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Abstract. The tau-function formalism for a class of generalized "zero-curvature"
integrable hierarchies of partial differential equations is constructed. The class
includes the DrinfeΓd-Sokolov hierarchies. A direct relation between the variables
of the zero-curvature formalism and the tau-functions is established. The formalism
also clarifies the connection between the zero-curvature hierarchies and the Hirota-
type hierarchies of Kac and Wakimoto.

1. Introduction

The evolution of the subject of integrable hierarchies of equations has exhibited
many unexpected twists. Arguably, the first important mathematical result was the
demonstration of the integrability of the Korteweg-de Vries (KdV) equation

du d3u , du /Λ ^
+ 6 < u >

Since then much effort has been devoted to finding the underlying "causes" for
integrability. Such an endeavour is intimately linked to the problem of classifica-
tion, because in a general framework one can separate out the underlying impor-
tant "wheat" of the problem from the example-dependent "chaff." We believe that
one of the most important and seminal works in this regard was that of DrinfePd
and Sokolov [1]. These authors provided the most general classification of integr-
able hierarchies of equations up to that time. Their construction is based on
a zero-curvature, or Lax-type, method, where integrability is manifest. The central
objects in the construction are gauge fields in the loop algebra of a finite Lie
algebra. Crudely speaking, they arrive at a picture where there is a modified KdV
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(mKdV) hierarchy for each loop algebra, and then associated KdV hierarchies for
each of the nodes of the corresponding Dynkin diagram.

The DrinfeΓd-Sokolov hierarchies make use of the "principal" gradation of
the loop algebra in an essential way. In particular, the construction involves
the principal Heisenberg subalgebra. On the other hand, it is well known that
affine Kac-Moody algebras have many Heisenberg subalgebras [2, 3], an obser-
vation that was exploited in [4] (see also [5]) to construct a more general
class of integrable hierarchies. These hierarchies share all the features of the
DrinfeΓd-Sokolov hierarchies: there are mKdV and KdV-type hierarchies with
(bi-)Hamiltonian structures [6].

However, there are ways, other than the zero-curvature method, to investigate
integrable hierarchies. One of the most remarkable developments in the subject
started with the work of R. Hirota (see for example [7]), who discovered a way to
construct various types of solutions to the hierarchies directly; in particular the
multiple soliton solutions can easily be found. This led to the so-called "tau-
function" approach pioneered by the Japanese school (see for example [8]). The
idea is to find a new set of variables, called the tau-functions, which then sastisfy
a new type of bi-linear equation known as the Hirota equation. For instance, the
tau-function of the KdV equation - in standard conventions - is related to the
original variable by the celebrated formula

w = 2 ^ 1 o g τ . (1.2)

Correspondingly, for the modified KdV hierarchy the relation is

there being two separate tau-functions in this case.
Far from being just a new solution-method, the tau-function approach un-

covered a deep underlying structure of integrable hierarchies. The story is quite
long and complicated involving unexpected connections to other branches of
mathematics; for which we refer the reader to the original literature [8, 9,10], and
references therein. It is clear from this approach that affine Kac-Moody algebras
(central extensions of loop algebras) again play a central role. This was so in the
original work of [8], but made even clearer by Kac and Wakimoto [11]. In this
latter work, the authors construct hierarchies directly in Hirota form associated to
vertex operator representations of Kac-Moody algebras.

It certainly occurred to Kac and Wakimoto [11] that there should be a connec-
tion between their work and that of DrinfeΓd and Sokolov: both involving, as they
do, Kac-Moody algebras. This present work is an attempt to make this connection
explicit. The situation for the affine algebra A^\ which leads to the KdV and
mKdV hierarchies is well established [9,10]. Some extensions to other algebras
and the homogeneous Heisenberg subalgebra were considered in [12], and an
example involving the "intermediate" Heisenberg subalgebra in Aψ, which is
related to the J03

2)-algebra, was considered in [13]. Our approach follows very
closely the spirit of [12], and we shall only mention the Grassmannian approach in
passing.

The central goal of this work is to provide an explicit relation between the
tau-functions and the variables of the zero-curvature formalism. We shall not find
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a one-to-one correspondence between the zero-curvature hierarchies and the
Kac-Wakimoto hierarchies: only a subset of both classes are related.

The paper is organized as follows. In Sect. 2 we describe the general class of
zero-curvature integrable hierarchies of [4], which contain the DrinfePd-Sokolov
hierarchies as special cases. Section 3 introduces the Kac-Wakimoto hierarchies
which are defined directly on the tau-functions, in terms of a vertex operator
representation of a Kac-Moody algebra. Section 4 considers the "dressing trans-
formation" which allows one to construct solutions of the zero-curvature hierar-
chies, and which also provides the key for establishing a connection between the
formalisms of Sects. 2 and 3. The explicit connection is established in Sect. 5 and
some examples are considered in Sect. 6 for the purposes of illustration. Our
conventions and some properties of Kac-Moody algebras are presented in the
appendix.

2. The Zero-Curvature Hierarchies

The purpose of this section is two-fold: it should provide a summary of some of the
important details of refs. [4, 6] and sets up some new results that will be required in
later sections. Our conventions concerning affine Kac-Moody algebras are sum-
marized in the appendix.

In refs. [4, 6], a generalized integrable hierarchy was associated to each affine
Kac-Moody algebra g, a particular Heisenberg subalgebra s c § (with an asso-
ciated gradation s') and an additional gradation s, such that s'>:s, with respect to
a partial ordering (see the appendix). The auxiliary gradation s sets the "degree of
modification" of the hierarchy: the larger s becomes the more "modified" the
hierarchy becomes. In [4], the construction was undertaken in the loop algebra
(Kac-Moody algebra with zero centre), whereas, for present purposes, it will
actually prove more convenient to present the construction in a representation
independent way in the full Kac-Moody algebra with centre; although we should
stress that the resulting hierarchy of equations is identical.

There is a flow of the hierarchy for each element of s of non-negative s'-grade,
this is the set {bj9jeE ^ 0}. The flows are defined in terms of the gauge connec-
tions, or "Lax operators," of the form

H O, (2.1)

where q(j) is a function of the ί/s on the intersection

ρ(;) = g^o(s)ng < 7 (s /). (2.2)

In order to ensure that the flows ί,- are uniquely associated to elements of the set
{bj,jeE ^ 0} we will also, without loss of generality, demand that q(j) has no
constant terms proportional to bt with ί < j . The integrable hierarchy of equations
is defined by the zero-curvature conditions

[J2J, J ^ ] = 0 . (2.3)

In general, the above systems exhibit a gauge invarίance of the form

-1 (2.4)
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preserving q(j)eQ(j\ where U is a function on the group generated by the finite
dimensional subalgebra given by the intersection

P = 9o(s)ng < o (s ' ) . (2.5)

The equations of the hierarchy are to be thought of as equations on the equivalence
of classes of Q(j) under the gauge transformations. Notice that if s ~ s' then P = 0.
The only difference between the situation in [4] and the situation here is that q(j)
may have a component in the center of g, say qc(j). This also means that the system
is also gauge invariant under (2.4) with U being just a function, i.e. related to the
exponentiation of the center of g. Obviously, only qc(j) is sensitive to these
particular transformations and they can, in fact, be used to set qc(j) to any arbitrary
value. Consequently, we conclude that it is not a dynamical degree of freedom but
a purely gauge dependent quantity. This, and the fact that qc(j) cannot contribute
to the time evolution of the other components of q( j \ is the reason why the
resulting hierarchy is identical to the one constructed in [4].

The equations of the hierarchy (2.3) can be interpreted as a system of partial
differential equations on some set of functions in a number of different ways. For
each regular element bke% (k > 0), so that g admits the decomposition

g = sθlm(adfofc), (2.6)

(we shall use the notation s 1 to denote the complement of s, meaning g = s 0 s 1 )
we may regard (2.3) as an integrable hierarchy of partial differential equations on
the functions q(k\ modulo the action of the gauge symmetry discussed above. (In
the language of [4] these are the "type-I" hierarchies of equations.)

Below we repeat some of the analysis of [4], to show how the results of that
reference are modified when the algebra has a non-trivial centre. First of all, we
consider the analogue of Proposition 3.2 of [4].

Proposition 2.1. For a given bk e 5, for which g has the decomposition (2.6), there is
a unique yes<o(s') and /z(fc)es<fc(s'), which are functions of q(k) and its
tk derivatives, such that

where Φ = exp y.

«(*) = ~ φ U r - h ~ Hk) Φ-1 - bk, (2.7)

Proof The proof is exactly the same as that of Proposition 3.2 of [4], the only
difference being that now q(k) has a component in the centre of g. We equate terms
in (2.7) of equal s'-grade to get a recursion relation of the form

tyfc) + [&*,^-*] = * . (2-8)

In the above hj(k) and yj are the components of h(k) and y of s'-grade equal to j9

and • denotes terms which depends on h{(k\ for i > j , and yi9 for i>j — k, and q(k).
The proof proceeds by induction. The first equation of the series states that

fc*-i(fc) + [&*,y-i] = 4*-i(fc). (2.9)

We now appeal to the decomposition (2.6) in order to solve uniquely for /zfc-i(fc)
and for y_!. The same decomposition means that we can solve (2.8) iteratively for
y and h(k). D
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Once more, the only difference between the situation in [4] and the situation
here, is that both h(k) and q(k) have a component in the centre of g, say hc(k) and
qc{k\ respectively, and one finds qc(k) = h~{k) + (ΦbkΦ~1)c.

The arguments of [4] can then be applied, with some minor modifications, to
find the other variables q(j\ for j Φ fc, in terms of q(k) and its tk derivatives:

q(j) = P*oW (Φbjφ-1) - bj + hc(j), (2.10)

where P^ots] is the projector onto g^o(s). The variables q(k) then satisfy the partial
differential equations

d b j , ^ . (2.11)

Before proceeding, let us clear up some technical details. Proposition 3.6 of ref.
[4] states that the quantities h(k) proportional to elements of s with s'-grade ^ 0
are constants under the flows (2.11). Hence, they contribute constant terms to q(k)
proportional to elements of the Heisenberg subalgebra bj with j < k; an eventuality
that we disallowed in the discussion following Eq. (2.2). Hence we must impose the
conditions P^owLHk) - /ιc(fc)] = 0. In contrast, the element of h(k) in the center
cannot be set to zero: it has to be compatible with the zero curvature conditions
(2.3)

dh-m(k) dh-m(j) _ n

dtj dtk

dψ±dψϊ O. (2.12)

We notice that the value of hc(k) is completely arbitrary, up to these consistency
equations.

The equations of the hierarchy are to be thought of as a set of partial differential
equations on a consistent gauge slice of q(k\ denoted q{k\ under the gauge
symmetry (2.4). The hierarchy of equations, which are labelled by the data
{g, $, s; bk}, are then of the form

ψ ) J.EΪ0. (2.13)
dtj -

for some functions Fj of q(k) and its ^-derivatives.
Notice that there is one-to-one correspondence between the solutions of two

hierarchies {g, s, s; bk) and {g, s, s; bι) (where bk and bt both admit the decomposi-
tion (2.6)). The maps are given by (2.10). In this sense, one does not distinguish
between such hierarchies. However, it was further shown in [6] that the above
system of equations could be written in a one-parameter family of coordinated
Hamiltonian forms. In particular, one of the Poisson bracket algebras is a classical
PF-algebra. So there exists a classical JF-algebra associated to each {g, s, s;fok}
hierarchy. Although the hierarchies corresponding to different bks are in a sense
the same as regards their space of solutions, the associated canonical formalisms
are not the same and different W-algebras are obtained. For instance the hierar-
chies constructed by DrinfeΓd and Sokolov, with g = sl(n)(1\ s being the principal
Heisenberg subalgebra and s = (1,0,. . . , 0) (the homogeneous gradation) lead to
the ^ fe)-algebras, where k labels the different choices for the element bk e s.
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We now return to the question of gauge invariance. A convenient choice for the
gauge slice is suggested by the requirement that (2.10) is also true for j = k. From
(2.7), it follows that

q(k) = PzwiΦhΦ-1) - bk + hc(k)

(J^ ~ h(k) + hc(k)) Φ~11 . (2.14)

Moreover, h(k) satisfies (2.12), which are integrability conditions for

K(j) = ^ , (2.15)

dt
with ωes< 0[S '] and jeE ^ 0. Therefore, the last term in (2.14) can be written as
POM l{Φeω)d/dtk(Φeω)~129 and our gauge choice is given by the following proposition.

Proposition 2.2. There exists α consistent gauge slice where

PowW = O, (2.16)

where Φew = Θ = ev, and ι;eg<o[S'] is considered as a function of q(k) and its tk

derivatives.

Proof Gauge transformations act on Φ as Φ' = UΦ, with U = exp u where u is
a function on the algebra P in (2.5). In contrast, h(k), and hence w, are gauge
invariant; consequently, Θ transforms as & = UΘ. Denoting the components oft;',
v and u with zero s-grade as ι/0, v0 and uθ9 respectively, and projecting onto zero
s-grade we have

exp V'Q = exp u0 exp v0 . (2.17)

Therefore, by choosing u0 = — v0 we can gauge away the component Po w(t;).
Notice that this is consistent because t?eg< 0[8 ']. •

The result of this proposition is that there exists a unique gauge slice q for which
v( = ϋ) is a function on g < 0 [ s ] and Θ = exp ϋ e l/_ (s); from now on we will assume
that this gauge slice has been chosen and we shall denote Θ = Φexp ω = exp v. As
we have noted, if s ^ s', then there is no gauge symmetry in the hierarchy leading to
a modified hierarchy (mKdV hierarchy) in the language of [1]. For s < s ' the
hierarchies are partially modified (pmKdV hierarchies); these include the KdV
hierarchies for which s is a "minimal" gradation, i.e. one for which all the Sj are
equal to zero except for say sk = 1.

For a given choice of Heisenberg subalgebra s, the pmKdV hierarchies are
related to the mKdV hierarchy by a Miura map which takes solutions of the mKdV
hierarchy into solutions of the pmKdV hierarchy. The Miura maps have been
discussed in detail in [6], however in the present context they can be discussed in
a slightly different way. Given two hierarchies {& s, s x; bk} and {g, s, s2; bk}> with
s2 >: s x, it follows that a solution of the second hierarchy gives a solution to the first
hierarchy since β(fc;s2) <= Q(k sχ) (where we have made the dependence of the
space Q(k) on the "degree of modification" explicit). With the choice of gauge in
Proposition 2.2 we can make the Miura map more explicit.

Proposition 2.3. The Miura map, which takes solutions of a hierarchy {g, s, s2; bk} to
solutions of the hierarchy {g, s, Si;6fc} with s 2 > s 1 , with the choice of gauge in
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Proposition 2.2, is the projection

vx = P<olSί](ΰ2), (2.18)

where v2 is considered as a function of q2{k) and q^(k) is then given in terms of q2(k)
via (2.18) and (2.7).

Proof The existence of the Miura map follows from the fact that if s 2 >: sx then
Q(k;s2) c: Q(k; s^, hence q2(k)eQ(k; s j . In order to ensure that the image under
the Miura map is in the gauge of Proposition 2.2 one has to "gauge away" Po[Sι](v2\
and hence the Miura map can be thought of as the projection in (2.18). D

Along with each integrable hierarchy there is an associated linear problem:

O, (2.19)

where Ψ is a function of the ί/s on the group G formed by exponentiating g.
We now prove a central theorem.

Theorem 2.4. There is a one-to-one map from solutions of the (gauge fixed) asso-
ciated linear problem of the form

Ψ = ΘΓ, (2.20)
where

= expΓ Σ
LjeE^O

(2.21)

and Θ being a function on the subgroup C/_(s), to solutions of the hierarchy (2.13)
with the arbitrary functions hc(k) fixed by the conditions dhc(k)/dtj -f ckh-k(j) = 0
for any j.keE^O.

Proof First of all, using (2.7) and the equations for hc(k\ the gauge fixed Lax
operators can be written in the form

^ = | : + ( Φ > ) ( | : - ^ ) ( Φ > Γ 1 ' ( Z 2 2 )

where ω e s < oίsΊ has been defined in (2.15). Therefore, we can build a solution of the
linear problem of the form (2.20) with

Θ = Φeω . (2.23)

On the other hand, if we are given a solution of the linear problem of the form
(2.20) then it is straightforward to see that

however, what is not so clear is that the quantity Plots'] CMfc) ~ K{k)~] equals zero
for q(k) given by (2.24). To see this one first finds Φ as a function of q(k) and its
tk derivatives, via Proposition 2.1, and therefore ultimately as a function of Θ via
(2.24). The result is that Φ~1Θ = e" with u = YJJ<oujbje^<O[sΊ, which gives

3Θ~1Φ

= - (Θ-^y1-— bk + nθ'1 Φy1bkΘ'1Φ^c

dtk

= Σ ^bj-cku-k. (2.25)
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Therefore, it satisfies the two conditions Plots'] W O — hc(k)~\ = 0, and
dhc(k)/dtj + ckh-k(j) = 0. D

The result (2.24) admits a very useful simplification. The solution q(k) has
s-grade ^ 0, hence using the fact that 0eί/_(s) ,

q(k) = P*o[sΛ®bkΘ-1)-bk. (2.26)

The importance of this result is that it only needs the finite number of terms of
Θ with s-grade greater than — k — 1 to be applied.

3. The Kac-Wakimoto Hierarchies and Tau-Functions

In this section we provide a short review of the construction of integrable hierarchies
by Kac and Wakimoto [11]. This will lead us to introduce the tau-functions.

The construction of Kac and Wakimoto leads directly to the equations of the
hierarchy in Hίrota form [7]. The idea is the following: the tau-function τs asso-
ciated to an integrable highest weight representation L(s) of an affine Kac-Moody
algebra g is characterized by saying that it lies in the G-orbit of the highest weight
vector vs. Here G is the group associated to g.

Let {ui} and {uj} be dual bases of the larger algebra g © Cd, with respect to the
non-degenerate bi-linear inner product ( | ). It can be shown [11,14] that τ s lies in
the G-orbit of vs if and only if

£ uj (x) uj(τs <g> τs) = ( Λ I Λ K <g> τ s , (3.1)

where Λs is the eigenvalue of go(s) on vs. We can think of %> =Σuj®Uj as
a generalized Casimir operator. Furthermore, the condition (3.1) is also equivalent
to the statement that

τ s ®τ s eL(2s) . (3.2)
It follows from the definition of the action of a group on a tensor product that,

for the representation L(s),

τ s = ® { τ ? S ί } , (3.3)
Ϊ = 0

where τf is the tau-function corresponding to the fundamental representation with
sj = δij

At the moment, the conditions (3.1) are completely "group theoretic," with no
apparent connection to integrable hierarchies of equations. However, for cases
where the representations are of "vertex type," so they are carried by Fock spaces,
then (3.1) can be interpreted as differential equations on the tau-functions. In fact,
they are precisely the Hirota equations of an integrable hierarchy. In order to
explain this, we restrict ourselves to cases where g = g(1) is the untwisted affiniz-
ation of a finite simply-laced algebra g. In that case, level one representations (or
basic representations, those for which Sj = δji for some i such that fey = fet= 1) are
isomorphic to the Fock space of any one of the Heisenberg subalgebras of g. It is
known that inequivalent Heisenberg subalgebras are classified by the conjugacy
classes of the Weyl group of g [2.3]. The connection between the Weyl group
element, say w (up to conjugacy), and the associated Heisenberg subalgebra sw, is
that there is a lift of w, denoted w, onto g, which acts on the Heisenberg subalgebra as

. (3.4)
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The Heisenberg subalgebra sw is realized on the Fock space C[x/, jeE > 0] in
the standard way: c = 1 and

i f ; >0

bj = \ dxJ (3.5)
I -jx-j 7 < 0 .

A rather different treatment is required for any zero-graded generators of sw which
correspond to the invariant subspace of w. These zero-modes are represented on
the space

c o , j 3 e β } , (3.6)

where Q is the root lattice of g projected onto the invariant subspace of w. b0 acts as
d/dx0 so

boe
β-χ° = βeβ'x°, βeQ. (3.7)

The level-one representation is isomorphic to C[_Xj~]®1/^ where
if = C(β) ® Vis the zero-mode space. Here, Fis an additional finite-dimensional
vector space [3,15]. The elements of g not in sw are the modes of vertex operators,
the centre is the identity (c = 1), and the derivation ds> is the zero-mode of the
Sugawara current, up to a constant. Notice that the construction does not distin-
guish between the different level-one representations of g(1\ this is a reflection of the
fact that all such representations are isomorphic due to symmetries of the extended
Dynkin diagram.

Equations (3.1) after expressing the generators of g in terms of operators on the
Fock-space, are then bi-linear Hirota equations for the functions τ\β)(Xj), which are
projections onto a basis for C(β):

T t - ( x 0 ; ^ ) = Σ τ\V(xj)eβ'x° . (3.8)
βeQ

We wish to emphasize that there is a different realization of each level-one
representation for each inequivalent Heisenberg subalgebra of g, and moreover,
although these realizations are isomorphic as representations they lead to different
Hirota equations for the corresponding tau-functions.

In the following we shall often deal with the vertex representation of L(s)
realized on the tensor product of fundamental representations, where st gives the
multiplicity of the ith fundamental representation in the product (so any non-zero
Si corresponds to k) = fef = 1). They will be carried by a tensor product of the Fock
spaces:

N

> 0] (x) if} , (3.9)
ί = l

where N = J]r

i = osi. We shall use the notation xψ to indicate the Fock space

variables of the ith space in the tensor product, and Xj = Xf=1 x(p.

4. Dressing Transformations

In this section we define a set of transformations on the zero-curvature hierarchies,
which take known solutions of a hierarchy to new solutions. These "dressing
transformations" will be crucial for establishing the link to the tau-function
formalism of the next section.
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Consider the gauge-fixed linear problem associated to the hierarchy:

= O. (4.1)

We have already established in Theorem 2.4 a map between solutions of the
gauge-fixed linear problem of the form

Ψ = ΘΓ <9el/_(s), (4.2)

where Γ is defined in (2.19), and solutions of the gauge-fixed hierarchy.
The dressing transformation is a map between solutions of (4.1), which preserves

the form (4.2). Many of the technical aspects of these transformations are con-
sidered in [10] for the case cj = A^] and the principal Heisenberg subalgebra;
however, our approach is closer to that of ref. [12]. One difference with these other
works is that we will deal with the KdV hierarchies directly rather than considering
the mKdV hierarchies and then using the Miura map to find the resulting
transformations for the KdV hierarchies.

Theorem 4.1. Given a solution Ψx of the linear problem (4.1), of the form (4.2),
and geG, with ψx -g = {ψx g)-{$ι -g)o($i 0)+ lying in the "big cell"
U-(s)H(s)U+(s)then

is also a solution of the linear problem with the form (4.2).

Proof We have to show that q(j) defined by

lies in the^subspace Q(j) defined in (2.2). The proof follows from the two expres-
sions for Ψ2 in (4.3). From the first expression we find q( j) + bj = bj + terms with
s'-grade < j and from the second expression we find q(j) + bj = terms with s-grade
^ 0. Hence q(j) lies ir^ Q( j) as required. Moreover, it is clear from the first

expression in (4.3) that Ψ2 has the form of (4.2). D

Corollary. The expressions

Ψ = 2g{Γ) , (4.5)

where Γ is defined in (2.19), are solutions of the linear problem of the form (4.2) and
consequently using Theorem 2.4 solutions of the hierarchy.

Proof The proof is elementary. One just has to notice that

^ = exp[.Eo^]. ( 4 6 )
satisfies the linear problem with q(j) = 0, and obviously has the form (4.2). D

5. The Zero-Curvature Hierarchies and the Tau-Functions

In Sect. 2 we introduced a series of integrable hierarchies constructed via a zero-
curvature method, whilst in Sect. 3 we described a series of hierarchies in the form
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of a set of Hirota equations. It is now time to connect these two formalisms, the
bridge being provided by the dressing transformation.

Let us review again the situation in the two formalisms. In the zero curvature
formalism a hierarchy was defined in terms of the following data {9, s, s; bk}:

(i) An affine Kac-Moody algebra Q.
(ii) A Heisenberg subalgebra 5 c g (with an associated gradation s').

(iΐi) A gradation s ("the degree of modification") such that s < s'.
(iv) An element bke$ with positive grade such that g admits the decomposition

(2.6), i.e. 1

In the tau-function formalism, a hierarchy of Hirota equations was associated
to the following data {g, w, s}:

(i) A simply-laced finite Lie algebra g.
(ii) A vertex operator realization of L(s), associated to the untwisted affinization of

g, corresponding to some conjugacy class of the Weyl group of g, containing w.
This requires that st = 0 if kt > 1.

To connect the zero-curvature and tau-function formalisms we notice that the
dressing transformations introduced in the last section involve a group element
geG. The idea is to use the group element which appears in the characterization of
the tau-function to "dress" the "vacuum" solution to the linear system [12],
in the manner of the corollary of Theorem 4.1. We are led to the following key
theorem.

Theorem 5.1. There exists a map from solutions of the Kac~Wakimoto hierarchy
associated to the data {g, w, s} (with the gradation associated to the Heisenberg
subalgebra δw satisfying sw > s (and also st > 0 only ifkt = 1) and a zero-curvature
hierarchy associated to the data {g{1\ sw, s; bk}> given by

where Θe t/-(s) gives q(k) via (2.25).

Proof Consider solutions of the linear problem which follow from the corollary of
Theorem 4.1, from which we deduce that in representation L(s)

Γ>ψ-1 υ, = (Γ g)- υ,. (5.2)

Now we have

τs(xj + tj) = Γ g vs = (Γ g)-(Γ-g)0'V,=f(tj)(Γ-g)^vs, (5.3)

where /(£,) is the eigenvalue of (Γ ^) o on υs. (It should be emphasized that the
representation is defined by the Fock space of the variables x ; ; the variables tj
are to be thought of as auxiliary variables.) To compute the eigenvalue we
notice that

τ β (Xj + tj) = r-g-vh = ( Γ gf)o t?. + • , (5 .4)

where the ellipsis represents states in the representation with lower s-grade; in
other words f(tj) is given by the coefficient of the projection of τs(x7 + tj) onto vs;
but this is

f(tj) = τϊθ%) , (5-5)
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where τi0) is the component of the tau-function with zero "momentum" in (3.8)1.
Hence

£ ) - i . f ; _ r . u / - i . f ; — T s ^ ' + J> f56)

where τs = g vs is the tau-function for the representation L(s). Now given τs then
(5.6) uniquely determines Θe £/_(s) - since l/_(s) is faithful on z;s - and hence via
Theorem 2.4 a solution of the zero-curvature hierarchy {ga\ sw, s; bk}, for any
bfc admitting the decomposition (2.6). D

The theorem allows one to find the direct relation between the tau-functions
and the variables of the zero-curvature hierarchies. Notice that not all zero-
curvature hierarchies can be related to tau-functions (s must correspond to prod-
ucts of level one representations), and conversely not all Kac-Wakimoto hierar-
chies can be related to zero-curvature hierarchies (due to the condition sw > s).
Notice that in our formalism the KdV (and pmKdV) hierarchies can be dealt with
directly without recourse to the Miura map, indeed, one of the pleasant results of
the above formalism is that one can see immediately, from the "degree of modifica-
tion" s, which tau-functions are required. The Miura map at the level of the
tau-functions is the trivial statement, which follows from (3.3), that if s2 >: Si then

6. Examples

In this section we consider in some detail some examples of the preceding formal-
ism, in order to illustrate some of the issues involved. The main idea is to use
Theorem 5.1 to find an expression for the variables of the zero-curvature hierar-
chies in terms of the tau-functions, generalizing the maps in (1.2) and (1.3). In order
to follow the calculations in this section some knowledge of the vertex operator
calculus is required, for which we refer the reader to the original literature
[11,3,15].

The DrinfeΓd-Sokolov hierarchies [1] are recovered in our formalism by
choosing s to be the principal Heisenberg subalgebra. For example, consider the
case when q = sl(N){1\ The principal Heisenberg subalgebra has generators with
grades in E = {1, 2,. . . , N - 1, modiV}, and the associated gradation is
s' = (1,1,. . . , 1). The basic representations of g = sl(N){1) are then represented in
terms of the principal Heisenberg subalgebra on the Fock space C[Xj,jeE > 0];
there are no zero-modes in this case and so Ψ' ~ 1.

The DrinfeΓd-Sokolov hierarchies were originally defined in ref. [1] in terms of
the loop algebra sl(N)(ί); taken to be Laurent polynomials in a variable z with
coefficients in the ^-dimensional representation of sl(N). The elements of the
principal Heisenberg subalgebra are

bj = Λj ΦiVZ, (6.1)

1 We remark at this point that τ*0^.) is a scalar quantity, because if sw > s then the auxiliary
vector space Fis trivial (dim V = 1), which follows from the corollary to Lemma A.I
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where

/ 1

1

A =

111

V I

(6.2)

with zeros elsewhere.
The sl(N){1) modified KdV hierarchy is generated from the Lax operator

/VΛ

(6.3)

\ VM

where x = t1 and Σ f = i v ϊ - i = ^. The f ° r m °̂  ^ s °P erator follows from the
systematic construction in Sect. 1. We now relate the variables q(l) = {vί5 i =
0,1,. . . , N - 1} to the tau-functions τ£, ί = 0,1,. . . , N - 1. From (2.25) we have

q(l) = [6>_ l5 A] , (6.4)

where Θ _ x is the component of Θ of s( = s')-grade — 1. Now Θ ~ ι e U- (s), so we
may write for some functions at

Θ 1 = exp
ΓN-ί

L i = 0
(6.5)

where the ellipsis represents terms with lower s-grade. Acting on the highest weight
vector in the representation L(s) we have

N~x Ί
(6.6)

Using properties of the reducible representation L(s) with s = (1, 1,. . . , 1) in terms
of vertex operators on the Fock space (XjfJΌ1 C[xJ°, yeE > 0] with highest weight
vector υs = ®^=o υh one finds

(6.7)

(6.8)

(6.9)

From (6.6) and (6.7) and using Theorem 5.1 one deduces

d

and therefore

N-l

i = 0

Now one can find g(l) from (6.4), however, to make the connection with the
formalism of DrinfeΓd and Sokolov we must move to the loop algebra. This is
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achieved by noting that in the loop algebra

f e i f i + 1 * = 1 , 2 , . . . , J V - 1 ,

eN,i Ϊ = 0 ,

where e u is the matrix with a 1 in the (i, j)th position and zero elsewhere. Applying
(6.4) one finds the well-known relation

(6.11)

with τi+N = τt. The expression (1.3) for the original mKdV hierarchy is a particular
example of this.

There is no obstacle in extending the analysis to the DrinfeΓd-Sokolov KdV
hierarchies, however, in the general case the formulas are complicated and not very
illuminating. Rather than treating the general case we shall be satisfied with
re-deriving the famous relation (1.2) of the original KdV hierarchy - which arises
from choosing g = s/(2)(1) and s to be the principal Heisenberg subalgebra, as
above. In this case s' = (1, 1) (the principal gradation) and the "degree of modifica-
tion" s = (1,0) (the homogeneous gradation).

The KdV hierarchy is defined via the Lax operator

>J, 0W0 A
ox \υ — w J \z 0 /

where as before x = ίx. The gauge symmetry acts as

The choice of gauge made by DrinfeΓd and Sokolov is

(6.14)

for which u is then the conventional variable of the KdV hierarchy.
We now follow the same steps as for the mKdV hierarchies, but now with

s = (1,0). Putting

Θ ' 1 = Qxp(aeό + b [ e ϊ , β o ] + • • • ) > (6.15)

for some functions a and b9 where the ellipsis represents terms with lower s-grade
which will not be required. Acting on the highest weight state one finds

θ~1'V0 = (ί + aeo +beϊeό +'-) v0. (6.16)

Using properties of the vertex operator representation and Theorem 5.1 one finds

α = ! £ , 6 = 1 ^ , (6.17)
τ dx 2τdx2 v ;

where τ = τ0 and x = tί. Moving to the loop algebra using

(6.18)
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and evaluating (2.25) we find

««-(:;£ '„)• <«">
where ' = d/dx. The result is not in the DrinfeΓd and Sokolov gauge (6.14),
however, it is straightforward to find the gauge transformation connecting the
gauge choices. Making the required gauge transformation one re-derives the classic
result (1.2),

w = 2 ^ 1 o g τ . (6.20)

As the last example we consider the "homogeneous hierarchies" which are
obtained by taking s = s' = (1,0, 0,. . . , 0), the homogeneous gradation. This
includes the non-linear Schrodinger hierarchy when g = s/(2)(1). The homogeneous
Heisenberg subalgebra is spanned, in the loop algebra, by H (x) zn

9 where H is the
Cartan subalgebra of the finite horizontal subalgebra g c g. So at each level there is
as vector space of flows corresponding to the Cartan subalgebra of g. The hierar-
chies are defined by the Lax operator

&i = £ - Σ <fE« - zH , (6.21)

where x = t1 and the variables qa are Cartan subalgebra-valued. In the above we
have introduced the Cartan Weyl basis for g (see ref. [4] for a more thorough
discussion), and Φg is the root system of g.

Repeating the arguments above, we have for some arbitrary functions aa and b

Θ

= Γl + Σ αα(£«)-i + b H-! + • • ~L 0 ,
L oteΦg J

(6-22)

where the ellipsis represents terms of lower homogeneous grade, which wil not be
required. Now using properties of the vertex operator representation one finds

aa=^δ)e*'to V α e φ * > fo=έlogτ(0) (6 23)

Moving to the loop algebra (£α)-i = z"ιEa and H-ι = z'^H and applying (6.4)
one finds

4α = α j e α ί o. (6.24)

This agrees with that found by Kac and Wakimoto [11], and by Imbens [12], for
the particular case when Q = s/(2)(1) (which is the non-linear Schrodinger hierarchy)
- although in both these references the trivial ί0 evolution is not considered.

An interesting example which involves the "intermediate" Heisenberg subal-
gebra of Aψ, and hence goes beyond the principal and homogeneous construc-
tions, has been considered in [13].
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7. Discussion

In this paper we have established the connection between some of the zero-
curvature hierarchies and some of the Kac-Wakimoto hierarchies. We provided an
algorithm for finding the variables of the zero-curvature hierarchies in terms of the
tau-functions.

Given the relation between the variables of the zero-curvature hierarchies and
the tau-functions it is straightforward to write down the expression for the multiple
soliton solutions of the hierarchies. If we denote by F(α, z) the vertex operator
associated to the orbit of the root α of the finite Lie algebra, under the cyclic
subgroup of the Weyl group of g generated by w - the Weyl group element that
defines the vertex operator representation - then the N soliton solution is given by
the tau-function

τ.(x,) = (l + α 1 K(α 1 ,z 1 ))(l + α2 K(α2, x2)) -(1 + aNV(*N,zN))-vn, (7.1)

where the α/s are roots of g, indicating that each soliton carries a "flavour"
- labelled by an orbit of a root under the cyclic group generated by w - the α/s are
constants and the zp's are "velocity parameters" of the solitons. Given some
familiarity with vertex operator representations, it is not difficult to find the explicit
form for the soliton solutions.

In our exposition we did not mention the Grassmannίan approach of refs.
[9, 10], and so a few comments are in order. Given that τ s = g vs for g in the Group
G associated to the Kac-Moody algebra g, and the fact that the highest weight
vector vs is annihilated by the subalgebra generated by the e{, for each i such that
Sf = 0, and the e?, for i = 0,1,. . . , r, two group element yield the same tau-
function if they correspond to the same class in the quotient G/Ps, where P s is the
parabolic subgroup generated by this subalgebra. Now consider the case
g = s/(2)(1). In this case solutions of the KdV hierarchy are associated to G/P, where
P = P ( i ι 0 ), and solutions of the mKdV hierarchy are associated to G/B, where
B = Λi,i) * n refs [9> 10] it is shown that G/P is the Grassmannian and G/B is
a flag manifold, and there exists a natural projection G/B -• G/P, which is nothing
else than the Miura map taking solutions of the mKdV hierarchy to solutions of
the KdV hierarchy. In our more general setting the Grassmannian is replaced by
G/Ps, and there is a natural projection G/Psι -• G/PS2, if sx > s2, which is again
a geometrical statement of the Miura map between the solutions of the two
hierarchies.

One of the motivations which lies behind this work, comes from recent develop-
ments regarding quantum gravity theories in two-dimensions. In this context the
partition function of pure gravity is the tau-function of the KdV hierarchy, where
the flows tt are the coupling constants for all the operators in the theory (the
gravitational descendents of the puncture operator which couples to t1 = x),
supplemented by an additional condition which is called the "string equation."
Remarkably, the string equation and the condition that the partition function is
a tau-function of the KdV hierarchy are equivalent to the Virasoro constraints
[16]:

Lnτ = 0 n ^ - 1 , (7.2)

where the Virasoro generators are constructed from the Heisenberg subalgebra.
We shall show that there is a very natural generalization of this structure to the
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other hierarchies that we have considered in this paper; in the general case one
obtains ^-algebra constraints, generalizing the situation for the sl(N) DrinfeΓd-
Sokolov KdV hierarchies [16,17], where the ^-currents are constructed from the
appropriate Heisenberg subalgebra [18].

Appendix A

In this appendix we review some of the details of affine Kac-Moody algebras which
will be important for the following constructions. A complete treatment of such
algebras may be found in [2], and references therein.

An affine Kac-Moody algebra g is defined by a generalized Cartan matrix α, of
dimension r + 1 and rank r, and is generated by {hh et, ef, i = 0,1,. . . , r}
subject to the relations

let ,ej-] = δuhh (adef )x~^{ef) = 0 . (A.I)

The algebra g has a centre Cc where

c= Σ Wht, (A.2)
ί = 0

where kj (the dual Kac labels) are the components of the left null eigenvector of a:

ΣkUij = 0. (A3)
i = 0

A derivation ds, with s = (s0, su. . . , sr) being a set of r H- 1 non-negative
integers [2], induces a Z grading on 9 which we label s:

[ 4 , e i

± ] = ± W , [d.Λ] = 0. (A.4)

Under s, g has the eigenspace decomposition

β = Θ β j ( s ) . (A.5)
JeZ

We shall often use the notation like g>fc(s) = (J)ί>fc9ί(s) There exists a partial
ordering on the set of gradations, such that s >: s' if st φ 0 whenever sj φ 0.

We shall sometimes deal with the larger algebra g © Cd, formed by adjoining
a derivation with [rf, d] = 02. The important difference between g © Cd and g, is
that the former has an invariant symmetric non-degenerate bi-linear form ( | ),
whereas for the latter the analogous inner-product is degenerate.

In the following we shall be interested in the Heisenberg subalgebras of g [2, 3],
s = Cc -f Σ 7 e£ Cbj, where E = I + ZiV, where / is a set of r integers ^ 0 and < N,
for an integer N, the algebra being

[&/,&*] =βj,-kC . (A.6)

The algebras formed by adjoining different derivations are equivalent because J s — ds, e Q
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For each Heisenberg subalgebra there is an associated gradation s' and derivation
ds> such that

IX'Λ ] = ; V (A.7)

The integer N is given by N = Yj

r

i=okis
f

h where kt are the Kac labels
ΣU 0)Σ

Integrable highest weight modules of g are defined in terms of a highest weight
vector υS9 labelled by a gradation s of g. The highest weight vector is annihilated by
9>o(s), so

ef-va = 0 V i , (A.8)

and is an eigenvector of go(s) with eigenvalues

ht-vs = stvs ,

e7 . vs = 0 Vi with sf = 0 ,

ds vs = 0. (A.9)

The eigenvalue of the centre c on the representation L(s) is known as the level fe:

i = 0

(A. 10)

hence fc = Σ I = o ^ s* * n particular, the integrable highest weight representations
with k = 1 are known as the basic representations.

We shall use the notation vt = vs, where Sj = δij9 for the highest weight vectors
of the fundamental representations.

Below we prove a lemma.

Lemma A.l. Given two gradations s and s\ such that s' > s, the highest weight vector
vs is an eigenvector of the subalgebra go(s')

Proof. The proof follows from the fact that if s' >: s then go(sr) c go(s). But vs is an
eigenvector of go(s) and hence also of gols')- D.

Corollary. // s' > s then vs is the unique vector in L(s) with lowest s''-grade.

Proof Suppose the converse was true, so there exists another vector φ φ vs with
the same s'-grade as ι;s. This would require φ = a*vS9 with αe^(g o (s ')) (the
universal enveloping algebra of go^))- But by Lemma A.I, vs is an eigenstate of

s'), hence φ oc vs contrary to the hypothesis. D

Associated to each Kac-Moody algebra g, there is a group G formed by
exponentiating the action of g (see [14] for details). We denote by l/±(s) and H(s)
the subgroups formed by exponentiating the subalgebras g>0(s), g<o(s) a n d go(s),
respectively. The group acts projectively on the representations.
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