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Abstract. The primitive ideals of the Hopf algebra Cβ[SL(3)] are classified. In
particular it is shown that the orbits in PrimCg[SL(3)] under the action of the
representation group H ^ C* x C* are parameterized naturally by WxW, where
W is the associated Weyl group. It is shown that there is a natural one-to-one
correspondence between primitive ideals of Cq[SL(3)] and symplectic leaves of the
associated Poisson algebraic group SL(3, C).

Introduction

The primitive spectrum of a noncommutative affine algebra is the natural general-
ization of the variety associated to a commutative affine algebra. When the
noncommutative algebra A is a deformation of a commutative algebra B, one
expects to find a close correspondence between the primitive ideals of A and the
symplectic leaves of the associated Poisson structure on the variety Max(£). For
instance if g is a solvable complex Lie algebra, then the primitive ideals of the
enveloping algebra U(g) correspond to the coadjoint orbits in g*, which are the
symplectic leaves for the Kostant-Kirillov Poisson structure on g*.

A similar close correspondence seems likely to occur for quantum groups and
related algebras. Let G be a semi-simple complex Lie group and let C^[G] be the
associated quantum group as defined in [16]. There is a standard Poisson Lie
group structure on G associated to C^[G]. The primitive ideals of C^[G] are
expected to correspond bijectively to the symplectic leaves of G. This correspond-
ence may be verified for SL(2) by direct calculation. In this paper we study the
primitive ideals of C^[SL(n)] and prove that the primitive ideals of
correspond exactly to the symplectic leaves of SL(3).
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When q is real, q φ 1, C^[G] together with a natural involution * can be viewed
as a deformation of C[/C], the algebra of functions on a maximal compact
subgroup K of G. In a series of articles in [18, 19, 20] Soibelman, and Vaksman
showed that the unitary representations of C^[K] correspond to the symplectic
leaves of K.

Fix a maximal torus H in G. Then G has a natural //-invariant Poisson
structure [4]. A description of the symplectic leaves of G may be deduced
from the work of Semenov-Tian-Shansky and Lu and Weinstein [11, 17]; an
outline of this description is given in Appendix A. Let W be the Weyl group
of G. The symplectic leaves fall into //-orbits parameterized by WxW. Let
D = G x G, identify G with the diagonal subgroup of D and let G, be the dual
group. Denote by p the natural projection G-*D/Gr. The symplectic leaves
of G are precisely the connected components of the inverse images of the left
Gr-orbits in D/Gr. Set Γ = kerp and G = p(G). Then Γ is a finite subgroup
of H and G = G/Γ is an open subset of D/Gr. For each we IVx W, let ^w be the
image of the corresponding Bruhat cell of/) in D/Gr. Denote by ̂  a fixed Gr-orbit
in «V Then #* ̂  Cl x (C*)5 and #w is the union of the //-translates of #V Each
symplectic leaf of G is then a finite cover of h^^ n G for some weWxlVand some
heH.

In section two we prove some preliminary results about the primitive
spectrum of C9[SZ,(n)]. The group H occurs again in the quantum case as the
character group and PήmCq[SL(ri)~] therefore decomposes into the union of the
//-orbits. Following ideas of Soibelman [18, 19], we define for each we Wx W
a locally closed //-invariant subset Primw of PrimC€[SL(n)]. It may be shown
that Primw is nonempty for all w and that PήmCq[SL(n)~] = |JwPrimw. We
conjecture that each Primw is a single //-orbit and that the elements of Primw

are in bijection with the leaves of type w. This conjecture is proved in sections
three and four for Cβ[SL(3)]. The truth of the conjecture for Cβ[SL(2)] was
proved earlier by S.P. Smith and the first author. This result is outlined in
Appendix B.

In order to describe the symplectic leaves of G one passes first to G. Similarly, in
order to describe the primitive ideals of Cβ[G], we first_study the invariant
subalgebra Cq[G] = C^[G]Γ. The quantum analog of ̂ w n G is a certain localiza-
tion of a homomorphic image of Cq[G] denoted by £w. The key result in section
three is the decomposition of B» as the tensor product B^ ® €[//„,], where B^ is
a quantum analog of ̂  n G and €[//„] is the algebra of functions on the torus
Hw =

1. Preliminaries

1.1. In this section we introduce the basic definitions and notation that we shall be
using. We denote by g the Lie algebra sl(n, C) and by G the Lie group SL(n, C). We
follow the standard notation in Bourbaki for the roots, weights, Weyl group etc.
associated to g. Other notation is listed at the end of the paper.

1.2. Let q e C*. We shall assume throughout this paper that q is not a root of unity.
We denote by Ά the set {qn\neZ}. Let [α^-] be the Cartan matrix associated to g.
Recall that the quantum universal enveloping algebra associated to g is defined to
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be the algebra Uq(g) generated by K*1, X f , 1 ̂ i^n— 1 with relations

. . _
where ' ' π

q2J-q~2J

(see, for example, [12]). The algebra Uq(g) is a Hopf algebra. The comultiplication
A is defined by

and the counit and antipode by

There is also a C-linear antiautomorphism αi— >α* given by (Xί

±)* = Xί

+,
(K,.)* = X;. It is easily verified that zl(α*) = A (a)* (where (0 ® &)* = α* ® &*) and

* - α*.

7 J. Set 17° = C\_Kr 1 1 1 g i ^ n - 1]. Let M be a l/°-module. If χ is a character of
17° define the χ-weight space of M by Mχ = {xeM\ux = χ(u)x, Vwe[/°}. Set
Q(M) = [χ\ Mχ Φ 0}. Let P be the set of weights of g and let (α1? . . . , α^J be
a fixed set of positive roots. Each weight λeP induces a character of U° via
λ(Ki) = q(λ>Λί\ 1 ̂  i ̂  n — 1. We denote by Mλ the associated weight space.

Define <β to be the category of finite dimensional Uq(g) modules such that
M = φμepMμ. Since <# is closed under finite direct sums, tensor products and
passage to the dual module, we may define the restricted dual of Uq(g) with respect
to <β. This is the associated quantum group ^[G]. Thus

Cβ[G] = {/et7,(g)*|Ker/Ξ2 AnnM for some

The algebra C^[G] then has a natural Hopf algebra structure induced in the usual
way from that on Uq(g). There is also an anti-automorphism on Cβ[G] induced
from that on Uq(g) by t*(u) = t(S(u)*) for all ^ eCβ[G] and all w e Uq(g).

Let π: Uq(g) -> End(M) ̂  Mm(C), π(a) = [πy(α)], be an m-dimensional repre-
sentation of Uq(g), where M is an object of #. The elements Tr^e ί/9(g)* are called
the matrix elements or matrix coefficients of the representation π. It is clear that
these Uij belong to Cβ[G] and that the set of all such π^ for all possible M in #,
spans Cβ[G] as a vector space. Recall the following useful formulas:

Antj = Σ π ί k ( S ) πkj , πy πw = (πy ® πw) ° J, S(πy) = πy ° 5, ε(πy) = πy(l) .
&

7.^. The category ^ is in some sense a deformation of the category of finite
dimensional modules over the Lie algebra g [12]. Denote by P+ the set of
dominant weights of g. For each dominant weight ΛeP+ there is a simple module

^ and an element υΛeL(A) such that
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1. L(Λ) = Uq(g)vΛ = ®μe

2. L(Λ)Λ = CvΛ, X + vΛ = Q,l^ί^n- 1; (υΛ is called the highest weight
vector of L(A))

3. the set of weights Ω(Λ) = Ω(L(Λ)) and the multiplicities are the same as for
the corresponding simple g-module.

Any M e # decomposes as M = @Λep+ L(A)™A. The representation ring of # is
generated by the classes of the simple modules L(wt) corresponding to the funda-
mental dominant weights wi9 1 ̂  i ̂  n — 1. Moreover each L(Λ) occurs as a sub-
quotient of a suitable power of the standard representation L(w^\ On the other
hand the dual of L(w^) is isomorphic to L(wn-ι) which is isomorphic to the
(n — l)-th quantum exterior power of L(WI). Hence if the matrix coefficients with
respect to the natural basis eί9 . . . , en of L(w1 ) are denoted by Xtj then the matrix
coefficients corresponding to L(wn-ι) are the quantum minors defined by:

DΪJ = 2-ι (~~# ) -^l.σ(l) ^ ί- l ,<τ( i- l)^i+l,σ( i+l) Xn,σ(n) ->
<τeSn-ι

where Sn-ι denotes the symmetric group acting in the usual way as bijections from
{1, . . . , i - 1, ί + 1, . . . , n} to {1, . . . ,7 - 1, j + 1, . . . , n}.

From these and related facts one deduces the following well-known description
of the Hopf algebra Cβ[G].

Theorem 1.4.1. (a) The algebra C^[G] is generated by the XiJ9 1 ̂  ij ^ n, with
relations:

XaX^ - XmjXei = (q 2 - q ~ 2)X(jXmh W < m, Vi < j ,

Det, = Σ (-ίY^^i).! . . . *„<„>,„ = 1 .
σeSn

(b) The Hopf algebra structure is given by

Δ(Xίj) = ΣX*® XtJ,

(c) Γhβ involution * is grzt βn by (Xij)* — (~~
(d) Furthermore

The reader is referred to [16] and [14] for further details concerning this
algebra.

1.5. The generators described in the above section are not well suited to the study
of the primitive ideals. A more natural set of generators is the following. This
notation was first introduced by Soibelman in [18].

Recall that L(wk) ^ /\kL(wι) (the fcth quantum exterior power of L(w^)) and
that Ω(τπk) = Wwk, where W denotes the Weyl group. Recall that W may be
naturally identified with the symmetric group Sn by letting the reflection with
respect to the simple root o^ correspond to the transposition (i, i + 1). Let
i = {i l 5 . . . , ife} be a subset of (1, . . . , n — 1} such that ix < . . . < ik. Define
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ei = eh Λ . . . Λ eik. Then the weight spaces of L(wk) are exactly the Ceif For any
we W define e^Wk to be the element of e± of L(wk\ where! is the ordered multi-index
associated to (w(l), . . . , w(fc)}. It is 'easily verified that eWWkeL(wk)WWk. Define
e* wWkeL(wk)* to be the dual basis element corresponding to ewwk and denote by
< — , — > the natural pairing between a vector space and its dual.

Definition. For each k = 1, . . . , n — 1 and each we W we define elements
by: Vκel7β(g), c£w(tt) = O- w<πk> w<W>, Cfc'w(w) =

Thus ck% (respectively c/~w) is a matrix coefficient of L(wk) (respectively
L(mn-k)). In particular we have that ci, ( l f i ) - Xil9 c B

+ _ l f ( ί > n ) = Dίn, cΓ,(M) = D^,
c«-ι,(i,«) = ^i« The general element c^w can be interpreted as a general quantum
minor as defined in [14]. In the notation of that article,

where w{l, . . . , k} = (w(l), . . . , w(/c)} etc.
One of the key properties of these matrix elements is that they generate

In fact a slightly stronger statement is true. Let A+ be the subalgebra of Cα[G]
generated by the elements of the form c£w and let A- be the algebra generated by
the elements of the form c^.

Theorem 1.5.1. The linear map A- ®A+ -» C^[G] given by a®b\-*ab is an
epimorphism ofC-vector spaces.

Proof. This result is Theorem 3.1 of [19]. It suffices to check that the definition of
A± given there is in fact the same as the one given above. D

1.6. On occasion we will need a notation for a coordinate function coming from an
arbitrary representation in .̂ Our notation again follows Soibelman [19].

Let AeP+. Recall that L(Λ) = @λeΩ(A)L(Λ)λ, L(Λ)* ^ L(-wQΛ) and
L(AYLμ = [L(Λ)μ]*. Each module L(A) carries a non-degenerate bilinear con-
travariant form (— |— Xi such that (av\w)Λ = (v\a*w)Λ for all aeL^(g) and
v, w e L(Λ). Such a form is unique up to a scalar multiple [7]. Choose an orthonor-
mal basis {υ( [*\μeΩ(Λ\ 1 ̂ j ^ dimL(Λ)μ} of L(A) with respect to (- | -)Λ. Let
{^λ} be the dual basis in L(A)*. Then each £®λ identifies with (υ(£\ -)Λ and

. Hence </(i}

A, t?</>> = (^l^)^ = δλμδij. We define elements

For convenience we use the following abbreviations:

if d i m L ( Λ ) A = l

if dimL(A)μ = l

(cA-λ,μ if dimL(yl)A = άimL(A)μ = 1

The first two parts of the following lemma are taken from [19]. The third part is
a consequence of the general formula in Sect. 1.3.
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Lemma 1.6.1. (a)

(b) (cl;u,,J*
(c)

Notice that c£weCc**^tW1t and c^eCc^-^ = C«w)*.

7.7. Let Λ* denote the set of positive and negative roots respectively. Denote by
b* = hθn 1 the Borel subalgebras associated to R±. We denote by E/^b*) the
Hopf subalgebras of Uq(g) generated by {Kh Xf \ 1 ̂  i ̂  n — 1} respectively (we
call them the Borel subalgebras).

As in [19] we define the following ideals of C^[G] which play a fundamental
role in what follows:

Notice that in the definition of /~(w, A) the t/l^'s belong to L( — w 0 Λ)_ μ . Notice
also that the condition v(

μ

}φUq(b+)vwΛ can be expressed in the form

Define τ to be the involutive automorphism τ = * o $. For any Uq(g)-modu\Q
M we denote by Mτ the twisted module where the action of an element u e Uq(g) on
an element veM is given by u v = τ(u)υ. Then it is easily verified that
L( — wQΛ) = L(Λ)τ. This isomorphism takes v®μeL( — WQA) onto v(^
Since τ(Uq(b + )) = l/β(b") we obtain that

Therefore Lemma 1.6.1 shows that / + (w, A)* = I~(w, A).

1.8. We shall need some elementary facts about the Bruhat ordering on W. We
take the reverse of the usual Bruhat ordering introduced in [3]. Thus e ̂  w ̂  w0

for all w e W. For each fundamental weight Wι we denote the stabiliser of wt in IV by
Wi = Stab(τσ ). Denote by W{ a fixed transversal of Wι in W.

Definition. Fix ie{l, . . . , n — 1}. Let y, we W. We say that y S / w if and only if

It is clear that 5̂  is right J^-invariant and that the induced ordering on
is a partial ordering. In order to keep the notation consistent, we shall sometimes
use the notation = f for equivalence modulo Wt. The proof of the following
proposition is similar to standard arguments concerning the Bruhat ordering (for
instance [3, §7.7]).

Proposition 1.8.1. Let ie{l, . . . , n — 1} ana let y, we W.
1. The following are equivalent: (a) y^w; (b) vywie Uq(b + )vww.; (c) υγnat

2. y ^ i W

3. y ^ woy ίg/w for all L

Example. If we identify W as above with the symmetric group Sn9 then the
subgroup W1 = Stabϊr(tσ1) identifies with the group Sn-l = Sym{2, . . . , n} and
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we may take W± to be {e = (1, 1), (1, 2), . . . , (1, n)}. The ordering g 1 is then given
by

Similarly Wn-ι = Sym{l, . . . , n — 1} and we may take the transversal Wn-ι to be
{(n, 1), (n, 2), . . . , (n, n) = e}. The ordering ^n-ι is then given by

Wn-ι <n-l(n, n -

In the case we shall be most interested in (when n = 3) these are of course the only
two cases.

2. The Algebras Aw, Bw and Cw

2.1. In order to study Cα[G] in more detail we introduce algebras Aw, #w and Cw

defined for each we Wx W. The motivation for the definitions of these algebras
comes from the structure of the symplectic leaves in G. Recall the notation of
Appendix A. There are natural maps G -> G c; D/Gr and a symplectic leaf of G is
a connected component of the inverse image of a left Gr-orbit of D/Gr. The Bruhat
cells ̂ w oϊD/Gr are disjoint unions of isomorphic leaves of "type w." Just as in this
geometric case it is natural to study the symplectic leaves by type, so in the study of
C^[G] it is natural to classify primitive ideals by type. The algebras Cw, Bw and Aw

correspond to the cell ^w and its inverse image in G and G respectively.

2.2. Setting A = w{ in 1.7 we obtain the ideals / ±(w, Wi). From Lemma 1.6.2 and
Proposition 1.8.1 it follows that

Henceforth, the principal objects of interest will be the ideals defined for each
w = (w+, w _ ) e Wx Why.

/w = "l (/ + (w+, tn£) + / - ( w _ , m,)) = <cf f , | 1 ̂  i ^ n - l^w.) ,
i = l

and the sets, defined also for each w = ( w + ? w _ ) e W x Wby

We shall also occasionally use the following notation. For y E W we define
7±ω = Σ?-ί /±(^ ̂ ) and f±(y) = (c^\l = 1, . . - , « } . For w = (w+, w_), we
define / ± = /±(w±), and ί± = <T±(w±).

Theorem 2.2.1. Let w e W7. The image ofc\t w is normal in C^[G]//ε(w, wt). In fact we
have that

c ^ λ , i , μ , j C ί , w = γclwc-λ>iίμJ(modΓ(w, w ft for some J G £ .

Proof. Recall that C€[G] = C[clA > ί > / ί 5 J |yleP + ] and that c£w is a scalar multiple
of cwJWWi>Wι. The ideal J0(wmh m^ defined in [19] is precisely the ideal / + (w, 07^)
defined above. The result for c£w then follows from [19, Prop. 3.2]. Applying the
involution * yields the result for c^w Π
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Corollary 2.2.2. For any w = (vv+, w _ ) e Wx W, the elements of $w (respectively
gε

w) are normal in C^[G]//W (respectively

Now let w = (w+, w _ ) e Wx W. Denote by £w the multiplicatively closed set
generated by the images of the elements of <?w in Cg[G]//w. Since Ew consists of
normal elements we may localize with respect to this set. Denote the localized
algebra

It is not immediately clear that Aw Φ 0 since it could happen that Ew n /w Φ 0.
In the next few subsections we shall prove the following result:

Theorem 2.2.3. For all we Wx W, Aw Φ 0.

The idea of the proof is to construct a non-zero ^w-module by tensoring
together certain "fundamental" C^[G]-modules. This technique was used by
Soibelman in [19, §5]; the idea is apparently due to Drinfeld. It is a quantum
analog of the proof that p"1^™) =1= 0 given in Appendix A.

Definition. A non-zero Cq[G^-module is said to be of type we Wx Wif(ι) IWM = 0
and (ii) Vce<f w , M = cM (i.e., M is $w-divisible).

It is a standard fact that a module of type w has a natural structure as an
y4w-module. Thus the theorem will be a consequence of the existence of a nontrivial
module of type w for all we Wx W.

2.3. For each ie (1, . . . , n - 1}, denote by t/β(sli(2)), the Hopf subalgebra gener-
ated by { X i ~ , XΓ, ^i11}; denote by E7g(bf) the subalgebra generated by
{Xε

i9 K^1}. Consider the following commutative diagram of inclusions:

Uq(bi) -> t/β(slί(2))

Uq(V) - Uq(g) .

Since Uq(\)ε) is a Hopf subalgebra, the subspace
G]|/(L/4(bε)) - 0} is an ideal of C[G]. Define C4[βε] = C

and define similarly Cg[£f] and Cg[SLf(2)]. Then we have a commutative diagram
of surjections,

C,[Bf] <- C,[S£,(2)]

C,(5ε) 4j. Cβ(G) .

It is easily verified that the canonical isomorphism, Uq(s\i(2)) = Uq(s\(2))
induces an isomorphism Cβ[SL(2)] ̂  C^[SLί (2)] such that the kernel of
C,[SZ,(2)] -, Cβ[BΠ is /(βt β) (and likewise Ker(Ce[SL4(2)] -* Cβ[JBf]) = /(5§β)).
From the theorem in Appendix B, we know that there exist C^[5L(2)] modules
M + and M ~ of type (5, e) and (e, s) respectively. Define MΓ to be the modules M ±

considered as Cg[G] modules via the map Cβ[G] ->Cβ[SLf(2)] ACβ[SL(2)].
Then in particular we have that Ann M* 3 ker φ* + .
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Proposition 2.3.1. The modules M* and M f~ are of type (sh e) and (e, st ) respectively.

Proof. We give the proof for M * . We first need to show that I(Sit e} c Ann Mf it is
enough to show that / + (siy w) -f I ~ (e, w) c Ann M* for each fundamental weight
w. Notice that Γ(e,w) = ^cμ^\v.μφUq(b-)v.wy = <c-™\φ* (c~ W_C)
= 0> c Ker φ* c Ann M;+ . On the other hand, / + (5,-, w) =

(cυLλ>τσ\vλφUq(b + )vSiwy. Suppose that I + (st, m)φKerφf . Then there exists a
A such that vλ φ Uq(b+)vSιW and t^ e l/β(sI/(2) )ιv Since J^+ vw = 0 and JΓ,+ ι?SiW e Cι>ro,
we obtain vλeUq(sli(2))vw = Cvw + Ci?SlW £ ^(b+)ι;SιίZ7, a contradiction.

It remains to show that M * is <f(s. je) -divisible. Recall that elements of S(Si,e)
 are

of the form c/ = c%^>C7j or c} = c~^-%. We first compute φf (c, ) acting on M +

via the identification C^[SLf(2)] = Cβ[SL(2)]. The l/e(sli(2)) module generated by
ι?ro is either trivial (when (wj9 α,-) = 0) or is the fundamental representation with
highest weight vector υWι (when (wj9 αt-) = 1). It follows that φf(Cj) = ( c p - s p ί p ) ( W j ί C ί i )

for which Mf is divisible by definition. A similar reasoning gives that
φf(c'j) = (c^-SpsSp)

(ΐσj'αί) which again acts divisibly by definition on M "*". D

2.4. We now show that modules of type w = (w+, w _ ) can be constructed by
forming the tensor product of modules of the form M* using the reduced de-
composition of w+ and w _ . The fundamental result is the following.

Theorem 2.4.1. Let M be a Cq[G~\-module of type (w+, w_). //s f w + > w+ (respec-
tively st w _ > w _ ) then Mf ® M (respectively M (x) Mf) is α Cq[G^-module of type
(SfW + j w _ ) (respectively of type (w+, S j W _ ) ) .

Proo/ We prove the assertion in the case S j W + > w+.
(i) / ~ ( w _ , m ) e Ann(Mj+ ® M) for all fundamental representations w.
We denote Cχw

μ°
w by cλ>μ. A standard generator for / " ( w _ , tπ) is then of the

form CA> -W9 where ^-^^^(b")^-^,^. The action of cλί -w is given by the comul-
tiplication J(cA j -w) = ΣμeΩ(-w0w)Cλ,μ® c~μ, -w Suppose that the action is non-
trivial. Then there exists a μ such that both factors cλ,μ and c_ μ j _ w act non-trivially
on MΪ+ and M respectively. Since M is of type ( w + , w _ ) this implies that
ί;μel/^(b~)t;_> v_ t ϋ. Since Ann(M ί

+) 3 Ker(<p*), we must have that φ^(cλ>μ) ή= 0;
thus v-λεUq(b~)vμ ^ ί/4(b~)ι;_w_ r o, a contradiction.

(ii) / + (sI w+, tσ) ̂  Ann(M^ (x) M) for all fundamental weights w.
For these calculations we abbreviate c^μ by cλίβ. Then a standard generator of

/ + (s, w + , tσ) is c_ A 5 C 7 , where t;λ^ C/€(b + )i;SiW+By. The action on M/ ® M is given by:
zl(c_ λ > Π 7) = Σμ e β ( C 7)C-A,μ® c-μ,w Suppose that there exists a μ such that both
c-λίμ and c_ μ j C 7 act non-trivially on M f

+ and M respectively. Then by definition
and Proposition 1.8.1, vμeUq(b+)vw+w c ί7 ί(b+)ϋs.w+tσ. On the other hand, since
Ann(M/

+) 3 Ker(φf) we must have t;Ae^(slz (2))iλ,. Since sz W 4 . > w + ,
XΓϋ S l W + o; = 0. Since moreover [Xk

+,A7] - δfk^2 - g-^)"1^2 - KΓ2)? it fol-
lows easily that

which implies that vλe Uq(b + )vSιW+w, a contradiction.
(iii) Mf ® M is < f ( S ι W + f W _ } -divisible.

Let τσ be a fundamental representation. We continue with the notation of part
(ii). The action of c S i W + β 7 > O J is given by:

A{C — s,w+ tσ, τ σ j / , ^— S ι W + m , μ ^ 9 ^ — μ, rσ
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Suppose μ is such that the corresponding summand is non-trivial. Then we have
that (a) vμeUq(l) + )vw+w and (b) vSiW+weUq(l>Γ)vμ. Consider the l/β(slj(2))-sub-
module of L(w) containing vw+w. Since S f W + > w+ it has highest weight w + tπ and
lowest weight Si\v+w. If (w + tσ, α,) = 0, the representation is trivial; otherwise
(w + tπ, ocj) = 1 and the representation is the fundamental representation. From (b)
we obtain μ = SίW+m + pαt = w+tσ + (p — (w+tσ, α^))^, where p is an integer
between 0 and (w+ m, α,). From (a) we deduce that p = (w + tπ, α,) and so μ = w + tσ.
Thus for any m'eM* and meM,

£-SiW+ι0,tX ® m = c_ S i W + r o ? w + rom' (x) C-w + WίWm .

By hypothesis M is c_w+Π7jΠ7-divisible. On the other hand, <p*(c_ S l W + 0 7 > w + α 7 )
= (c-Sp,p)(w+ro'βί) and Mf+ is divisible with respect to this element. Hence

M* (x) M is c^.s.w+tσ>ίσ -divisible. The proof for elements of the form c~™^-w is
similar. D

Corollary 2.4.2. Lef w + = s f l . . . s ί k,w_ = sjl . . . sjrnbe reduced expressions for w+
- in w.

M ί ® . . . <8> M ί ® M^ (x) . . . ® M r

is α module of type (w+, w_).

This completes the proof of Theorem 2.2.3. These results generalize slightly [19,
Propositions 5.1, 5.2].

2.5. Let ^R(C^[G]) denote the set of one-dimensional representations of
Since C^[G] is a Hopf algebra, Λ(Cή[G]) has a natural group structure. Let
X = (Xij) be the matrix of coordinate functions as described in 1.4. Since the
Xtj generate Cq[G], there is a natural map from ^R(C^[G]) to MB(C) given by
χ*-+(χ(Xij)) = χ(X). It is easily verified that this is an isomorphism of #(Cg[G])
onto the set of invertible diagonal matrices. Since ^R(C^[G]) is naturally isomor-
phic to this complex torus we shall denote it by H.

For any Hopf algebra A9 there is a natural action of R(A) as automorphisms of
A given by rχ(a) = £ a(1)χ(a(2)) for all χeR(A) and αe A In the case A = Cg[G]
the action of H on C^[G] is therefore algebraic and given by rχ(X) = Xχ(X).

Denote by Γ the subgroup of H corresponding to matrices with entries equal
to ± 1. Denote by γt for i = 1, . . . , n — 1, the element with — 1 in the (i, ί) and
(i + 1, i + 1) position and Γs elsewhere. Obviously Γ is generated by the yt. Using
the description of cf f w as a quantum minor given in 1.5 it is easily verified that the
action of yt on the elements c I w is given by

Definition. We denote by B = C^[G] = C^[G]Γ the algebra of elements o/Cβ[G]
invariant under the action of Γ.

Definition. Let w = (w+ , w_ ) e PFx W. Recall that Aw = (A/Iw)Ew. Since y(Iw) c /w

and y(Ew) ^ Ewfor all yeΓ, ί/i^r^ is α natural induced action ofΓ on Aw. We define
"w = Aw.

Notice that Bw = (B/(I^nB)\EvvnB). In order to simplify the notation we
continue to denote by cf > y the image of cf > y in Aw.
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It is fairly^easy to see that Aw has a natural structure as a crossed product of the
dual group Γ over Bw. Denote by Γ the dual group of Γ and denote by ft- the
element of Γ such that f^ ) = (-1)*". Define a map φ: f -* Aw by
<£(?ii 7tt) = cί,w+ - - - ctt,w+ if h < - - - < it- Then ^w is a crossed product of
Γ over Bw via φ in the sense of [13, 1.5.8].

2.6. Fix w = (w+, w _ ) e Wx W.

Definition. Let yεW. In A^ set z f > y = c ̂ c ̂ )"1 αrcd ί{ = c ί7w_(c^w +)~1.

Clearly these elements belong to Bw. We define Cw to be the subalgebra of £w

generated by the set

Clearly z f > y = 0 for j; > f W ε and zf > W ε = 1. Thus

We now show that Bw is the localization of Cw with respect to an appropriate
normal element. Recall [14, §2] that the relation Detβ = 1 mayjbe written, for each
i = 1, . . . , n — 1, as 1 = ΣyefFίαi,y ci!y cί7y> where α ί > y e Ά and W{ is a transversal of
Wi in FF. Using Theorem 2.2.1 and the description of the c\^ as quantum minors
given in 1.5, we obtain that Cw contains the elements

where β^yeΆ. Define d to be dιd2 - . . dn-ι.

Theorem 2.6.1. The element d is a normal element ofCw and Bw = CM,[rf""1].

Proof. It follows easily from Theorem 2.2.1 that dAw = Awd. Since each zε

i>y is an
eigenvector for conjugation by rf, it is clear that dCwd~1 = Cw. Thus d is a normal
element of Cw. It follows from Theorem 1.5.1 that ,4W is spanned by elements of the
form vd\ where v is a word in the c s y and ί is a non-negative integer. Such words
are clearly eigenvectors for the action of Γ. Hence Bw is spanned by the words with
eigenvalue 1; that is, words for which the number of occurrences in v of elements of
the form cf > y , for a fixed i is even, say 2mj. For such words it follows from the
normality of the elements cf, Wε (Theorem 2.2.1) that if t > mf for all ϊ, then vdteCw.
Hence for all fre£w, there exists a positive integer m such that bdmeCw. D

2.7. We shall also be interested in the subalgebras of elements invariant under the
action of the whole group H. There is a natural induced algebraic action of H on Aw

and Bw. Let Λ e C * and let h = λeu + λ~lei + lj+ι. Then it follows from the
description of the cε

ί>y as quantum minors that

L, ̂h(cJ,y}= + f . ,
(Cj-y if J Φ ϊ -

It is thus clear that the elements z ? y are H-invariant.

Theorem 2.7.1. (i) C* = C[zf y |ε - ±, 1 ̂  i ̂  n - 1, ye W].
(ϋ) ̂  = B2 = C^[d-1].i

(iii) Γ/iβ monomials tf . . . tr

n

n-ifor (r1? . . . , ̂ -JeZ" 1/orm ^ basis for Cw as
a left or right C^-module and a basis for Bw as a left or right B^-module.
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Proof. Denote by S the subalgebra of Cw generated by the z\ty. Clearly S ^ €„. On
the other hand, since Cw is generated over S by the t{ which are invertible elements
normalising S (tiS = Sti), it follows that the given monomials span Cw as a left or
right S-module. It is also clear that if h = λβu + λ ~ 1 et + 1 1 / + ^ , then Λfo) = λ ~ 2 tt and
h(tj) = tj for 7 Φ i. Thus each distinct monomial corresponds to a different charac-
ter of H. Hence the monomials must be linearly independent over C%. Thus
Cw = φt6z-lSfr, where ίr = ίϊ1 . . . tr

n

n-} if r = (r1? . . . , r^). This proves (i) and
the first part of (iii). The remaining assertions then follow easily. D

2.8. We are now in a position to formulate more precisely the conjectures made in
the introduction concerning Prim Cq[G]. Although we only consider here the case
when G = SL(n\ similar conjectures may be made in the general case. The reader is
referred to Appendix A for a description of the symplectic leaves of G. Denote by
A the algebra Cβ[G].

Definition. For each we Wx W, define SpecwA = {PeSpec^4|P 3 /w ana
p n Ew = 0} and Specwβ - (PGSpecΰ|P =>IwnBw and P n £w = 0}. Elements of
Specw^4 and Specw£ are said to be of type w. Set Primwy4 = Specw,4 n Prim ,4 and
Primw£ = Specw B n Prim B.

The action of H on A described above induces an action of H on Prim A for
which the locally closed subsets Primw^4 are invariant for all we Wx W. Since the
action of H is algebraic, StabHP is a closed subgroup off/ and H/StabHP is a torus
for all P 6 Prim A.

Conjecture 1. Prim A = \^^eWxWPήmwA and PήmwA is a non-empty H-orbit
for all we Wx W. If P^ is a primitive ideal of type w, then H/StabH P^ is a torus of
rank rkG — s(w). Hence there is a bijection β: Prim ,4 -» SympG such that

w^) = SympwG.

Conjecture 2. One may define a bijection β: Prim A -» Symp G as in Conjecture
1 such that β is order reversing and GKdim A/P = dim/?(P) for all Pe Prim A

Both conjectures are known to be true in the case G = SL(2, C) (see Appendix
B). Conjecture 1 is proved in Sect. 4 in the case when G = SL(3, C).

3. The Adjoint Action

3.1. Henceforth we restrict our attention to the case G = SL(3). We shall denote
the algebra Cβ[SL(3)] by A. In order to study the ideals of A we look at the ideals
of Cw and Bw invariant under the adjoint action. At the same time we study in detail
the structure of the algebra C^, showing that it is an iterated Ore extension in the
sense of [13]. We shall therefore be interested in bases consisting of standard
monomials as defined below.

Definition. Let ®j = {yί9y29 - - ,yt} be an indexed set of elements. The standard
monomials in $/ are defined to be the elements yr = y\l . . . y?9 where
r = ( r 1 , . . . , r f )eN ί .

3.2. We shall show that for each w, there exists a certain set of zf ι y such that for
a suitably chosen ordering, the standard monomials in these z's form a basis for
Cw Clearly we should exclude from such a set all the z\,y for which y < f W ε . The
Plucker relations imply that certain other generators are redundant.
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Definition. Fix we Wx W. Define

& = {zly\ε =±9y <t wε, / =12}- {zβ

2.WβWO |β = ±} .

Define I to be the corresponding index set; that is,

1 = { ( ε , y , i ) \ ε = ±,y < f w ε , f = 1,2} - {(ε,2, wεw0)} .

Theorem 3.2.1. C*

Proo/ From Theorem 2.7.1 and the remarks at the beginning of 2.6, it suffices to
show that if wεw0 < wε, then z|,WisW0eC[«2r]. The Plucker relations given in
Theorem 1.4.1 (d) imply that in AW9

Σ ayct y°t ywo = 0, for some αy e J .
y e ί F 1 , y ^ l W +

Multiplying by (c^ w + )~ 1 (c^ w + )~ 1 and using the fact that zί",w+ = 1, we obtain:

zt w + w 0 = ^ Σ yy*ί,y z2, y w o> for SOme Jy 6 J .

Now for y < ! w+ , Z2,ywo is either 0 or an element of 2£. Hence z £ w+ Wo e C[«2f ], as
required. A similar argument works for Z 2 , w _ W o .

Remark. It is important to notice that if w+ <2 w+w 0 , then the above relation
collapses to 0 = 0. Nontrivial relations for z^ w + wo only occur when w+ or w_
belongs to {(1,3), (1,3, 2), (1,2, 3)}.

3.3. The ordered indexing on the set 2£ will be induced from the following ordering
on the set S = {(e, i, y)\ε = ±, i = 1, 2 and ye ^-}.

Definition. Define a total ordering on the set S by:

i' < i; or

i' = i and y' >tyι or

i' = i and y' =ιy and ε' = +, ε = — .

Since Wt is totally ordered by ^ί? it is easy to see that this defines a total
ordering on S.

The required commutation relations on the z\ty follow from the following
commuation relations in Cq[SL(3)].

Proposition 3.3.1. Suppose that (ε', /', y') < (ε, z, y). Then there exists an αeC*

where jSjeC, ^^{cf^Ke, i, M) < (ε, i, y)} αnrf α}e{cf',M |(ε', i', w) < (ε, i,

Proo/. The result may be deduced from the commutation relations given in [8, 2.1,
2.2, 2.13-2.16] using the equations in Sect. 1.5. Alternatively, one may use the more
general formula [19, §3.8] which follows from the form of the universal R-matrix
for I7β(d(3, C)). D

3.4. We define R(ε, i, y) = C[zjp J(ι/, j, u) < (ε, i, y)].
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Proposition 3.4.1. The algebra R(ε, i, y) is spanned by the standard monomials in
{zi>ty>e 3f\(ε', i', y') < (ε, i, y)}. In particular, the algebra C% is spanned by the
standard monomials in the elements of 2£.

Proof. It follows from the proof of Theorem 3.2.1 that z2tWeWoeR(ε, 2, wεw0). On
the other hand Proposition 3.3.1 implies that R(ε, i, y)[z s>;] is spanned as a left
jR(ε, i, y) module by the powers of z f > y . The result then follows by induction. D

3.5. In order to show that the standard monomials from Proposition 3.4.1 form
a basis for C^, we consider the adjoint action of Cβ[SL(3)]. Let us recall the basic
definitions and properties for the adjoint action of a Hopf algebra on a bimodule.

Let (R, A, ε, S) be a complex Hopf algebra and let M be an .R-bimodule. The
adjoint action of .R on M is defined by: (ad h)x = h(l}xS(h(2)) for all h e .R and x e M,
where we are using the Sweedler notation together with the obvious summation
convention. We set Mad = {xeM|(ad/i)x = ε(h)x, VheR}. It is easily seen that
Mad = {xeM\hx = xh, VheR}.

The map ad: #-»EndcM is a homomorphism of algebras and in this way
M becomes a left .R-module via ad. Suppose now that M also has the structure of
a C-algebra compatible with its bimodule structure; i.e.

Vx, j eM, V/ze#, h(xy) = (hx)y and (xy)h = x(yh) .

Then under the adjoint action, M has the structure of a .R-module algebra in the
sense that (adh)(xy) = (ad/z(1))(x)(ad/ι(2))(y).

3.6. These generalities apply to the Hopf algebra Cβ[SL(3)] and any bimodule M.
Recall that Cβ[SL(3)] = C[JSfy | l <Ξ ίj ^ 3], where the Xtj are the coordinate
functions for the standard 3-dimensional representation of ί/9(sl(3, C)). Since

Xij) = ^Xik®Xkj9 tne adjoint action of Xtj is given by (adZ0 )m =
XikmS(Xkj) for all m e M. Denote ad Xtj by ad^ , and define the adjoint matrix of

m to be [adm] = [ad^ m]!^^,,. Denote by X the matrix of coordinate functions
(Xij)eMn(A) and by S(X) the matrix (S(Xij)). It follows easily from the coalgebra
structure of A that S(X) = X'1.

Proposition 3.6.1. Let φ: Cβ[SL(3)] -> JB be a C-algebra map. Then for any beB,
[adb] = φ(X)bφ(S(X)). The map [ad -]: B -> Mn(5) is an algebra map. In par-
ticular, [ad be] = [ad 6] [adc] /or α/ί b, ceB.

Proof. The formula for [ad fo] is clear. For simplicity, drop the φ and consider
Mn(A) as acting on Mn(B) via φ. Then [ad be] = XbcS(X) = XblcS(X) =

= [adb] [adc]. D

3.7. In this section we study the adjoint action of A on the subalgebra generated by
the elements i f 1 , t 2

l defined in Sect. 2.6. To simplify the notation a little, set

In this notation, t1 = DaίX^9 12 = Xd3D^ and t1t2 = q2(δ <-δ"''h2tί. Recall that
by Theorem 2.7.1, the elements tlt2 for n, meZ form a basis for the subalgebra
CEίf 1 , if1]. Denote by Ff(α) the diagonal scalar matrix with the scalar α in the
(i, i)th position and Γs elsewhere on the diagonal.

Lemma 3.7.1. With the above notation we have that

[adίj = Fb(q2)Fa(q-2)t1 and [adί2] = Fc(q-2)Fd(q2)t2 .
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Proof. It is easily verified that XbίX = Fb(q2)XF1(q~2)Xbl (mod/w) and sim-
ilarly that DaίS(X) = Fl(q2)S(X)Fa(q~2)Dai (mod/w). Combining these two
identities gives the formula for [ad^]. The proof of the second equality is
similar. D

Proposition 3.7.2. The algebra C[ίf 1, t}lYd is a subalgebra of the centre of A^
equal to:

(i) C[ί 1

± 1 , ί 2

± 1 ](rw + =w-;
(ϋ) CCfj* 1 ] ifw + = w-(Wι) and w+ Φ w _ ;

(iii) C if w+ Φ W-(Wi)for i = 1 and 2 but w_ Φ w+w 0 ;
(iv)

Proof. It is clear that C^f?1, ίj1]1"1 has as a basis the set of all monomials t\t^
which are ad ^-invariant. Now

[adίϊίj] = Fb(q2n)Fc(q-2nι)Fa(q-2n)Fd(q2^tn^ .

The result then follows easily. D

Notice that the dimension of C[ίf 1

9 ίf
1]^ is therefore 2 — s(w), where s(w) is

the length of a shortest expression for w+ wl 1 as a product of reflections.

3.8. The adjoint action of A on C% is a little more complicated. As usual let
w = (w+, w _ ) e ^Fx PF. As before, set α = w_(l), b = w+(l), c = w+(3), d = w_(3)
and set p = q2 — q~2.

Lemma 3.8.1. Let y be an arbitrary element of W and set r = y(ί) and s = y(3). The
adjoint action on z^y is given by

[adzΓ,,] = Fr(q-2)Fa(q2)z^y +

s-1

Σ pz^^^is
i = d

Proof. Recall that zί">y = X^X^1. One verifies first that for r ^j ^ a,

2) (mod/w) .

Hence XX ΰi1 = Xai1Fa(q2)XF1(q~2). Putting these two formulas together yields
the desired result. A similar calculation proves the other three formulas. D

3.9. Thus for each z > y the matrix [adz 5 y] is of the form D + N9 where D is
diagonal and N is a strictly upper or lower triangular matrix with all its non-zero
entries in a single row or column. Furthermore the nonzero entry in N that is
furthest from the diagonal is a scalar. Since this entry is of particular importance we
define φ to be the function that associates to zf, y this position. That is, for a fixed
w we define
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t y ) = (w+(l), y(ί)), φ(zty) = (X3), w+(3)) ,

This map is not injective on the set of all zf> 3, since for instance when w+ = (13),
Φ(?2 e) = (3, 1) = φ(zι e). However when φ is restricted to 2£ we do have injectiv-
ity. '

Lemma 3.9.1. The map φ restricted to 3£ is injective.

Proof. Clearly φ(z£y) c {(fc, l)\k > 1} and φ(z£y) c {(fc, / ) | f c < /} so we may con-
sider the two cases separately. Suppose that φ(zϊty) = φ(z2,y>\ where y < x vv+ and
y' <2w+. This means that (w+(l), j (l)) = (j/(3), w + (3)). Hence y = w+w 0(PF 1)
and y' = w+w0(^2) Since zJw + W o<£J*, the result follows. The other case is
similar. D

Proposition 3.9.2. Let yeW and suppose that φ(z\ y ) = (fc, /). Set [adz- y] =
TTzerc [ad(zf ,)"] = [adzf ,]" = [αy(π)], wtere

(i) flii(n) = α?ί6C*(zfι,)",ii ί ι , ,
(ii) atj = 0 implies aij(n) = 0.

(iii) " *

/ Write [αy] = D + N, where D is diagonal and A/" is strictly upper or lower
triangular. Then because of the particular form of N, we have that ND'N = 0 for
any i. Hence [αy(n)] =(D + N)n = D" + X ioD'ND11"5"1. The first two asser-
tions are then clear, as is the fact that

Since q is not a root of unity, the coefficient on the right-hand side is non-zero. D

The lemma states that if (fc, I) = φ(zε

ity), then ad^ behaves rather like a partial
differential operator with respect to z? j y. However, on an arbitrary standard
monomial it is important to apply these operators in the correct order. This
necessitates defining a new ordering on the standard monomials.

Let I = {(ε, y, i)\ε = ± , y < i W ε , i = 1, 2} — {( + , 2, wεw0)} be the index set
corresponding to the set 2£ and let K = 0(1) (where φ is the obvious induced map
on I). For each w let -< be a total ordering on the set {(i,j)\i9j = 1, 2, 3, i ή=j}
satisfying

(1, 0 > (1, i')> (2, 3) > (3,7) > (3,/) > (2, 1)

and i and i1 are chosen so that if (1, i) and (1, i') are both in φ(l) then the ordering
X reverses the ordering induced by φ. We denote by X the induced ordering on
the subset K. The ordering induced by -< on I via φ ~ * will also be denoted by •<.
The ordering -< on I extends naturally to a lexicographic ordering on N1 which will
again be denoted by X.

Theorem 3.9.3. Let meN1 and let φ(m) be its image in Nκ. Let Mm be a standard
monomial in the zf> 3, with respect to the order defined in 3.3 and let X^m) be the
standard monomial in the Xtj with respect to the ordering on K defined above. Then
(i) ad Xφ(m) MmeC*; (ii) adXφ(m)Mn = Ofor all n < m.
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Proof. Define Supp(m) = {*; ellm, Φ 0}. For (i,j)eK, define ftj to be the element
of N1 such that (ftj)ξ = δξ,φ-ιaj) It suffices to prove that for any monomial Mm

and any (ij) > Max((£(Supp(m)),

,άχ ,Mm = ί cMm~^ if (1,7) = Max((/>(Supp(m))
ij I 0 if (ίj) > Max(0(Supp(m))

for some ceC*. Suppose that Mm = Z?1 . . . Z?*, where Z^e^. Then ad0 M
m is

the (i,j)-entry of ad(Zι11) . . . ad(Z^). The form of these matrices was computed in
Proposition 3.9.1. A lengthy but routine calculation shows in all cases that if k is
such that (i,j) = φ(Zk) = Max(φ(Supp(m)), then

r,r ΛΓ ctraαί7 z/ fc aα^ z/fc + i . . . aα^z^ ,

and that if (ij) > Max(φ(Suρp(m)), then (adX^M™ = 0. Hence the result above
follows from Proposition 3.9.1. D

3. 10. We now come to the most important results of the section. For each
character veR(A) let us denote by Cv

w the v-isotypic part of Cw under the adjoint
action. Denote by Soc Cw the socle of Cw under this action.

Theorem 3.10.1. 1. The algebras Cw and C^ are iterated Ore extensions. Hence Cw?

C^ and Bw are all domains.
2. SocCw = 0ve*U)C; = CCίf 1 , ίί1]. Hence CaJ = CCίf 1 , t}1^ is as de-

scribed in Sect. 3.7.2.
3. If veR(A) is such that Cv

w φ 0, then there exists a invertible element uv such
that Cl = uvC

aJ.

Proof. Theorem 3.9.3 implies that the standard monomials in the elements of
2£ form a basis for C". The fact that C" is an iterated Ore extension is an induction
based on [2, 1.3] using Proposition 3.4.1. Theorem 2.7.1 implies that Cw is an Ore
extension of CjJ. Thus Cw and C" are both domains. Since Bw is a localization of
Cw (Theorem 2.6.1), it too is a domain.

Now let /e Cw. We may write / in the form /= £„ ̂  mαnM n, where Mn is the
monomial described in 3.9, αn e C [ί f 1 , t% 1 ] for all n and αm Φ 0. By Theorem 3.9.3,
there exists an a e A such that a is a product of elements of the form Xtj and such
that

° if n < m1 if n = m .

Now αn = ΣχeR(A)αn,χ, where αn > xeC[ίf S ίί1]^- Moreover,

(adα)αn,χMn = (adα(1))αn5χ(adα(2))Mn =

But rχ(a) = λχa for some non-zero scalar λχ. Thus

(adα)/=χA χαm t J C6C[ί 1

± 1,ί2

± 1]\{0} .
X

Since C[ίf x, ί^1] is a semi-simple ad->4 module, this proves the second assertion.
The third statement then follows easily from 3.7. D
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Remark. We can identify Cjf with C[Jϊw], the algebra of functions on the torus
^vv (see Theorem A.3.1).

4. Primitive Spectrum of

4.1. We begin with a result showing that the study of Spec .4 and Spec£ may be
reduced to the study of Spec ,4 w and SpecJ5w, we Wx ^respectively.

Proposition 4.1.1. Let PeSpec^4 (resp. Spec B). Then there exists a unique
wεWxW such that P z> /w (resp. P ^ /w n B) and P n Ew = 0.

Proof. Let PeSpecA Define the elements w($eWi9 i = 1,2 to be the smallest
elements of Wt such that c£yeP for all y > w(t}. We want to show that there exists
a w+ e Wx Wsuch that w+ = wφ^) for i = 1,2. It is easily verified that this will
occur if and only if w(+}w0 Φ w(?(W2\ Suppose that w(+Jw0 = w(+*(W2). Recall the
Plucker relation

V (-a2V(l}~lct cί - 0Zj V 4 / C l ,y c 2,;ywo ~ u

yeW,

Now for y >ίw
(+\ c^yeP by definition. On the other hand, if y <1 w(+), then

yw0 >2w (+ )w0 = w(?(W2) by Proposition 1.8. Hence c2tywoeP. The remaining
term, which is a scalar multiple of c^α^w^, must therefore lie in P also. However
neither ci^υnor c2"v+

2)lie in ̂  by hypothesis. Moreover c£wγis normal modulo P by
Lemma 2.1. This contradicts the fact that P is prime.

A similar argument produces an analogous element w _ . Thus there exists an
element w = (w+ , w_ ) such that c*y e P for all y > w± and cfw ± φ P for i = 1, 2. In
other words, P => Iw and P n Ew = 0. It is clear that such an element must be
unique.

Now let PeSpectf. By [13, 10.2.10], there exists a βeSpecΛ such that P is
minimal over Q n B. By the first part of the proof there exists a w such that Q => Iw

and Q n £w = 0. Hence it is clear that P =) /w n B. Suppose that c e P n Ew. From
the minimality of P over Qr\B and the fact that c is normal modulo /w it follows
easily that c e Q, a contradiction. D

Corollary 4.1.2. Identify Spec ,4 wiίft {PeSpec^|P ID /w, Pn£ w = 0}. Tfcen
Spec>4 = L J w e w x j F Spec^4w, where [J denotes the disjoint union. Similarly
SpecJS = U w e W r x

The analogous result concerning the primitive spectrum is also true. However,
this is a subtler question and the proof requires the characterization of the
primitive ideals as the locally closed elements of Spec A.

4.2. We now return to the study of J5W and Cw. Define the algebra Q by:

, if w+ = w_;

ίt^l if w+ = w- W) and w+ Φ w_

if w + Φ w _ W ) for i = l , 2 but w _ Φ w + w 0 ;

i f w _ = w + w 0 ,

and define B^ to be QCίΓ1]. Then it is clear from 2.7.1 and 3.7.2 that
Cw £ Crf ® C£? and BW^B«,® C^. Moreover both C* and B* are integral
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domains by 3.10.1. We now show that B^ is simple. It will then follow that all prime
ideals of Bw are induced from CaJ.

Lemma 4.2.1. Let I be an ideal ofB^ (respectively Cw). Then I is an adA-submodule
if and only if I = (/ π CJ?)BW (respectively I = (I n C^)O

Proof. Since Bw is a localization of Cw and Cw is ad-invariant, it is enough to prove
the result for Cw. Let / be an ideal of Cw and suppose that / strictly contains
(/n C^)CW. Choose /e/\(/n C^)CW and write / (as in the proof of 3.10.1) as
/= Σn g mβn-MΛ where ocn E Soc Cw for all n and αm Φ 0. Assume that m is minimal
for such elements. The argument used in the proof of 3.10.1 implies that / contains
Σx ^*αm, χ f°r some non-zero scalars λχ. Since / is ad-invariant, it therefore contains
each λχ%m,χ. But λχαm > χe(Cw)χ = w^C^f for some unit uχ. Thus A χ α m ) χ e(/ n C5f)Cw

and so αmMme(/ n Ca^)Cw, contradicting the minimality of m. D

Theorem 4.2.2. Bw ^ B# (x) CJf , w/iere B^ is α siwpfe algebra. The center of Bw

is C^ and all ideals of Bw are generated by their intersection with the center.
Thus SpecJJw £ SpecCϊ1 and PήmBw £ PrimC^f. All primitive ideals of Bw are
maximal and all prime ideals are completely prime. If PePrim#w then

Proof. Let Pe be the ideal of £w generated by elements of the form t — 1, where
t e {ί"ί2 \n, meZ} n C^. Then clearly B* £ BJPe. Hence Pe is a completely prime
ideal of Bw. From the lemma we have that Pe is a maximal ad yl-in variant ideal of
Bw. Since ^4W is a finite normalizing extension of Bwί it follows from "Lying over"
and "Going up" [13, 10.2], that Pe is in fact a maximal ideal of Bw. Hence B^ is
simple. Because B^ satisfies the nullstellensatz [13, 9.1], it follows that jB^ is central
simple and the assertion concerning the spectrum is a consequence of [3, 4.5.1]. By
the nullstellensatz again, the primitive ideals are generated by the maximal ideals of
C5f Since the quotient of J5W by such an ideal will always be isomorphic to B^, all
the primitive ideals are completely prime. Since every prime ideal is an intersection
of primitives it follows easily that all the prime ideals are completely prime. The
assertion concerning the Gelfand-Kirillov dimension follows from the description
of BU as a localization of an Ore extension and a slight generalization of
[13,8.2.10]. D

4.3. We may now use Corollary 4.1.2 to deduce some global results about the
primitive spectrum of B. We shall say that a Noetherian C-algebra R satisfies the
Dixmier-Moeglin condition if the following conditions are equivalent for a prime
ideal P: (a) P is primitive; (b) P is rational (the center of the ring of fractions of R/P
is C); (c) P is locally closed in Spec#. Recall that the action of H by right
translation on B induces a natural action of H on Prim B.

Theorem 4.3.1. In the notation of Sect. 2.8, we have that

Prim£= [J Primw£ .
w e f Γ x ί Γ

Moreover PrimwJ5 is a nonempty H -orbit for each W E Wx W. If Q* is a primitive
ideal of type w, then /f/Stab^Q^ is a torus of rank 2 — s(w). All primitive ideals of
B are completely prime. B satisfies the Dixmier-Moeglin condition.

Proof. Let P be a primitive ideal of B of type w. Then by the nullstellensatz [13, 9.1]
and [3, 4.1.6] PBW is maximal. On the other hand if P is a prime ideal of B of type
w and PBW is maximal, then any prime ideal strictly containing P intersects the set
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£*w of regular elements nontrivially. Hence the set P is locally closed in Spec B and
again by the nullstellensatz [13, 9.1.8], P must be primitive. The fact that all prime
ideals of B are completely prime follows immediately from 4.1.2 and 4.2.2 by
standard facts about localization. D

Remark. Notice that these results imply that for any primitive ideal P of B there
exists an Ore set Ew and a normal element d such that (B/P)E^ = C^\_d~1'} and C* is
an iterated Ore extension. This should be compared with the structure of primitive
factors of the enveloping algebra of a solvable Lie algebra [13, §14.8].

4.4. We now deduce the main theorem. Recall that A =

Theorem 4.4.1. In the notation of Sect. 2.8, we have that

Prim A = |J PήmwA .
weW*W

Moreover Primw,4 is a nonempty H-orbίtfor each we Wx W. The map P\-+PAW is
an isomorphism between Prim^k and Prim^. If P^ is a primitive ideal of type w,
then H/StabHPή is a torus of rank rkG — s(w). GKdimA/P^ = l(w) + s(w). A satis-
fies the Dixmier-Moeglin condition.

Proof. Let P^ be a primitive ideal of A of type w. It follows from Sects. 4.2 and 4.3
that P^AW is a primitive ideal of Aw and that P^ n B is a primitive ideal of B of type
w. Furthermore the prime ideals of A lying over a given primitive ideal of B form
a Γ-orbit and are all primitive. The fact that the Dixmier-Moeglin condition passes
from B to A follows from [9]. D

4.5. As noted in the proof of Theorem 4.4.1, it follows from the description of the
primitive ideals of Bw that if PePrim^4w, then P n Bw is a primitive ideal of £w and
that the primitive ideals lying over a fixed primitive ideal of J3W form a nontrivial
Γ-orbit. Using a detailed analysis of the structure of Aw as a crossed product of
Γ over £w, one can calculate the exact number of primitives of Aw lying over a given
primitive of Bw.

Proposition 4.5.1. Let PePrim^. Then PnBw is a maximal ideal of Bw. Con-
versely for all maximal ideals Q ofBw the number of primitive ideals P of A^ such that

4 if w = (e, e);

2 if vv+ = w_ = e(Wi) and w+ or w _ Φ e(Wj)

1 otherwise .

All primitive ideals of Aw are maximal and completely prime.

In particular this last result implies that all prime ideals of C^[G] are com-
pletely prime. Goodearl and Letzter [6] have recently proved that all prime ideals
of C^[5L(n)] are completely prime.

Remark. The authors have recently generalized the results of this section, proving
Conjecture 1 of 2.8 for Cq[SL(n)].
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List of Notation:
1.2 Ά9Uq(g) 3.2 X9l
1.3 Cβ[G] 3.3 S
1.4 Xtj 3.4 R(ε,i,y)
1.5 cf,w 3.5 #αd

1.6 c^^; 3.6 [adm]
1.7 U^bH/^Λ) 3.7 jp.(α)
1.9. fFJ5 »i, ^f, = 4 3.9 φ
2.2 /W,^W )£W,^W 3.10 C£?,#w

2.5 ίί, F, β, B 4.2 Ctf, BVV

2.7 cί' "
2.8 Primw, Syrnp,,

A. Symplectic Leaves in a Semi-simple Poisson Lie Group

A. 1. Let G be a connected complex semisimple Lie group with Lie algebra g. Let
h be a Cartan subalgebra of g, let R be the associated root system and R + a choice
of positive roots. Denote by κ( — , — ) the Killing form on g. Let n± = (J)αeκ ± g«>
and let b ± = h 0 n ± . Let d = g x g. The Iwasawa decomposition of d (as defined in
[3, 1.13.14]) is then d = g 0 a © u + , where g is identified with the diagonal
subalgebra of d, a = {(x, — x)\xeh} and u+ = {(x, y)\xen+, yen"}. Define the
bilinear form < — , — > on d by:

Denote a © u+ by gr. Then (g, gr, d) is a Manin triple in the sense of [4]. There is
then a Poisson Lie group structure on G associated to this triple [4]. The
corresponding Poisson tensor is the tensor π defined by π(g) = lg*R — rg*R9 where
# = i £ α > 0 E α Λ E _ α e g Λ g and /^ and rr are the differentials of left and right
translation respectively. The associated local double Lie group is then (G, Gr, D),
where D = GxG; G is identified with the diagonal subgroup {(x, x) |xeG};
Gr = AU+, where A = {(%, x ' ^ l x e f f } and U+ = {(x,y)eN+, yeN~} and H,
N ± and 5 ± are the closed connected subgroups of G associated to h, n ± and b ±

respectively.
Consider the map p: G -> D/Gr. Define Γ to be G n Gr = kerp. It is easily seen

that Γ ==_{(Λ, h)εH\h2 = 1}. Hence Γ is a finite subgroup of D isomorphic to ZΓ

2

kG.
Define G to be G/Γ = GGr/Gr. Since GGr is open in D, it follows that G is an open
subset of D/Gr. Since π is ^/-invariant (and therefore Γ-in variant), it induces
a Poisson tensor on G.

Recall that a symplectic leaf of a Poisson variety is defined to be a maximal
connected symplectic subvariety. We denote by Symp G the set of symplectic leaves
of G. There is a natural partial order on Symp G by inclusions of closures.

Theorem A.I.I. 1) The symplectic leaves ofG are of the form G n GrxGr/Grfor some
xeG.

2) The symplectic leaves ofG are the connected components of the inverse images
of the symplectic leaves of G.
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Proof. Since p:G-+G is etale, we have that for all xeG, TXG ^ Tp(x)G
^ Tp(x)D/Gr. We recall some results from [11]. The left action of Gr on D/Gr

induces a map σ from the Lie algebra gr to the Lie algebra of vector fields on D/Gr.
For αeg r we denote by σx(α) the corresponding element of TXG. The bilinear form
< — , — > identifies gr with g*. Therefore, each α e gr induces a right invariant 1-form
αr on G. Define the right dressing vector field on G by <px(oc), O = πx(αr(x), £) for
all ξeΓίG. By [11, 3.13], px(α) = -σx(α) for all αeg r and xeG. Hence

rk πx = dim σ x ( g r ) = dim GrxGr/Gr, Vx e G .

It is easily seen that GrxGr/Gr n G is a Poisson subvariety of G; hence it is
a symplectic subvariety by the above equality. The theorem then follows
easily. D

A. 2. Denote by Q = TU+ = HGr the positive Borel subgroup of D. Recall the
Bruhat decomposition D = \_]wewχwQwQ = [_\wewχwQwGr. For each we WxW
we fix a representative w of w in the normaliser of T and we set: ̂  = GrwGr/GL,
^w = βwGr/GΓ = \JheHJM#. Hence D/G, = [_\wewχw%w Set _^ = <g* n G,
^w = ̂ w n G, ̂ w = P 1 (βv*\ Fix a connected component j^ of p 1 (̂ ,). Notice
that βwGr n G φ 0 for all we Wx W. This can be proved as follows by induction
on /(w) (the length of w). Assume that s is a simple reflection; so s = (sΛ9 e) or (e, sα)
for some αe#+. If s = (sβ,e) we have that QsQr\ G = (B + saB

+,B~)n G φ 0
since B + sΛB

+ n J5~ Φ 0; similarly for 5 = (e, sα). In the general case, set w = sv/,
where s is a simple reflection and /(w) = /(M/) + 1. Then by induction
βwβ n G => (Qsg n G)(Qw'Q n G) φ 0._ Therefore J^w = ̂ w n G Φ 0 and since
^w = U*eH^wj we have that λ^ n G φ 0 for all heH. These observations to-
gether with the theorem of section one give the following description of the
symplectic leaves.

Theorem A.2.1. 1) Each symplectic leaf of G is of the form h^^for some heH and

2) Each symplectic leaf of G is of the form hj/^ for some heH and some
we W x W.

Let w = ( w + , w _ ) e Wx W. Define A'w = w(A) n A = {aeA\awGr = wGr}. Set
— A/A'W. Then Aw is a torus of rank s(w) = dim^ — dim^Ή, =

erίw+wl 1 — /). When G = SL(n,C) we have that s(w) =
min{m|w+ wl 1 = r1 . . . rm, where r/ is a transposition for all i}.

Define ί/ * = w(U±)r\U+ and recall that we have an isomorphism of varieties
U+ * U~ x £/ + , and that U~ ^ Cl(w\ Thus we have that ^ = AU + wGr/Gr

= AU~wGr/Gr. Using a standard argument one verifies that the multiplication
AW x U~ -> <&$ is an isomorphism. Thus we have proved the following proposition.

Proposition A.2.2. ^ ̂  ^4W x U ~ , w/iβr^ ^4W zs α ίorws of rank s(w) ami ϊ/w = Cί(w).
Hence dim^ = /(w) + s(w).

^J, Let we Wx W. Set H'w = {/ze#|/zG rwG r = G,wGr}. Then H'w is a closed
subgroup of H and #w = H/H'W is a torus of rank rk G - s(w). We have that
^w = H%>n and the same argument as in the previous subsection shows that the
multiplication map Hw x <&$ -> ̂ w is an isomorphism.

The group Gr acts by left translation on ^w and therefore on the product
Hw x <&#. It is easily seen that the algebra of Gr-in variant functions on #w is C[HW].
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This proves the first part of the theorem below. The second part is a consequence of
the description given above.

Theorem A.3.1. 1) The Gr-orbίts in %?w are the fibres of the natural projection
Vw -> Gr\\*w = HW

2) The symplectic leaves of type w in G are the fibres of the induced projection

We now summarize the results about the set Symp G of symplectic leaves in G.
Denote by SympwG the set of symplectic leaves of type weWxW.

Theorem A.3.2. 1) SympG = \_\weWxWSympwG.
2) For each weWx W, SympwG is a nonempty H-orbit. If ^^ is a fixed

symplectic leaf of type w, then HβtabH^^, is a torus of rank rkG — s(w).
3) The dimension of a leaf of type w is /(w) -I- s(w).

B. The Case G = SL(2, C)

B.L In this appendix we outline the classification of primitive ideals of C^
and of symplectic leaves of SL(2, C). The proofs of the two theorems below are
straightforward calculations. In the notation of Sect. 1.4, Cg[SL(2)] is generated by
the elements α = X l l 5 b = X12> c = ^21 > and d = X22 subject to the relations
ab = q2ba, ac = q2ca, bd = q2db, be = cb, ad — da = (q2 — q~2)bc, and
ad — q2bc = 1. The Weyl group in this case is just W = {e, s}9 where s2 = e. The
ideals Iw for weWxW are given by I(e e) = (b, c\ I(s e} = (b), I(e 5) = (c) and

Theorem B.I.I. The following is a complete list by type of the primitive ideals of
Cβ[SL(2)]:

(e, e): P(e,e},λ = (6, c, α - A, d - A'1), leC* ,

( s 9 e ) : P ( S f e ) = I(Sίe) = ( b ) 9

(e,s):P(e>s} = /(βfS) = (c),

(s,s):P(βiβ) fλ = (fc-λc), A e C * .

All prime ideals ofCq\_SL(2}~] are completely prime.

Remark. Let M+ and M~ be modules with annihilators P(s>e) and P(e>s) respec-
tively. Then M+ and M_ are modules of type (s, e) and (e9 s) respectively. The
existence of such modules is used in Sect. 2.3.

B.2. We now describe explicitly the symplectic leaves of SL(2, C). We continue to
denote the coordinate functions of the standard representation of 5L(2, C) by α, b,
c and d as above. The standard Poisson bracket is then given by: {α, b} = —ab,
{a, c} = -ac, {b, d} = -bd, {b, c} = 0 and {α, d} = -2bc.

Theorem B.2.1. The following is a complete list by type of the symplectic leaves of
SL(2, C):
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α Ay

Combining these two theorems yields a positive answer to all the conjectures
given in Sect. 4.

Corollary B.2.2. TTzere is an order preserving bίjectίon β: PrimC^[SL(2)]
-> SympSL(2, C). Furthermore, if L = β(P\ then dimL - GKdimC,[SL(2)]/P.
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