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Abstract. Braided groups and braided matrices are novel algebraic structures living
in braided or quasitensor categories. As such they are a generalization of super-groups
and super-matrices to the case of braid statistics. Here we construct braided group
versions of the standard quantum groups Uq(g). They have the same FRT generators

l^ but a matrix braided-coproduct ΔL = L0L, where L — l+Sl~, and are self-dual.
As an application, the degenerate Sklyanin algebra is shown to be isomorphic to the
braided matrices BMq(2}\ it is a braided-commutative bialgebra in a braided category.
As a second application, we show that the quantum double D(Uq(sl2)) (also known
as the "quantum Lorentz group") is the semidirect product as an algebra of two copies
of Uq(sl2), and also a semidirect product as a coalgebra if we use braid statistics. We
find various results of this type for the doubles of general quantum groups and their
semi-classical limits as doubles of the Lie algebras of Poisson Lie groups.

1. Introduction

Historically, the existence of particles with bose and fermi statistics led physicists
naturally to the study of super-algebras and super-groups. In a similar way, the
existence in low-dimensional quantum field theory of particles with braid statistics
[1,2] surely motivates the study of novel braided algebraic structures. The formulation
and study of precisely such new algebraic structures has been initiated in [3-10] and
[11-14] under the heading "braided groups." They precisely generalize results about
super-algebras and super-groups to a situation in which the super-transposition map
Ψ(b (8) c) = (-l)'6"clc ® b on homogeneous elements, is replaced by a braided-
transposition or braiding Ψ obeying the Yang-Baxter equations. This is formulated
mathematically by means of the theory of braided or quasitensor categories and it is
in such a category that a braided group lives (just as a super-algebra or super-Lie
algebra lives in the category of super-spaces). Among the general results is that in
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every situation where there is a quasitensor category W (such as the super-selection
structure in low-dimension quantum theory) there is to be found a braided group
Aut(^) [11]. So such objects are surely relevant to physics [4,8].

The motivation for this theory so far is however, of a very general nature. Here
we develop two very specific applications of the general theory to the structure of
two algebras of independent interest in physics, namely to the degenerate Sklyanin
algebra and to the quantum Lorentz group, or more generally to the quantum dobule
of a general quantum group. We will see that these algebraic structures are naturally
endowed with braid statistics and that this braiding enables us to obtain new results
about them. We also obtain in the semiclassical limit a new result about Poisson Lie
algebras.

The precise definition of a braided group is recalled in the Preliminaries below.
The first step is to formulate precisely what we mean by braid statistics using the
theory of quasitensor categories. This is a collection of objects closed under a tensor
product 0 and equipped with isomorphisms ΦVW:V <8>W —» W ® V for any two
objects V and W. These play the role of the usual transposition for vector spaces
or the super-transposition for super-spaces mentioned above. The second idea is to
remember that instead of working with groups or Lie algebras we can work with their
corresponding cocommutative group or enveloping Hopf algebras. The same is known
in the super-case where we can work with super-cocommutative Hopf algebras rather
than with the super-group or super-Lie algebra itself. Likewise in the braided case
we work directly with braided-cocommutative Hopf algebras living in a quasitensor
category. We call such objects braided groups of enveloping algebra type. There also
appears to be a general theory of braided Lie algebras themselves underlying these
braided groups (we make some remarks about this in Sect. 2).

Because we are working with Hopf algebras (albeit living in a quasitensor
category), the mathematical technology here is for the most part already familiar
to physicists in the context of quantum groups. Thus, we have an algebra B and
a braided-coproduct as a coassociative homomorphism A\B —> B(&B. The crucial
difference is that B&B is not an ordinary tensor product but a braided one. It coincides
with B 0 B as an object but its two subalgebras B do not commute, enjoying instead
an exchange rule given by Ψ. Thus

(α <g> b) (c <g> d) = aΨ(b 0 c)d,

where ΦB B:B ® B —* B ® B is a Yang-Baxter operator. This is clearly a
generalization of the super-tensor product of super-algebras and shows the use of
Ψ as a kind of braid statistics. The braided tensor product construction here is very
natural from the point of view of algebras living in a quasitensor category. Let us
note that such quasitensor categories are closely related to the theory of link invariants
[15,16] and indeed many of the abstract braided group computations and proofs are
best done by means of drawing braids and tangles, see [8, 12, 13]. For example,
the proof of associativity of B®B (or more generally B^C for two algebras in the
category) depends on the functoriality and hexagon identities for Ψ and is most easily
done by such diagrammatic means. This is one of the novel features of these new
algebraic structures.

Among the general results in [4,12] is that every quantum group (H^.^B) (by
this we mean an ordinary Hopf algebra equipped with a quasitriangular structure or
"universal β-matrix" [17], such as the Uq(g) of Drinfeld and Jimbo [17,18]) can
be transmuted in a canonical way into a braided group. Only the coalgebra need be
changed and \P is obtained in a standard way from ̂  in the adjoint representation.
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Likewise every dual quantum group (A, M} [by which we mean a dual-quasitriangular
Hopf algebra such as the quantum function algebra SLq(2)] can be transmuted to
a braided-group of function algebra type. This is braided-commutative in a certain
sense (rather than braided-cocommutative as above). By means of these transmutation
processes we can obviously formulate all questions about quantum groups in terms of
their associated braided groups. In brief, braided groups generalize both super groups
and (via transmutation) quantum groups.

We begin in Sect. 2 by computing the braided groups BUq(g) of enveloping algebra
type associated to the familiar quantum groups Uq(g). They turn out to have the

same generators l^ of Uq(g) in FRT form [19] but a new braided-coproduct. Writing

L = l+sl~, the braided-coproduct comes out as the matrix one ΔL = Lcg)L. Here s is
the antipode for the quantum group. Exactly this combination of generators L = l+sl~
is well-known in certain contexts [20-22] but until now the obvious matrix coalgebra
ΔL — L(§)L has had no role [the usual coproduct of Uq(g) is not so simple in terms
of L]. We see now that in the braided setting these generators are very natural. Our
matrix braided-coproduct can be used in all the same ways as the usual coproduct
provided only that one remembers always to work in the quasitensor category (by
using the relevant Φ in place of any usual transpositions).

Essential in this computation is the fact that these quantum groups Uq(g) are
factorizable in the sense [23] that they have a non-degenerate "quantum Killing form"
Q = J^21J^12. We also note, perhaps surprisingly, that the corresponding braided
groups are self-dual: the BUq(g) are isomorphic via Q to the corresponding braided
groups of function algebra type already computed in [6] from an .R-matrix. This is a
purely quantum phenomenon in that it holds only for generic q φ 1 and certain roots
of unity. It has important consequences, some of which are already known in other
contexts. For example, it means that the braided versions of the familiar quantum
groups are both braided-cocommutative and braided-commutative and indeed self-
dual, so more like En than anything else [24,25]. Related to this, though we do not
describe an abstract notion of braided Lie algebras, we note that the generators L of
BUq(g) do enjoy a kind of Lie bracket (which we compute) based on the quantum
adjoint action and obeying some Lie-algebra like identities.

Our first main application is in Sect. 3 where we study the degenerate Sklyanin
algebra. The Sklyanin algebra was introduced in [26] as a way to generate represen-
tations of a certain bialgebra (by which we mean a Hopf algebra without antipode)
related to the 8-vertex model. Apart from that, it has remarkable mathematical prop-
erties (for example, the same Poincare series as the commutative ring of polynomials
in 4 variables [27]) and is related to the theory of elliptic curves. It has three parame-
ters governed by one constraint. The degenerate case in which one of the parameters
vanishes has been of fundamental importance in the development of quantum groups
because a quotient of it led to the quantum group Uq(sl2). Many authors have won-
dered accordingly if the Skylanin algebra is also a quantum group or a bialgebra. So
far this has defied all attempts even in the degenerate case: the Skylanin algebra does
not appear to be any kind of usual quantum group or bialgebra. We show that the
degenerate Sklyanin algebra is, however, a bialgebra living in a quasitensor category.
It is in fact isomorphic to the braided matrices BMq(Ί) introduced in [6,7] with
braided-coproduct again in matrix form. This means that it is indeed some kind of
group-like object in the sense that we can tensor product its (braided) representations,
act by it on algebras etc., just as we can for any group or quantum group. More-
over, the quotienting procedure to obtain the algebra of £/g(s£2) from the degenerate
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Sklyanin algebra is understood now as setting equal to one the braided determinant
of the braided-matrix generator.

Our second main application is in Sect. 4 where we study the quantum double of
a quantum group, for example the quantum double of Uq(sl2). The quantum double
D(H) is a general construction for obtaining a new quantum group from any Hopf
algebra H [17]. It is built on the linear space H 0 H* with a doubly-twisted product
(here H* is dual to H). The case when H is quasitriangular was studied explicitly by
the author in [28] and we shall build on the results there concerning the semidirect
product structure of D(H) in this case. The quantum double in this case, particularly
D(Uq(g)) is of considerable interest in physics. One of the reasons for interest, which
we will be able to illuminate, is the idea in [29] that such a double should be regarded
as a kind of complexification of the quantum group Uq(g). For example, D(Uq(sl2))
should be regarded as (by definition) the quantum enveloping algebra of the Lorentz
group so(l. 3). [29] obtained some arguments for this in the dual (7*-algebra context
of matrix pseudogroups, but some puzzles remain regarding such an interpretation. In
particular, the quantum double is a priori built on the tensor product of a quantum
group of enveloping algebra type and one of function algebra type (dual to the first).
So D(U ( s l 2 ) ) does not look at first like two copies of Uq(sl2). By means of results
in Sect. 2 and the theory of braided groups we show that in fact D(Uq(g)) is indeed
generated as an algebra by two copies of Uq(g), with certain cross relations: it is a
semidirect product of one copy acting on the other by the quantum adjoint action

D(Uq(g)) = Uq(g)M * Uq(g)

as an algebra. Explicitly, if /± are the FRT generators of one copy and, say m± of
the other then the cross relations are

where M = πι+ sm . The notation here is the standard one for matrix generators and
R is the appropriate ^-matrix for the quantum .group. This gives a very simple matrix
description of the algebra of D(Uq(g)). Moreover, we show that the coalgebra of the
quantum double in our description also has a semidirect coproduct form, namely

Δΐ^ = ̂  0^, ΔM =

Here JB = Σ J?(1) 0J^(2) lives in the tensor square of the copy of Uq(g) generated by

l^. Note here the use of the braided-coproduct ΔM = M®M. These results about
the structure of the quantum double are obtained in Corollary 4.3 as the assertion that

D(Uq(g)) - BUq(g) x Uq(g)

as an algebra and coalgebra. This also implies that the dual of the quantum double is
also isomorphic to a semidirect product, a fact which is far from evident in [29]. In
general, such a semidirect product structure for the quantum double has far reaching
consequences. For example its representation theory can be analysed by a Hopf algebra
version of Mackey's construction for semidirect products. It is also relevant to recent
approaches to the quantum differential calculus on quantum groups. Let us note that
the quantum double has also been studied in [30,23] among other places.

Here we concentrate on illuminating the semidirect product result by computing
its semiclassical version. This is also to be found in Sect. 4. The semiclassical notion
of a quantum group is a quasitriangular Lie bialgebra (g, r) as introduced by Drinfeld
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[31]. here g is a Lie algebra and r G g®g obeys the Classical Yang-Baxter equations.
The corresponding Lie group has a compatible Poisson bracket obtained from r (it
is a Poisson Lie group). In some sense, Uq(g) is a "quantization" of such a ( g , r ) .
There is a classical double construction D(g) also introduced by Drinfeld [31] built on
g θ #* with a doubly-twisted Lie bracket. For the standard Drinfeld- Jimbo r-matrix it
is known that #* is a solvable Lie algebra (hence quite different from g) while D(g)
has a real form isomorphic to the complexification gc and g, #* are components in
its Iwasawa decomposition. Factorizability of Uq(g) corresponds at the semiclassical

level to the linear isomorphism g* — > g provided by the Killing form when g is
semisimple. Our semidirect product theorem for the quantum double now becomes

D(g) = g χ g

whenever g is a quasitriangular Lie bialgebra with non-degenerate symmetric part of
r. This result is obtained in Theorem 4.4 and is related to the Iwasawa decomposition
of gc in Corollary 4.5. Thus, at least at the semiclassical level our semidirect product
result is compatible with the view of D(g) as complexification of g.

This completes our outline of the main results of the paper. For completeness we
also include some related results about the quantum double in relation to braided
statistics. Firstly, one can replace the second U (g) also by its braided version: we
show that the semidirect product BUq(g) xi BUq(g) is an example of a quantum
braided group (i.e. a quasitriangular Hopf algebra living a quasitensor category). As a
coalgebra it is now a braided-tensor coproduct as explained in Corollary 4.7. Finally,
because D(H) is a quantum group, it too has its own associated braided group BD(H).
We compute this in the Appendix, with emphasis on the simplest case where H = CG
the group algebra of a finite group. The importance of this structure in physics is less
well-established but it can be expected to play a role in Chern-Simons theories with
finite gauge group as in [32] or in theories exhibiting non-Abelian anyon statistics. We
also give a braided interpretation of an old theorem of Radford [33] to the effect that if

HI î H is any Hopf algebra projection then Hl = B xi H, where B is a Hopf algebra
living [like BD(H) above] in the quasitensor category of £>(/0-representations. This
kind of Hopf algebra projection arises for certain quantum homogneneous spaces.

A sequel to this paper is in [38] where we use the main result of Sect. 4 to give
an interpretation of the quantum double D(H) as deformed quantum mechanics. The
same theorem also allows one to interpret the quantum double as a quantum group
principal frame bundle as developed elsewhere with T. Brzeziήski. A third sequel
develops the notion of braided Lie algebra from Sect. 2.

Preliminaries. Braided monoidal or quasitensor categories have been formally
introduced into category theory in [34]. A quasitensor category means for us
(£f, 0,1, Φ, $9, where W is a category equipped with a monoidal product ® and
identity object 1 (with some associated maps) and functorial associativity isomor-
phisms ΦV^Z\V (g) (W ® Z) -* (V 0 W) <g) Z for any three objects V,W,Z,

obeying Maclane's pentagon identity [so (2P, ®,1, Φ) is a monoidal category]. In ad-
dition for a quasitensor category we need functorial quasi- symmetry isomorphisms
ΨVW:V ®W — » W ®V obeying two hexagon identities. If we omit Φ (it will be
trivial in the examples of interest here) then the hexagons take the form

(1)
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One can deduce that Φvι = id = Ψιv for any V. If ΨVιW = YWV for a11 ^ W

(\p2 — id) then one of the hexagons is superfluous and we have an ordinary symmetric
monoidal or tensor category as in [35]. In general Φv^w^^l

v are distinct and
commonly represented as distinct braid crossings connecting V ® W to W 0 V. The
coherence theorem for quasitensor categories says that if a sequence of the Φ,Ψ~l

written in this way correspond to the same braid then they compose to the same map.
The quasisymmetry Ψ can be called a "braiding" or "braided-transposition" for this
reason. Functoriality of Ψ asserts explicitly that Ψ commutes with morphisms in the
sense

)oΦVW, Vφ:W -* Z (2)

on one input and similarly on the other input. In the diagrammatic notation,
functoriality for $r\]£r~l asserts that any morphisms between objects commute in the
sense that they can be pulled through braid crossings. Here a typical morphism with
n inputs and m outputs is represented as an n + m-vertex. We draw all morphisms
pointing downwards.

The idea of an algebra in a quasitensor category (indeed, in any monoidal one)
is just the obvious one: it is an object B in the category and morphisms ψ.l_ — > B,
_'.B<&B — » B obeying the usual axiomns (as diagrams) for associativity and unity. We
use the term "algebra" a little loosely here, however in our examples, all constructions
will indeed be /c-linear over a field or ring fc. Of crucial importance for the theory
of braided groups is that if B,C are two algebras in a quasitensor category then one
can define a new algebra, which we call the braided tensor product algebra B(&C
also living in the category. As an object it consists of B ® C equipped now with the
algebra structure

B ® id) . (3)

The proof that this is associative is a good exercise in the diagrammatic notation
mentioned above [8]. For completeness, we have recalled the relevant diagram in
Fig. 1. The first equality is functoriality under the morphism \B 0 B — + B, the
second is associativity of the products in J5, C and the third is a functoriality under
: : C (g) C — > C. There is another opposite braided tensor product using \PB

 l

c instead

°f *C,B
This braided tensor product is the crucial ingredient in the definition of a Hopf

algebra living in a quasitensor category [3-8]. This means CB,^l,ε,s), where B
is an algebra living in the category and Λ:B — > B(&B, ε:B — > 1 are algebra
homomorphisms. In addition (B,Δ,ε) form a coalgebra in the usual way [so
(Δ <g) id)Δ = (id ®Δ)Δ, (ε ® iά)Δ = id = (id®ε)Δ\. The antipode s if it exists
also obeys the usual axioms [so :(s ® id)Z\ — ηε_ = ι(id^s)Δ]. These axioms are
analogous to the usual axioms for a Hopf algebra as in [36] but now as morphisms in
the category. If there is no antipode then we have merely a bialgebra in the category.
The diagrammatic form for the bialgebra axiom for Δ is shown in Fig. 2(a).

As explained in the introduction, a braided group means a Hopf algebra living
in a quasitensor category, equipped with some further structure expressing a kind
of braided-commutativity or braided-cocommutativity (so that it is like the function
algebra or enveloping algebra respectively of a classical group). The notion of braided
(co)-commutativity that we need is a little involved in the abstract setting (though it
is clear enough in the concrete examples that we need below). The problem in the
abstract setting is that the obvious notions of opposite product : o $#;jB,: o \P~ [

B or

opposite coproduct ΦB B o Δ,Ψβl

B o Δ do not again define Hopf algebras in the
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(β®C) ® (β®C) <s> (β®C) (β<8>C) ® (β<8>C) ® (β<8>C)

613

(β®C) (β®C)

(β®C) (β®C)

Fig. 1. Proof of associativity of the braided tensor product of algebras

quasitensor category when Ψ2 ^ id. For example, ΨB

1

B o Δ:B —» B (g) B gives
a homomoφhism to the opposite braided tensor product algebra, and hence a Hopf
algebra in the quasitensor category with opposite braiding. Again, this is easy to see
using the diagrammatic notation. Since there is no intrinsic notion of opposite Hopf
algebra in the braided case, there is no intrinsic way to assert that a Hopf algebra in
the category coincides with its opposite.

In practice, we avoid this problem by working with a weaker (non-intrinsic)
notion of braided-commutativity or braided-cocommutativity defined with respect to
a class 6 of comodules or modules respectively. Here a J9-module in the category
is (V, av\ where V is an object and av\B <g) V —* V is a morphism such that
av(iά ®av) = otv( _ <8> id), av(η ® id) = id as usual. Then

Definition 1.1 [4,12]. A (weak) opposite coproduct for a bialgebra B in a quasitensor
category, is a pair (Z\op,^Q, where Δop:B —» B®B defines a second bialgebra
structure for the same algebra B, and ^ is a class of 5-modules such that the
condition in Fig. 2(b) holds for all (V, av) in the class.

Definition 1.2 [4,12]. A braided-cocommutative bialgebra is a pair (J3,^), where
B is a bialgebra in the category and (A,<^<) is an opposite coproduct. A braided

B®V

z\op

Fig. 2. (a) Bialgebra axiom, (b) Opposite coproduct axiom
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group (of enveloping algebra type) is a pair (B, &\ where B is a Hopf algebra in a
quasitensor category and (B,&) is braided-cocommutative.

Thus a braided group is nothing other than a Hopf algebra B in a quasitensor
category equipped with a class & with respect to which it behaves in a cocommutative
way. In our examples, the class & is quite large and contains all useful modules
(such as the braided-adjoint action of any Hopf algebra in the category on itself). For
a given Hopf algebra B the class of all modules 0(B) with respect to which it is
cocommutative is closed under tensor product [12, Theorem 3.2] and under dualization
if the quasitensor category has duals [12, Theorem 3.1]. The notion of opposite product
is analogous, working now with a class of comodules in the category obeying an
analogous condition (its diagram is just given by turning Fig. 2(b) upside down). It
enables us to similarly define a braided-group of function algebra type as a braided-
commutative Hopf algebra in a quasitensor category.

The above constructions in quasitensor categories are necessarily quite abstract.
Fortunately, we will be concerned below only with the quasitensor categories that arise
as representations of a quantum group, in which case explicit formulae are possible.
Here a quantum group means for us the data (H, A, ε, s, 3%) where A : H — » H 0 H is
the coproduct, ε : H —> k the counit and s : H — > H the antipode forming an ordinary
Hopf algebra over a field (or, with care, a commutative ring) fc. For these we use the
standard notation [36], notably Ah — Σ fyi)® fyi) f°Γ me action of A on h G H. The
additional invertible element 3% £ H ® H is the quasitringular structure or "universal
.R-matrix" and obeys the axioms of Drinfeld [17]

(A <8> id)^g = J^13^23 > (id ®^)^ = ^13^12 > Δ°P = ̂ (Δ )^~ > (4)

where Δop denotes A followed by the usual transposition on H®H, and 3%n = ,
in if03 as usual. A quantum group is said to be triangular if M2lMn = 101 [17]
and strictly quasitriangular otherwise. We refer to [17,18] for the standard (strictly)
quasitriangular Hopf algebras Uq(g). At generic q = eh/2 these are viewed over the
ring of formal power series C[[ft]] [17].

These axioms are indeed such as to ensure that the category of representations of
a quantum group form a quasitensor category. Some treatments of this topic appeared
independently in [37, Sect. 7] and [16] as well as surely being known to experts at
the time. Briefly, the objects in this category are the representations (modules) of H,
while the tensor product of two such representations is given in the usual way by
pull back along A. For any two such objects V, W the quasisymmetry or braiding is
given by

V' > w

where M — Σ,9B(l) ®J%(2) and D> denotes the relevant actions. One can easily check
that \PV w: V 0 W —> W 0 V obeys (1) and is indeed an intertwiner for the action of

H, precisely because 3% obeys (4). Moreover, the category is an ordinary symmetric
one (with Ψ2 = id) precisely when the quantum group is triangular rather than strictly
traingular. The role of the quantum group here is to generate the quasitensor category
in which we work. For example, the finite-dimensional quantum group (Z2,^g) in [6,
Sect. 6] generates the category of super-vector spaces as its representations. Here Z2

denotes the group algebra of Z2 equipped with a certain non-trivial J^.
In [4, 7,11] we gave a construction for braided groups in this kind of quasitensor

category. In fact, there is a canonical construction for each type beginning from the
quantum group itself that generates the category. Thus, if if is a quantum group, it
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has an associated braided group (of enveloping algebra type) H explicitly given as
follows. Its linear space and algebra structure are unchanged, but are now viewed as
living in the quasitensor category of H -modules by the quantum adjoint action. This,
and the modified coalgebra and antipode are [4]

(6)

for all h E H b G H. This gives the braided structures in terms of those of our initial
H. For our class & we take the tautological //-modules in the quasitensor category,
where the action of H on an object V is given by the same linear map as the action
of H that makes V an object. In this case the braided-cocommutativity of H then
explicitly takes the concrete form [4],

where Z\6 = X)6(1) 0 6(2) and Q = J?21J?12. Here Q(2) multiplies the result of Φ

from the right as (1 0 Q^) This implies the condition in Fig. 2(b) for all & and is
essentially equivalent to it in the present context. Q corresponds to the double-twist
^v B °^B v anc* so is absent in the triangular case. For the example H = Uq(g), we
shall denote its associated braided group by H — BUq(g).

Finally, we recall from [7,11] that if (A,J8) is a dual quantum group [with
dual quasitriangular structure M : A ® A — » k obeying some obvious axioms dual
to (4)] then there is a corresponding braided group A (of function algebra type). As a
coalgebra it coincides with A, while the modified product and antipode take the form
[7,11],

(1))α(3), s&(1)) , sa = sα(2)J^((sα(3))sα(1), α(4)) (8)

and there is a right adjoint coaction of A so that this A is a Hopf algebra in the
category of A-comodules. If A — H* then the corresponding coadjoint action of H
on A is h t> α = Σα(2)(^» (sα(1))α(3)). There is also a right action L* of fί on A

defined by L^(a) — Σ(h, Cί^}a^2y In terms of test-elements g £ ί/", these are

{/i t> α, g) = (α, ^(s/i(i))^ft(2)> , {££(α)> ^) = (α

5 ̂ ) (9)

The braided-commutativity of A then takes the concrete form

a-b = ΣL o Q(2) t> φ-(L*(1)(α) (8) 6) , (10)

where ζ)(2) acts on the first factor of the result of Us. This implies the diagrammatic
form of the braided-commutativity condition for all A-comodules @ for which the
coaction of A is the tautological one. At least in the finite-dimensional case, the two
braided groups .A, H are dually paired in a certain sense (cf. [24]). Here we consider
both A, H as living in the category of JY-modules since every (right) A-comodule
defines a (left) //-module by dualization. For the standard quantum function algebras
Gq dual to the Uq(g), we denote the associated braided groups of function algebra type
by BGq. The matrix bialgebras A(R)[19] mapping onto Gq can also be converted
in a similar way and give the braided-matrices B(R) introduced in [6,7]. They are
braided-commutative bialgebras in the category of Uq(g)-moάu\QS.
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2. Braided Group of Uq(g) in "FRT" Form

This section is devoted to a computation of the braided groups associated to the
quantum groups U (g) in FRT form. The results will then be applied in later sections.
Our first two technical results can in principle be motivated from category theory [39]
along the lines of [24]. For our algebraic purposes (and in the form we need now)
we give a direct algebraic treatment. The first establishes that Q = JE2\^n defines
a morphism A — » H in the category of ίΓ-modules.

Proposition 2.1 cf. [23]. Let H be a finite-dimensional quantum group and A = H*
its corresponding dual quantum group. Then the map Q : A — > H given by Q(a) —

\ α)Q(2) is an intertwiner for the adjoint and coadjoint actions of H above.

Proof. We compute the action of H using the definitions above and standard properties
of quantum groups. M' = Σ ̂ /(1) 0<^?/(2) denotes a second identical copy of ̂ . We
have

Q(h > α) =

,α) - h 0 Q(α).

Here the third and fourth equalities use the intertwining property of the quasitriangular
structure &> for Δ with its opposite. D

Proposition 2.2. The morphism Q:A — > H established in Proposition 2.1 is a Hopf
algebra homomorphism for the Hopf algebras A, H in the category of H -modules. In
particular, if H is factorizable in the sense of [23], we have A = H.

Proof. We compute with the product defined in (8) to give

Q(α:6) =

Using the axioms for M this is the evaluation with a 0 b in the last two factors of the
element ]Γ^(1) 0 X^Mm(l} 0 (5^

///(2))X(3), where X = ̂ 23^13^12^21^31 =
• 1̂2̂ 13̂ 23-̂ 21̂ 31 by the quantum Yang-Baxter equations (QYBE) obeyed by JB.
Writing 38 13 = (id 0s) (38~^)9 combining the elements on which s acts and using the
QYBE again for them we obtain (after cancellations) the element ^12J/^21^13^?31.
The pairing of this with α 0 b is just Q(ά)Q(b) as required. Next we compute with
the coproduct defined in (6) to give

ΔQ(ά) = YjM
l\lγ^

(2\lγm
lt(2]sMm^

This is evaluation of α on the third factor of the element Σ X(1)sJ^///(2) 0 J

where X = ^13^23^32^3i^2i = ^13^23^21-^31^32 bY the
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Writing j^31 = (s 0 id)^^1), combining the arguments of s, using the QYBE
again and cancelling now gives the element ^13^31^23^32- The Pairmg of this
with α gives (Q 0 Q) o Δa as required. D

Note that the notion of factorizability introduced in [23] is precisely that the linear
map Q: H* -* H is a linear isomorphism. Our propositions say that in the braided
setting it becomes a Hopf isomorphism. Quantum doubles as well as the Uq(g) at
least for generic q are known to be factorizable. For the latter we work as usual over
formal power-series in a parameter h, where q = eh/2 as in [17]. In this case there
is a suitable dual to play the role of H* in the propositions above. The algebraic
proofs above clearly extend to this setting. We are therefore in a position to exploit
the isomorphism Q for these Hopf algebras. To do this, it is convenient to work with
the generators in "FRT" form as follows.

Firstly, [19] (cf. [17]) identified the duals of Uq(g) as quotients of bialgebras
A(R) for certain ^-matrices R 6 Mn 0 Mn associated to the classical families of
simple Lie algebras g. Here A(R) is the bialgebra with generators ίl and relations
Rt{t2 = t2tlR in standard notations. [19] also showed how to recover Uq(g) in some

form as an algebra with matrix generators l^ and various relations. Among them are
the matrix relations of the form ifl^R = Rl^lf and 1^12R — Rl2l^, as well as
many hidden relations among the 2n2 generators expressed in the form of an ansatz
for the ̂  in terms of the familiar generators for the Uq(g). We refer to this description
of U (g) by "matrix generators+ansatz" as the "FRT'/orm of Uq(g). All our results
below are intended for the U (g) in this form, and we rely on [19] for details of their
connection with other descriptions of Uq(g) (this is known at least for the classical
families of Lie algebras g). In fact, if the universal JB for Uq(g) is known in any given
set of generators, it can be exploited to give the required ansatz easily according to

(H)

see [40] where this method was used to generate the ansatz for Uq(sl(3)).
We also need the explicit description of the braided matrices B(R) as introduced

in [6]. They are given by matrix generators ulj and certain matrix relations. The

difference is that now, the ulj span an object in the quasitensor category of Uq(g)-

modules. The action is 12 D> uv — R~lu{R and /j~ t> u2 = Ru2R~l [6]. The
braided-coproduct, braiding Φ and algebra relations take the form [6]

Λtj.i — 7 /* 5>) Λ . f c H/di^ 6?ι ii^\ — 7/ k (9] n^lfr^ IL—\ LL — LL i, yy L6 „ . y: \(Jj yy (Jb ) — L6 yy Co :r γ j «
— J K J ' v ' L, J '

uIuκ = uLuJΦ/κ

τ

Iτ, (12)

where the u1 etc. are ul

j written with multi-indices, matrix Φ comes from (5) and
Φ' is a variant corresponding (in the quotient Hopf algebra) to the right-hand side of
(10). Explicitly, they are given by [6]

(14)

where R = ((Rt2)~lY2 with t2 denoting transposition in the second matrix factor.
Another (more conventional) way to write the relations of B(R) is to move two of
the β's in Φ' to the left-hand side, in which case the equations become equivalently

R2]^u^R^2u2 = u2R2^u^Rl2. (15)
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These are quite similar to some equations in [41] as well as being known in [20-22] to
be discussed below. In our case they are nothing other than the braided-commutativity
(10) in the case of B(K). The coproduct Δ extends to all of B(R) as a bialgebra in
this quasitensor category [6]. The construction is very general, but in the present case
(for the standard R matrices) after further quotienting B(R) by "braided-determinant"
type relations, one obtains A = BGq, the braided group corresponding to the quantum
group dual to H = U (g) in the setting above. We are now ready to prove our main
result of this section. It is a corollary of Proposition 2.2 in the form over

Corollary 2.3. Let H = Uq(g) in FRT form [19] and A = BGq the braided group
of function algebra type as recalled above. Then the braided group H = BUq(g) of
enveloping algebra type corresponding to Uq(g) has the same algebra structure as
Uq(g} but the new coproduct implied by

AL^ = L\ ® Lk

j , where L = l+sΓ .

The space spanned by the Ll is a Uq(g)-module via 1% t> Ll = R~1L1R and / j~ t>

L2 = RL2R~l and the identification L = u allows us to consider BUq(g) = BGq as
a self -dual braided group.

Proof. We compute the map Q in Proposition 2.2 as

= l+\sΓk

J = L^ .

The action is l+l

j>Q(uk

l) = Q(l+l

j>uk

l) = R-{k

m\Lm

nR
n

l

a

j using Proposi-

tion 2.1 and the action on uk

l obtained from (9) above and the pairing (u,l+) = R
from [19]. Note that the transmutation procedure used to define these braided groups
in [6] is such that we can identify the generators u with the generators t of Gq (but

not their products), and we have used this fact here. Similarly for the action of /~.
[The action on B(R) above is similar, but in a more general setting.] Because of
Proposition 2. 1 this result on L must coincide with the quantum adjoint action as
defined in (6). D

These new generators L for Uq(g) are the ones in which the corresponding BUq(g)
becomes explicitly identified with a quotient of B(R) where the matrix coproduct is
braided. Explicitly for Uq(sl2) they are easily computed as

_

\q-l'2(q-q-l)X+qH'2 q~H + q~l(q ~ q~l)2X+X J }

in the usual description for Uq(sl2) with the conventions [X+,X_\ = (qH — q~H)/(q—

q~l) of [18]. These combinations have been known in various contexts, notably
[21,22] and cf. [20,41]. There it is known that the relations

R21L1R12L2 — L2R21L1R12 (17)

also describe the relations of Uq(sl2) (for example) given the ansatze for ^. We
see from Corollary 2.3 that this is due to the factorizability of Uq(sl2) and hence
holds quite generally as an expression of the braided-commutativity of BGq as in
(10) carried over to BUq(g) via the isomorphism BUq(g) = BGq. Likewise, we
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learn that BGq is braided-cocommutative since BUq(g) is. Explicitly, this braided-
cocommutativity takes the form

<9\ Tb \A/fa c — Ti <V} Ta A/ίa c — l+c (Q~^J+ΊΎI M~a *1~k

Q9 L C)M b — lj a Q9 1^ , M b — I k(S ί b)l mSί .

This is noted for completeness and is readily computed from (7) using the same
technique as in the corollary above.

Also, in various other contexts it has been noted that such combinations as in (16)
are indeed fixed under the quantum adjoint action for Uq(sl2) However, Corollary 2.3
ensures these desirable features hold quite generally, giving us a fundamental ad-
invariant subspace of Uq(g) for all the standard Lie algebras g. This suggests that this
subspace should have properties resembling some kind of "quantum Lie algebra" (or
"braided Lie algebra") for Uq(g). Recall that for an ordinary Lie algebra the vector
space of g is a g-module by the adjoint action, and this action as a map coincides
with the Lie bracket. We can therefore likewise take the quantum adjoint action on
the space spanned by the L^ as a "quantum Lie bracket" or "braided Lie bracket."

Proposition 2.4. Let ̂  C Uq(g) be the subspace spanned by the {Ll ^} in Corol-
lary 2.3. We let [ , ] : Uq(g) ® Uq(g) -» Uq(g) be defined by [h, g] = h> g, where > is
the quantum adjoint action in (6). This "quantum Lie bracket" enjoys the properties
of closure and "Jacobi" identities
(LO) [ξ,r?]ej^for£,77ej^,

(Li) K,[77,C]]
(L2) [K,r7],C]
where Δξ = Σ £(i) ® £(2) ^ ^<?(#) ® Uq(g) is the usual coproduct, and s is the usual

antipode. On the vectors L1 where I = (L^II) we have

rτl j J λ — fJ J γK IJ _ pα j0 p—lb ^Q SΛC /c}YL,L\-C KL , C κ - H i{ bK kQ C(J a J{ ,

where Q = R2ιRι2-

Proof. The identity (LI) is an expression of the fact that the quantum adjoint action is
an intertwiner for itself, i.e. in the general setting above it is a morphism H®H — •» H
in the category of /ί-modules. This a general feature of the braided groups H
associated to H [12]. This, and the identity (L2) follow easily from the definition
of the quantum adjoint action in (6). For the explicit form of the clj

 κ we use the
same method as in Corollary 2.3 to compute the action of sl~ on L. It comes out as

(sΓl

3) t> Lk

l = RajkmLrnnRlanι Using this and me action of l+ already given,
we compute [L1, LJ] = L1 D> LJ . D

Note that an easy computation gives ΛL1 = l+l

asl~b

j 0 La

b (as already noted
in [21]) so that the ordinary coproduct on the right-hand side of (LI), (L2) does not
have its image in j2?0cSί. Hence these identities do not make sense for J>? in isolation
from its quantum group Uq(g). For this reason we do not formalize these as axioms
for an abstract Lie algebra. Nevertheless, if we imagine that ξ is primitive as for a
classical lie algebra, i.e. Z\ξ = ξ(8)l + l ® ξ (and sξ = —ξ) and note that (unusually)
[!,£] = ! > £ = £, then the above do reduce to two ordinary Jacobi identities for
the two left-hand sides. These two ordinary Jacobi identities imply on adding that
[??> [£> C]] + [[£> CL η] — 0' i e ύi tne semisimple case they imply antisymmetry. Thus
(LI), (L2) together play the role of one usual Jacobi identity and antisymmetry. On
the other hand, not all elements of S§ are primitive, even as q — * 1, and indeed the
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properties of the generators S% also express group-like as well as Lie-algebra like
features.

In addition, there are numerous other identities inherited from the structure of Uq(g)
and its braided group, expressing the joint role of these as "enveloping algebra" for
&. These include

[ξη, α = K, iη, αi , K, ̂ α

(Σt K(2), ] 4 = 4te, ] , (id 04)4 = (4 ® id)4 .

If we imagine ξ, etc. primitive as before, the second identity becomes [ξ, ηζ] =
[£» f/K + ??[€> G» the third becomes [ξ,η] = [η,—ξ] and the fourth becomes [ξ, 77] =
£77 - r/ξ. The last line refers to the braided coproduct of BUq(g), which restricts to
A\3§ — > =5? ® ̂  as a generalization of the coproduct in the universal enveloping
algebra of a Lie algebra. The identity corresponds to the fact there that if ξ, η are
primitive, then [ξ, 77] is also primitive. The last identity is the coassociativity inherited
from that of BUq(g). Thus, it is this Δ that preserves 3§ and extends to products of
the generators as a (braided) Hopf algebra.

Finally, in the remaining sections of the paper we will focus for concreteness on
the example of the above for H = Uq(sl2). There is a standard matrix R for this in
the FRT approach. Then B(R) = BMq(Ί) (the braided matrices of sl2 type) has the

fa 6\
action on u = I 1 given by [6]

. , (19)
qc a

The algebra relations are comparable to those of the quantum matrices Mq(2) and
come out as

ba = q2ab, ca = q~2ac, da — ad, be = cb + (1 — q~2)a(d — α) , (21)

db = bd + (1 - 4~2)α6 , cd = dc + (1 - q~2)ca . (22)

The additional "braided-determinant" relation

ad - q2cb = 1 (23)

gives the braided group BSLq(2) [the braided group version of SLq(2)]. This is
a braided group of "function algebra" type and is A in the setting above when
H = Uq(sl2). Our results above imply that this can be identified as u = L
with the braided group BUq(sl2) of enveloping algebra type. Note that BSLq(2)

has a bosonic central element q~la + qd as explained in [6]. It is the spin 0
generator in the identification 5§ — 103, where the remaining generators form
a 3-dimensional spin 1 representation of U (sl2). The element is bosonic in the sense

that Φ((q~~la -f qd) (8) /) = / 0 (q~la + qd) for all / since the action of 38 in (5)
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is trivial. We see from the identification u = L that this element is just the quadratic
Casimir of BUq(sl2).

In summary, we have shown that the generators L = l+sl~ o f U q ( g ) are convenient
for the description of the corresponding braided group. This braided group is at
the same time the braided-cocommutative braided group of enveloping algebra type
consisting of Uq(g) with a modified coproduct, and the braided-commutative braided
group of function algebra type dual to this. Moreover, these generators L exhibit a
number of Lie-algebra type properties inherited from these structures. In particular,
BUq(sl2) = BSLq(2) can be identified.

3. Braided Matrix Structure of the Degenerate Sklyanin Algebra

The Sklyanin algebra was intrdouced in [26,42] in connection with an ansatz for the
8-vertex model. As an algebra it has been extensively studied by ring-theorists for
its remarkable properties, see [27] and elsewhere. The algebra has four generators
SQ,Sα, α — 1,2,3 and three structure constants J12, J23, J31 subject to the constraint

Ju + ^23 + ^3i + ^12^23^31 ~ ® anc*tn^ relations

[S0, SJ = iJβΊ{Sβ, σΊ} , [Sα, Sβ\ = *{S0, SΊ] , (24)

where α, β, 7 are from the set 1,2,3 in cyclic order and { , } denotes anticommutator.
There are two Casimir elements

C ,=Sg + ;ΓX, C2 = ΣS2

aJa, (25)
OL a

OL Q
where Jα^ = —-. The degenerate case where (say) J12 = 0 is well-known to

Jτ
be closely connected with the quantum group U (sl2). We write S± = S{ ± iS2 and

K± — $0 =b ίS3, where t = \/~J2τ> (a fixed square root). Then the relations become

[K+,S±] = ±t{K+,S±}, [K_,S±] = ^t{K^,S±},

2 2 (26)

Writing q = - and Y± = ̂ \/l — t2S± we have
1 b

[K+,K_] = 0, K+Y± = q±}Y±K+ ,

K-K2 (27)
K_Y± = q^Y±K_ , [Y+,Y_]= -

while two independent linear combinations of the Casimir elements are (with Jl =
J2 = 1, J3 = 1 + J23)

σ = -' -'2 (28)

Thus, with these changes of variables we see that the further quotient K+K_ = I
gives us the familiar algebra of Uq(sl2) (in Jimbo's conventions) and the combination
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C shown becomes its familiar quadratic Casimir element. Uq(sl2) is of course a Hopf
algebra but, as far as is known, the full degenerate Sklyanin algebra itself it not.
Instead we have

Theorem 3.1. The degenerate Sklyanin algebra as described is isomorphic to the

braided matrices BMq(2) of sl2 type. Explicitly the generators u = I J of
\c a J

the latter take the form
2

+ q~l/2(q - q~l)K+Y_

q-ί)Y+K+ K2_ + q~\q - q'l)2Y+Y_

and we allow α, d — ca~lb of BMq(2) to be invertible and have square roots. Hence
the degenerate Sklyanin algebra has the structure of a bialgebra in the quasitensor
category of Uq(sl2)-modules. The bosonic central elements q~[a + qd, ad - q2cb of
BMq(2) are explicitly

q~la + qd = C, ad- q2cb = K2

+K2_ .

Proof. Since the braided group BUq(sl2) has the same structure as an algebra as the
quantum group Uq(sl2), we know that the quotient of the degenerate Sklyanin algebra
by K+K_ = 1 is isomorphic to this also, and hence by Corollary 2.3 isomorphic
to the braided group BSLq(Ί). But this is a quotient of BMq(Ί) by the braided-

determinant ad — q2cb = 1, so we are motivated to make an ansatz for BMq(2) in
the form stated. The ansatz is then verified by explicit computations which we leave
to the reader. Clearly, the generators K2^, K+Y± can be recovered from the α, 6, c, d.
Thus, it is more precisely this form of the Sklyanin algebra (rather than generators
K±,Y±) that is isomorphic to BMq(2). This is not, however, an important distinction

when we work over C[[ft]] with K± — qH±/2 say with q = ea/2 [as for Uq(sl2)}. D

We compute the braided structure in the Sklyanin algebra implied by this theorem,
as follows.

Proposition 3.2. The action of U (sl2) on the degenerate Sklyanin algebra as a
bialgebra in the category ofUq(sl2)-modules is explicitly

X±>K+ = (1- q±l}Y± , X±

X >y_ =(l-q)Y2K~\ X

The degenerate Sklyanin algebra is invariant under this action in the sense h \> (ab) =

Σ(ft(i) > CL) (/i(2) t> b), where Δh = Σ ^(i) ̂  ̂ (2) /5> ̂ e usual coproduct ofUq(sl2).

Proof. This is determined from the form of the isomorphism in the preceding theorem
and the known action of Uq(sl2) on BMq(2) recalled in (19)-(20) from [6]. The

action of qH/2 is easily determined first since this element is group-like so that

qπ/2 > (γ+κ+) = (qH/2 > Y+)(qH/2 t> K+) etc. Similarly X+ > (Y+K+) = 0

according to (20), but X+ > (Y+K+) = (X+ t> Y+)(qH/2 > K+) + (q~H/2 >

Y+)(X+ t> K+) = (X+ O Y+)K+ + q~lY+(X+ > K+) using the standard coproduct
of X+. This determines X+ > Y+ once X+ t> K+ is known. This is extracted from
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knowledge of X+ > K+ from (20) and a similar computation. In the same way
the action X+ o Y_ is extracted from X+ D> 6 in (20). Finally, X+ o K_ can be

extracted more easily from K^K2_ bosonic. The action of X_ is then obtained by
a symmetry principle. These computations have been made and the resulting action
verified using the algebra package REDUCE. D

In principle, we can similarly extract the form of the braiding Ψ and the braided
coproduct A on the generators K± , Y± from the braiding and matrix coproduct A
for BMq(2). From the theorem and [6], some examples of ί̂ , A are

K+Y_ ® K, &(Y+K+ ® K+Y_) = q'2K+Y_ Θ Y+K+, (29)

= K2

+®K2

+ + q-\q - q~l)2K+Y_ 0 Y+K+, (30)

Kl® K+Y_ - q~2K+Y_ ® #* + ̂ tf+ϊl <8> C , (31)

Y+K+ ®K2

+~ q~2Kl ® F+K+ + g-'C 0 y+K+. (32)

However, in practice it is rather hard to proceed further to compute \P and A explicitly
on K±,Y± alone. This is because they do not transform in a simple way among
themselves under the action in Proposition 3. 2 so that the braidings Ψ(K+ 0 Y+)
etc. as determined by JB in (5) are given by infinite power-series rather than finite
combinations of the generators. This in turn means that the braider tensor product
algebra structure does not compute in closed form. Rather, we see that the generators
K]r,q~l^2(q — q~l)Y+K+,q~l/2(q ~ q~l)K+Y_,C do transform among themselves
and are more convenient for the description of the braiding and braided coproduct.

4. Braided Structure in the Quantum Lorentz Group

In this section we give a second application of Proposition 2.2 and Corollary 2.3,
this time to the algebraic structure of the quantum double of the quantum groups
Uq(g). A physically interesting example of such a double, namely the quantum double
of Uq(su(Ί)} has been called the "quantum Lorentz group" in [29] on the basis of

a Hopf-C* -algebraic "quantum Iwasawa decomposition." Recall that the ordinary
Lorentz group can be identified (at the Lie algebra level) with s/2(C) regarded as a
real Lie algebra, i.e. the complexification of su(2): the quantum double D(Uq(su(2)))
can likewise be regarded as a kind of "complexification" of Uq(su(2)) as a Hopf

*-algebra (or rather, in the dual form as a C* -algebra). In fact, there are some quite
general algebraic arguments to arrive at this same conclusion, based on the author's
Yang-Baxter-theoretic proof of the Iwasawa decomposition for ordinary Lie algebras
appearing in [43]. We recall this first.

Let u be a compact real form of a complex semisimple Lie algebra g. The latter
is the complexification of u and forms a real Lie algebra of twice the dimension:
g = iu 0 u with the Lie bracket of u extended linearly to g. The Iwasawa
decomposition states that there is a splitting g — k Θ u as vector spaces into two
sub-Lie algebras, with k solvable. We observed in [43, sect. 2] that this Lie algebra
k could be identified with the Lie algebra structure on u* associated to the Drinfeld-
Jimbo solution r of the Classical Yang-Baxter Equations (CYBE) as follows. Choosing
a Cartan-Weyl basis for g, the solution r G g Θ g takes the form

v^ Eλ 0 E x ,
r = V s g n ( Λ ) , * "\ + K-1 , (33)
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where the sum is over root vectors Eχ and K denotes the Killing form with inverse
K~l. In Drinfeld's theory in [31] this defines a quasitriangular Lie bialgebra (g, <5, r),
where δ : g — > g 0 g is defined by δξ = ΣK> r(1)] 0 r(2) + r(1) 0 [ξ, r(2)]. Now, just as
every finite-dimensional Hopf algebra has a dual one built on the dual linear space,
every finite dimensional Lie bialgebra has a dual #*. Its Lie bracket is defined from
δ by {[77, r/], ξ) — (77 ® r/, <5ξ) for 77, 77' G g*. The key observation in [43, Sect. 2] is
that in our case, r in (33) has its first term (its antisymmetric part) lying entirely in
LU&U, while the second term (its symmetric part) lies in u®u. Using this we showed
that the subspace u* c #* defined by u* = uK(u, ) is fixed under this Lie bracket on
g* . The coadjoint actions of g on g* and g* on g restrict to mutual actions of u, n*
on each other, and finally Drinfeld's Lie bialgebra double D(g) built on the linear
space of #* Θ g [31] restricts to a Lie bialgebra u*op txj u built on u* Θ u C #*
For later use, the Lie algebra structure of D(g) is explicitly given by

[η θ ξ,η' θ ξ'] = ([η',η]

where δξ = Σ ξ [ { ] (8)ξ[2], etc. is our explicit notation for the cobrackets. The cobracket

on D(g) is the tensor product of those on g and g*. We note that u*op, etc. denotes
(in the present conventions) w* with its opposite (reversed) Lie bracket, while the
notation u*op txi u derives from a general "double semidirect sum" construction for
a Lie algebra from a pair mutually acting on each other in a compatible way (a
"matched pair" of Lie algebras). We introduced this notion in [44, Sect. 4] where we
showed that D(g) = #*op DO g by the mutual coadjoint actions. Other authors have
also arrived at similar notions of Lie algebra matched pairs, notably [45,46]. Finally,
there is an isomorphism [43, Sect. 2]

P ixi u ̂  g , φ(η θ 0 - Γ r(1){r?, r(2)) + ξ . (35)

The isomorphism is our Yang-Baxter theoretic description of the Iwasawa decompo-
sition of g. Both the solvable Lie algebra k = ii*op and the decomposition itself are
derived from the Drinfeld-Jimbo solution (33).

In [43, Sect. 3] we proceeded to construct a "matched pair" of Lie groups C7, t/*op

(say) by building from the mutual actions between u, w*op a matching pair of gauge
fields over t/*op, U and using their parallel transport to exponentiate to global actions
of the groups. The resulting group double-semidirect product t/*op txi U = G (where
G is the simply-connected Lie group of g) provided a new constructive proof of the
group Iwasawa decomposition. In fact, the constructions were quite general, allowing
for the exponentiation of any Lie algebra splitting or "Manin triple" to a Lie group
one provided some technical criteria were satisfied (this was the main result of [43]).

We can however, go in another direction, namely to deform to the quantum group
setting. Here the relevant notion, the "double cross product" of mutually acting Hopf
algebras (matched pairs of Hopf algebras) was introduced in [44, sect. 3]. Every
factorization of a Hopf algebra into sub-Hopf algebras as defined in [44] can be
reconstructed from its factors by this double cross product construction. Once again,
we showed that Drinfeld's quantum double D(H), where H is any (say, finite-
dimensional) Hopf algebra, is simply a Hopf algebra double cross product D(H) =
H*op ixi H, this time by mutual quantum coadjoint actions. In the conventions that
we need below, H*op denotes H* with the opposite product (more usually, one takes
here the opposite coproduct [17], but this is isomorphic via the antipode s). We have
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not discussed in [44] the question of real forms (* -structures) but it is clear that just
as w*op o<] u ^ in Θ u in (35) is a real form of #*°P txi g = D(g)9 so D(Uq(g}) should
be regarded as a Hopf algebra whose real form is the complexification of the real
form Uq(u) of U (g). Our algebraic results below are thus a further step towards an
Iwasawa decomposition theorem for quantum groups. We will obtain an analogue of
the formula (35) with the role of r played by the universal R-matήx of the quantum
group.

Finally, working over C as we do brings out some further structure not visible
over R. Namely, when regarding g — iuφu, there is a sense in which the elements of
LU (the pure boosts in the case of the Lorentz group) are acted upon by the elements
of u (the rotations). I.e., the Lorentz group Lie algebra (in addition to its numerous
other descriptions) has the flavour of a semidirect sum where the rotations act on
the boosts by commutation. On the other hand, this cannot be literally so since the
boosts do not close under commutation. In fact, we will see that g = LU Θ u can be
embedded in a natural way in a semidirect sum g xi g, with the "boosts" acted upon
by "rotations." This is related to our result D(g) = g x g below. We will also see the
latter result in the quantum case for D(H).

We begin (as in Sect. 2) with a general result for finite-dimensional quantum groups
H. Its origins are in a result in [28] that the quantum double D(H) in this case (when
H is quasitriangular) has the structure of a semidirect product. The result was obtained
before the notion of braided groups had been introduced. We need the following more
explicit variant. In the conventions that we need, we build the quantum double D(H)
on H*®H as follows. The coproduct, counit and unit for D(H) are the tensor product
ones while the product of D(H) comes out as

(α g) ft) (b (g g) = b(2)a ® fy2)0(sfyi)» 6(i)) (fys)> &(3)) (36)

for ft, g in H and α, b in H* . Its antipode is s(a 0 ft) = (1 0 sh) (s~~la g) 1). We have

Proposition 4.1. Let H be a finite-dimensional quasitriangular Hopf algebra with
quantum double D(H\ A = H* and A the associated braided group of function
algebra type. Then D(H) = A x H as a semidirect product by the coadjoint action of
H on A and as a semidirect coproduct with the H coaction induced by M: A —> H.
Explicitly, the semidirect product and coproduct on A x H are

(α Θ ft) (6 g) g) = ]Γ α:(ft(1) D> 6) g> h(2}g ,

Δ(a g) ft) = ̂  α(1) 0 J^(2)ft(1) g) M(l} > α(2) g) ft(2)

and the required isomorphism θ:AxH—> D(H) is θ(a g) ft) = Σ α(1){^?(1), α(2)) g)

Proof, An abstract category-theoretic explanation of this result has recently been
given in [14]. However, for our present purposes we need a completely explicit
algebraic version as stated. Firstly, let us note that if β : A — » H 0 A is any left
comodule structure respecting A as a coalgebra, the semidirect coproduct coalgebra

is Δ(a (8) ft) = X) α(1) (g) α(2)

(ϊ)ft(1) 0 α(2)

(2) (g) ft(2), where β(ά) = £ α(ί) (g) α(2) denotes
β explicitly. This is a standard construction dual to the equally standard semidirect
product algebra construction stated. In the present case the action is the one on A in
(9) and the coaction is β(ά) — ̂ ^(2) (g,^?(1) D> α (this is the way that any action of
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a quasitriangular Hopf algebra is converted by M to a coaction [28]). We now verify
that θ is an isomorphism of coalgebras by computing

(θ ® θ)Δ(a ® ft) = ]Γ aw(Mm, α(2)) ® Jg(2)^"(2)ft(1) <g> α(4){^'(1), o(5)

> a(4)

®α(2)

(2)

For the first euality we used the definitions of θ and the stated coproduct on A xi H.
For the second and fifth we used axioms of the quasitriangular structure M, for the
third we used the duality between H and A and the antipode axioms. We verify that
θ is an isomorphism of algebras by computing

0((α (g> k) (b (g) g)) = .

6)(2)α(2))

Σ 6(2)«(i) ® ̂ '(2)^"(2)ft(3)<?(^"(1)^'"(1).^(1), α(2))

δ(2)α(1)

The first equality uses (8) in the definition of the semidirect product algebra structure
on A x H , writing (8) explicitly in terms of the right adjoint coaction corresponding to
the coadjoint action t> in (9). That > is an action then gives the second equality. The
fifth equality uses the coadjoint coaction again, in explicit form 6 H^ ]Γ fr(
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The sixth and seventh equalities use the axioms for M. On the other side we compute
with the product in D(H) from (33), the expression

θ(a ® h) θ(b ® g) = /α(1) ® J?(2)/ι) (δ(1) <g> 3H™g)(&l\ α(2)) (,^
/(1), 6(2))

For the last two equalities we used the axioms for J^?. Comparing these two
results we see that θ(a (g ft) θ(b ® g) = θ((a ® ft) (b (g #)) in virtue of the QYBE in

the form ^23^21^31 = ^3i^2i ^23 The otner facts such as me unit and counit
are easy. D

Corollary 4.2. If H is a finite -dimensional factor izable quantum group then there is
an isomorphism φ = Q o θ~{ : D(H) = H x H, where the semidirect product is by the
quantum adjoint action > of H on H. Explicitly,

This is immediate from Proposition 4.1 and Proposition 2.2 in Sect. 2. Once again,
we can apply this more generally if we have a suitable notion of dual Hopf algebra.
In the setting where H — U (g) we have

Corollary 4.3. Let Uq(g) be in "FRT" forms as in Corollary 2 J. Let t be the matrix

generator of Gq, L = l+ sl~ that of Uq(g) and M = m+sm~ that of BUq(g) (it is
the same algebra). Under the isomorphism φ:D(H) = BUq(g) xi Uq(g) the element

tl

 3 (g) Lk

t corresponds to M\ (g) l~a

 3L
k

l.
Explicitly, the structure of BUq(g) xi Uq(g) consists of the two copies of Uq(g)

generated by L, M as subalgebras with cross relations and coproduct

R\212M\ = MiRl2l2 > R2\12M\ = M{R^[l~ ,

Δl± = l±^l± , AM =

where J^ G Uq(g) (g) Uq(g) as generated by L.

Proof. This follows at once from the explicit form of φ in Corollary 4.2 and (11).
The explicit form of the cross relations is nothing other than the quantum adjoint
action ̂  D> M computed as explained in the proof of Corollary 2.3. The coproduct
structure is the one in Proposition 4. 1 computed in the present case with the aid of
the semidirect product algebra structure and (4). D

These results show in particular that the quantum Lorentz group can be put into
semidirect product form, D(Uq(sl2}} = BUq(sl2) xi Uq(sl2). The price we pay for
keeping this more familiar semidirect product form is that the algebra containing the
"boosts" must be treated with braid statistics as the braided group BUq(sl2) [as an
algebra, it coincides with U ( s l 2 ) ] . It is not any kind of ordinary Hopf algebra, but
a braided one in the category of t/q(s/2)-modules. The quantum "rotations" Uq(sl2)
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can remain unchanged as an ordinary Hopf algebra and the result (as a quantum
double) is again a factorizable ordinary Hopf algebra. In order to better understand
this interpretation of Corollary 4.3, we pause now to compute its classical meaning at
the level of Lie bialgebras.

Theorem 4.4. Let (g, <5, r) be a quasitrian gular Lie bialgebra with non-degenerate ad-
invariant symmetric part r+ of r, and D(g) its double. Then there is an isomorphism
φ: D(g) = g xi g, where g x g is the semidirect sum by the adjoint action of g on itself.
Explicitly, it is given by

Here we view r+ as a linear map r+ :g* — »• g.

Proof. The proof is by direct computation from (34) using the maps shown. An
introduction to the necessary methods of Lie bialgebras is to be found in [44, Sect. 1].
Firstly, let us recall that the structure of a semidirect sum by (in our case) the adjoint
action means

K,ξ']; aξ(ζ) = (ξ,ζ] (37)

for ζ φ ξ, ζ' φ ξ' e g x g. Using this, we have

[φ(η θ 0, Φ(rί θ ξ')] = ([2r+(7?), 2r+(η')] + [ξ - r(η), 2r+(τ/)]

- (ξ' - r(η'), 2r+(η)]) θ [ξ - r(η), ξ' - r(η')] ,

where we have written ^{i7,r(1))r(2^ = r(η). On the other side we compute using
(34),

φ([η ®ξ,η'® ξ']) = 2r+([τ/, η]

For brevity, we omit summation signs. These two displayed expressions are equal as
follows. Firstly, r ( [ η ' , η ] ) = [r(r/), r(r?)j is simply the CYBE when r is viewed as a
map #* — + g as we do here and the bracket [r/, η] is the one on #* also defined by r via
δ on g (this is equivalent to the more usual form [r12, r13] + [r12, r23] + [r13, r23] = 0
of the CYBE). Secondly, we have ξ[U(η' , ξ [ 2 ] ) - r(η'{l]) (ξ,η'[2]) = - ξ[2](η' , ξm) +

(τ7/,[ξ,r(1)])r(2) = -[ξ,r(2)] (r(1),r/) = -[ξ,r(η')]. Here we used antisymmetry
of δξ and then its explicit form [ξ,r(1)] (g) r(2) + r(1) 0 [ξ,r(2)]. Thirdly, we have
r+

(1)(^,[r+^,α) - -[r+

(2),ξ](r/,r+^} = [ξ,r+(V)] by ad-invariance of r+.
Fourthly we compute

r(2) + r(1) 0 [r+

(1), r(2)], ̂  Θ r/)r+

(2)

(2) (1) (1) (1) (2), r

where we used the definitions of the bracket in g* in terms of δ on g. For the
last term in the third equality we used the previous (third) observation applied to
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ξ — r(ηr). Similarly for the final result. After these four observations we see that the
expressions for [φ(η 0 ξ), φ(η' Θ £')] and φ([η Θ ξ, η1 Θ £']) coincide, i.e. φ is a Lie
algebra homomorphism. D

Recall that the notion of a Lie bialgebra was introduced by Drinfeld as the

infinitesimal notion of a Hopf algebra. Thus, if we write 1̂£ = £® 1 + 1 ® ξ+ 5 <$£+ . . .,
where we consider 6 a deformation of order h, then to lowest order in h the
formulae (36) reduce to the structure of the Lie bialgebra double D(g) in (34).
The formulae for the preceding theorem were obtained in the same way from
Corollary 4.2 with M — 1 + r + . . ., where r is also considered of order h. For
example Q = 3%2\^n ~ 1 + Γ2i + ri2 ̂  ____ Thus, the notion of "factorizability" of
quantum groups is, at the level of Lie bialgebras just the notion that the ad-invariant
symmetric part of r be non-degenerate. Thus the role of Q : A — » H in Proposition 2. 1
is precisely played by 2r+ :g* — > g. For the solution (33) this is given by twice the

inverse Killing form K~l:g* —* g. Note that the isomorphism φ in Theorem 4.4
works also at the level of cobrackets in the form D(g) = g xi p, where g denotes
the Lie algebra g equipped with a certain modified ("braided") cobracket δ_. Finally,
the isomorphism φ clearly resembles the Iwasawa decomposition (35), with φ in
Corollaries 4.2 and 4.3 as quantum analogues. Indeed,

Corollary 4.5. Let g = uu Θ u denote the complexification of a real Lie algebra u.
There is a canonical embedding g c g x g such that the restriction of φ in Theorem 4,4
to u*op Cxi u C D(g) recovers the Iwasawa decomposition (35). It is

9 C g x g , £ι + *

Proof. This is obtained by computing

2, ) Θ

as the inverse of the Iwasawa decomposition (35). We then apply to this the map φ
in Theorem 4.4 which, for the Drinfeld- Jimbo solutioin (33) takes the form

<Kη Θ ξ) = 2K-\η) Θ (ξ - K~l(η) - ^(η, r_(1))r_<2)) .

Applying this gives 2iξ2 θ (£j — ^2)
 as stated. Note that once found, one can easily

verify this embedding g C g x g by elementary means (it holds for any real Lie
algebra u), and hence regard the Iwasawa decomposition as merely the restriction of
φ in Theorem 4.4 to a "real part." This is the reason we have denoted both maps by
φ. We leave the direct proof that the stated embedding g C g xi g is a Lie algebra
homomorphism to the reader, g has the Lie algebra structure of u extended linearly,
while g xi g has the semidirect product one in (37). D

We are now in a position to make precise our remarks about the Lorentz group.
We take u = su(2) and g = 0(1,3) = sl2(C) — in θ u. Physically, the real u
has compact generators Ji (say) of angular momentum (rotation) while LU has non-
compact generators Ki (say), the Lorentz boosts. Their commutation relations induced
from those of u by complexification are of course

[• l = < * . Vi,K = εtkKk, ίKt,K] = ~είkJk. (38)
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The semidirect sum o(l, 3) xi o(l, 3) is built on o(l, 3) Θ 0(1, 3) in the usual way by
(37) and the embedding in Corollary 4.5 by

Jτ ^ 0 0 Jτ , Ki ^ 2Ki Θ (-Kj . (39)

Thus it embeds rotations as rotations in the second o(l,3) and boosts as boosts in
the first 0(1,3) along with a "compensating" negative boost in the second. Apart
from this compensation, the embedded boosts are acted upon by the rotations as
part of the semidirect sum. This unusual embedding corresponds to the "real" part
sw(2)*°P ιx3 su(2) C D(0((l,3)), where 0(1,3) ^ su(2f°v M su(2) is the Iwasawa
decomposition and D(0(l, 3)) = 0(1, 3) x 0(1, 3) is from Theorem 4.4. This embedding
is of course quite distinct from the more usual identification 0(1 , 3)c = sl2(C)Q>sl2(C)
made in physics. The latter is special while our embedding, although less familiar, is
canonical in the sense that a corresponding one holds for all complexifications g.

This completes our study of the algebraic structure of Drinf eld's quantum double
for the case of D(Uq(g)). We gave the general theory, the quantum group setting and
the classical limit. We return now to the general setting and note that we can identify
the semidirect structure in Proposition 4.1 and Corollary 4.2 as examples of algebraic
"bosonization" [13, Sect. 4]. There we show that if B is any Hopf algebra in the
quasitensor category of modules of a quantum group H then the semidirect product
and coproduct B x H along the lines of Proposition 4.1 is an ordinary Hopf algebra.
Thus our result is that for a quantum group H, the Drinfeld quantum double D(H)
is the bosonization of A or (in the factorizable case) of H.

We can also use some more of the general theory in [12] to go further and transmute
the Hopf algebra D(H} itself into a braided one. The general transmutation principle
in [12] asserts that if H — » Hl is a Hopf algebra map between ordinary Hopf algebras
(with H a quantum group, i.e. with universal /^-matrix) then H{ with the same algebra
acquires the additional structure of a Hopf algebra in the quasitensor category of H-
modules, denoted

Proposition 4.6. Let H be a finite-dimensional quantum group and D(H) its double.
The transmutation B(H, D(H)) of D(H) into a Hopf algebra in the quasitensor
category of H -modules is B(H, D(H)) = A x H, a semidirect product algebra (with
tensor product coalgebra) in the category. If H is factorizable then B(H, D(H)) =
Hx\H.

Proof. This follows from the identification in Proposition 4.1 of D(H) as the result of
bosonization of A. In general, the bosonization theorem of [13] proceeds by forming
the tautological semidirect product B x H of the Hopf algebra B in the category by
the braided group H acting by the same action of H by which B is an object in the
category. The construction works because H really behaves as a "group" in the sense
that it is braided-cocommutative. The resulting cross product is then identified in [13]
as the result of the transmutation of an ordinary Hopf algebra Hl by a map H — > Hl ,
Hγ being the bosonization. We work the argument in reverse. D

The semidirect product in the preceding proposition is not any complicated
quantum group semidirect product as in Proposition 4. 1 and Corollary 4.2: it is
precisely the semidirect product by a group in the usual way (with no twisting of
the coproduct) except that all objects are treated with braid statistics. It is precisely
like the semidirect product by a super-group for example, with the role of ±1 played
by Φ. We have,



Braided Matrix Structure of the Sklyanin Algebra and of the Quantum Lorentz Group 631

Corollary 4.7. Let H = U (g) in "FRT'form. Then HxiH explicitly has the structure
on H 0 H as follows. We denote L — 1 <8> L and M = M 0 1 for the generators
of the two copies of H. These are embedded as sub-Hopf algebras in the quasitensor
category of H-modules, with the cross relations and coproduct

L\M^ = Lk

m > iPXL^ΘM'p , Δ(Mi

j®Lk

l) = Mi

rn^^(Mm

J^Lk

n)^Ln

l.

Proof This immediate from the definition of cross products in quasitensor categories
studied in [13, Sect. 2]. The element Lk

m acts on the left factor of the result of Ψ by
the braided group adjoint action > which, in the present case, coincides as a linear
map with the quantum,adjoint action (6). D

Thus, if we are prepared to work with the "quantum Lorentz group" entirely in the
quasitensor category of £7^0/2)-modules, then it takes a very natural form as simply
the semίdirect product of two identical copies of the braided group BUq(sl2) with
one of them (containing the "braided boosts") acted upon (via the adjoint action) by
the other (the "braided rotations").

This algebraic analysis of the structure of the quantum Lorentz group (for example)
raises an interesting problem: what is the right notion of *-structure for Hopf algebras
in quasitensor categories? This is not a simple problem since for a worthwhile notion
of *-structure one has to consider also what should be a "braided Hubert space" and
the corresponding adjoint operation, before the right notion of unitarity etc. in this
braided setting is found. (The situation is complicated by the fact that Ψ2 ^ id.) We
can hope that there can be found such a notion such that we can compute quantum and
braided real forms of the above results along the lines of (33), and perhaps making
contact with the approach of [29]. See also [47]. This is a direction for further work.

A. Braided Groups of Quantum Doubles

In this section we study one of the simplest examples of a factorizable Hopf algebra,
namely the braided group of the quantum double D(H) of a general Hopf algebra
H. It is useful to see how some of the general theory of braided groups, such as the
self-duality in Proposition 2.2 looks in this case. This is even more transparent for the
simplest case of all, namely D(G\ where G is a finite group. Here the self-duality
appears like the self-duality of R as expressed by C0(R) = C*(R) (the Fourier
convolution theorem). Moreover, quantum doubles D(G) (and quasi-Hopf algebra
extensions of them) have been identified in certain non-Abelian anyonic systems and
in the context of orbifold-based rational conformal field theories [48]. In both cases
one can work equally well with the corresponding braided group. The category of
L>(G)-modules in which the braided-groups live is also an interesting one and includes
the category of crossed G-sets as introduced by Whitehead [49]. By developing our
results for this simple discrete quantum group D(G) we hope to provide an antidote
to the more abstract results in the text.

We begin however, with the braided version of general D(H), before passing to our
example. Thus H denotes an arbitrary finite-dimensional Hopf algebra. The structure
of D(H) = #*op DO H was recalled in (36) above. It contains both H and #*op as
factors, where the latter is if* with (in our conventions) the opposite product. This
means that a left Z}(ff)-module is precisely a vector space V on which H and H*op

are represented in a compatible way on the left, or equivalently on which H,H*
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act from the left and right respectively. Denoting the actions O, <3, the compatibility
condition is [28]

υ G F, α e i f * , fteif. (40)

The action of D(H) is then (α 0 ft) > υ = (ft > υ) < α. Note that a right V*-
module corresponds in the finite-dimensional case to a left if-comodule. So we can
equally well think of V as a left H -module and if-comodule in a compatible way.
This category is then the category of if-crossed " bimodules" studied in [50] as well
as subsequently by other authors. It clearly makes sense in this form for any Hopf
algebra or bialgebra (not necessarily finite dimensional).

This D(H) is a quantum group as explained by Drinfeld [17] with (in our
conventions) 3& — XX/° 0 1) 0 (1 0 eα), where {ea} is a basis of if and {/α}
a dual one. Moreover, it is also known that it is factorizable [23], so we can apply
Proposition 2.2 etc. For example, the map Q:D(H)* —» D(H) provided by ̂ 21^12

easily comes out from (36) as

Q(ft <g> α) = ]Γ(α, eα(2))/α 0 (seα(1))fteα(3), (41)

Q~\a 0 ft) = ̂  eα(1)ftseα(3) 0 /α(α, eα(2)). (42)

Equally easily, the quantum adjoint action on D(H) comes out as

α(2) (8) ft

By these actions the braided group D(fί) canonically associated to D(H) by the
construction in (6) lives in the quasitensor category of D(if)-modules. We denote it
BD(H).

Proposition A.I. Let H be a finite-dimensional Hopf algebra. The braided group
BD(H) associated to D(H) has the same product (36) but modified coproduct, inverse
antipode and braiding given by

Δ(a 0 ft) = ]Γα1 <g) eα ® / α i α 2 s / α

3 0 i ( / α

2 > ) »

s-^α ® ft) =

#((α 0 ft) 0 (b 0 p)) = Σeα t> (6 0 p) 0 (α 0 ft) < fa .

Fr<9<9/. The braiding is simply from (5) and the known form of 3B for D(H) (in some
examples we can fruitfully evaluate it further). The braίded-coproduct from (6) comes
out as

ft) - ̂ ΓXi) ̂  ft(1)) (1 0 sea) 0 (α(2) 0 ft(2)) < fa

ft(1)eα 0 /α

(2)α(2)5/
α

(4) 0 ft(3)(5/α

(1), ft(2) (3), (4)
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where the second equality is from (36) and the third by a change of basis and
dual basis. This gives the expression stated in the proposition because Σ\i)ea ®

(s/°(i), A(2))/α(2) = Σea (g) ε(ft)/° for all ft £ if (this is easily seen by evaluating

on a test function in if*). Likewise, the inverse braided-antipode is computed from
a formula similar to (6) for s as

{(s/α

(3)) (sα(3)), ft(3))

<α(l)> fyl)) {(SΓ(2)) (sα(3))> ft(2))

as required. For the second equality we used (44), for the third the (inverse) antipode
in D(H) and for fourth the product in D(H)9 see (36). For the last equality we used

Σ(seα)ft(2) ® (/α(2)> fyi))/°<2) = Σ *eα ® ε(/ι)/α for any ft. D

From Proposition 2.2 we know that this braided group of enveloping algebra type
is also isomorphic to the braided group D(H)* of function algebra type (via Q), i.e.
BD(H) is self-dual. In our case this is manifest for the product on BD(H) is the
same as that of D(H) in (36): an easy computation from (36) gives its dual [the
coproduct on D(H)* and D(g)*] as

ΔD(H}*(h <8> α) = Σ h(2) ® (s/α

α))α(1)/
α

(3) 0 ea 0 α(2){/α

(2), ft(1)) (45)

which can be compared with the preceding proposition. Thus the product and
coproduct on BD(H) are manifestly isomorphic when compared by dualizing one
of them, i.e. BD(H} is in a certain sense "linearized." This is a general feature of
the braided groups associated to quantum groups, and allows for them properties
usually reserved for W1. For example, there is an operation 5^ of "quantum Fourier
transform" from the braided group to itself given by [24] $^ — Σ sQ(^μ(Q(Ί}( )),
where μ is a suitably normalized left invariant integral and Q = ^?21,^12. Just as the
square of the Fourier transform on Rn is the parity operator (inversion on the group),
we have J^2 = s~l [24]. Moreover, if the original quantum group is a ribbon Hopf
algebra [16] then there is also an operator ̂  given by left product by the inverse
ribbon element, and (.S )̂3 = λJ/^2 for some constant λ. For BD(H) the "quantum
Fourier transform" is easily computed from the above as

"leα(2)ft) <β> eα(3)Ml(l)5~ l eα(l)> > (46)

where μλ and μ2 are left integrals on H* and H respectively, suitably normalized.
For example, the left integral on H is characterized by ̂  \\) ® ^2(^(2)) = l/^W
for all heH.

Let us note also that the structure of D(H) and BD(H) can also be expressed
fruitfully in terms of Hom^ίf, H) rather than as we have computed on H* 0 H.
This new form is slightly more general and its structure is a twisted version of the
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standard convolution bialgebra on Homk(H, H). To be explicit, the structure of D(H)
and BD(H) in these terms is

(Δφ) (g 0 h) = ^J Φ(gh>\i) ® Φ(9h\2) >

a(2](fa,φ(ea(l}(s-g)sea(^) , (48)

(/ι t> φ) (g) = Σ h(2)φ((sh(l))gh(3))sh(4} , (49)

α) (#) - α ( 0 ( s ~ V ( # ) ) (s~l

Other structures such as Φ and ̂ x are easily computed from those already computed
above in the H* 0 H form so we leave these to the reader. The strategy is to replace
h(a, ) [in (46) for example] by φ( ) where φ is the linear map corresponding to
(α (g) h). Both the original form and this "twisted convolution" form are useful, see
below.

To conclude the general theory we mention that there are plenty of other algebraic
structures naturally living in the present category of D(H) -modules. The following
is a version of a theorem of Radford [33], translated into the present context.

p
Proposition A.2. Let H\ ^ H be a Hopf algebra projection (i.e., p,i are Hopf

I

algebra homomorphisms between two Hopf algebras andpoί — id). For simplicity we
suppose H finite dimensional. Then there is a Hopf algebra B living in the quasitensor
category of D(H)-modules such that B xi H = Hl. Explicitly, B is a subalgebra of
Hl and a D(H)-module by

B =

h\>b = ^ί(h(l})bs o i(h(2>) , b < a =

where h G H and a G if*. The braided-coproduct, braided-antipode and braiding of
B are

s) > sb = Σ i o p(b(l})sb(2}

(6(1)) > c 0 6(2) .

structure of B ><\ H is the standard semidirect product by the action D> of H and
the coaction of H corresponding to <\ as stated. The isomorphism θ : B x H — > H l is
θ(b 0 h) — bi(h), with inverse θ~l(a) = Σ α(1)«s oio p(α(2)) 0 p(a^)for a e H{.

Proof. The only new part beyond [33] is the identification of the "twisted Hopf
algebra" B now as a Hopf algebra living in a quasitensor category, and some slightly
more explicit formulae for its structure. The set B coincides with the image of the
projection Π:Hl — > Hl defined by Π(a) = ΣCL^S o i o p(α(2)) in [33], while
the pushed-out left adjoint coaction of H on B then reduces to the left coaction

6® = X}p(&(i)) 0 6(2) as used to define <l in the proposition. Note
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that the restriction to H finite-dimensional is avoided if we work throughout with
this coaction rather than < as explained above (this is a reason why comodules are
preferred in [33]). In the present terms, we obtain an action of D(H). The braiding
from (5) then comes out as Φ(b ®c) = Σea>c®b<\fa = Σ 6(ί) > c 0 b&} giving
the form shown. The axioms of a Hopf algebra in a quasitensor category require
that A: B —» B 0 B is an algebra homomorphism with respect to the braided tensor
product algebra structure on B <g) B. Writing Δb = ]Γ 6(1) ® 6(2), this reads

Δ(bc) = ]£ &

which is the condition in [33]. This, along with the other axioms of a Hopf algebra
in our quasitensor category can also be easily verified directly from the formulae
stated. Finally, the structure on B >t H is the standard semidirect product one,
(b 0 h) (c <8) g) — ]Γ) &(ft(i) ^ c) ® fy2)# and the standard semidirect coproduct by
<3 as a coaction. Explicitly, the coproduct on B x\ H comes out as Δ(b ® h) =
Σ\\) ® P(&(2)(i))fyi) ® ^(2)(2) ® ^(2) Applying 0 to these structures and evluating
further gives θ as a Hopf algebra isomorphism. D

We now further compute some of these constructions for an important class of
examples, namely for D(G) — D(kG), where G is a finite group and kG is its
group algebra over a field k. Firstly, a D(G)-module means a vector space V on
which G and k(G) (functions on G with pointwise product) act. As is well-known,
an action of k(G) simply means a G-grading, see for example [51]. Indeed, writing
v < α = ^ci(g)β (v) for some operators βg' V —» V, the requirement of an action

9

means that βgβgt — βgδg,g' Hence V = 0 T/^ for homogeneous subspaces Vg, where
9

α acts by v < α = va(g). We say that v £ Vg has degree |υ = <?. Note that G may be
non-Abelian. A D(G)-module then means a G-graded space on which G also acts,
in a compatible way according to (40). This clearly reduces in our example to the
condition

\9 > v\ = g\v\g-1 , VvtV,geG. (53)

Thus a Z}(G)-module is a G-graded G-module obeying (53). Note that D(G) is an
ordinary semidirect product (even without appealing to Proposition 4.1) because kG
is cocommutative, so that (36) simplifies. The braiding from (5) comes out as

Φ(v ®w) = \υ\>w®v (54)

for v homogeneous of degree \v .
A large class of Γ>(G)-modules is provided by the crossed G-sets of Whitehead

[49]. A crossed G-set is a set M on which G acts, together with a map d:M —> G
such that d(g t> m) = g(dπί)g~l for all g £ G, m G M. In this case the vector
space kM with basis m G M clearly becomes a D(G)-module with > extended
linearly and degree |m| = <9ra. If M is a group one usually demands that d is a
group homomorphism. In this case it is easy to see that the group algebra kM is an
algebra in the category of D(G)-modules [i.e. the product is D(G)-equivariant]. The
braiding (54) is also well known to algebraic topologists. Note that a further natural
demand to make in this context is (dm) t> n — mnm~l for all m, n G M [49].

Bialgebras or Hopf algebras in this category of D(G)-modules obey the usual
axioms after allowing for Φ in (54) when defining the braided tensor product algebra
structure. We now describe the braided group BD(G) associated to D(G). It lives in
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this category of D(G)-modules. Firstly we adopt a convenient description of D(G)
itself. Namely, we identify its underlying linear space as k(G) <8) kG — k(G, kG),
i.e. A G-valued functions. The group-valued functions φg h — fg 0 h for #, h £ G

provide a basis. Here 0g ^to') = <5 g/h. We will say that a function 0 G &(G, kG)
is group-like if the value at any # is grouplike, Δ(φ(g)) = φ(g) <8) φ(#). They are
certain allowed sums of the basis functions, and can be thought of as maps from
G U 0 — > G U 0 where 0 is adjoined. In this notation (there are plenty of others) the
quantum group structure of D(G) looks like

(φψ) (g) = Φ(g)Ψ(Φ(gΓlgΦ(g)) , (Δφ) (g, h) = φ(gh) <g> φ(gh) ,
SΦg,h = Φh-lg-^h-l ' (55>

These are twisted variants of the usual algebra with point- wise product and values in
kG. The antipode looks as stated on one of the basis functions. On a general group-
like function it takes the form (sφ) (g) = Σ h~lδh φ(h \h-\^ which is basically an

inversion of φ as a map (the resulting function is not in general group-like, however).

Proposition A.3. The braided group BD(G) associated to D(G)for G a finite group
has the following structure for group -like functions φ, ψ :G U 0 — >• G U 0,

(Δφ) (g, h) = hφ(gh)h~l ® φ(gh) , (s~lφ) (g) = g~\sφ) (g)g ,

(ft > φ) (g) = hφ(h-lgh)h~l , (φ<ά) (g) = a([g, φ(g)])φ(g) ,

(Φ(φ <8> Ψ)) (9, h) = ([ft, φ(h)] > VO (^) 0 φ(h) ,

w/iere [#,</>(#)] Ξ gφ(g)~lg~lφ(g) is the group commutator. Thus the basis functions
φg h are homogeneous of degree [g, ft].

Proof. This, as well as (55), follows more easily from the "twisted convolution" form
in (47)-(52) by simply dropping the (1)/2) etc. suffices for the coproduct in H (this
is the meaning of the group-like assumption). The original form on H* 0 H is more
useful for the antipode and braided inverse antipode on the basis functions φg^h.

Another form for the latter is s~lφg^h = Φh-ιg-ih,h-l[g,hr Π

Finally, as an application we note the quantum Fourier transform operator J^ from
[24]. In fact, D(G) is a ribbon Hopf algebra so that there is also an operator ̂  as
explained. The inverse ribbon element is simply the identity map G u O - ^ G u O i n
D(G). The integral on D(G) is the tensor product one, μ(φ) — ]Γ δe φ^ (the number

geG
of points in the inverse image of the identity e under φ). From these observations
along with (46) and a direct computation for the normalizations, we have

= ̂  - (56)

The action of ̂  on group-like functions is (^φ)(g) = Y^h~l8g^(ghg^\y These
h

expressions seem at first far removed from ordinary Fourier transforms yet they
have similar abstract properties and moreover, when the quantum Fourier transform
^ is computed for the quantum deformations of ordinary Lie groups (such as
Rn), it does recover a deformation of ordinary Fourier transform [24]. The D(G)
example has a different character from these quantum deformations, being a twisted
tensor product of fc(G) = kG (in the Abelian case) and kG. In this case we see
in (56) that ̂  interchanges the roles of fc(G) and kG in φg^h. In the Abelian

case it is ^φg^ = Φh,g-l Tnus there are some similarities with ordinary Fourier
transformation in its role of interchanging "position" and "momentum."
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