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Abstract. A bosonization scheme of the #-vertex operators of Uq(ύ2) for arbitrary
level is obtained. They act as intertwiners among the highest weight modules
constructed in a bosonic Fock space. An integral formula is proposed for iV-point
functions and explicit calculation for two-point function is presented.

1. Introduction

One of the central subjects of mathematical physics has been studies on exactly
solvable models in two dimensions for many years. Infinite dimensional symmet-
ries such as conformal and current algebra give powerful tools to investigate
systems just on the critical point [1]. It is now a very important problem how to
extend the method developed in the critical theories to massive field theories and
lattice models.

A breakthrough was brought by Frenkel and Reshetikhin [2] who studied the
^-deformation of the vertex operator as an intertwiner between certain modules of
the quantum aίfine algebra Uq(sl2). They showed that the correlation functions
satisfy a ^-difference equation, the ^-deformed Knizhnik-Zamolodchikov equa-
tion, and that the resulting connection matrices give rise to the elliptic solution to
the Yang-Baxter equation of RSOS models [3, 4]. Using the ^-vertex operators
people in the Kyoto school [5] succeeded in diagonalization of the XXZ spin chain
and showed that the spectra of the XXZ model is completely determined in terms of
the representation theory of Uq($l2). Furthermore, they found an integral formula
for correlation functions of the local operators of the XXZ model [6] by utilizing
bosonization of Uq(ύ2) of level one [7] and the bosonized g-vertex operators.
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Partly supported by the Grant-in-Aid for Scientific Research from the Ministry of Education,
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In the previous paper [8], one of the authors construct the bosonization of
Uq($l2) currents for arbitrary level a la Wakimoto [9]. In this paper we shall
introduce a bosonization of the "elementary" ^-vertex operators, which have
exactly the same commutation relations with the generators of 1/J(sl2) as the
bona-fide ^-vertex operators have. They are well-defined operators acting on
a bosonic Fock space, in which all the integrable highest weight modules of a given
level can be embedded. Finally g-vertex operators as intertwiners among these
modules are obtained in terms of the elementary g-vertex operators dressed with
the screening charges. This technique provides a natural framework to write down
an integral formula for correlation functions of the ^-vertex operators. Our formula
will be useful to examine the higher spin chain [10].

The present article is organized asjbllows. In Sect. 2 we construct the currents
which give Drinfeld realization of l/€'(sl2) [11] in terms of free bosons [8]. In Sect.
3 we construct the "elementary" #-vertex operator. In Sect. 4 we define the Fock
space on which the currents and the elementary q-vertex operators act. We also
introduce the screening change, which is necessary to calculate correlation func-
tions. Furthermore we give the expression of the N-point function in terms of the
bosonized operators. In Sect. 5 we calculate the two-point function in a simple case
and show the relevance of our formulation. In Sect. 6 we summarize our results and
give some remarks.

Three appendices are devoted to the details of the calculation in Sect. 5. In
Appendix A OPE formulae among the bosonized operators are listed. In Appendix
B we give the normalization of the elementary vertex operators. In Appendix C we
discuss the response of Jackson integrals to p-shift of variables.

2. Free Boson Realization of U'9(sl2)

In this section we briefly recall the bosonization of t/ρ'(sl2) [8].

2.1. Definition^)/ l/^sU). To begin with, let us fix notation concerning the aίfine
Lie algebra sl2 [12]. Let P = ZΛ0 ®ZΛί © Zδ be the weight lattice and
Q = Zα 0 Θ Za1 be the root lattice endowed with the symmetric bilinear form (,)
defined by

(Λθ9Λo) = 0, μ o , α 1 ) = 0, (Λo,δ)=l, [auoL1) = 2, (αl5<S) = 0, (<5, δ) = 0 ,

where Λ1 = Λo + ocjl, δ = α0 + oc1. As we set p = Λo-{-Λ1. We define
P * = Zft0 θ Zhλ 0 Zά as the dual space of P. The dual pairing <, > is defined by

(hhλ):=(ahλ), (* = 0,l) for λeP .

We denote by Pk = {(k — ΐ)Λ0 + iΛ1 \ i = 0,1,. . . , k} the set of dominant inte-
gral weights of level k. For simplicity, we set λt = (k — i)Λ0 + iAx.

Throughout this paper let q be transcendental over Q with \q\ < 1. We use the
following standard notation:

q-q

for meZ.
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The quantum affine algebra Uq(ύ2) is an associative algebra over Q(q) with
1, generated by eQ,eufoJι and qh(heP*). The defining relations are as follows
[13, 14, 15]:

e?ej - [ 3 ] e ? e 3 e t + [ 3 ] e ^ e ? - e3ef = 0 ( i φ j ) ,

The algebra £/β'(sI2) is &e subalgebra of l/g(sl2) generated by {ei9fi9 tt (ί = 0,1)}.
The algebra Uq(ύ2) has a Hopf algebra structure with the following coproduct
β β β

-h ίf ® βf, zf(/ ) =ft 0 tΓ1 + 1 ® /•. (i = 0,
h heP* .

2.2. Drinfeld Realization of Uq(ύ2). The Chevalley generators ei9fi9 tt are not
convenient for considering the bosonization. We recall here the Drinfeld realiz-
ation of Uq($l2) [11] which we will bosonize. The Drinfeld realization of Uq($l2) is
an associative algebra generated by the letters {J*\neZ}9 {Jn

3|fteZ + 0}, y±1/2

and K, satisfying the following relations:

y± 1 / 2ethe center of the algebra ,

[ J 3 J*l = δH + / [ 2 π ] f ~ y ~ "rt+m'°n q-q~ι '

1
_ n n+m ^

τ± τ± _ n±2 τ± τ± _ n±2 τ± r± _ τ± τ±
Jn+ίJm H JmJn+l — 4 Jn Jm+1 Jm+lJn >

LJn>JmΛ— ~ ~[ U Ψn + m ~ ϊ Ψn + m) •>

where {ψr,φs\seZ} are related to {Jf\leZΦ0} by

00

, -i\ y j3 -k
— q ) L

 Jk z

neZ I k = l

- ( 4 - 4 - 1 ) Σ ^ - ^ ^ (2 3)
k = l
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The standard Chevalley generators {eufu ί j are given by the identification

=Jϊ, ίΓ7o = J-i • (2.4)

2 J . Bosonizatίon of £/g'(sI2). Let fe be a non-negative integer. Let
{an, bn, cn9 Qa, Qbi Qc \ neZ} be a set of operators satisfying the following commu-
tation relations:

LK, 6 J = - ^ + m , o C 2 " ]

n

C 2 n ]

Icn, Cm] = < W o L ^ J , [Co, Qd = 4 , (2.5)

where

ίbo,

[Co,

δί-

δc

] =

] == 4,

4 ,

- 1

and others commute.
Let us introduce the free bosonic fields α, b, and c carrying parameters

L, M, NeZ>0, αeR. Define α(L; M, AT| z; α) by

^ ^ ^ . (2.6,

; M, NI z; α), c(L; M, N\z; a) are defined in the same way. In the case I = Mwe
also write

a(N\z;a) = a(L;L,N\z;oι)

and likewise for b(N\z; α), c(AΓ|z; α).
Let {an, bn,cn\neZ*o} be annihilation operators, and {an, bn, cn9 Qa, Qb,

Qc\neZ<0} creation operators. We denote by :0(z): the normal ordering of Θ(z).
For example,

:exp{b(2|z;α)}: = exp{- Σ -^-z-"q^\ exp j -

Now we define the currents J3(z), J±(z) as follows:

^3(z) = k + idza(k + 2\q-2z; -

J + ( z ) = - : [ 1

- } ]+ c(/c + 1; 2, fc + 2\q
) Λ

xexp ί - a(k + 2 | ^ - 2 z ; ^ ± ^ ^ + c(l; 2, fc + 2 | ^ - k ' 2 z; 0) V : . (2.8)
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Here the ̂ -difference operator with parameter neZ>0 is defined by

{q-q x)z

Define further the auxiliary fields ψ(z)9 φ(z) as

ψ(z) = : expjfe - q'1) £ {<fθn + q(k + 2)nf2bn)Z-" + (ά0 + M log J : ,
I «>o J

φ(z) = : exp ί - (q - q"1) £ for3"*, + «3 ( k + 2)"'2 &„)*-" - (3 0 + fe0) log <?j : .

(2.9)

We give the mode expansions of these fields as

neZ neZ

Σ Ά«z-n = <M4 Σ Φ« Z ~" = Φ W . (2 1 0 )
«eZ neZ

and let

K = z q a o + bo^ y = q K . (2.H)

Then we get the following [8]:

Proposition 2.1. {JM

3|fteZΦo}> {ΆiMweZ}, {φn >ιAn |neZ}, K, and y defined by
(2.8), (2.9), (2.10) am/ (2.11) satisfy the relations (2.2).

2.¥. Finite Dimensional Uq{ύ2) Module. For leZ^0 let K(Z) denote the (/+ 1)-
dimensional L/g($ϊ2)-module (spin 1/2 representation) with basis {f̂ } |0 rg m ̂  /}
given by

elvm — LmJvm-l> Jlvm ~ Lι ~ m_lvm+l> tlυm — Q vm •>

eo=fu fo = eu ίo = ίΓ1 on V(l) .

Here v$ with m < 0 or m > / is understood to be 0. In the case / = 1 we also
write vb1] = v+ and υ{1] = V-. ^

We equip F z

( 0 = V(l) (x) Q{q)[_z, z " 1 ] with a [/g(sI2)-module structure via

eM] ® zn) = epS* ® zn+δ", fάυ® ® zn) =fv^ ® zn~δ^ ,

wt(^° ® z") = nδ + (Z - 2m)(^41 - >40) .

We also need the representation of Drinfeld generators on level 0 modules.
Proposition 2.2. Spin 1/2 representation ofUq(ύ2) is given in terms of the Drinfeld
generators by

J»3»ί? = ̂ {ίnll ~ qn(l+1-m>(q" + «'")[«m]} , (2.12)

where v^ = 0ifm>lorm< 0.
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3. Elementary q-Vertex Operators

In this section we construct the operators in terms of free fielcte which have exactly
the same commutation relations with the generators of ϋβ2) as the bona-fide
g-vertex operators have. For that purpose we review the definition and properties
of the g-vertex operators (q-VOs) [2, 5, 16] in Subsect. 3.1. Furthermore, we give
a free field realization of q-VOs in Subsect. 3.2.

3.1. Definition of q-Vertex Operators. We recall below the properties of the q-
vertex operators (q-VOs) relevant to the subsequent discussions. A vector | λ} is
called a highest weight vector of weight λ if it satisfies the highest weight condition

The left highest weight module V(λ) with the highest weight vector | λ} is defined by

V(λ):=uβ2)\λ}.

The right highest weight module is defined in a similar manner.
The left (resp. right) highest weight module with highest weight λ e Pk will be

denoted by V(λ) (resp. V(λ)). We fix a highest weight vector \λ}eV(λ) (resp.
(λ\eVr(λ)) once and for all. There is a unique symmetric bilinear pairing
V(λ) x V(λ) -» Q(q) such that

V(u\eVr(λ% V\u'}eV(λ) .

For positive integers k9 I and let λ9 μePk. We set Aλ = (λ9λ + 2ρ)/2(k + 2).
We shall use the following type of q-VO1

Φfm{z): V(λ)^V(μ)®Vi'K (3.1)

The map (3.1) means a formal series of the form

ΦΓ'"(z)= Σ Σ Φm,«®v}»z-",
neZm = O

Φm,n' V(λ)v -> V{μ\ _ wi{p^ + nδ ,

where wφff) = (/ - 2m){A1 - Λo), δ = α0 + α x .
By definition, the q-VO satisfies the intertwining relations

Φf{\z)oχ = A(x)o Φf (/)(z), VXG Uβ2) . (3.2)

From the general arguments on q-VOs [16], in the ϋβ2) case there exists at
most one q-VO up to proportionality. We normalize Φ%vi'\z) such that the leading
term is | μ> ® v$:

Φ f ι ι \ z ) \ λ y = \ μ y ® υ $ + •••, (3.3)

where means terms of the form u (x) υ9 wt u φ μ.

1 This q-VO is called "type I" in ref. [5]
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Proposition 3.1. If we write

φf(l\z) = V φf{l)(z) ® υ®
m = 0

then

Φ^-liz) — {Φλml\z)fl — Q2m~lfίΦϊml(z)}^ *W = 1, 2, . . . , / . (3.4)
[/ — m 4- 1]

This is easily checked by evaluating both sides of (3.2) for x = / i
For two vertex operators

i

I

neZ m = 0

t h e c o m p o s i t i o n of t h e s e t w o is d e f i n e d a s a f o r m a l s e r i e s i n zl9z2:

m, n, j , k

The composition of N g-vertex operators are defined in a similar fashion.

3.2. Elementary q-Vertex Operators. In [6] an integral formula for correlation
functions of the local operators of the XXZ model is obtained by utilizing bosoniz-
ation of the Uq(sl2) of level one [7] and the bosonized g-vertex operators. In the
same spirit we want to derive the formulae for the g-vertex operators for arbitrary
level k in terms of bosonic fields α, b and c.

Since the Drinfeld generators are successfully bosonized, we intend to know
how the intertwining properties of q-VOs are expressed in those terms [17].

Proposition 3.2. For keZ^0 and / e Z > 0 we have

modN-®N2

+ ,

modΛf!

Here N± and N± are left Q(q)[y±,ψr,φs\r, — seZ^0~]-modules generated by
{Jn ImGZ} and {j£ J* \m,neZ} respectively.
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By using Propositions 2.2, 3.2 and noting that N + v^ = N-V$l) = 0,
N±v$ c Q{q)[_z, z~1]v$¥1, we get the exact relations

(3.5)

which follows from F(μ) (x) t^(/) components of intertwining relation.
How can we construct Φffw(z) in terms of free bosons? Conditions (3.5) put

stringent constraints on the possible bosonized form φ\l)(z) of vertex operators
Φχϊ(l\z)- By the explicit calculation, we can check that if

\ (3.6)

is substituted for Φ^[{'\z\ then all the commutation relations (3.5) hold. Proposi-
tion 3.1 suggests that the other components of the vertex operator should be
defined by the following multiple contour integral:

1 f dw,

[1][2] [/-m]

x[ [[Ψί I )(4Γ(w1)] ί,,J-(w2)] ί l-2 J-(wz_w)]β-i + 2w+2 , (3.7)

Φί\z) =

where [^, B]q := AB - qBA.
We will call these operators (3.6), (3.7) "elementary vertex operators." A salient

feature of these operators is that they are determined solely from the commutation
relation with bosonized Uq(sl2) currents; this is completely independent of which
infinite dimensional modules they intertwine2.

Before discussing the relation between elementary ^-vertex operators and
bona-fide vertex operators, we need to clarify on which space these bosonized
operators are acting.

4. Fock Module, Screening Charge and Correlation Function

In this section, we define the Fock module of bosons on which the ί/€(sl2) currents
J3{z), J ± (z), and the elementary q-VOs φ® (z) act. All the integrable highest weight
modules are constructed in this Fock module. Further the q-VOs as the intertwiner
among these modules are obtained.

4.1. Fock module and Highest Weight Module. From the observation that

3 f c o + c o ] = 0 , [J±(z),fi'o + 2 o ] = 0 , ίΦiJι

)(z\b0 + c0-] = Oi (4.1)

2 These elementary g-vertex operators are determined from a part of the intertwining properties,
but it is very likely that they enjoy all of these properties
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we can restrict the full Fock module of the boson α, b, and c to the sector such that
the eigenvalue of the operator b0 + c0 is equal to 0. This requirement does not
conflict with any other conditions we shall impose.3

Let us introduce a vacuum vector 10> which has the following properties:

απ |0> = 0, bn |0> = 0, c n | 0 > = 0 , n ^ O .

Define the vectors | r, s) by

j ^ ^t^j>, (4.2)

where r e ^ Z , seZ.
Let F be a free Q(q) module generated by {α_ 1 ,α_ 2 ? . . . ,fc_1,fc_2,. ,

c_ 1 ,c_2,. . }. Now we define the Fock modules Frs as

We can regard the currents J3(z), J ± (z), Js(z), and q-YOs φ$(z) as the follow-
ing maps:

J3(z): F r f S - > F r , s ,

J±(z): iv, s ->iv, s +i ,

ψ£>(z): Fr,s^Fr+ιl2,s+ι-m. (4.3)

We can check that | ί/2, 0> satisfies the highest weight condition,

txIi/2, 0> = ςr*|i/2, 0>, to |i/2,0> = q^i/X 0>, eo |i/2?0> = 0, β l | i/2,0> = 0 .

Thus we can identify

where λt = (k — ΐ)Λ0 + iΛ1. ^
We construct the left highest weight representations V(λt) of Uq(d2) as follows4

Proposition 4.1. Using this highest weight vector, we can embed the left highest
weight module V(λi) in the Fock modules as follows:

V(Xi)c^@Fi/2,s (4.4)
seZ

We can not simply use the vector | r, s>, s φ 0, as the highest weight vector since
eι\r, s> does not vanish.

3 This kind of decoupling is well known in CFT when we bosonize fermionic ghosts [18]
4 As is well known in CFTJ?i + 11 i/2,0> = 0 but/0

fc"2ί + 11 i/2, 0> Φ 0. So our module is reducible.
In order to obtain irreducible modules, the resolution a la Bernard-Felder [19] should be
discussed
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4.2. Screening Charge. We see that owing to nontrivial charge assignment, naive
composition of elementary vertex operators does not define a map between highest
weight modules introduced in the previous section. This conundrum is solved by
introducing the screening charge.

Let us define the screening operator Js(z) as follows [8]:

Js(z) = - :[Aexp{ - c(2\q-k-2z; 0)}]

xexpί - b(2\q-k-2z; - 1) - a(k + 2|<Γ2z; - ^ ] \ : . (4.5)

Then we get the following:

[J n

3 , J s (z) ] = 0 ,

-, J s (z)] = k+2dz\ z":exp<! - α( k + 2 <Γ2z;~ : , (4.6)

for all n e Z.
For peC, \p\ < 1, and s e C x , the Jackson integral is defined as

SOO 00

J dptf(t) = s(i - P) Σ /(spm)pm,
0 m = - oo

whenever the RHS converges [20].
Note that the RHS of (4.6) is a total p = q2(k + 2) difference. Therefore, the

following Jackson integral of the screening operator (screening charge)

1 dptJ
s(t) (4.7)

o

commutes with all the generators of Uq($\2) exactly.
The screening operator enjoys the same relations

[J s(z),So + δo] = 0 , (4.8)

as (4.1), and is a map among Fock modules as follows:

J s ( z ) : F r i S - > F r - i i S - i . (4.9)

We want to construct a L^sy-homomorphism V(λύ~+ V(λj)® V^ι\ where
λt = (k — i)Λ0 + iΛ1. Let us consider the following combination of operators:

where, we denote/(/ίj, /, λt) := (i —j + 0/2. By performing the Jackson integral of

this operator we obtain a L^(δI2)-linear map,

sioo sf(λJ,ι,λι)
co

Σ f dptlJ
s(tl). . . ί dptfii],ι.it)J

s(tfiij,ι.ll))φ2»(z)®v2»:
m 0 0

for arbitrary λh λjePk. Since we fixed the normalization of q-vertex operator in
(3.13), we have to choose an appropriate normalization factor for each λh λjePk

and V{1\
Now we are in a position to state our main conjecture:
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Conjecture 4.2. The q-vertex operator is bosonίzed as

Φf«\z) = Σ ΦfiΠ*) ® v£>: V(λ) -> V(μ) ® V® ,
m = 0

for λ,μePk. Here,

and gχγ(l\z) is the normalization factor mentioned above.

The N-point function of the g-vertex operators is by definition the expectation
value of the composition

_+ V(μN)® V^ ® ® V^ .

The above construction naturally leads us to the next:

Conjecture 4.3. If we expand the N-point function of q-υertex operators as

m i , . . . , TΠN

where μ0,. . . , μNePkr> then each component has the following integral form:

fmι,...,mN{zl9 J ZN)

= Π ^-Λ-9^(zd<μ»\ J
i = l 0

sψoo ^ ί 0 0

0 0

wftereΛi=/(μi,/i,μi_1).

5. Calculation of Two-Point Function

In what follows we denote V:= V(1) = Cv+ ® Cv-, and z := Z i ^ , for short. Let
^(Zi, Z 2 ) G V® V® z3/4(/c + 2)Q(g)[z]] be the following two-point function:

Ψ(zuz2):= <λ0\Φλ

λf(z2)oφ^v(Zl)\λ0y , (5.1)

where

and i 0 = kΛθ9 λ1 = (k — 1)ΛO + Ax.
In this section by evaluating this correlation function, we check Conjecture 4.3

for N = 2, Ji = J2 = 1, and keZ>0.
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5.7. Jackson Integral Formula for Two-Point Function. From Conjecture 4.2
q-VOs have the following bosonization:

Φto

V{zύ =gϊiv(ziHΦ + (zi)®v+ +φ-(zi)®v-)> (5.2)

Φftv{zi) = QΪfizi) 7 dptJ
s(t)(φ + (z2) ® v+ + φ-(z2) ® υ-) , (5.3)

0

where φ + (Zi) = φt>»(zd, and φ.(z,) = φ[1}(zt) {i=},2). Here 3 | 0 ' F ( Z l ) = 1 and
9κ°v{zi) ='• β(zi) are the normalization factors of Φχ*v{zi) and Φχ°v(z2), respec-
tively. Explicitly, (for a detailed calculation, see Appendix B)

L o (P<I lz2/t;p)oo]
g(zi) = -

L b " KP<I ~Z2/iiP)ooJ
(5.4)

where p = q2(k + 2\ and

Since the q-VOs preserve the weight modulo δ we have

Ψ(zuz2)=fί(zuz2)v+ ®ϋ_ +/2(zi,z2)t?-(8)t?+ .

Using the free boson representation of the q-VOs we can rewrite/i^, z2) as

= z3/4(fe + 2)

o
dw

ί dpt§
o -1 2πV - 1

2), J"(w)]βφ-(zi)μ 0> . (5.5)

Thanks to the formulae of the OPE given in Appendix A we obtain

dw

o lqk+3zί2πy/ — 1

-^=<λo\Js(t)J-(w)φ-(z2)Φ-(zi)\λo>

T 2 , ί ) , (5-6)
0

where G(zu z2) comes from OPE of the q-VOs,

while the integrand of the Jackson integral is given as follows:

ω (z z Λ - ^Φuzi> z 2 ? ΐ) — qi
-^-1-2/(^2) (qp2Zi/t;p)MP2Z2/t;p)a
— qi

_χ 2 —-—-——zι r
(q 1p2zί/t;p)^(q ^z^t
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Let us check that / i (z 1 ? z 2 ) depends upon z = z1/z2 only and hence we may
denote fx(zί9 z2) =/i(z). Using the freedom of redefinition t h-> z2t in the Jackson
integral, we can rewrite

g(Z2)= _
/ί;p)ooj

(5.10)

Therefore we can regard fι(zl9 z2) as a function of z:

m = l

SCO q/t,p)a

Let us repeat the same argument with respect to f2(zl9 z2).

f2(zuZ2) = z3/Mk+2)g(z2) J dpt{λ0\Js(t)φ.(z2)φ + (z1

dw

0

= z3/4(fc + 2) ί dpt§-
o 2π λ / - 1

x(λo\Js(t)φ-(z2)[J-(wU-(ziΏq\λo> (5.12)

Similarly we have

z 1 ? z 2 , £ ) , (5.13)
o

where

(q-'pzJt pUq-'p^/t ph

Thus we obtain

m = l

(p2qz/t;p)O0{pq/t;p)o

f j tt-l-2/{k + 2) _

o P <

Note that z~ 3 / 4 ( k + 2)/ί(z) is analytic around z = 0 (i = 1, 2).
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5.2. q-KZ Equation. Now we show that the ^-difference system for fi(zl9 z2\
fi{z\ J z2) gives the q-KZ equation for the two-point function. Let us study the effect
of p-shift z1 i—• pzuz2 ι-» z2. The change oϊ fi(zliz2) results from z

3/4ik + 2\
G(zuz2) and φi(z1,z2, ί), (i = 1,2). First G(z1? z2) transforms as follows:

G(pzl9z2) = q1l2p{pz)G(zl9z2), (5.16)

where

o(z)-a~1/2 ^ z ; g °̂° (5 17Ϊ
P(Z)-q ( 5 1 / }

is precisely the same factor which appeared in the image of the universal M matrix
of Vq{ύ2) [2]. Next the contribution from the Jackson integral is given as follows:
(See Appendix C, for details)

sco

J dptφ1(pzuz29t\ J dptφ2(pzuzl9t)
o o

i SOO \

dptφx(zl9 z29 ί), J dptφ2(zl9 z291) )R{pz) , (5.18)
o /

where
1 - z

is just the zero-weight part of the R matrix of the six vertex model up to a similarity
transformation.

By combining Eqs. (5.16), (5.18), 5.19), and the factor from z

3/4(k + 2) we obtain

(fi(pz)\ = P(pz) (q2d ~ pz) pq-\\ - q2)z\ //x(z)\

U W 1 - M2Λ«(1 - 42) (1 ~ zp) J \f2(z)J ' { ' }

It coincides with the q-KZ equation [2] for the two-point function.
This recursion formula implies

+h(pz) = p(pz)(qfi(z) +f2(z)) .

Comparing the coefficients of z3 / 4 ( k + 2 ) of both sides of the equation above, we obtain

qf1(z)+f2(z) = 0.

Therefore we have the ̂ -difference equation of the first order

fi(pz) _ 3/2(pq-2z;q*)ao(pq6z;q4)QO

Mz) ~Q (pqz;q*Upq4z;qX ' ( j

fi(z)= - 4 / i ( z ) . (5.22)

In particular if we put k = 1, by solving the above ^-difference equation we have

Ψ(zl9z2) = z^ff\q2^(v+ ®v-qv-® υ+), (5.23)
(q z,q joo

which reproduces the known results5.

We use the opposite ordering of two F's as that of ref. [5]
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6. Conclusion

In this paper we discuss a bospnization of the ^-vertex operator on the basis of the
Fock representation of Uq($l2). We propose an integral formula for iV-point
functions of the g-vertex operators with the help of the screening charges. Matsuo
[21] and Reshetikhin [22] have obtained integral formulae from the viewpoint of
the q-KZ equation. The relations among these three integral formulae should be
clarified.

After performing all the residue calculi of the two-point function, we have
a Jackson integral of Jordan-Pochhammer type [23, 20]. It is intriguing that the
scalar factor which arises in the image of the universal 01 matrix naturally appears
in the OPE of elementary vertex operators.

We would like to check all the intertwining properties of the elementary
g-vertex operatorsjor the general case. The analogy with CFT is quite remarkable;
we can deform (sl2) currents, the screening current, and vertex operators a la
Tsuchiya-Kanie [24]. However, we have no counterpart of Virasoro algebra, and
the meaning of the spectral parameters of the g-vertex operators is not yet obvious.

Recently Matsuo [25] constructed another bosonization of C/^(sί2). It is inter-
esting to investigate the connection between his bosonization and ours. After
completing this work we received a preprint by Abada et al. [26].
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A. Operator Product Expansion Formulae

In this appendix we list the operator product expansion formulae among the
C/9(sI2)-current J~{z\ the screening current Js(z) and the elementary q-vertex
operator φ\l)(z).

We split J~{z) into two parts:

k 4- 9
= : exp< a\k + 2

Ju (z) = :exp\a(k + 2
k + 2

-a [k + 2
k + 2
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Similarly, we put
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-a[k + 2
k + 2

Z ' 2

-b(2\q-k-2z;-l)-

- α fe + 2
2

-c(2\q-k-3z;0)y..

JΓ(z)φίι\w) =q'Z ,fJ 2

W :J,-(z)(/»i"(w): \z\ > qk+2-'\w\ ,
z — q w

(z) =
—l—k—2

W - ^ - * - 2 Z

 Λ \w\ 1^1, (A.1)

g ^ w g * l z

: j π - ( z ) J f ( w ) : | w | > 9 - * " 2 | z | ,
w - q k 2z

k+ 1

)Jf (z) = g J j " t + 2z

Z :Jf ): \w\>qk\z\,

(A.2)

Jj {z)Jfι{w) = -
z—q

Jn(z)Jf(w) =f(w) = _ t

(tfpw/z p)^
(q~ιpw/z;p)o

(q ιpw/z;p)o

(q 'z/w

M ,

(A.3)

q-'p\w\ ,

q-'\z\

q~ι\z\ , (A.4)
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oo2) n
2(l-ΐ)

w / - . 7 . n4\

(A.5)

B. Normalization of q-Vertex Operators

Here we consider the normalization of the following q-VOs:

(z): V(λt) - V{λo)

These q-VOs have the following leading terms:

(B.I)

(B.2)

These q-VOs are bosonized as

φ-(z) ® »_] ,

[ soo

f dptJ
s(t)φ + (z)®

0

dptJ
s{t)φ-(z)

J
(B.3)

We can get these normalization functions gfcy(l\z\ gχf(U{z) by calculating the
leading term explicitly.

First we have

" 2

= |l/2,0>+

then we get

Next we can see

7dptJ
s(t)φ+(z)\ί/2,0)

= J dpt3
s{t)\

o

(B.4)

(B.5)

— 1

(B.6)

likewise. Then in this case

holds.

2/(fc + 2) (gP ZA>P)oo /gj
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C. Difference Properties of Jackson Integrals

In this appendix, we calculate the difference system satisfied by the following
functions:

soo soo

j dptφ1(zl9z2,t), J dptφ2(zuz2,t) , (C.I)
0 0

where φί(zuz2, t\ and φ2{zuz2i t) are given as

( , __
T^l—ϊ Z\ / -i 2—Z—\ ι

We note that these functions are the Jackson integrals of Jordan-Pochhammer
type. For the general theory of the difference system for the Jackson integrals of
Jordan-Pochhammer type, we refer the reader to [23, 20].

To find the difference equation, we use the following identity:

j dptq>i{zuz2,t)= f dptpφi(zuz2,pt) . (C.3)
o o

Since we have

pφ1(pzuz2, pt) = pφ1(zίiz2, pt) γ~ + φ2(zl9 z2, t) — q P

2—- ,
1 -pq z l-pqz

PΨ2(pzuZ2, pt) = pφi(zuz2, pt) ~ q \ + φ2(zl9 z2, t) ~~ ZP \ , (C.4)
\-pqιz 1-pqz

we get the following difference equation:

SCO SOO \

J dptφ1(pzuz2,t), J dptφ2(pzuz2,t))
O 0 /

= J dptφί(zίiz2,t), J dptφ2(zliz2it)\ 2 _ 3

\ o o / (1 - q2)pq 3z (1 - zp)̂ f
\ 1 — pq2z 1 — pq2z

N C.5)
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