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Abstract: We study irreducible representations of the quantum group Uε(so(β))
when εe(C* is a primitive I t h root of unity. By a theorem of De Concini and Kac,
there is a finite number of such representations associated to each point of
a complex algebraic variety of dimension 28 and the generic representation has
dimension I 1 2 .

We give explicit constructions of essentially all the irreducible representations
whose dimension is divisible by /8. In addition, we construct all cyclic representa-
tions of minimal dimension. This minimal dimension is I5, in accordance with
a conjecture of De Concini, Kac and Procesi.

1. Introduction

If g is finite-dimensional complex simple Lie algebra, there is a well-known family
{Uq(g)', qe(Ex} of Hopf algebras over (C which "tend" in a precise sense, to the
universal enveloping algebra of g as q tends to 1. The algebra Uq(g) is generated by
elements ehfi9 kr \ i = 1,. . . , n~= rk(g), satisfying certain relations which may be
found in Sect. 2.

If q is not a root of unity, the representation theory of Uq(g) is the "same" as
that of g [8]. On the other hand, if q = ε is an /th root of unity" where we assume
that I is odd and greater than 1, there are finitely many finite-dimensional irredu-
cible Uε(g)-modxύes associated to every point of a certain complex algebraic veriety
of dimension m = dim(g) [5]. All such representations have dimension at most
(̂m-n)/2 Although the results of [5] give an adequate parametrization of the set of

irreducible representations of Uε(g\ they do not give any explicit description of the
representations themselves (except in the sl2 case). It is of interest to give such
descriptions, partly to test certain conjectures made in [5 and 6], and also because
of certain analogies between the representation theory of Uε(g) and that of g over
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a field of finite characteristic. Although there are several deep general results
concerning the latter theory, there seem to be almost no explicit constructions of
the representations in the literature.

The generators et, ft act injectively on the generic l/ε(#)-module: such modules
are called cyclic. It was shown in [2 and 3] that, if g is of type Λn, Bn or Cn, the
minimal dimension of a cyclic module is /", and all minimal cyclic modules were
described explicitly. In the remaining cases, the minimal dimension is divisible by,
and strictly greater than /", and the minimal cyclic modules appear to be much
harder to construct.

In this paper, we study the prototype of the remaining cases, namely
g = so(8, CD). We reduce the study of cyclic l/ε(so(8))-modules to that of a certain
auxiliary algebra s$ε. More precisely, we construct a homomorphism from
Uε2(so(S)) to the tensor product of s/ε and a Laurent quasi-polynomial algebra on
8 generators. It is well-known (and easy to prove) that every irreducible representa-
tion of the latter algebra has dimension /4 and depends on 8 parameters. Pulling
back a tensor product of irreducible representations of s#ε and of the quasi-
polynomial algebra gives an irreducible representation of C/ε2(so(8)), and all cyclic
l/ε2(so(8))-modules arise in this way (certain noncyclic representations can also be
obtained). In fact, this reduction to an auxiliary algebra can be carried out for
arbitrary g. To illustrate the technique, we start with the simpler case g = sl3, where
we recover very easily certain results of Arnaudon [1]. In the so(8) case, we show
that the minimal dimension of representations of j / ε is /, so that the minimal
dimension of cyclic representations of Uε2(so(8)) is /5. We construct all such
representations, as well as representations of dimension dl5 for 1 ^ d ^ /. As
a further illustration of the method, we construct representations of srfε of dimen-
sion dl4 for 1 ^ d ^ /, by reducing to a second auxiliary algebra. Since several of
our results depend on straightforward, but very tedious, computations, we have
omitted many of the details.

2. Notation and Preliminaries

In this section, we recall certain basic facts about quantum groups and their
representations. See [5] for further details. We also introduce some closely related
quantum algebras and study their representations.

2.1. Let q be an indeterminate. For π , r e N , let

It is known [8] that these are all elements of Z j j^g" 1 ] , and hence can be
specialized by letting q = λ for any non-zero complex number λ. The resulting
complex numbers are denoted [n]χ, etc.
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2.2. Let g be a complex simple Lie algebra of rank n, and let (α^ ) be the Cartan
matrix of g. In this paper, we shall only be concerned with cases when the Cartan
matrix is symmetric. Let ε be a primitive /th root of unity, with / odd, greater than
1 and coprime to the determinant of (αί7 ). Then Uε(g) is the associative algebra over
(C with generators ei9fh kr \ i = 1,. . . , n, and the relations:

htf}krι = *-•%,

Σ" ( - 1)r[1 - ^rUVi1""""' = 0, i + j ,

f'J ( - 1)' [1 - aiJ; r] ,/i'Λ/,1 "«'>-' = 0, i Φ j .

It is well-known that Uε(g) has a Hopf algebra structure, but we shall make no use
of it in this paper.

2.3. Let U* be the subalgebra of Uε(g) generated by the eh i = 1, . . . , n, and define
Uε similarly. Let (7ε° be the subalgebra of Uε(g) generated by the kr 1. Multiplica-
tion induces an isomorphism of vector spaces,

Let ω be the conjugate-linear anti-automorphism of Uε(g) defined by

This is called the Cartan involution of Uε(g).

2.4. Let Br^ be the braid group associated to g. Thus, Br? is the abstract group
with generators T^i = 1, . . . ,n, and the following defining relations:

Tt Tj Tt = Tj Ti Tj if dijdji = 1 .

2.5. Lusztig showed in [6] that Br? acts as a group of automorphisms of Uε(g). In
fact,

τ i e i = Σ ( - l Γ β l ' ε f ϊ e { - " ' - ί > e 7 e ! s > , i Φ j
s=0

where eίs) = ef/[_s]Si\, and the action of Br^ on/ f is determined by
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Note, in particular, that if atj = — 1,

where

lx,y]λ = λxy-λ-ίyx, 2G<C\ x9yeUε{g).

2.6. The braid group allows us to define (non-canonically) root vectors ea,fa in
Uε(g) corresponding to every positive root α. Let sί9 . . . ,sn be the fundamental
reflections in the Weyl group W of g. Let

W0 = ShSi2 . . . Sifι

be a reduced expression for the longest element w0 of W. Then the positive root
vectors are

p. T. p. T. T. p. T. T. p.

and/α = ω(ea). For any choice of w0, the positive root vectors are in L/ε

+, and the
negative root vectors in U~.

2.7. The following formula is useful and follows immediately from the definition of
the braid group action:

TiTjei = ej i fα o = - l .

// w is any element of the Weyl group and

w = sh . . . sjr

is a reduced expression for it, then the element

T — T. T

of Br? depends only on w, and not on the choice of reduced expression. In
particular, there is a well-defined elelment To e Bvg associated to w0 6 W. If at and OCJ
are simple roots and vv(α ) = ocj9 then Tw(eϊ) = e^ cf. [4].

2.5. Let Rep((7ε(gf)) be the set of isomorphism classes of finite-dimensional irredu-
cible representations of Uε(g). Let Z o be the subalgebra of Uε(g) generated by the
elements e\J\ for all positive roots α of g, and by the kr\i =~1, . . . ,n.

Proposition (cf. [6]). Z o is α Hopf subalgebra ofUε(g) and is contained in the centre
ofUε(g). Assigning to an element o/Rep([/ε(g)) its Z0-character is a finite-to-one
surjective map Rep(t/ε(g))-> Spec(Z0).

Note that if we define Z} = Z o n [7^ , Z% = Z o n [7ε°, then

2.9. Let G be the adjoint group of g, and define maps

X: Spec(Z0

+) -• G, 7: Spec(Zo ) -^ G, X: Spec(Z^) -* G ,

as follows. Let eβl, . . . , e ^ be the positive root vectors of Uε(g) in the order in
which they appear in (2.6), and let xβ = e\. Let E^ be the root vectors in g obtained
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from simple root vectors by the same procedure as in (2.6) (note that Br0 acts as
a group of automorphisms of g). Define yβ =fι

β and Fβ similarly. Then,

Y= exp((ε2 - ε - ^ F ^ e x p t f ε 2 - ε " 2 ) 1 ) ^ *>,_,) exp((ε2 - e'2)ιyβιFβί) ,

and X = T0(Y), the action of To on Y being

T o ( . . . e x p ( ( ε 2 - ε - 2 ) ι y β F β ) . . . ) = . . . e x p ( ( s 2 - ε - 2 ) ι T o ( y p ) T o { F p ) ) . . . .

Finally, identify Spec(Zo) with the Cartan subgroup H of G in the natural way; if
heh, the Lie algebra of H, then

Gxp{2πy/^Ίh)(k\) = exp(αι (Λ)) .

Define K(t) = ί2, teH.

Proposition. The map YKX: Spec(Z0)-> G exhibits Spec(Z0) as an (unramified)
covering with 2" sheets of the big cell Go c G.

De Concini, Kac and Procesi make the following important conjecture in [6]:

Conjecture. Let Fbe an irreducible representation of Uε(g), and let gv be the image
under the map YKX of the Z0-character of V. Let 2dF~be the dimension of the
conjugacy class of gv in G. Then, dim(F) is divisible by ldy.

2.10.
Definition. A quasi-polynomial algebra is an associative algebra over (C with gener-
ators xh i = 1,. . . , r, and relations:

XtXj = λijXjXi, i < j ,

for some scalars l ^ e C " (cf. [7]).

Denote by <Cε[x,z] the quasi-polynomial algebra with generators x, z, and the
relation:

where the ε-bracket is defined by

= εxz — ε~1zx

The Laurent quasi-polynomial algebra (Cε[x, z, x" 1 , z " 1 ] is now defined in the
obvious way.

To describe the irreducible representations of the algebra (Cε [x, z] (resp.
(Cε[x, z, x" 1 , z" 1 ]) , let {v0,. . . , fy-i} be the standard basis of (Cz and, for each λ,
μe(C x , define operators Xλ,ZμeΈnd((Eι) as follows:

Proposition.
(i) The elements xι, zι are in the centre o/(Cε[x, z, x~1, z~ ι~\ and hence act as scalars
on any irreducible representation of both (Cε[x, z] αnίi (Cε[x, z, x" 1 , z " 1 ] .
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(ii) Any irreducible representation o/C ε[x,z] on which xι and zι act as non-zero
scalars is of dimension I. The action of x and z on (C is defined by:

for some λ, μ, e (C x . Further, these representations extend naturally to representa-
tions of (C£[x, z, x - 1 , z " 1 ] and exhaust all the irreducible representations of

<εεiχ,z,x~\z-ίι
(iii) Any finite-dimensional irreducible representation of(&ε[x, z] on which either xι or
zι is zero is one-dimensional.
(iv) Let W be any finite-dimensional representation o/(Cε[x, z] on which xι = λ and
zι = μ for some )h μ e C x . Then

for some vector space W. The action of x (resp. z), is given by the operator Xλ (x) 1
(resp. Zμ®\).

Proof The proof of parts (i) to (iii) is straightforward (see also [7]). For part (iv),
note that the action of z on W is diagonalizable and that the only possible
eigenvalues of z are among the /th roots of μ. Let W be any eigenspace of z. Since
[x,z] ε = 0 it follows that xιW is an eigenspace of z for all i and so,

Pick a basis {wl5. . . , wr} of W. Since x is injective on W and xι is a scalar on
elements {xιwχ,. . . , xιwr} form a basis of xιW. Thus, we can write

That the action of x and z is as given is now clear.
For brevity of notation we shall often omit the parameters λ, μ from the

operators X, Z, but it should be kept in mind that X then defines a one-parameter
family of operators, and similarly for Z.

Corollary. Let W be any finite-dimensional representation of ®[ = iC ε [*ή z ί ]> on

which x\ and z\ act as non-zero scalars for all i = 1,. . . , r. Then,

where W is a common eigenspace of the zt. The action ofxt (resp. zf) is given by the
operator Xt (resp. Zf). Here Xt etc. means the operator X in the ith place and
1 elsewhere.

2.11. The quantum Heisenberg algebra Jfε is the associative algebra over C with
generators α, b and the single relation

O,fc]ε = ε - ε " 1 .

Before discussing the representation theory of J^ε, we prove:

Proposition.
(i) The elements {bras:r,s ^ 0} span J^ε.

(ii) The elements a1 and bι lie in the centre o
(iii) Let c = ab- I. Then cι = aιbι - 1.
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Proof. This is immediate from the next lemma, which is easily proved by induction.

Lemma. In Jfε, we have, for m ^ r ^ 1,

(i) [α,bΓL' = (cΓ-£~Γ)i> r~ 1,
(ii) [flr,&]er = ( ε r - ε - r K - 1 ,

(iii) (αfc ~ l ) m = Σ?=o( ~ Ψ~r£im~1)rlm;r~]εa
rbr .

Remark. Note that [α, c ] ε = 0 = [c,fe]ε.

2.72.
Proposition. Lei V be a finite-dimensional irreducible representation of J^ε. Let
a1 = /I, bι = μ on V, where λ, μ e (C.

(i) d i m ( F ) ^ /.
(ii) Ifλμ φ 1, ίfen dim(F) = /.

(iii) Ifλμ= 1, rfcen dim (K) = 1-

/ft each case, V is determined uniquely (up to isomorphism) by λ and μ.

Proof. Let veVbe any eigenvector of a. By Proposition 2.11 (i), (ii) the elements
{v,bυ,. . . ,bι~1v} span V, thus proving (i).

Next suppose that λ Φ 0 and λμ Φ 1. By Proposition (2.11)(iii), cι φ 0. The
result follows by applying Proposition 2.10(ii) to the subalgebra of Jfε generated by
a and c.

If λμ = 1 and λ φ 0, then cι = 0. Since a preserves ker(c), we can choose
a common eigenvector v of α and c. But, as α is invertible on V, v is then also
a common eigenvector of a and b, proving that dim(F) = 1.

If . = 0, let 0 Φ u e k e φ ) . By Proposition 2.11(i),(ii), the vectors brv, 0 ^ r < /
span V. Suppose that there is a linear relation

brυ = Σ βPb
pυ ,

p = 0

where βpe(£ and {v,bv,. . . , b1*"1!;} are linearly independent with r < /. Applying
α to both sides and using Lemma 2.11 (i) gives a contradiction. Thus,
{v,bv,. . . , bι~1v} is a basis of F, and dim(F) = /.

The uniqueness statement is clear from the above constructions.

Remark. The elements α ' " 1 , ft*"1 act as non-zero operators on any finite-dimen-
sional representation of jιfε. The proof for an irreducible representation is clear
from the preceding proposition, and since any finite-dimensional representation
contains an irreducible representation, the statement follows in general.

3. Construction of Cyclic Representations: Reduction to an Auxiliary Algebra

We begin this section with the representation theory of Uε2(sl3), which serves as
a simple example of the methods used for the so(8) case and which can be also used
in general. The 5/3 theory is due to Arnaudon [1], but we state and prove the results
in a slightly different way.
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3.1. Let Λ>e the subcategory of the category of finite-dimensional representations
of Uεi(sl3) on which the /th powers of euf2, ku k2 act as non-zero scalars.

Let VeJ>{sl3). Regarded as a module for the quasi-polynomial algebra gener-
ated by ku /c2, <?i,/2, one proves as in Proposition 2.10(iv) that Fis isomorphic to
<Lι® <C'® W, for some auxiliary vector space W, the action of these generators on
the tensor product being

k == Z2Z k == (Z Z2\ ^ ί2)

where as usual X1 etc. means the operator X® 1 ® 1 normalized so that X1 — e[.

To find the action of the remaining generators, say/x (and similarly for e2\ we

write fγ as a polynomial with coefficients in End(PF) in the noncommuting vari-

ables Xh Zt. The relations kj^ΐ1 = ε2aιlfu \eιjι~\ = —2 ^j and the Serre
o o

relation [/2, [/i ,/ 2 ]ε] ε = 0, imply that:

(ε2 - ε 2 ) 2

x;1

(ε ε
(4)

for some ύfί? b,eEnd(W), z = 1,2. Here and elsewhere we use the following nota-
tion: for any invertible operator i o n a vector space V, A + A~ι = {A}.

Imposing the relation [e2,f{\ = 0 and the remaining two Serre relations, we
find that the operators ah bh i = 1, 2, must satisfy:

[αf,&i]e* = fi2-fi~2, (5)

[ b j , α i ] e 2 = ε 2 - f i - 2 , i Φ j (6)

ίal9a2] = (ε2-s-2)(b2-b1)9 (7)

[fci,fc2] = ( ε 2 - ε - 2 ) ( α 1 - α 2 ) . (8)

Notice that these relations are completely independent of the auxiliary space W.
So, if we define s/ε(sl3) as the associative algebra over (C with generators a^bi
subject to the relations (5)-(8), then Wis a representation of ja/ε(s/3). Further, if V is
any proper Uε2(sl3) sub-representation of V then this argument also proves that
W must have a proper sub-representation. Conversely, given any representation
W of j/fi(s/3) we can define a representation of Uε2(sl3) on F = C^ ® C^ (x) H7by the
formulas (l)-(4). Clearly K e / .

Thus we have shown that V is an irreducible representation of Uε2(sl3) if and
only if W is an irreducible representation of stfε(sl3). The above results are sum-
marized in the following proposition.

Proposition
(i) The map

π: Uε2(sl3)-+ (Cε2[x1,z1,xΓ1,z

given by the formulas (l)-(4) (with X, Z replaced by x, z) defines a homomorphism of
algebras.
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(ii) Let W be an irreducible representation of jtfε(sl3). Tensoring W with an irredu-
cible representation <CZ®(C' of (S)f=1^ε2\_Xί,zi,x['1, z^ 1 ] and pulling back through
π gives an irreducible representation of l/ε2(s/3). All irreducible representations of
Uεi(sl3) in J>{sl3) arise in this way.

3.2. Arnaudon [1] constructs representations of s/ε(sl3) directly, but it is simpler
to observe that jtfε(sl3) is essentially Uε2(sl2):

Proposition. There is a one-parameter family of homomorphism of algebras
πλ: j2/ε(s/3)-> Uε2(sl2) given by:

a2 ~> v Γ 1 ^ " 1 - (£2 ~ ε ~ 2 ) V ( l + ε2λ3k)f9

bί-^λk,

with b2 determined by (7), and λe (Cx.

Proof Direct verification.

Pulling back irreducible representations of Uε2(sl2) by πλ gives rise to a one-
parameter family of representations of stfz of dimension d, with 1 ^ d < I and a four
parameter family of representations of dimension /. These representations are
irreducible for generic values of λ and are the representations that Arnaudon
constructs.

3.3. We now turn to the general simply-laced case. Choose a partition of
{1,. . . , n} into disjoint sets /, J, such that:

ars = 0, if r, 5 G / or r, s e J, r φ s .

Let y(g) be the subcategory of representations of Uεi(g) such that the /th powers of
the elements, kh er,fs act as non-zero scalars on any representation of J(g) for all
i = 1,. . . , n, r e I and seJ. Let VeJ'(g). Regarding V as a representation of the
quasi-polynomial subalgebra generated by fcί? er and/ s, where i = 1,. . . ,n, r e I
and s e J w e can write V as:

with the action of the generators given by:

rel seJ

a n d

er-+Xr, rel, f s - > XS9 seJ .

To determine the action of the remaining Chevalley generators, we proceed as in
the case of g = sl3, and find that their action on V is of the form

Π Za

r

ri [ ] Z~asιε~2l + linear polynomial in {Zf-1\ atj = - 1}),
ϊ seJ J J
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where the polynomial has coefficients in Enά(W). Again, the relations between the
coefficients of the polynomials is independent of W (this essentially follows from
the s/3 case) and so we can associate an auxiliary algebra s/ε(g) to Uε2(g\ so
that any representation of Uεi(g) from J>(g) arises from a representation of
<£ε\_xhzhxΓι,zΓu.i= 1,. ..,ή]<§s/B(g).

We do not write down the defining relations ofs/ε(g) in the general case. In the
next section, we do so for g = so(8).

4. Quantum so (8)

In this section, we identify the algebra s

4.1. The nodes of the Dynkin diagram of so(8) are numbered 1,2,3,4, with 4 being
the middle node.

Definition. s$ε is the associative algebra over (C with generators ahbhchi = 1,2,3
and the following relations:

lahb{]e2 = ε2 — ε~2 = [_ci,ai']ε2 , (10)

[bi5c/] = lbj,Cj] , (12)

[b ί,c J ]e2 = 0, i + ; , (13)

[^i,[>2,C3]]ε2 = ( ε 2 - ε - 2 ) 2 . (14)

Remark 1. Relation (14) implies, together with the other relations, that

whenever i, 7, fc are distinct.

2. For any 0*1, σ2, cr3 e { + 1},

ί?j —•> ( j j i i j , b j —> ^ίbii C{ —• o " i C j , (l^)

is an automorphism of $4Z.

Introduce the following elements of jtfε:

co= 2

 1 _ 2 C c l ; b J , (16)
ε 2 - ε 2

dfc = -^ Γβ. .C l, /, /,fc distinct , (17)
k ε 2 - ε " 2 L J ιJ J v ;

/J . (18)
ε 2 - ε ~ 2

It follows from relation (12) that c 0 is well denned. That dk is well-defined follows by
taking the bracket of both sides of Eq. (19) below with a-} and using (9) and (11). For
d0, one uses (9) and the Jacobi identity.
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Proposition. The following relations hold in s$ε.

[co,α ί] = (ε 2 -ε- 2 )( f t I . -c ί ) , (19)

[feI ,do] = (ε 2 -β" 2 )(flf-df), (20)

[dphi] = (ε2 - ε~2)cfc, i,j,he {1,2,3} distinct , (21)

[ft i 9 c 0 ] ε 2 = 0 , (22)

lbί,di-]ε2 = ε2-ε-\ (23)

[co,Ci]f2 = 0 , (24)

[441^0, (25)

[c ί,d J-]β2 = 0, ί Φ ; 6 { 1 , 2 , 3 } , (26)

ldhaj]ε2 = 09 i Φ e { 1 , 2 , 3 } , (27)

[do,fljβ2 = 0 , (28)

[c o ,d f ] £ 2 + [ c / 5 c j e 2 = 0, i,j,k distinct , (29)

[c f ,d 0 ] £ 2 + [d/,dfc]e2 = 0, ϊ,j,fc distinct , (30)

[c o ,d o ] e 2 + [Cj,dj~]ε2 + [c k Jd f c] ε2 + ldi9ci]ε2 = ε 2 - ε~2, i,;,/c distinct . (31)

Corollary. 77ιβ /th powers of the elements ah bh ch dh i = 1,2,3, c 0 απJ d 0 are α/l m

4.2. The analogue of Proposition 3.1 for so($) is:

Theorem.
(i) Let VeJ(so($)). Then,

for some W, and the action of the Chevalley generators is given by:

' AB~2} + atZ4

(ε — ε

Z\Z2ZΛ c0

{ZιZ2Z?)Zlε'2}

i = 1,2,3- The operators ah bh c;, dt, i = 1,2,3, and c0, d0, satisfy relations
4)«Rί/(19)-(31

(ii) Λ/£ ~ s/«(so(8)).
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Sketch of Proof. The fact that the image of the generators has the general form
above follows from the discussion in Sect. 3.3. The relations

[ah a,-] = 0 = \bu bj], [au bj] = [aj9 b[\ ,

ensure that the copies of Uε2(sl2) corresponding to nodes 1, 2 and 3 of the Dynkin
diagram of 50(8) commute. The other relations follow from the Uε2(sl3) relations
between nodes i and 4, i = 1,2,3.

Part (ii) is now clear from the definitions of stfε and j/ε(so(8)) and Proposition
4.1.

The proof that any irreducible representation of t/ε2(so(8)) on which the e\ and
fl act as non-zero scalars is equivalent to one of these pull-back representations is
as in [3] and Sect. 3.1.

4.3. It is interesting to compute the Z0-characters of the representations of
C/ε2(so(8)) described in Theorem 4.3. For this, we must first choose a set of root
vectors. We take the following reduced expression of the longest element w0 of the
Weyl group of so (8):

WQ = = $2 ^4^2 *̂ 3 ̂ 4^2 ^11^4'^3 "̂ 2 ̂ 4*^1

We then find that the positive root vectors, in the order described in (2.6), are

), e4, T2T4(e3), T4(e3), e3 ,

)9 T4(ex), ex .

The negative root vectors are obtained by replacing e's by/'s.
The action of the non-simple root vectors in the representations described in

Theorem 4.2 is as follows:

T β

 λ

χϊlχizi((co + ε~2Zl)ZjZ2 + cJZy1Z2( 2 _

ε )

d3ZΐιZi + dtZϊ^t) +

ε " 4

where {ί,;} = {1,3}.
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For the negative root vectors we have,

T4ft = - 2 * _2 XT'XΛbi + t2ZTz)ZZι ,

T2f4 = _ — J — - Z 2 - i χ 4 ( α 2 + ε'2Z2

2)Z4 ,
yε ε )

2_ g-2

f —
-Jl— Ί~2 =^T2(ε — ε )

T T T f - β

 ( γ V V
1 21 31 4-Jl — ~ T~2 -2\4 ^ 1 A 2 A 3)

2

ε — ε

i

H j ^5 Z 4 + 6
ε — ε

ε" 2[α 3,ί) 1] ε2Z|Z 4 + ε2(ε2 - ε~2)a2a

(ε2 - ε-2)a2Zϊ2Z2

3Z4 + (ε2 - ε'2)a

ε~4(ε2 - ε'^b^ZlZlZi + ε' 2(ε 2 -

T4T2T3T4fι — — . ^ 3 7 3 ( 1 2 3 ) 4 l 72 _
^o ε j \ o ε

To compute the action of the Ith powers of the root vectors, and hence the
Z0-characters of the representations, we must, of course, construct some repres-
entations of j/g. The next two sections are devoted to this problem.

5. Small Representations of stfε

5.1. From the results of [5], we know that every finite-dimensional irreducible
representation of Uεi(so(%)) has dimension at most I12. It follows from Theorem 4.9
.that any finite-dimensional irreducible representation of s$z has dimension at most
Z8. As to the minimal possible dimension of representations of stfz we have:

Proposition. Every irreducible representation of stfε has dimension at least I.

Proof. Let W be a finite-dimensional irreducible representation of jtfε. If some
b\ (resp. c\) is zero on W, the result follows by applying Proposition 2.12 to the
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quantum Heisenberg subalgebra generated by at and bt (resp. ct and cii). Thus, we
are reduced to the case when b\,c\ φ 0, ie {1,2,3}. Since, [b1,c2]ε2 = 0 the result
follows from Proposition 2.10.

5.2. We first look for /-dimensional representations of stfz.

Proposition. Let p: stfε -> Enά(W) be an I-dimensional representation of'j/ε. Then,
possibly after composing p with one of the automorphisms (15) of stfε, p factors
through the quotient of'M\ by the relations:

flί = aj9 bt = bj, Ci = cj , (32)

for ij E {1,2, 3}.

Proof. By Proposition 5.1, W is necessarily an irreducible representation of s/ε.
Assume first that b\ φ 0 on W. By Remark 2.12, cz

2~
1 φ 0 on W. We can therefore

choose an eigenvector w of ^ such that cί

2~
1w Φθ. Thus, the elements

{w,c2w, . . ., cι

2~
xw} are non-zero and form a basis of W since they belong to

distinct eigenspaces offt1.As[fc1,fe3] = 0, w is also an eigenvector for b3, and since
ίb3, c2]ε2 = 0 it follows that b3 acts as a multiple of bx on all of W. One proves
similarly that b2 is a multiple of ί^.

We are therefore reduced to the case b\ = 0, for all i = 1,2,3. Choose 0 φ w such
that fcf w = 0, z = 1,2,3. By applying Proposition 2.12 to the quantum Heisenberg
algebra generated by a1 and bu we find that the kernel of bί on W is one-
dimensional, and that the elements {w,aλw, . . ., aι

ι~
1w) form a basis of W. Since

[[fli, fcf], ί?i]ε2 = 0 the operator \_au b{] preserves the kernel oΐbγ. So, there exists
scalars vf, i e {2, 3}, such that b{aγ w = vt w. Lemma 2.11 now shows that

b1-a\w= -ε2r{s2 -s~2)lr- l ^ α Γ ^ ,

Thus 5 2 and b3 are scalar multiples of bi. Note that in both the cases considered
above, the multiples must be non-zero since bi cannot be the zero operator on W.

We have thus shown that bf = μtb for some non-zero scalars μf and some
non-zero operator b on W. Similarly one can show that

a-x = λid, ct = μtc ,

for some scalars λh μt and operators a, c on W. The relations in ts/ε, imply that for
some λ, μ, v and σt e { — 1,1}, i e {1, 2, 3}, we have

λi = Giλ, μt = σtμ, vf = σtv .

This completes the proof.

5.3. Denote by j/f m the quotient of siE by the relations (32). Note that st*?m is
generated by elements α, b, c with the following relations:

[ α , H 2 = β 2 - ε - 2 = [ c , α ] ε 2 , (33)

[&,c]β2 = 0 , (34)

[ 5 , [ α , c ] ] ε 2 - ( β 2 - β - 2 ) 2 . (35)
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Proposition. The following formulae define irreducible representations of stffm on (Cz

on which the Ith powers of b and c act as non-zero scalars:

b = X ,

c = Z,

where X and Z are the operators defined in Sect. 2.10, with arbitrary normalizations,
such that ZX = εAXZ.

Conversely, every finite-dimensional irreducible representation of s$lym on which
bι and cι are non-zero is equivalent to a representation of this type.

Proof The fact that the above formulae do define a representation of jz/s

ε

ym is an
easy verification, with irreducibility following from the fact that the operators
X and Z generate EndίC*) as an algebra.

Let WbQ any irreducible representation of s$lym on which bι φ 0 and cι φ 0. By
Proposition 2.10(iv) we can write

W ^ <Eι <g> W ,

where W is an eigenspace of c. The action of b is X (x) 1 and that of c is Z (x) 1 for
suitably normalized operators. The action of a is determined by writing a as
a polynomial in the non-commuting variables X, Z. Using the relations in j/fm, it
is not hard to show that:

a = ε2X~1Z~1 + X~γ + Z " 1 .

In particular a has scalar coefficients. Thus, the irreducibility of W forces
d i m ( J Γ ) = 1.

This completes the proof of the proposition.

5.4. To complete the study of representations of j/fm we must study representa-
tions on which either bι or cι is zero. Let W be an irreducible representation on
which bι = 0. Since c preserves ker(fr) we can choose w e W such that:

b w = 0 , C'W = vw ,

for some v e C . Using relation (33), we find that

The relations (34) and (35) now force

v = -ε-2 .

Set w( = al*w. Then, using Lemma 2.11(ii), we find:

α-w = wi + 1 , i Φ / - 1 , (36)

fl w,-! = Aw0 , (37)

& . W i = - ε ^ ε ^ - ε - ^ W i - i , (38)

c Wf = - β"4/~2Wi + ε"2ί(ε2ί" - ε'2i)wi^ι (39)

for some 2 e C (we set w_! = 0 ) . Thus, since W is irreducible, the elements
Wi, 0 ^ / ̂  / — 1, span W. Equation (39) also implies that the wt are linearly
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independent. It is easy to verify that the formulas (36)—(39) do in fact define
a representation of s£*ε

ym. The case when cι = 0 can be dealt with similarly.

Remark. The discussion in the preceding two sections shows that any irreducible
representation of stfs

ε

ym is /-dimensional, and that the space of irreducible repres-
entations is parametrized by (C2\{(0, 0)}.

5.5. In the preceding subsections, we constructed all /-dimensional irreducible
representations of s/ε, and showed that they factor through the quotient j / ε

s y m . We
shall now show that irreducible representations of sdε of dimension dl, for each
d= 1, . . ., I can be constructed by passing to a larger quotient s3ε of srfε by the
relations

Thus es/ε has generators ai9 bu cu i = 1, 2, and relations

= 0 ,

- ε~2 ,

[c f , αf]fi2 = ε 2 - ε~ 2 ,

= ε2 - ε~2

Proposition. There exists a homomorphism of algebras sέ\ -> (Cε2[x, z, x" 1 ,
(x) Uε2(sl2) given by

« 2-^ ε~ 2 (g) fee + x " 1 (x) (/c"1 + e) + z " 1 (g) fe + ε 2 x " 1 z ~ 1 (g) 1 ,

ί>!->X <g) 1 ,

ft2-> X (X) fe ,

Ci -> z (x) 1 ,

c 2 - ^ ^ ® (fe^1 + e) .

Proo/. Direct verification.
Pulling back the tensor product of an irreducible representation of

(Cg2[x, z, x~ \ z~x] and a rf-dimensional irreducible representation W of Uε2(sl2%
for 1 ^ rf ^ I, gives a ^/-dimensional representation V = (Dι ® ^ of j / ε . Since
i?i and c\ act as non-zero scalars on V, the irreducibility of F follows by arguments
similar to the ones in Sect. 3. We omit the details.

5.6. We now consider the Z0-characters of the representations of (7ε2(so(8))
constructed in Theorem 4.2 and Proposition 5.5. We shall not write down these
characters for arbitrary values of the parameters. We shall assume that X\= 1,
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i = 1, 2, 3, 4, Z\ =Zι

3 = λ (say), Zι

2 = Zι

4=l, kι = λ, xι = - λ~2, f = 0. Let
Zι = μ, eι = v.

Proposition. On the representations of Uε2(so(S)) obtained by imposing the above
restrictions, the Ith powers of all root vectors act as 0 except the following:

Λ = l , e { = l , i = l , 2 , 3 ,

(Γ 2 Γ3 Γ 4 ( β l )) ' = - (ε2 - ε-2)'(μ + A"2(μv + 1)) ,

MeJ)1 = - (μv + 1) .

In addition, we have k\ = kι

3 = λ2, kι

2 = 1, k\ = — λ~2.

Proof A direct calculation: [see [4], Sect. 4.7, for the method].

Remark. The Z0-characters of the representations depend only on λ, μ and v. In
particular, if in Proposition 5.5 one uses a restricted representation of Uε(sl2), i.e.
one for which kι = 1, eι =fι = 0, the Z0-character of the resulting representation of
Uε2(so(S)) is the same as that obtained by using the trivial representation of
Uε(sl2). In particular, we see that it is possible to have irreducible representations
of Uε(g) of different dimensions with the same Z0-character.

5.7. It is interesting to test Conjecture 2.9 with the representations of C/ε2(so(8))
that we have constructed.

Proposition. Let Vbe one of the representations ofUε2(so(S)) whose Z0-character is
computed in Proposition 5.6. Let gv be the element of 50(8) associated to V as in
Sect. 2.9.

(a) If λ = 1 and v = 0, the conjugacy class of gv has dimension 10.
(b) If λ Φ 1, the conjugacy class of gv has dimension 12.

Proof The element gv can be computed from the data in Proposition 5.6. The
dimension of the conjugacy class of gv was computed by first finding the Jordan
canonical form of gv, then finding a simple element of 50(8) with the same Jordan
canonical form, and then finding the centralizer of the latter element. The calcu-
lations were verified using Mathematica.

This result is exactly in accordance with Conjecture 2.9, for the representation
V has dimension dl5, 1 :g d < I in case (a), and dimension I6 in case (b).

6. Large Representations of sέε

In this section, we give a procedure for constructing essentially all irreducible
representations of s/ε with dimension divisible by I4. Using the results of Sect. 4, this
gives representations of Uε2(so(8)) with dimension divisible by /8.
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6.1. In the same way as the representation theory of Uε2(so(8)) was reduced to that
of jrfε, in Sect. 4, we shall reduce the representation theory of stfε to that of the
algebra ^ ε defined as follows.

Definition. ^ ε is the associative algebra over (C with generators ub vh i = 1, 2, 3, and
the following defining relations:

= Vj,

Note that we can replace ε by an arbitrary non-zero complex number in this
definition. It is not difficult to see that SS1 is isomorphic to the tensor product of
four copies of U(sl2). However, it is clear that έ$ε has 2 4 + 1 one-dimensional
representations, and so is not isomorphic to the tensor product of four copies of
quantum sl2.

6.2. Define the following elements of jtfε:

y. = φi- 82C0, ΐ= 1, 2, 3 ,

bo = 7o[|>i, ί>2], *>3] - s6(^2 - ε-^hhbs .

Note that, by Eqs. (9) and (11), b0 is well-defined.

Proposition, (a) The elements bh yi9 i = 0, 1, 2, 3, generate a quasi-polynomial subal-
gebra of jtfε:

bibj = bjbi9 7i7j = yj7i >

forTi = yΛ, i = 1,2, 3 5

boli = £87;fro5 i = 0, 1, 2, 3 .

(b) The lίh powers of the elements bi9 yi9 i = 0, 1, 2, 3, lie in the centre o0

6.3. Theorem, (i) There is a homomorphism of algebras

ε-2z2} + (82 _ ε -2 ) M . ) z -2 + χ - l ( { β - 2 z 2 } + (fi2 _ β -2)

^fc-^ίe"2^} + (ε2 - ε - ^ ί ί ε " ^ ? } + (ε2 - e"2)Mfc)

+ xo !(1 + ε2zό2)zr2zk-
2 + z§z?z2

+ (e2 - ε - ^ ί x Γ ' x . Xfc^ίe-'^z 2 [ϋi, M j ] e + (zjυk + z2

kVj)

+ εCMj^klε),
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σ{Ci) = (Xi + ε2x0)(z0ZjZk)
2 ,

where {i,j,k} = {1,2,3}.
(ii) IfVi is an irreducible representation o/(Cε[x//2, xt

 1 / 2, zh zt * ] , i = 0, 1, 2, 3,
V is an irreducible representation of &ε, the pull-back σ*((x)f=0Kj (x) V) is
an irreducible representation of s$t. Moreover, σ*(®f = 0 V{ ® F) =
σ*(® ?=o F/ ® F') iff F, ^ K; αwd F ^ F'.
(iii) TTze irreducible representations which arise in (ii) are precisely those on which the
Ith powers of the elements fe, , yh i = 0, 1, 2, 3, o/«β/ε <2cί as non-zero scalars.

Proof The first part of the theorem is a direct verification. The other parts are
proved by the methods used in Sects. 3 and 4. We omit the details.

Remark. It is not difficult to see that the conditions that the b\ and y\ are non-zero
scalars corresponds to a Zariski open subset of Spec(Z0). In conjunction with
Theorem 4.2, this theorem therefore reduces the construction of the irreducible
representations of (7g2(so(8)) corresponding to a (smaller) Zariski open subset of
Spec(Z0) to the problem of finding the irreducible representations of SSε.

6.4. Since the generic representation of [/ε2(so(8)) has dimension /1/2 and depends
on 28 (complex) parameters, it follows from Theorems 4.2 and 6.3 that the generic
representation of ^ ε has dimension I4 and depends on 12 parameters. (It is
interesting to note that the same is true for the representations of the tensor
product of four copies of Uε(sl2\ although as we remarked in Sect. 6.2, J*ε is not
isomorphic to such a tensor product.) We do not know how to describe the most
general representation of J*ε. We restrict ourselves here to the discussion of the
"symmetric" representations of ^ ε , i.e. those which factor through the quotient
J 7 m of Stt by the relations:

M . = U j ( = M ) , Vf = V j ( = v ) 9

U = l , 2 , 3 . β

Before discussing the representation theory of ^ ε

y m , we make a few remarks on
its structure.

Remark.
(i) If we define w = [w, υ] ε , the defining relations of &fm take the symmetric form

[w, y] ε = w, [i;, w] ε = w, [w, w]ε = v .

This makes it clear that the cyclic permutations of u, 1;, w define algebra automor-
phisms of J 7 m .
(ii) If 1̂  is an indeterminate, let

Then, P(M), P(U) and P(w) are in the centre of
(iii) The element

82v2

is invariant under the automorphisms in (i), and is in the centre of &
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We conjecture that the elements P(u), P(v), P(w) and Ω generate the centre of
@lym as an algebra.

6.5. We now describe a family of /-dimensional irreducible representations of &s/m.

Proposition. There is a one-parameter family of homomorphisms of algebras pμ:
^lym ->Cε[x, z, x ' S z " 1 ] , μe(C, such that

pμ{v) =
ε — ε

// Vis an irreducible representation of<Cε[x, z, x~1, z'ι\ the pull-back p*(F) is an
irreducible representation of 3$ε, and ρ*{V) = p j( V) iff μ — μ' and V = K'.

Thus, ^g y m has a 3-parameter family of irreducible representations of dimension /.
Combining this result with Theorems 4.2 and 6.3, we obtain a 19-parameter family
of /9-dimensional representations of Uεi(so(%)).

6.6. There are also a finite number of irreducible representations of &s

ε

ym of
dimension < /, but these are not easily described in terms of quasi-polynomial
algebras.

Proposition. J*fm has five irreducible representations of dimension d for 1 ̂  d < I;
the action of u, v, with respect to a suitable basis, is described as follows:

(a)
u = diag(α0, . . ., fld-i) ,

υiii + ι = mh i = 0, 1, . . ., d — 2 ,

t > ί + i f I = 1, i = 0, 1, . . ., d- 2 ,

where,

Γ Q2k~d+1 \

„ _ t 8 /
2 - 2

ε — ε
and

(b)

u = diag(α 0 , , α</-i),

t ) , i ; + 1 = m i, ί = 0, 1, . . ., d - 2 ,

vi + lιi= 1, i=\,2,...,d-2,

v00 = m ,

»y = 0 ifjφi-l,i+ 1, (i,;) + (0, 0)
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where

ak= ±
ε — ε

[2/c+3] ε [2fe+l] ε

and

[ 3 ] ε

We conjecture that the representations described in Propositions 6.5 and 6.6

exhaust the irreducible representations of $lym (up to isomorphism). This is true

under the assumption that u (say) is semisimple with distinct eigenvalues.

We hope to take up the more general problem of the representation theory of

$E in a subsequent paper.
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