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Abstract. Convergence of approximate solutions derived by the Godunov scheme
for a simplified one-dimensional hydrodynamic model for semiconductor devices is
established by using the compensated compactness method. A global existence
theorem is shown; and a numerical method for the computation of the physical
global solution of this model is provided by this approach.

1. Introduction and Main Result

The hydrodynamic model for semiconductor devices plays an important role in
simulating the behavior of the charge carrier in submicron semiconductor devices
since it exhibits velocity overshoot and ballistic effects which are not accounted for
in the classical drift-diffusion model [1, 2]. The hydrodynamic model consists of
a set of nonlinear Euler equations for particle density, current density, and energy
density. The Poisson equation for the electrostatic potential is also used. We
investigate a simplified hydrodynamic model in which pressure is a given function
of the particle density only.

After appropriate scaling, the one-dimensional time-dependent system in the
case of one carrier type (e.g., electrons) reads [7]:

Pt + (pu)x = 0 , (1.1)

{pu\ + (pu2 + p(p))x = pφx-^, (1.2)

φxx = P~ D(x) , (1.3)

where p{x,t\ u(x,t\ φ(x, t) denote the electron density, velocity, and the electro-
static potential, respectively. The pressure function, p = p(p\ has the property that
p2p\p) is strictly monotonically increasing from [0, oo) onto [0, oo). A com-
monly-used hypothesis is [6]:

p(p) = kp\ γ > 1, k> 0 . (1.4)
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For simplicity, we take k = - although the main result of this paper holds for every

positive constant fe. The momentum relaxation time of τ = τ(p, pu) is used, and we
assume that

τ(p, pu) ^ τ 0 > 0, for any (p, pu) e [0, oo) x R . (1.5)

The device domain is the x-interval I = (0,1). The doping profile D = D(x) is
assumed to be such that

D(x)eL c o(0,1). (1.6)

After introducing the current density m = pu, we can rewrite (1.1)—(1.3) as
follows:

Pt + mx = 0 , (1.1)'

m2 , \ , m
mt + [j + p(p)j =pφx--, (1.2)'

φxx = p- D(x) . (1.3)'

The system (1.1)/-(1.3)/ is supplemented by the following initial-boundary value
conditions:

(p, m ) | ί = 0 = (po(x\mo(x)l 0 < x < 1 , (1.7)

m | x = 0 = mi(t) = p(0, ί)^i(ί)> m\x = 1 = rπ2(t) = p(l, t)u2(t), t ^ 0 , (1.8)

ί ^ 0 , (1.9)

where φi9 i = 1,2, stand for the applied bias. The boundary data m1(t) and m2(t)
must be chosen carefully because:

(1) The problem is overdetermined if one gives the data on both p and u at
x = 0 or x = 1.

(2) The problem is not well-posed if one does not provide supplementary
conditions on the boundary data.

For example, the density p blows up for some boundary data for the double piston
problem [24]. For problem (1.1)'-(1.3)', it is no surprise that if the applied inflow
current mx(ί) or m2(t) is large enough the solution of (1.1)'—(1.3)' blows up in finite
time. The mathematical analysis of this interesting physical phenomenon will be
presented in a forthcoming paper. In this paper, we investigate a special case of
boundary data (u1 (t) = u2{t) = 0 for all t ^ 0) from the mathematical point of view.

There has recently been some mathematical analysis of the hydrodynamic
model (1.1)—(1.3). In [7] the authors proved the existence of a unique smooth
solution from the steady-state of (1.1)-(1.3) in the subsonic case, which is character-
ized by a smallness assumption on the current flowing through the device. The
existence of a local smooth solution of the time-dependent problem (1.1)—(1.3) was
proved by using Lagrangian mass coordinates [31]. Due to the formation of
shocks, we cannot expect to obtain global smooth solution in the general case. For
example, the numerical simulation of a steady-state shock wave in the hy-
drodynamic model was first presented by Gardner [15]. Therefore, it is natural to
prove the existence of a global weak solution of (1.1)—(1.3). In the following, we
reduce the number of equations (1.1)'—(1.3)' by using a Green's function.
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The solution of the Poisson equation (1.3)' and the boundary data (1.9) is
given uniquely by

φ = J G(x, ξ){p{ξ, t) - D(ξ))dξ + φx + x(φ2 - φ±), (1.10)
o

where G(x, ξ) is Green's function for this problem and is defined by

<*•*-{%-* - I
From (1.10), we have

φx = } Gx(x, ξ)(p - D(ξ)) dξ + φ 2 - φ 1 . (1.12)
0

Then the system (1.1)'—(1.3)' reduces to the following system:

A + mx = 0 , (1.13)

mt + fej + p(p)) = p(] Gx(p - D)dξ + φ2-φλ-™. (1.14)

The system (1.13)—(1.14) is a set of Euler equations of nonconservative form
with two sources; i.e., an electric force and a collision term. Notice that the first
source term, which is caused by the field φx, is a nonlocal term involving some
global properties of the solution of (1.13)—(1.14). In the following arguments, we
choose the applied bias φx = φ2, but this does not influence the outcome of the
mathematical analysis.

As usual, to solve a nonlinear problem such as (1.13)—(1.14), the strategy is as
follows: after introducing a suitable sequence of approximate solutions, we need
enough a priori estimates to ensure the convergence of a subsequence to a solution.
For problem (1.13)—(1.14), it is natural to consider the approximate solutions
satisfying a Helly framework; i.e., approximate solutions that have uniform control
on both spatial L00 and total variation norms. However, it is difficult to show that
the approximate solutions derived by the viscosity method satisfy this framework,
since the principle of invariant regions or the weak maximum principle is hard to
use due to the nonlocal term of (1.14). Also, this framework is not satisfied for the
approximate solutions derived by the Lax-Friedrichs or Godunov scheme based
on the analysis by [21]. The reason is that (1.13)—(1.14) loses its strict hyperbolicity
in the vacuum state p = 0. This is an essential feature of (1.13)—(1.14).

To overcome the above difficulties, Di Perna [11, 12] and Chen [4] made
a detailed analysis and established some framework theorems for hyperbolic
conservation laws by using the theory of compensated compactness [23, 28]. Di
Perna obtained such a compactness framework for the viscosity method applied to

2

the homogeneous system corresponding to (1.13)—(1.14) for γ = 1 + (inte-

gers n ^ 2) [11]. And Chen generalized this compactness framework (such as

Theorem 2.6 below) in the case 1 < γ ^ f [4]. The crucial idea of the proof of

Theorem 2.6 is to show that a family of Young measures corresponding to

uniformly bound approximate solutions reduces to a family of Dirac measures.
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One achieves this goal by showing that a family of entropy dissipation measures
lies in a compact subset of the Sobolev space H^1 for every weak entropy pair. For
more details, see [4], [11], and [12]. This compactness framework has many
advantages:

(1) The difficulties caused by p = 0 can be overcome by virtue of the detailed
analysis of the weak entropy-entropy flux pair.

(2) The complicated analysis of wave interactions can be avoided.

For example, the piston problem discussed by Nishida and Smoller [24] is very
complicated, mainly as a result of the reflection of shock waves at the boundaries,
where the strength of the reflected shock is greater than that of the incoming shock.

Definition 1.1. For every T > 0, we define a weak solution o/(1.13)-(1.14) to be a pair
of bounded measurable functions v(x, t) = (p(x, ί), m(x, ή) satisfying the following
pair of integral identities:

T 1

J \{pφt + mφx)dxdt + j poφdx = 0, (1.15)
o o ί = o

τ x / (m2 \ \
\ \ (mφt + — + p(p))φx)dxdt
o o \ \ P / /

T 1 / 1 m \

+ J J [P$ Gx(p - D)dξ - -jψdxdt + J moψdx = 0, (1.16)
0 0 \ 0 τ / ί = 0

for all φ E C^°(/Γ) satisfying φ(x9 T) = Ofor 0 ^ x S 1 and ψ(091) = ψ(ί91) = Ofor
ί ^ O , where I τ = (0,1) x(0, Γ).

The following theorem is the main result of this paper.

Theorem 1.1. Suppose that the initial data (po> ^o) and the given function D(x) and
τ satisfy the conditions

\D(x)\ ^ M 3 , and 0 < τ 0 ^ τ.

for some positive constants M f (i = 1, 2, 3) and τ o ; am/ ί/zαί τ satisfies the uniform
Lίpschitz condition. Then, for 1 < 7 ^f, the initial-boundary value problem (1.13)—
(1.14) has a global weak solution {p(x, t),m(x, t)) satisfying the following estimates
and entropy condition:

0 g p S C, \m\ ̂  Cp a.Q.for a constant C > 0, and (1.17)

T 1

Ό& + <l(P>m)Ψχ) dxdt

T1 / l m \

j J i|m(p, m) p J Gx(p - D) rfξ - - )φ dxdt ^ 0 , (1.18)
00 \ 0 τ /

for all weak and convex entropy pairs (η, q)for (1.13)—(1.14) and for all nonnegative
smooth functions φ that have compact support in the region Iτ.

Moreover, the potential φ is given by (1.10).

The proof of this result mainly follows Chen [4], Ding et al [8, 9], and Di
Perna [11,12]. In Sect. 2 we introduce some basic results which are used in

0 0
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subsequent sections. A sequence of approximate solutions vh derived by the
Godunov scheme [17] is defined in Sect. 3. The L00 norm of approximate solutions
is estimated in Sect. 4. Although the principle of invariant regions cannot be
applied directly (since vh are not pure Riemann solutions), it is noted that the
approximate solutions cannot escape the Riemann invariant region by too much at
each time step. The uniform bound of υh is then obtained by using this fact and
a global property of the Riemann solutions. A compact embedding technique is
used in Sect. 5 to see that the sequence of entropy dissipation measures
*}{Vh)t + q(vh)x lies in a compact subset of ifioΛ Then we can obtain Theorem 5.6;
i.e., the framework of the approximate solutions. In Sect. 6 we use the result of [4]
to get a subsequence, still labeled vh9 such that vh(x, t) -> (p(x, t\ m(x, ή) a.e. We
then show that (p, m) is a physical weak solution; i.e., it satisfies (1.15)—(1.18).

Most of the important cases in the hydrodynamic model for semiconductor
devices, such as f < y ^ 3 in (1.4), the full one-dimensional hydrodynamic model,
and the higher dimensional model for semiconductor devices, are still open. We
believe that new methods must be developed to attack these nonlinear problems.

2. Preliminaries

In this section we first introduce some basic facts about the homogeneous system of
equations (1.13)—(1.14). For more details, see [8, 9], [18, 19], and [24, 26].

The homogeneous system corresponding to system of equations (1.13)—(1.14)
reads:

P, + mx = 0, (2.1)

p ( p ) ) = 0 . (2.2)

p Λ
For a smooth solution, (2.1)-{2.2) can be written

vt + Vf(v)υx = 0,

where υ = (p, m)τ,f{v) = \ m, f- — ) , and

0

_ m 2

The eigenvalues of (2.3) are

m a Λ m
p, 2 p°, (2.4)

P P

and the Riemann invariants are

m pθ m pθ

where θ = —-—.
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For the Riemann problem

I (2.1)-(2.2),

, m)| ί = 0 =

ί > 0 , xeR,

(ph mi), x < 0,

( pr, mr\ x > 0 ,

where pz, pr, ml5 and mr are constants satisfying 0 ^ p l9 pr,

(2.6)

< oo, there

are two distinct types of rarefaction waves and shock waves, called elementary
waves, which are labeled 1-rarefaction or 2-rarefaction waves and 1-shock or
2-shock waves, respectively.

Lemma 2.1. There exists a global weak solution of (2.6) which is piecewise smooth
function satisfying

w(x, t) = w(p(x, t), m(x, ή) ^ max {w(ph mά w(pr, mr)},

z(x, t) = z(p(x, t\ m(x, ί)) ^ min {z(ph m,)9 z(pr, mr)},

w(x, ί) - z(x, ί) ^ 0 .

It follows that the region A = {(p, m): w ^ w0, z ^ z0, w — z ^ 0} is an invari-
ant region for the Riemann problem (2.6). More precisely, if the Riemann data lies
in Λ, then the solution of (2.6) lies in Λ, too.

L e m m a 2.2. // {(p, m): a^x^b} czΛ, then

b 1 a \
\ pdx,- \mdx )EΛ .

Lemma 2.3. For the mixed problem

(2.1)-(2.2), ί>0,

x>0 ,

(2.7)

(2.8)

where (po,mo) and rax are constants, there exists a weak solution in the region
{(x, t): x ^ 0, t ^ 0} satisfying the following estimates

w(x, t) ^ max \ w(ρ0, mo\ -z(p o ,m o )>,

z(x, t) ̂  z(p0, Wo), and w(x, t) - z(x, i) ^ 0 .

The term — - — z0 is new to the mixed problem because of shock waves
Pi

reflecting off or coming out at the boundary x = 0. As in (2.8), we can solve the
following mixed problem in the region {(x, t): x ^ 1, t ^ 0}:

(2.1) - (2.2), t > 0, x < 1 ,

x < 1 ,

ί > 0 .

(2.9)
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The weak solution of (2.9) satisfies the following estimates:

z{x, t) ^ min \z(pθ9 m0), — - - w(p0, m0) > ,
I P2 J

w(x, t) g w(po> ̂ oX a n d w(x, t) — z(x> ί) ^ 0 .

Lemma 2.4. Suppose that (p(x, t), m(x, t)) is a solution of'(2.6) or (2.8). Γferc, the jump
strength of m(x, t) across an elementary wave can be dominated by that of p(x, t)
across the same elementary wave, i.e.,

across a shock wave: \mr — m{\ ^ C\pr — pt\,

across a rarefaction wave: \m — mt\ ^ C\p — pι\ ^ C\pr — pι\,

where C depends only on the bounds of p and \m\.

Lemma 2.5. For any ε > 0, there exist constants h > 0 and k > 0 swc/ί ί/iαf the
solution of (2.6) in the region {(x, ί): |x | < /i, 0 ^ ί < fe} satisfies

h

f |p(x, ί) - p(x, 0)1 ώc ^ CΛε, 0 ^ ί ^ fe , (2.10)
-h

where C depends only on the bounds of p and |m|, and the mesh lengths h and k satisfy

max sup |^(p,m) | < — .
£=1,2 L K

Definition 2.1. A pair of mappings yy: R 2 -> R and f̂: R 2 -> R is called an entropy-
entropy flux pair if it satisfies the following equation

(2.11)

Let ήl p, — ) = η(ρ9 m). If ή(0, u) = 0, then η is called a weak entropy.
V P/

Among all entropies, the most natural entropy is the mechanical energy

nM m) \ + ^ ^ \ P > (2.12)
2 p y(? — 1)

which plays a very important role in estimates for entropy dissipation measures. It
is easy to check that η* is a weak and strictly convex entropy.

The following compactness framework was established in [4, 8].

Theorem 2.6. Assume that approximate solutions vh(x, t) = (ph(x, t), mh(x, t)) of the
Cauchy problem (2.1)-(2.2) satisfy the following framework:

(1) 0 ;§ ph ^ C and \mh\ S Cph a.e./or a positive constant C.
(2) The sequence of entropy dissipation measures η(vh)t + q{vh)x is compact in

Hioc1 (Ω) for every weak entropy pair (η, q) and every open bounded set
ΩcR2 .

Then, for 1 < γ ^ f, there exists a convergent subsequence, still labeled vh, such that

(ph(x, t\ mh(x, ή) -* (p(x, ί), m(x, ή) a.e.

For the proof of Theorem 2.6, see [4].



B. Zhang

3. The Godunov Scheme

We choose the space mesh length h = —, where N is a positive integer. The time

mesh length k = k(h) will be chosen later so that the Courant-Friedrich-Levy
condition

msLx(s\ip\λi(υ)\)< —
i = l , 2 L K

(3.1)

holds for a given T > 0. We partition the interval [0,1] into cells, with the 7 t h cell
centered at Xj = jh, j = 1,. . . , N — 1. We now use the Godunov scheme to
construct a sequence of approximate solutions of (1.13)—(1.14). Namely, we solve
the Riemann problems (2.6) in the region Rj = {(x, ί):Xj-i S x < χj+±>
O ^ k }

X <

L, m? + 1 ) , x > Xj, j = 1,. . . , N - 1 ,

where

^ for j = 1, . . . , JV.

We also solve the mixed problems (2.8) and (2.9) for (p?, m?), mx = 0, and (p^,
m2 = 0, in regions Rj s {(̂ > ί): 0 ^ ^ < ^ . 0 ^ ί < /c} and Rh = {(x, t): xN-± S x
< 1,0 ^ ί < k}, respectively. Then we set

( x , t) = v h ( x , t) + V { υ h { x , t))t9 O g x ^ l , 0 ^

1 m

τ

(3-2)

where V{v) = {VM, V2(v)) = 0, p f Gx(p -
o

ϋ ϊ = - f c , 7 = 1 , . . . , Λ Γ . (3.3)

S u p p o s e t h a t we h a v e defined a p p r o x i m a t e s o l u t i o n s vh(x9 t)ϊor0^t< tt. W e
t h e n define

v h ( x , t) = v h ( x 9 1 ) + V ( υ h ( x , t))(t - t i \ h ^ t < ti + 1 , (3.4)

where vh(x91) are piecewise smooth functions defined as solutions of the Riemann
problems in the region R\+1 = {(x, t): Xj-± ^ x < Xj+±9 US-t < ί/+i}

(3.5)

1 (vU
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and as solutions of mixed problems in the two regions RQ and R^:

' (2.1)-(2.2), x > 0, t>ti9

(b) Ri< = {(x, t): xn-i ^ x < U U g t < ί i + 1} ,

x < 1, t>tn,

x< 1 ,

{mh\x=i=0.

Still, we can define the Godunov scheme

υ ι ; γ = \ j Όh{xy t i + 1 - 0 ) d x 9 l ^ j ^ N . (3.6)
^ Xj-ί

The approximate solutions vh = (ρh, mh) = (ph,mh) are well-defined, since
Ph ̂  0. We summarize the above process as follows:

vi+1=AhoRoEk(^υi)9 (3.7)

where Λh is the cell-averaging operator (3.6), Ek(x, υι) is the exact evolution
operator (3.5), and R is the reconstruction step (3.4).

For ti^t < ti+u we set

wft(x, t) = wh(x, t) + {} G^ψ^J - D] « - ̂ ±ϋ}( t - t |), (3.8)

- I)] « - ^z4(x, 0 - *(x, t) + {} G , [ ( ^ S f ^ ) - I)] « - ̂ } ( t - U), (3.9)

where wft and zh are Riemann invariants corresponding to the Riemann solu-
tions vh.

4. Uniform Bound for Approximate Solutions

To obtain uniform bound for the approximate solutions, we estimate wΛ(x, t) and
zh(x91) defined by (3.8) and (3.9). Notice that (3.8)—(3.9) involve nonlocal terms such
as JQ Gxphdξ. If we integrate (1.13) and use the initial and boundary data, we obtain
the following conservation of particles:

j p(x, t)dx = ] po(x) dx9 for t ^ 0 . (4.1)
0 0

As in (4.1), the approximate solutions ρh(x, t) = ph(x, t) also satisfy this
conservation principle.
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Lemma 4.1. Let vh = (p h , mh) be the approximate solutions as defined above. Then,

1 1

J β h ( x , t i + 1 ) d x = $ p 0 ( x ) d x , O ^ i ^ n - 1 , (4.2)
0 0

where the positive integer n is defined later.

Proof. In the region Rt = {(x, t): 0 ^ x ^ 1, tx ^ t < ti + 1}, the Riemann solutions
v_h = (£Λ> Wh) consist of piecewise smooth functions. Using the Green's formula, we
have

} p,(x, ti + 1 -0)dx + 'f1 Σ M P * ] ~ fefc]} Λ = ί PH(X, k + 0)dx, (4.3)
0 ί f 0

where the sumation £ is taken over all the shock waves in {ph^h) a * a fixed
£ between tt and ίf +! σ is the propagating speed of the shock wave; [ pΛ] and [mh ]
denote the jump of ph and mh across the shock wave from left to right7respectively.
That is, if S = (x(t)~t) denotes a shock in (ph, mh\ then

[P*] = Ph(x(t) + 0 , ί ) - P*(x(ί) - 0,ί),

[m*] = mh(x(t) + 0,ί) - mΛ(x(ί) - 0,0

By the Rankine-Hugoniot condition, we have

It follows from (4.3) and the definition of ρh that

1

i + i)dx = $ ρh(x9ti) ,

and (4.2) holds. |

Theorem 4.2. Suppose that the initial data(pQ(x), mo(x)) and the given function D(x)
satisfy the following conditions:

Then, the approximate solutions (ph, mh) derived by the Godunov scheme are uni-
formly bounded in the region Iτ = {(x,t): 0 ^ x ^ l , 0 ^ ί ^ T}; that is, there is
a constant C(T)>0 such that

Proof Assume that 0 < k < 2τ 0 . For tt ^ t < ti+1 (i^O integers), the Riemann
invariant properties and Lemma 4.1 imply that

/ t — tλ Γ1

wh{x,t)= wh(x,t)( 1 — - ) + $Gx{ph-
\ z τ / Lo
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**(*, t) = zh(x, t) (l - ί ^ j + [ j GX(PH ~ D)dξ - ^ ^ ] ( ί - U)

^ inf zfc(x,ί, + 0)f 1 - t-^\ - supwh(x9tt + 0 ) ^ - Mk .

Let αf = max {sup* wΛ(x, tf + 0), — infx zΛ(x, tt -f 0)}. Then

Γ ]
max < sup vyή(x, ti+1 — 0), — inf zh(x, ti + λ — 0) > ̂  αf 4- M/c .

It follows that

α i + 1 ^ αf + M/c, and (4.6)

αf ^ α0 + MΓ, 0 ̂  i ^ n, (4.7)

where α0 = max {supx w0 (x), — infx zo(x)}. Then,

wh(x, ί) g α0 + MΓ, zΛ(x, ί) ̂  - α0 - MΓ, and

wfc(x, ί) - zh(x, ί) ̂  0 .

Then there is a constant C(Γ) > 0 independent of h and fe such that

OSPhixή^C, \mh{x9t)\£Cph(x9t). I

Now, we can choose the time mesh length k = k(h). Let

= max < sup
i=l,2 U

t h e n we t a k e

k = —, w h e r e n = m a x <! I ̂ - 1 + 1 , 1 T 1 -

For this fe, the CFL condition and 0 < fe < 2τ0 hold.

5. Compactness of Entropy Dissipation Measures

In this section, we estimate the //^-compactness of entropy dissipation measures
*Kϋ/i)ί + q{vh)x associated with weak entropy pair (η, q) and approximate solutions
of the Godunov scheme. To achieve this goal, we follow the technique used in [8].

First, we estimate the mechanical entropy pair which dominates all other weak
entropy pairs. Second, by duality and the Sobolev interpolation inequality, we
show the W~1>p compactness and estimate the W~1>r bound of entropy dissipation
measures for some l < p ^ 2 < r < oo, instead of H{~J compactness. For simpli-
city, we drop the subindex h of approximate solutions vh and the Riemann solutions
vh in the following arguments.

Lemma 5.1. Let υ be the approximate solution defined in Sect. 3. Then, there is
a positive constant C independent of h such that

Σ j \v(x, t, - 0) - v)\2 dxίC. (5.1)
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Proof. Consider the mechanical entropy pair

l m 2 / lm 3 1 .

For £; ^ t ^ t ί + 1 , Green's formula implies that

Σ ί inΛv—)-nM)dχ + UΪΣ{σln*\ -[«*]}* = o, (5.2)

where u — = y(x, ίί + 1 — 0), the summation Σ a n d notation σ are similar to those
of Lemma 4.1, and

0,0) ~ f*te(*W ~ 0,0),

o,θ)-«•(£(*(*)-0,0), k^

Summing over all i in (5.2) gives:

= J(»/»(2oW) - »ί (£(x» T - 0)))dx , (5.3)
0

where J = f*̂  and v±(x, t{ — 0). From the uniform bound of v, the right side of
(5.3) is dominated by a constant C > 0 independent of h; i.e.,

Σίfo te1) - nM)) dx + J Σ { ^ J - Ĉ *]} Λ ^ c . (5.4)
i,j 0

On the cell (x/_i, x7), we decompose the first term of (5.4) into two parts:

Xj Xj

where t;- = v(x, ίf — 0). Notice that 4̂j and Kj are caused by the cell-averaging
operator and reconstruction step, respectively.

For A), we take the Taylor expansion for η*(v-) to get

ri*(vi) = η*{υ)) + Vη*(v))(υi - υ)) + ±(υi - v))τV2 η^jHυ1- - vi), (5.5)

where ξ) is a mean value. Integrating (5.5) on the cell and using the fact that υ) is the
average value of v- on this cell, we have

A) = \ ? (V- - v))τV2η^ξ)) (υ< - v))dx . (5.6)
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For R),WQ have

xj Γ 1 Ί
Rί. = J UVη^{vι- + θ(v^-vi-))dθ{v^-vi-)\

*j-iLθ J
χj Γ 1

= - k ί ί Vn*(υi + # ( ^ - ^))<*0 κ(t
χ j _ i L o

From the uniform bound of approximate solutions, we get

\R)\ <£ Chk, where C is independent of h and fc . (5.7)

Summing over all cells, by (5.4), (5.6), and (5.7), we have

υ))τ V2- υ))τ V2 >/*(#)(t i - v))dx + 2j ]£>[>/*] - foj} Λ ̂  C . (5.8)

Since ( ^ , ̂ ) is a convex entropy pair, the point entropy σ[γ]%~] — \_q*~] ^ 0
holds across the shock waves [8]. It follows from (5.8) that

Ϊ Σ K » / ] - [ « , ] } * ^ C , (5.9)
0

Σ J (vι- - vLfV2 η^ξ'j) (t>! - »J)ώc ^ C . (5.10)

In particular, η# is strictly convex; i.e., there is a constant α > 0 such that
vτV2η* v ̂  φ\2. It follows from (5.10) that (5.1) is true. |

The proof of the following three lemmas can be found in [8] and [11].

Lemma 5.2 [11]. Assume that 0 ̂  p ̂  C, \m\ ̂  Cp. Then, there is a constant C > 0
such that

C9 (5.11)

ηΌ\£CvτV2η*υ9 (5.12)

/or every weak entropy pair (η, q).

Lemma 5.3 [8]. For every weak entropy pair (η, q\ there is a constant C > 0 such
that

kM-Ml^c{σ[y-[α- (5.13)

Lemma 5.4 [8]. Let Ω c IRm be a bounded open set. Then, (compact set of W~liP (Ω))
n (bounded set of W~ltr(Ω) cz (compact set of H^ (Ω)) for some constants p and

r satisfying 1 < p ̂ 2 <r < 00.

Now, we can prove that the sequence of entropy dissipation measures
η(v)t + q(v)x is compact in H^J .

Theorem 5.5. Assume that the conditions of Theorem 4.2 are satisfied. Then,

the set {η(v)t + q(v)x} of measures is compact in H^^Ω) , (5.14)

for every weak entropy pair (η, q) and every open subset Ω c ϊτ.
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Proof. For any φ eCξ(Ω), we consider

«#r + q(v)φx)dxdt = A(φ) + R(φ) + B(φ) + Σ(φ) + S(φ), (5.15)

where

Λ(ψ) = tt)dx ,

= Σ JfofcO

(5.16)

(5.17)

B(Φ) = Jίη(v(x, T))φ(x, T) - η(v(x, 0))φ(x, 0)] dx ,
0

Σ(Φ) = ), t)dt,
0

}S(Φ) = ί } [fo(») - »?(»)) ̂ ( + (q(v) - q(v))φx2 dx dt.
0 0

(5.18)

(5.19)

(5.20)

Observe that the entropy dissipation measures η(v)t + q(v)x are mainly sup-
ported on the shock of the Riemann solutions v in the region Ix(ti,ti+1),
0 ^ ί ^ n — 1, and on the interfacial lines / x { ί j , 1 ^ i ^ n — 1. The term Γ(^) is
caused by the shocks in v, S(φ) by the reconstruction step; Λ(φ) and Λ(^) are
caused by the cell-averaging operator and reconstruction step on all discrete time
steps ίi? respectively. In the following, we estimate them one by one.

(a) We decompose A(φ) into two parts:

where φ'j
For A

= AΛΦ) + A2(ψ),

= φ{xj, ίj) and φ' = φ(x, tt).
tiφ), using (5.5)-(5.6), (5.10), and (5.12), we have

(5.21)

Σ ^j f (o1 - »j)τ

ύ C || φ II oo Σ J (ι4 - oj)τ

(5.22)

For Λ2(φ% using Holder's inequality, (5.1), and (5.11), we have

ί,j
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SCh«--\\ψ\\c«, (5.23)

where \ < a < 1.
(b) We estimate the term R(φ), which is a result of the reconstruction step, by

using (5.11) and the uniform bound of v, so that

ΣM^CIIiAlloo. (5.24)

(c) It is easy to see that

^ Halloo J(|f?(l?(^y)l + | t | ( 5 ( x , 0 ) | ) d x ^ C | | ^ | | 0 0 . (5.25)
o

(d) It follows from (5.9) and (5.13) that

0

0

(e) It follows from (5.11) that

(5.26)

+ \\Vq\\j]} (\ΨA + \ψx\)dxdt
0 0

ί (5.27)

Since C Q 0 0 ^ ) is dense in H^(Ω), it follows that

l | S | | H ^ ( β ) ^ Ch^O as ft->0.

Thus,

S is compact in H^(Ω) . (5.28)

Using the above estimates, we can apply Lemma 5.4 to get the compactness in
H^{Ω). First, by (5.22) and (5.24)-(5.26), we have

M 1 + R + B + Σ | | ( C o ) . ^ C .

By the embedding theorem, (C0(β))* c; W~lfPo is compact for 1 < p0 < 2. Thus,

Ax + K + B + Σ is compact in FΓ~1>A)(Ω) . (5.29)
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2
By the Sobolev theorem, W^Pί(Ω) c Cξ(Ω)9 for 0 < /? < 1 , and the estimate

Pi
(5.23), we have

\Λ2(ψ)\ ύ Ch«--\\ψ\\WuPι(Ω) for Pl

It follows from duality that

2
\\A2\\w-uP2iΩ)S Ch*-*^>0 as /z^O for 1 < p2 < - .

Then,

A2 is compact in W~Up*{Ω). (5.30)

Combining (5.29) and (5.30), we see that

A + R + B + Σ = A1+A2 + R + B + Σ is compact in WUp{Ω), (5.31)

where 1 < p < min(po> Pi)

Next, from the uniform bound of v9 we have the following fact:

η(υ)t + q{υ)x -Sis bounded in W'Ua>(Ω) .

Since Ω is bounded, the above statement implies that

η(υ\ + q(v)x -Sis bounded in W~lr{Ω\ for r > 1 .

That is,

A + R + B + Σ is bounded in W'Ur(Ω), r > 1 . (5.32)

It follows from (5.31)-(5.32) and Lemma 5.4 that

A + R + B + Σ is compact in H^iΩ) . (5.33)

That is,

η{v)t + q(υ)x - S is compact in H^iΩ) . (5.34)

By (5.28) and (5.34), we have (5.14). |

Combining Theorem 4.2 and Theorem 5.5, we have the following framework of
the approximate solutions υh defined in Sect. 3.

Theorem 5.6. Suppose that the initial data (po(x)9 mo(x)) and given functions D(x)
and τ satisfy the following conditions:

Ml9 po(x)φ0, and\mo(x)\^M2po(x), (5.35)

\D(x)\£M39 0 < τ o ^ τ . (5.36)

Then, the approximate solutions vh satisfy the following:

(1) There is a constant C{T) > 0 such that

0gp»(x,ί)^C, \mh(x,ή\^Cph(x,t\ (x9t)eϊτ. (5.37)

(2) For every domain Ω a Γτ and every weak entropy pair (η9 q)9 the sequence of
entropy dissipation measures rj(vh)t + q(vh)x is compact in H^(Ω).
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6. Convergence and the Existence Theorem

In this section, we establish the convergence of a sequence of approximate solutions
vh derived by the Godunov scheme and prove the existence of a physical weak
solution of the one-dimensional hydrodynamic model (1.1)—(1.3).

For the given function τ = τ(p, m), we assume that τ satisfies the uniform
Lipschitz condition, namely,

| τ ( p 2 ? m 2 ) - τ ( p 1 , m 1 ) | ^L(\p2 — Pi | + \m2 - m j ) , (6.1)

for a constant L > 0 independent of (p, m). Now, we can state and show the main
theorem of this paper.

Theorem 6.1. Suppose that the conditions of Theorem 5.6 are satisfied. Then,

(1) For 1 < γ :§ f, the sequence of the approximate solutions vh = (ph, mh) has
a convergent subsequence, still labeled vh, such that

(ph(x, t\ mh(x, ή) -»(p(x, ί), m(x, ή) a.e. (6.2)

and there is a constant C(T) > 0 such that

0 ^ p(x,1) ^ C, \m(x, t)\ ^ Cp(x, t) a.e. (6.3)

(2) For τ satisfying (6.1), the bounded measurable function pair (p(x, ί), m(x, ί)) is
a physical weak solution o/(1.13)-(1.14); i.e., (p, m) satisfies (1.15)—(1.16) and (1.18).

Proof (1) From Theorem 5.6 and the result of [4], we obtain a convergent
subsequence, still labeled vh, such that

, t),mΛ(x, £)) -̂  (p(x, ί)> m fe 0) a e

Clearly, 0 ^ p(x, ί) ^ C, |m(x, ί)l ^ Cp(x, ί) a.e.
(2) (a) For every function φeC^ilj) satisfying ψ(x,T) = 0, and

ιj/(0, t) = ψ(l, t) = 0, we consider the following integral identity:

$$(phψt + mhψx)dxdt+ J phψdx = A{φ) + R(φ\ (6.4)
0 0 ί = 0

where

SW*' ( 6 5 )

= Σ ΊX ί K - mh)φxdxdt. (6.6)
hj t,

We claim that A(φ), R(φ) -* 0, as h -> 0. Using Hόlders's inequality, (5.1), and
the fact that p) is the average value of ph on the cell (x, - i , x̂  ), we have

\A(φ)\ =

(6.7)
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It follows from the uniform bound for vh that

R{φ) = Σ ί SV2{vh)ψx(t-tt)dxdt

]\

J phφdx = 0.
ί = 0

^k\\V2(vh)\\x]\\ψx\dxdt
0 0

^ Ch\\ψ\\ci->0, a s / i - > 0 .

Then, (6.7)-(6.8) imply that
T 1

lim $$(phφt

h->0 0 0

Applying the dominated convergence theorem to (6.9), we have
T 1

$ $(pφt + mφx)dxdt + J po{x)\l/dx = 0.
0 0 ί = 0

(b) For every function φ e CQ1 (/T) satisfying ^(0, t) = ^(1, t) = 0 for t ^ 0 and
x, Γ) = 0 for 0 ^ x ^ 1, we consider the following integral identity:

\](mhφt+f2{υh)φx+V2{Όh)φ)dxdt+ J mhφdx = A(ψ) + R(ψ) 9 (6.11)

(6.8)

(6.9)

(6.10)

0 0
2 y

where /2(ι;) = 1 ,
p y

ί = 0

p y

Λ(Φ) = V2{vh)φdxdt, (6.12)

and

+ (V2(vh)-V2(vh))ψldxdt, (6.13)

where ί^f-ί:;^.
We estimate JR(^) first. By (6.1), the uniform bound for vh9 and the inequality

\mh-mh\S\ V2(υh)\k, we have

\R(φ)\ ^ * Σ T ί
\τ0 τ0

a s / z ^ O ,

where ξj is the mean value of vh on the region (x - i , x7) x (ti9 ti+1).
To estimate A(φ)9 we decompose 4̂(ι/r) into three parts:

(6.14)

,j H

lj t,

- Φ'j)dxdt\

2») - V2(v{))φijdxdt

A2(Ψ) (6.15)
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For Λ1(φ) and Λ2(φ\ we have

19

and

\ΛΛΦ)\ =Σ J (fc K 2 (4

+ ( Σ ί K - m J) 2 dx ) (by Lemma 5.1)

\\φ\\Cί->0 (6.16)

-*0, as/z^ O

By (6.1) and Lemmas 2.4 and 2.5, we have

(6.17)

- ή \ d x d t ( b y L e m m a 2 4)

ij U

ί ε h d t (by Lemma 2.5)

where ε > 0 is an arbitrarily small constant.
It follows from (6.14)-(6.18) that

J Up$Gx{p-D)dξ--)ψτ)ψdxdt+ f
0 O\ 0 τ J J t = 0

(6.18)

lim j J (mhφt +f2(vh)ψx + V2(υh)ψ) dxdt+ J mhφdx = 0 . (6.19)
HOOO ί = O

Using the dominated convergence theorem, we have

= 0 . (6.20)

(c) For every weak and convex entropy pair (η, q) and every nonnegative
smooth function φ that has compact support in region IT, we consider the
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following integral identity:

ί ί (η(vh)φt + q(vh)φx)dxdt = A(φ) + R(φ) + Σ(φ) + S(^) , (6.21)
o o

where Λ(φ), R(φ\ Σ{φ\ and S(φ) are similar to those of (5.15).
Since (η, q) is a convex entropy pair and φ ^ 0, we have

Σ 0 ) ^ O , (6.22)

Σ ί (»»(»*)-»ί(»j

, 5 < « < 1 (6-23)

As in (5.27), we have

S ( ψ ) ^ -Ch\\ψ\\H,. (6.24)

Using the fact that ρh(x, t) = p(x, t) and

m»(x, ί) = mh{x, t) + V2(vh{X>

for ί;-! ^ t < th we obtain

Then,

ιj \ o

^ _ ch - Σ fe} ( J njv\ + θ(v{ - »t)) dθ) K2(»i)^' ix . (6.25)

It follows from (6.21)-(6.25) that

t + q(vh)φx)dxdt+ Σ k(
0 0 i = 1 0 \ 0

(6.26)
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Letting h -+ 0 in (6.26) and using the fact that vh -> v a.e., we obtain the following

entropy condition:

ί ί (Φ)Φ< + q(v)φx)dxdt + J } ηm(υ) V2(υ)φdxdt ^ 0 . (6.27)
0 0 0 0

This completes the proof of the main result. |

Remark. Since 0 ^ ph(x91) ^ C, \mh(x, t)\ ^ Cph(x, ί), and (pΛ(x, ί),mΛ(x, £)) -•

(p(x, t))9m(x,t)) a.e., we can define u by κ(x, f) = a.e. (κ(x, t) = 0, if

p(x5 t)
p(x, 0 = 0). Then, (p, w) satisfies the constraints that 0 ^ ρ(x, ί) g C, \u{x, t)\ ^ C
a.e. and the following pair of integral identities and entropy condition:

(6.28)
T 1

0 0

T 1

ί ί (P#t +
0 0

+ ϊ ί ( ί (

0 0 \ 0
π
J j (η(p, pu)φt

0 0

T 1

1 tiΛ III ~1

(/>U2 +

+ ^(p?

/

f

" J P
ί = 0

P(P))\

D)dξ-

pu)φx

1

— I pφdxdt

)dxdt

(6.29)

]\ηpu(p,pu)(]Gx(p-D)dξ- -) pψdx dt^O, (6.30)
0 0 \0 τ J

where φ and ^ are the same as in Definition 1.1 and Theorem 1.1, respectively.
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