quad c_{i}=\mu_{i} c,
$$

for some scalars λ_{i}, μ_{i} and operators a, c on W. The relations in $\mathscr{A}_{\varepsilon}$, imply that for some λ, μ, v and $\sigma_{i} \in\{-1,1\}, i \in\{1,2,3\}$, we have

$$
\lambda_{i}=\sigma_{i} \lambda, \quad \mu_{i}=\sigma_{i} \mu, \quad v_{i}=\sigma_{i} v
$$

This completes the proof.
5.3. Denote by $\mathscr{A}_{\varepsilon}^{\text {sym }}$ the quotient of $\mathscr{A}_{\varepsilon}$ by the relations (32). Note that $\mathscr{A}_{\varepsilon}^{\text {sym }}$ is generated by elements a, b, c with the following relations:

$$
\begin{align*}
{[a, b]_{\varepsilon^{2}} } & =\varepsilon^{2}-\varepsilon^{-2}=[c, a]_{\varepsilon^{2}}, \tag{33}\\
{[b, c]_{\varepsilon^{2}} } & =0, \tag{34}\\
{[b,[a, c]]_{\varepsilon^{2}} } & =\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2} . \tag{35}
\end{align*}
$$

Proposition. The following formulae define irreducible representations of $\mathscr{A}_{\varepsilon}^{\mathrm{sym}}$ on \mathbb{C}^{l} on which the $l^{t^{\mathrm{h}}}$ powers of b and c act as non-zero scalars:

$$
\begin{aligned}
& a=\varepsilon^{2} X^{-1} Z^{-1}+Z^{-1}+X^{-1}, \\
& b=X, \\
& c=Z,
\end{aligned}
$$

where X and Z are the operators defined in Sect. 2.10, with arbitrary normalizations, such that $Z X=\varepsilon^{4} X Z$.

Conversely, every finite-dimensional irreducible representation of $\mathscr{A}_{\varepsilon}^{\text {sym }}$ on which b^{l} and c^{l} are non-zero is equivalent to a representation of this type.

Proof. The fact that the above formulae do define a representation of $\mathscr{A}_{\varepsilon}^{\text {sym }}$ is an easy verification, with irreducibility following from the fact that the operators X and Z generate $\operatorname{End}\left(\mathbb{C}^{l}\right)$ as an algebra.

Let W be any irreducible representation of $\mathscr{A}_{\varepsilon}^{\text {sym }}$ on which $b^{l} \neq 0$ and $c^{l} \neq 0$. By Proposition 2.10 (iv) we can write

$$
W \simeq \mathbb{C}^{l} \otimes W^{\prime}
$$

where W^{\prime} is an eigenspace of c. The action of b is $X \otimes 1$ and that of c is $Z \otimes 1$ for suitably normalized operators. The action of a is determined by writing a as a polynomial in the non-commuting variables X, Z. Using the relations in $\mathscr{A}_{\varepsilon}^{\text {sym }}$, it is not hard to show that:

$$
a=\varepsilon^{2} X^{-1} Z^{-1}+X^{-1}+Z^{-1}
$$

In particular a has scalar coefficients. Thus, the irreducibility of W forces $\operatorname{dim}\left(W^{\prime}\right)=1$.

This completes the proof of the proposition.
5.4. To complete the study of representations of $\mathscr{A}_{\varepsilon}^{\text {sym }}$ we must study representations on which either b^{l} or c^{l} is zero. Let W be an irreducible representation on which $b^{l}=0$. Since c preserves $\operatorname{ker}(b)$ we can choose $w \in W$ such that:

$$
b \cdot w=0, \quad c \cdot w=v w,
$$

for some $v \in \mathbb{C}$. Using relation (33), we find that

$$
[a, b] \cdot w=\varepsilon^{2}\left(\varepsilon^{2}-\varepsilon^{-2}\right) .
$$

The relations (34) and (35) now force

$$
v=-\varepsilon^{-2} .
$$

Set $w_{i}=a^{i} \cdot w$. Then, using Lemma 2.11(ii), we find:

$$
\begin{align*}
a \cdot w_{i} & =w_{i+1}, i \neq l-1 \tag{36}\\
a \cdot w_{l-1} & =\lambda w_{0}, \tag{37}\\
b \cdot w_{i} & =-\varepsilon^{2 i}\left(\varepsilon^{2 i}-\varepsilon^{-2 i}\right) w_{i-1} \tag{38}\\
c \cdot w_{i} & =-\varepsilon^{-4 i-2} w_{i}+\varepsilon^{-2 i}\left(\varepsilon^{2 i}-\varepsilon^{-2 i}\right) w_{i-1} \tag{39}
\end{align*}
$$

for some $\lambda \in \mathbb{C}$ (we set $w_{-1}=0$). Thus, since W is irreducible, the elements $w_{i}, 0 \leqq i \leqq l-1$, span W. Equation (39) also implies that the w_{i} are linearly
independent. It is easy to verify that the formulas (36)-(39) do in fact define a representation of $\mathscr{A}_{\varepsilon}^{\text {sym }}$. The case when $c^{l}=0$ can be dealt with similarly.

Remark. The discussion in the preceding two sections shows that any irreducible representation of $\mathscr{A}_{\varepsilon}^{\text {sym }}$ is l-dimensional, and that the space of irreducible representations is parametrized by $\mathbb{C}^{2} \backslash\{(0,0)\}$.
5.5. In the preceding subsections, we constructed all l-dimensional irreducible representations of $\mathscr{A}_{\varepsilon}$, and showed that they factor through the quotient $\mathscr{A}_{\varepsilon}^{\text {sym }}$. We shall now show that irreducible representations of $\mathscr{A}_{\varepsilon}$ of dimension $d l$, for each $d=1, \ldots, l$ can be constructed by passing to a larger quotient $\tilde{\mathscr{A}}_{\varepsilon}$ of $\mathscr{A}_{\varepsilon}$ by the relations

$$
a_{1}=a_{3}, \quad b_{1}=b_{3}, \quad c_{1}=c_{3} .
$$

Thus $\tilde{\mathscr{A}}_{\varepsilon}$ has generators $a_{i}, b_{i}, c_{i}, i=1,2$, and relations

$$
\begin{gathered}
{\left[a_{i}, a_{j}\right]=\left[b_{i}, b_{j}\right]=\left[c_{i}, c_{j}\right]=0,} \\
{\left[b_{i}, c_{1}\right]_{\varepsilon^{2}}=0,} \\
{\left[b_{1}, c_{1}\right]_{\varepsilon^{2}}=\left[b_{1}, c_{2}\right\}_{\varepsilon^{2}}=\left[b_{2}, c_{1}\right]_{\varepsilon^{2}}=0,} \\
{\left[a_{i}, b_{i}\right]_{\varepsilon^{2}}=\varepsilon^{2}-\varepsilon^{-2},} \\
{\left[c_{i}, a_{i}\right]_{\varepsilon^{2}}=\varepsilon^{2}-\varepsilon^{-2}} \\
{\left[b_{1},\left[a_{2}, c_{1}\right]\right]_{\varepsilon^{2}}=\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2},} \\
{\left[b_{1}, c_{1}\right]=\left[b_{2}, c_{2}\right]} \\
{\left[a_{1}, b_{2}\right]=\left[a_{2}, b_{1}\right]}
\end{gathered}
$$

Proposition. There exists a homomorphism of algebras $\tilde{\mathscr{A}}_{\varepsilon} \rightarrow \mathbb{C}_{\varepsilon^{2}}\left[x, z, x^{-1}, z^{-1}\right]$ $\otimes U_{\varepsilon^{2}}\left(s l_{2}\right)$ given by

$$
\begin{aligned}
& a_{1} \rightarrow\left(x^{-1}+z^{-1}\right) \otimes 1+\varepsilon^{2} x^{-1} z^{-1} \otimes k^{-1}\left(1-\varepsilon^{-2}\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2} f\right), \\
& a_{2} \rightarrow \varepsilon^{-2} \otimes k e+x^{-1} \otimes\left(k^{-1}+e\right)+z^{-1} \otimes k+\varepsilon^{2} x^{-1} z^{-1} \otimes 1 \\
& b_{1} \rightarrow x \otimes 1 \\
& b_{2} \rightarrow x \otimes k \\
& c_{1} \rightarrow z \otimes 1, \\
& c_{2} \rightarrow z \otimes\left(k^{-1}+e\right) .
\end{aligned}
$$

Proof. Direct verification.
Pulling back the tensor product of an irreducible representation of $\mathbb{C}_{\varepsilon^{2}}\left[x, z, x^{-1}, z^{-1}\right]$ and a d-dimensional irreducible representation W of ${\underset{\varepsilon}{\varepsilon^{2}}}\left(s l_{2}\right)$, for $1 \leqq d \leqq l$, gives a $d l$-dimensional representation $V=\mathbb{C}^{l} \otimes W$ of $\tilde{\mathscr{A}}_{\varepsilon}$. Since b_{1}^{l} and c_{1}^{l} act as non-zero scalars on V, the irreducibility of V follows by arguments similar to the ones in Sect. 3. We omit the details.
5.6. We now consider the Z_{0}-characters of the representations of $U_{\varepsilon^{2}}(\operatorname{so}(8))$ constructed in Theorem 4.2 and Proposition 5.5. We shall not write down these characters for arbitrary values of the parameters. We shall assume that $X_{i}^{l}=1$,

```
\(i=1,2,3,4, Z_{1}^{l}=Z_{3}^{l}=\lambda\) (say), \(Z_{2}^{l}=Z_{4}^{l}=1, k^{l}=\lambda, x^{l}=-\lambda^{-2}, f^{l}=0\). Let
\(Z^{l}=\mu, e^{l}=v\).
```

Proposition. On the representations of $U_{\varepsilon^{2}}(s o(8))$ obtained by imposing the above restrictions, the $l^{\text {th }}$ powers of all root vectors act as 0 except the following:

$$
\begin{aligned}
f_{4}^{l} & =1, \quad e_{i}^{l}=1, \quad i=1,2,3, \\
\left(T_{2}\left(e_{4}\right)\right)^{l} & =-\frac{\left(\lambda^{2}-\lambda^{-2}\right)}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{l}}, \\
\left(T_{2} T_{4}\left(e_{i}\right)\right)^{l} & =\lambda^{2}, \quad i=1,3, \\
\left(T_{3} T_{4}\left(e_{1}\right)\right)^{l} & =\lambda^{-2}(\mu \nu+1), \\
\left(T_{2} T_{3} T_{4}\left(e_{1}\right)\right)^{l} & =-\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{l}\left(\mu+\lambda^{-2}(\mu v+1)\right), \\
\left(T_{4} T_{2} T_{3} T_{4}\left(e_{1}\right)\right)^{l} & =-(\mu \nu+1) .
\end{aligned}
$$

In addition, we have $k_{1}^{l}=k_{3}^{l}=\lambda^{2}, k_{2}^{l}=1, k_{4}^{l}=-\lambda^{-2}$.
Proof. A direct calculation: [see [4], Sect. 4.7, for the method].
Remark. The Z_{0}-characters of the representations depend only on λ, μ and v. In particular, if in Proposition 5.5 one uses a restricted representation of $U_{\varepsilon}\left(s l_{2}\right)$, i.e. one for which $k^{l}=1, e^{l}=f^{l}=0$, the Z_{0}-character of the resulting representation of $U_{\varepsilon^{2}}(s o(8))$ is the same as that obtained by using the trivial representation of $U_{\varepsilon}\left(s l_{2}\right)$. In particular, we see that it is possible to have irreducible representations of $U_{\varepsilon}(\underline{g})$ of different dimensions with the same Z_{0}-character.
5.7. It is interesting to test Conjecture 2.9 with the representations of $U_{\varepsilon^{2}}(\operatorname{so}(8))$ that we have constructed.

Proposition. Let V be one of the representations of $U_{\varepsilon^{2}}(s o(8))$ whose Z_{0}-character is computed in Proposition 5.6. Let g_{V} be the element of $S O(8)$ associated to V as in Sect. 2.9.
(a) If $\lambda=1$ and $v=0$, the conjugacy class of g_{V} has dimension 10 .
(b) If $\lambda \neq 1$, the conjugacy class of g_{V} has dimension 12 .

Proof. The element g_{V} can be computed from the data in Proposition 5.6. The dimension of the conjugacy class of g_{V} was computed by first finding the Jordan canonical form of g_{V}, then finding a simple element of $S O(8)$ with the same Jordan canonical form, and then finding the centralizer of the latter element. The calculations were verified using Mathematica.

This result is exactly in accordance with Conjecture 2.9 , for the representation V has dimension $d l^{5}, 1 \leqq d<l$ in case (a), and dimension l^{6} in case (b).

6. Large Representations of $\mathscr{A}_{\varepsilon}$

In this section, we give a procedure for constructing essentially all irreducible representations of $\mathscr{A}_{\varepsilon}$ with dimension divisible by l^{4}. Using the results of Sect. 4, this gives representations of $U_{\varepsilon^{2}}(s o(8))$ with dimension divisible by l^{8}.
6.1. In the same way as the representation theory of $U_{\varepsilon^{2}}(s o(8))$ was reduced to that of $\mathscr{A}_{\varepsilon}$, in Sect. 4, we shall reduce the representation theory of $\mathscr{A}_{\varepsilon}$ to that of the algebra $\mathscr{B}_{\varepsilon}$ defined as follows.

Definition. $\mathscr{B}_{\varepsilon}$ is the associative algebra over \mathbb{C} with generators $u_{i}, v_{i}, i=1,2,3$, and the following defining relations:

$$
\begin{aligned}
& {\left[u_{i}, u_{j}\right]=0=\left[v_{i}, v_{j}\right]} \\
& {\left[u_{i},\left[v_{j}, u_{i}\right]_{\varepsilon}\right]_{\varepsilon}=v_{j}} \\
& {\left[v_{i},\left[u_{j}, v_{i}\right]_{\varepsilon}\right]_{\varepsilon}=u_{j}} \\
& \quad\left[v_{i}, u_{i}\right]_{\varepsilon}=\left[v_{j}, u_{j}\right]_{\varepsilon}, \\
& \quad\left[u_{i}, v_{j}\right]_{\varepsilon}=\left[u_{j}, v_{i}\right]_{\varepsilon}, i \neq j .
\end{aligned}
$$

Note that we can replace ε by an arbitrary non-zero complex number in this definition. It is not difficult to see that \mathscr{B}_{1} is isomorphic to the tensor product of four copies of $U\left(s l_{2}\right)$. However, it is clear that $\mathscr{B}_{\varepsilon}$ has $2^{4}+1$ one-dimensional representations, and so is not isomorphic to the tensor product of four copies of quantum $s l_{2}$.
6.2. Define the following elements of $\mathscr{A}_{\varepsilon}$:

$$
\begin{aligned}
\gamma_{i} & =c_{i} b_{i}-\varepsilon^{2} c_{0}, \quad i=1,2,3 \\
\gamma_{0} & =c_{0} \\
b_{0} & =\gamma_{0}\left[\left[a_{1}, b_{2}\right], b_{3}\right]-\varepsilon^{6}\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2} b_{1} b_{2} b_{3}
\end{aligned}
$$

Note that, by Eqs. (9) and (11), b_{0} is well-defined.
Proposition. (a) The elements $b_{i}, \gamma_{i}, i=0,1,2,3$, generate a quasi-polynomial subalgebra of $\mathscr{A}_{\varepsilon}$:

$$
\begin{gathered}
b_{i} b_{j}=b_{j} b_{i}, \quad \gamma_{i} \gamma_{j}=\gamma_{j} \gamma_{i}, \\
b_{i} \gamma_{i}=\gamma_{i} b_{i}, \quad i=1,2,3, \\
b_{i} \gamma_{j}=\varepsilon^{4} \gamma_{j} b_{i} \quad i=1,2,3, \quad j=0,1,2,3, \quad i \neq j \\
b_{0} \gamma_{i}=\varepsilon^{8} \gamma_{i} b_{0}, \quad i=0,1,2,3
\end{gathered}
$$

(b) The $l^{\text {th }}$ powers of the elements $b_{i}, \gamma_{i}, i=0,1,2,3$, lie in the centre of $\mathscr{A}_{\varepsilon}$.
6.3. Theorem. (i) There is a homomorphism of algebras

$$
\begin{aligned}
& \sigma: \mathscr{A}_{\varepsilon} \rightarrow \otimes_{i=0}^{3} \mathbb{C}_{\varepsilon}\left[x_{i}^{1 / 2}, x_{i}^{-1 / 2}, z_{i}, z_{i}^{-1}\right] \otimes \mathscr{B}_{\varepsilon} \quad \text { such that } \\
\sigma\left(a_{i}\right)= & x_{0}^{-1} x_{i}\left(1+\varepsilon^{-2} z_{0}^{2}\right) z_{j}^{2} z_{k}^{2} \\
& +x_{j}^{-1}\left(\left\{\varepsilon^{-2} z_{j}^{2}\right\}+\left(\varepsilon^{2}-\varepsilon^{-2}\right) u_{j}\right) z_{k}^{-2}+x_{k}^{-1}\left(\left\{\varepsilon^{-2} z_{k}^{2}\right\}+\left(\varepsilon^{2}-\varepsilon^{-2}\right) u_{k}\right) z_{j}^{-2} \\
& +x_{0} x_{j}^{-1} x_{k}^{-1}\left(\left\{\varepsilon^{-2} z_{j}^{2}\right\}+\left(\varepsilon^{2}-\varepsilon^{-2}\right) u_{j}\right)\left(\left\{\varepsilon^{-2} z_{k}^{2}\right\}+\left(\varepsilon^{2}-\varepsilon^{-2}\right) u_{k}\right) \\
& +x_{0}^{-1}\left(1+\varepsilon^{2} z_{0}^{-2}\right) z_{j}^{-2} z_{k}^{-2}+z_{0}^{2} z_{j}^{2} z_{k}^{2} \\
& +\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2}\left(x_{i}^{-1} x_{j} x_{k}\right)^{1 / 2}\left(\varepsilon^{-1} z_{j}^{2} z_{k}^{2}\left[v_{i}, u_{j}\right]_{\varepsilon}+\left(z_{j}^{2} v_{k}+z_{k}^{2} v_{j}\right)\right. \\
& \left.+\varepsilon\left[u_{j}, v_{k}\right]_{\varepsilon}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sigma\left(b_{i}\right)=\left(z_{0} z_{j} z_{k}\right)^{-2} \\
& \sigma\left(c_{i}\right)=\left(x_{i}+\varepsilon^{2} x_{0}\right)\left(z_{0} z_{j} z_{k}\right)^{2}
\end{aligned}
$$

where $\{i, j, k\}=\{1,2,3\}$.
(ii) If V_{i} is an irreducible representation of $\mathbb{C}_{\varepsilon}\left[x_{i}^{1 / 2}, x_{i}^{-1 / 2}, z_{i}, z_{i}^{-1}\right], i=0,1,2,3$, and V is an irreducible representation of $\mathscr{B}_{\varepsilon}$, the pull-back $\sigma^{*}\left(\bigotimes_{i=0}^{3} V_{i} \otimes V\right)$ is an irreducible representation of $\mathscr{A}_{\varepsilon}$. Moreover, $\quad \sigma^{*}\left(\otimes_{i=0}^{3} V_{i} \otimes V\right) \cong$ $\sigma^{*}\left(\otimes{ }_{i=0}^{3} V_{i}^{\prime} \otimes V^{\prime}\right)$ iff $V_{i} \cong V_{i}^{\prime}$ and $V \cong V^{\prime}$.
(iii) The irreducible representations which arise in (ii) are precisely those on which the $l^{\text {th }}$ powers of the elements $b_{i}, \gamma_{i}, i=0,1,2,3$, of $\mathscr{A}_{\varepsilon}$ act as non-zero scalars.

Proof. The first part of the theorem is a direct verification. The other parts are proved by the methods used in Sects. 3 and 4. We omit the details.
Remark. It is not difficult to see that the conditions that the b_{i}^{l} and γ_{i}^{l} are non-zero scalars corresponds to a Zariski open subset of $\operatorname{Spec}\left(Z_{0}\right)$. In conjunction with Theorem 4.2, this theorem therefore reduces the construction of the irreducible representations of $U_{\varepsilon^{2}}(s o(8))$ corresponding to a (smaller) Zariski open subset of $\operatorname{Spec}\left(Z_{0}\right)$ to the problem of finding the irreducible representations of $\mathscr{B}_{\varepsilon}$.
6.4. Since the generic representation of $U_{\varepsilon^{2}}(s o(8))$ has dimension $l^{1 / 2}$ and depends on 28 (complex) parameters, it follows from Theorems 4.2 and 6.3 that the generic representation of $\mathscr{B}_{\varepsilon}$ has dimension l^{4} and depends on 12 parameters. (It is interesting to note that the same is true for the representations of the tensor product of four copies of $U_{\varepsilon}\left(s l_{2}\right)$, although as we remarked in Sect. 6.2, $\mathscr{B}_{\varepsilon}$ is not isomorphic to such a tensor product.) We do not know how to describe the most general representation of $\mathscr{B}_{\varepsilon}$. We restrict ourselves here to the discussion of the "symmetric" representations of $\mathscr{B}_{\varepsilon}$, i.e. those which factor through the quotient $\mathscr{B}_{\varepsilon}^{\text {sym }}$ of $\mathscr{B}_{\varepsilon}$ by the relations:

$$
u_{i}=u_{j}(=u), \quad v_{i}=v_{j}(=v),
$$

$i, j=1,2,3$.
Before discussing the representation theory of $\mathscr{B}_{\varepsilon}^{\text {sym }}$, we make a few remarks on its structure.

Remark.

(i) If we define $w=[u, v]_{\varepsilon}$, the defining relations of $\mathscr{B}_{\varepsilon}^{\text {sym }}$ take the symmetric form

$$
[u, v]_{\varepsilon}=w, \quad[v, w]_{\varepsilon}=u, \quad[w, u]_{\varepsilon}=v .
$$

This makes it clear that the cyclic permutations of u, v, w define algebra automorphisms of $\mathscr{B}_{\varepsilon}^{\text {sym }}$.
(ii) If ψ is an indeterminate, let

$$
P(\psi)=\prod_{k=0}^{l-1}\left(\psi+\left\{\varepsilon^{k}\right\}\right)
$$

Then, $P(u), P(v)$ and $P(w)$ are in the centre of $\mathscr{B}_{\varepsilon}^{\text {sym }}$.
(iii) The element

$$
\Omega=\varepsilon^{-2} u^{2}+\varepsilon^{2} v^{2}+\varepsilon^{-2} w^{2}-\varepsilon^{-1}\left(\varepsilon^{2}-\varepsilon^{-2}\right) w v u
$$

is invariant under the automorphisms in (i), and is in the centre of $\mathscr{B}_{\varepsilon}^{\text {sym }}$.

We conjecture that the elements $P(u), P(v), P(w)$ and Ω generate the centre of $\mathscr{B}_{\varepsilon}^{\text {sym }}$ as an algebra.
6.5. We now describe a family of l-dimensional irreducible representations of $\mathscr{B}_{\varepsilon}^{\text {sym }}$.

Proposition. There is a one-parameter family of homomorphisms of algebras ρ_{μ} : $\mathscr{B}_{\varepsilon}^{\text {sym }} \rightarrow \mathbb{C}_{\varepsilon}\left[x, z, x^{-1}, z^{-1}\right], \mu \in \mathbb{C}$, such that

$$
\begin{aligned}
\rho_{\mu}(u) & =\frac{z+z^{-1}}{\varepsilon^{2}-\varepsilon^{-2}} \\
\rho_{\mu}(v) & =\frac{x+x^{-1}}{\varepsilon^{2}-\varepsilon^{-2}}+\mu x \prod_{i=1}^{l-2}\left(\varepsilon^{-2 i} z-\varepsilon^{2 i} z^{-1}\right) .
\end{aligned}
$$

If V is an irreducible representation of $\mathbb{C}_{\varepsilon}\left[x, z, x^{-1}, z^{-1}\right]$, the pull-back $\rho_{\mu}^{*}(V)$ is an irreducible representation of $\mathscr{B}_{\varepsilon}$, and $\rho_{\mu}^{*}(V) \cong \rho_{\mu^{\prime}}^{*}\left(V^{\prime}\right)$ iff $\mu=\mu^{\prime}$ and $V \cong V^{\prime}$.
Thus, $\mathscr{B}_{\varepsilon}^{\text {sym }}$ has a 3-parameter family of irreducible representations of dimension l. Combining this result with Theorems 4.2 and 6.3 , we obtain a 19-parameter family of l^{9}-dimensional representations of $U_{\varepsilon^{2}}(s o(8))$.
6.6. There are also a finite number of irreducible representations of $\mathscr{B}_{\varepsilon}^{\text {sym }}$ of dimension $<l$, but these are not easily described in terms of quasi-polynomial algebras.

Proposition. $\mathscr{B}_{\varepsilon}^{\text {sym }}$ has five irreducible representations of dimension d for $1 \leqq d<l$; the action of u, v, with respect to a suitable basis, is described as follows:
(a)

$$
\begin{aligned}
u & =\operatorname{diag}\left(a_{0}, \ldots, a_{d-1}\right), \\
v_{i, i+1} & =m_{i}, \quad i=0,1, \ldots, d-2, \\
v_{i+1, i} & =1, \quad i=0,1, \ldots, d-2, \\
v_{i j} & =0 \quad \text { if } j \neq i-1, i+1,
\end{aligned}
$$

where,

$$
a_{k}=\frac{\left\{\varepsilon^{2 k-d+1}\right\}}{\varepsilon^{2}-\varepsilon^{-2}}
$$

and

$$
m_{k}=\frac{1}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2}}\left(1-\frac{[d+1]_{\varepsilon}[d-1]_{\varepsilon}}{[2 k-d+3]_{\varepsilon}[2 k-d+1]_{\varepsilon}}\right) .
$$

(b)

$$
\begin{aligned}
u & =\operatorname{diag}\left(a_{0}, \ldots, a_{d-1}\right), \\
v_{i, i+1} & =m_{i}, \quad i=0,1, \ldots, d-2, \\
v_{i+1, i} & =1, \quad i=1,2, \ldots, d-2, \\
v_{00} & =m, \\
v_{i j} & =0 \quad \text { if } j \neq i-1, i+1,(i, j) \neq(0,0),
\end{aligned}
$$

where

$$
\begin{aligned}
a_{k} & = \pm \frac{\left\{\varepsilon^{2 k+1}\right\}}{\varepsilon^{2}-\varepsilon^{-2}} \\
m_{k} & =\frac{1}{\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2}}\left(1-\frac{[2 d-1]_{\varepsilon}[2 d+1]_{\varepsilon}}{[2 k+3]_{\varepsilon}[2 k+1]_{\varepsilon}}\right)
\end{aligned}
$$

and

$$
m^{2}=\frac{1}{\left(\varepsilon-\varepsilon^{-1}\right)^{2}}-\frac{1}{\left(\varepsilon-\varepsilon^{-1}\right)\left(\varepsilon^{2}-\varepsilon^{-2}\right)^{2}}\left(1-\frac{[2 d+1]_{\varepsilon}[2 d-1]_{\varepsilon}}{[3]_{\varepsilon}}\right) .
$$

We conjecture that the representations described in Propositions 6.5 and 6.6 exhaust the irreducible representations of $\mathscr{B}_{\varepsilon}^{\text {sym }}$ (up to isomorphism). This is true under the assumption that u (say) is semisimple with distinct eigenvalues.

We hope to take up the more general problem of the representation theory of $\mathscr{B}_{\varepsilon}$ in a subsequent paper.

References

1. Arnaudon, D.: Periodic and flat irreducible representations of $S U(3)_{q}$. Commun. Math. Phys. 134, 523-537 (1990)
2. Arnaudon, D., Chakrabarti, A.: Flat periodic representations of $U_{q}(\underline{g})$. Commun. Math. Phys. 139, 605-617 (1991)
3. Chari, V., Pressley, A.N.: Minimal cyclic representations of quantum groups at roots of unity. C.R. Acad. Sci. Paris, t. 313, Serie I, 429-434 (1991)
4. Chari, V., Pressley, A. N.: Fundamental representations of quantum groups at roots of 1. Preprint, 1992
5. de Concini, C., Kac, V.G.: Representations of Quantum groups at roots of 1. In: Operator algebras, Unitary representations, Enveloping algebras and Invariant theory, Progress in Math. 92, 471-508 (1990)
6. de Concini, C., Kac, V.G., Procesi, C.: Quantum Coadjoint Action. J. Am. Math. Soc. 5, 151-189 (1992)
7. de Concini, C., Kac, V.G., Procesi, C.: Some remarkable degenerations of quantum groups. Preprint, 1992
8. Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. in Math. 70, 237-249 (1988)
9. Lusztig, G.: Quantum groups at roots of 1. Geom. Ded. 35, 89-114 (1990)

Communicated by A. Jaffe

[^0]: * Partially supported by the NSF, DMS-9115984

