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Abstract. Our aim in this paper is to make explicit the operator theory of the
heuristic open Bosonic string and to abstract a suitable field algebra for the string.
This is done on a Fock-Krein space and we examine integrability and J-unitary
implementability of all the defining transformations of the string, i.e. time trans-
lations, gauge transformations and Poincare transformations. The results obtained
agree partially with those of Bowick and Rajeev, i.e. the gauge transformations do
not leave the Fock-Krein complex structure invariant. Once we obtained integ-
rated transformation groups on a suitable symplectic space for the infinitesimal
transformations of the string, and proved implementability of these for the Fock-
Krein representation, we are then free to define an abstract C*-algebra carrying all
the algebraic information of the string, and to examine different representations.

Introduction

There are several rigorous approaches to the open bosonic quantum string,
of which we find the geometric approach of Bowick and Rajeev [16,17] and
Mickelsson [15] most appealing. This approach produced the following results:

(i) The complex structure K which defines the quantum Hubert space for the
string, is not invariant under the gauge group Diίf +Sl.

(ii) The orbit of K under Diff+ S1 is taken as the dynamical manifold, endowed
with the topology of the homogeneous space Diff +S1/S1 which is bijective to it.
This manifold has a Kahler (hence symplectic) structure, on which one con-
structs a Fock bundle $ using the complex structure at each point to obtain the
one particle spaces. The curvature of this bundle produces the Virasoro
anomaly as a two-cocycle. Mickelsson [15] showed that 8% has no Diίf "^S1

invariant sections, but it is possible to adjoin a fermionic ghost bundle to
gβ which produces a bundle with such sections in dimension 26.

However, geometric quantization is not yet a full quantization, so there is still
some mathematical distance between the heuristic quantum string and the geometric
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approach. In regard to the heuristic quantum string, this has several unpleasant
features: the representation space has indefinite metric, there is an anomalous
central term appearing in the commutation relations of the (infinitesimal) gauge
transformations, and when the constraint set is split in half via a Gupta-Bleuler
technique to obtain a first-class set, there is no vector which can annihilate these
constraints due to spectrum problems. However, the string is an infinite dimen-
sional theory, so it has many inequivalent representations, and it makes sense to
look for representations of the string which are better behaved. This is the rationale
behind the present construction of an abstract field algebra for the string.

The first part in constructing a field algebra for the open covariant bosonic
string (henceforth shortened to "the string") is to define the operator theory on the
appropriate indefinite inner product space (abbreviated to HP-space), remaining as
close as possible to the heuristic operator formulation [1, 2] and ignoring the
geometry of the string. Within this functional analytic framework we then wish to
examine similar issues and their consequences to those examined in the geometric
framework. We hope that this can fill the gap pointed out by Alvarez-Gaume and
Gomez [18] viz. the lack of a natural operator formulation for the string. We then
generalize the operator theory to a suitable C*-algebra framework, that is, we
construct a unital C*-algebra which reproduces all the algebraic structures which
define the operators of the string (in integrated form).

The chosen heuristic formulation of the quantum string, being the historical
precedent [1] of more recent formulations, has been referred to as "old quanti-
zation" [12] in contradistinction with path integral quantization. We prefer this
"old" formulation since operator quantization can at least in principle be mathe-
matically well defined in terms of operators on some space (Hubert, rigged Hubert
or HP-space), whereas the measure for the path integral of a quantum field does not
exist in general (except in the Euclidean case), and for most field theories it has not
been demonstrated that path integral quantization produces an equivalent or
larger theory to that of operator quantization.

To the best of our knowledge whilst this article was written, there was only one
attempt [13] to construct the string field algebra as a C*-algebra, but this suffered
from being mathematically undefined at a crucial step, and in being incomplete by
not containing the excitation mode oscillators of the string. A possible constraint
C*-algebra for the string was also considered in [14]. However, very recently
Wiesbrock [34] obtained a C*-algebra for the string using a totally different
approach to ours. This will be examined in the addendum.

In this paper we start at a fairly concrete level. First, since physics is defined at
the infinitesimal level, and the C*-algebras deal with the integrated (exponentiated)
operators, it is necessary to consider integrability questions for the time evolutions
and gauge transformations. An exponentiation for an operator on HP-space or on
symplectic space need not be defined nor unique (the power series need not
converge, and a spectral theory may not exist), we need to reconstruct the heuristic
infinitesimal theory carefully as well-defined operators on the correct Fock-Krein
space [5], and in this framework examine possible exponentiation methods. Quasi-
unitary implementability is also naturally exposed in this framework. The
infinitesimal gauge transformations of the canonical variables (obtained from
commutators), do not commute with the complex structure of the Krein one-
particle space, as a result of which exponentiation becomes a complicated (but
tractable) affair. This noncommutativity partially agrees with Bowick and Rajeev's
finding mentioned under item (i) above.
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The paper runs as follows. In Sect. 1 we sketch the bare bones of the heuristic
quantum string for later reference, whilst in Sect. 2 the appropriate one particle
Krein space is obtained in order to start a Fock construction in Sect. 3. There the
mode oscillator operators and (Virasoro) string constraint operators are defined on
the Fock-Krein space, domain conditions considered and the full (infinitesimal)
operator string theory written down in the Fock-Krein representation. Section
4 consists of the integration of the infinitesimally symplectic time translations to
a symplectic one parameter group on test function space, together with the
demonstration that this one parameter group is J-unitary implementable on the
string field operators in the Fock-Krein representation. However on attempting to
do this for the infinitesimally symplectic gauge transformations we ran into
problems. These transformations do not commute with the Krein complex struc-
ture and are not amenable to Krein spectral theory, so exponentiation is difficult.
The exponential series for these transformations turns out to have unpleasant
convergence behaviour, and when it does converge, it is to an unbounded operator.
This forces us to make decompositions of the infinitesimal gauge transformations
into components which are separately integrable but do not commute. These
integrated components are implementable in the Fock-Krein representation, and
we use the Trotter product formula on their implementers to finally obtain the full
integrated gauge transformations on symplectic space together with the implemen-
ters of the latter. In Sect. 6 we cast all this in C*-algebra format, use CCR-algebras
for the mode fields, show there is an auxiliary C*-algebra for each Fock-Krein
representation on which the string structures can be examined to yield information
for the usual theory, and we propose a C*-algebra for the field algebra of the string,
together with constraint conditions to select its physical states.

1. Heuristic Structures of the Open Covariant Bosonic String

For extensive reviews of the string, we refer to [1, 2, 12]. We present here the
essential heuristic structures.

All operators act on an indefinite inner product (IIP) space which is a Fock
construction on the one particle space MD + 1 (x)/2, where MD + 1 is Minkowski
space equipped with the usual pseudo-Riemannian metric g with signature (1, D).
At this level domain problems etc. are not considered, and manipulations with
operators are only formal. This will be firmed up in the following sections.

The centre of mass coordinates and total momentum of the string is described
by a canonical pair qμ, pμ satisfying the canonical commutation relations (CCR):
[Pμ, qΊ = igμv with <T = diag( - 1, + ! , . . . , + !), μ, v = 0, 1, 2, . . . , D the
Minkowski metric on (D + 1) space-time. The appearance of gμv in the CCR's
indicate why the one-particle space is an HP-space.

Together with the centre of mass motion, a string is described by a denumerable
infinity of excitation modes, expressed as harmonic oscillators via creation and
annihilation operators αj, α^* satisfying

and this infinity of oscillators indicate the field theoretical aspect of the string.
Adjoints are in terms of the IIP.



476 H. Grundling and C.A. Hurst

The constaints for the string, which generate the world-sheet parametrizations
are:

, where:

and normal ordering is with relation to a% and α{[*. Note that L0 = L* and
L* = L-n. In terms of αj we have

= Σ
fc=-oo,ΦO 4a'

}iΔ - fc=l
n - k)

where we used the notation b d:= bμd
μ and «-„:= α*, n ^ 1. Note that normal

ordering only affects the expression L0, but not Ln for n φ 0. The Hamiltonian is
usually taken as H — L0. A trivial but tedious calculation employing only the
CCR's gives:

the Virasoro relations. At the classical level, the central term is absent in the
corresponding Poisson bracket relation, and the Lie algebra thus produced, is the
complexification of the Lie algebra of the group Diff +Sί, expressing the world-
sheet reparametrizations of the string. The central term appears in the quantum
theory as a result of the normal ordering in the definition of Ln, and if one took the
whole gauge generator set {Ln \ neZ} as the constraint set, the central term would
make this set second-class whereas the classical set is first-class. This is therefore an
anomaly, and one would expect the quantum gauge group to be some central
extension of Diff +5X (cf. [3]). However this problem of the quantum theory is
circumvented by the choice of constraint set [Ln — <x(Q)δnί0\n ^ 0}, which is



Operator Quantization of Open Bosonic String 477

first-class, and imposed through the selection criterion for physical states | ψ > :

where α(0)eR is fixed by the physics. At this point all the boundary conditions of
the string have been incorporated. Notice however that the constraints are nonher-
mitian for n φ 0.

As for the physical transformations of the theory, the Hamiltonian H = L0

gives the evolution of the system in terms of the internal proper time parameter
τ on the world-sheet, hence does not destroy covariance in total space-time.

Poincare transformations of the string are induced by the generators pμ and

Mμv:= qμpv - qvpμ ~ i Σ (αμ-»«ί ~ av-»aS)/2na' ,
n = l

u Φ v, and these satisfy the Poincare algebra relations:

lpμ, Pv] = 0, [p", Mv'] = ίgμf>pv - igμvp* ,

= igμpMvλ - ίgvpMμλ + igvλMμp - igμλMvp .

Since [LM,pμ] = 0 = [Lπ, M
μv], the Poincare transformations leave the con-

straints invariant, and only induce automorphisms on the set of canonical vari-
ables:

2. The One-Particle Space

Guided by the field-theoretic aspect of the string, we aim to define the string
operators as acting on a Fock space, and hence need to specify some one-particle
space. This is also the appropriate level at which to inject the necessary geometry
into the quantum theory, e.g. by choosing the one particle space as an L2-space on
a configuration manifold (possibly curved). In heuristic quantum theory, the
one-particle space arises as the closure in some Hubert norm of the set of smearing
functions of the field operators. If the field operators are required to satisfy a field
equation, the smearing functions are traditionally chosen as the solution space of
the conjugate field equation. Typically, the space of smearing functions is a sub-
space of Schwartz space on the configuration manifold. In the following we will
make the simplest possible choice of geometry, i.e. flat spaces throughout.

First, rewrite the heuristic theory in a convenient field operator format. The
basic objects are the excitation mode oscillators {αJweZ},

and write these as canonical variables:

for all n ̂  1, whence [/?£, qv

m^ = 2ia'nδnjmgμv', n, m ̂  1. Add to this set the centre of
mass variables
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to obtain the full set of canonical variables

A natural choice of smearing space in flat space- time is the Rϋ + 1 valued sequences
for which the canonical commutation relations (CCR's) still make sense, as sugges-
ted by the smearing formulae q(f):= Σ*=0/S«nμ = ΣΓ=o/«* 4»> where /»eR> and

similar for /?(/), so:

= Σ /»μfc»v[ps,β;]

= ίfo h0 + i Σ 2a'nfn hn =:i</,ft>' 0 .
n = l

We choose a slightly smaller test-function space, i.e. MD + 1 (x) / 2 , where

»/«<= (/„} e/ 2

and the direct product is in terms of inner product spaces. Observe that / 2 is the
Fourier transform of the Sobolev space H1'2. Denote S':= MD+ί ® Γ2,
SO := MD+ 1 (x) ί0, S := Sr x S' ^ R2 <g> MD+ 1 ® Γ2, and S0 := S'0 x S'0 ̂
R 2 (χ)M £ ) + 1 ®/ 0 , where /0 consists of sequences with only a finite number of
nonzero entries, and S' comes equipped with the IIP < , >o Then the field
operator of this system is:

Φ(f) = Φ(/(1),/<2)):= P(/(1))

for all /= (/(1),/(2))εS = S' x S', and the CCR's are

= ΛB(f,h) V / f t e S

That is, we obtain on S the symplectic form:

It is possible to define on S the CCR-algebra Δ(S, B) cf. [9], which contains
elements satisfying the exponentiated CCR's, but we leave this C*-algebra ap-
proach for Sect. 6.

Note that it is only possible to reconstruct the p and q operators (hence the α's)
out of the field operators Φ by the specification of the subspace S' in S (for /(1) and
/(2)), and a different specification will result in different p and q operators. This
specification is equivalent to the definition of a complex conjugation on S. Some
information was lost in the transition to Φ.

Next we examine the basic structures of S = 1R2 (x) MD+1 (x) Γ2. It is an HP-
space, where R2 (g) I2 is a Hubert space, and the indefinite part of the IIP comes
from the Minkowski metric on MD+1. Note that S is a Hubert space if we use the
usual inner product of RD + 1 ̂  MD+1 instead of the Minkowski metric, and this
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specifies an important topology on S. So the IIP of S is:

The R2-part of S carries the canonical "complex structure"

and B(K/, Xft) = B(f, ft), but since B(f, Kf) is not positive for all /eS, X is not
a complex structure in the usual sense of the word. Then the complex IIP on S is:

</, hyκ := β(/, Xft) + iB(/, h) = - </, ft >0 + «(/, ft)

for all/, ft e S. The complex HP-space { S, < , >x } is our chosen one-particle space
on which a Fock construction will produce the representation space for the string.
K is canonical in the sense that it was obtained from input data, and K provides
precisely the information to reconstruct the αn's out of Φ(/). The complex IIP
< , yκ is important in that it is Lorentz covariant. The one-particle space S also is
a Krein space because MD+ί is: MD+l = M+ 0M_, where M+ := {αeMD + 1 |
α0 = 0}, and M_ := {aeMD+1 \aμ = 0, μ φ 0} and the Minkowski metric g is
positive (resp. negative) definite on M+ (resp. M_), and M± are complete with
respect to the real Hubert space topology induced by g on M±, i.e. it is a Krein
space. Let P+ be projections on M+ respectively, then the fundamental symmetry
is J0:= P+ — P-, JQ = I i e. (Joβ)μ'

 = 9μμ

a

μ f°r aeMD+1 (no summation) and
(a,b):= g(a,J0b)ΐor a,bεMD + 1 defines the usual inner product of RD+1, Hence
for S = R2 (x) MD+^1 ® Γ2 we have the decomposition S = S+ 0 SI with
S ' ± :=IR 2 (χ)M ± ®/ 2 which makes it into a Krein space with Gram operator
/ ® J0 ® / (or J0 for short), and [X, J0] =0. However in order to match with
< , >χ above and obtain a positive definite inner product below, we cljoόse the
fundamental symmetry J = — J0 instead of J0 above. Due to this S becomes
a complex Hubert space with inner product

for all /, ft e S. With respect to the symplectic form B( , J ), K is indeed a complex
structure in the usual sense. The Gram operator J is not unique, because we can
alter the decomposition M+ ©M_ through the addition of lightlike vectors to
either component of the decomposition. However, via Bognar [4], we know that
< " > " >κ is jointly continuous in the Hubert space topology induced by < , >£, and
that all Hubert space topologies on S are equivalent. Henceforth we denote
adjoints w.r.t. < , •># (resp. < , •>£) by + (resp. *), and take J and K fixed as
above.

As convenience dictates, we can also decompose S = R2(χ)MD + 1(χ)Γ2 further
with relation to any of the spaces R2 = R 0 IR (real and imaginary parts),
MD + 1 = (^)ί)

=0R(μ) (space-time components) and I 2 = φ^°=0^(«) (excitation
modes).

To conclude this section we collect some properties of operators on S, which we
intend to use. First, note that J+ = J* = J~l = J, and that A+ = JA*J for an
operator A on S. Call an operator A : S i— > S with dense domain D(A\ J-symmetric
(resp. J-unitary) if </ Ahyκ = (Af, ft>* (resp. </ ft>κ = (Af, Ahyκ) for all

f9 heD(A). Then all J-symmetric and all J-unitary operators are closable, and each
J-unitary operator has a J-unitary inverse [5].
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3. Construction of the String Operators

In this section we define the operators Φ(f\ Ln on the Fock space constructed from
S, examine domain questions and verify commutation relations. This follows the
construction of Mintchev [5] on HP-space from which we use results freely.

Starting from the complex Hubert space {£,<*, >f} =:{^(1), < , •><!)}>
define the symmetric Fock-space ^(S):= φ^Q^(n\ where tf (0) - C, Jf (n} =

σn®l = ι^(k\ ^lυ = ̂ (1) = S and σn:= — ΣpeS P is the symmetrization oper-

ator on n indices. The Fock inner product < , > arises from < , >(1) = < , > f ,
and since the set of decomposable vectors

generates a dense subspace of Jf (n), it suffices for an operator to specify it on these.
Also, the various decompositions of S give decompositions of 3F(S) by
3?(Sa Θ Sb) s ^(Sa) ® &(Sb\ Define Γ(J)eΛ(&(S)) by Γ ( J ) \ V ( n ) = ®!UιΛ
then the distinguished IIP of &(S) is:

Note that on tf (1) = S, < , >j is just < , •>*• Then [Γ(J)]2 = 1 so
< , >j} is a Krein space hence < , >j is jointly continuous with respect to
Fock-Hilbert space topology (cf. [5] Prop. 4). Let a + (f) = a*(f): V(n} H> V(n+1}

be the usual creation operator:

a + (h0)(σnh1®h2®' ' '®hn):= ^/n + 1 σn+1h0 ® hi ® h2 ® ® Λn

for all Λί6 Jf (1). Define <Γ(/): F ( n ) f-> F(r t"1) by:

for all /, /z/ e Jf (1), where σw acts on the indices of all the h?s following it. Then a+

and a~ are < , >/-adjoints of one another, and

where a(f) is the usual annihilator. Let F0 c ^(S) be the (dense) finite particle
subspace, then α±(/) can be extended by linearity to JF0.
Then [α-(Aχ α+(/)] χ = [α(Λ), α*(/)] χ = <Jh,fyJ

κ χ = <Λ,/>J χ
Λ,/eS. Define the field operator:

/2

for all fe S, where the last equality follows from

where /(1)€S(1) = (l\®MD+1 ®Γ2 and /(2)eS(2) = (^βM"*1 ®Γ2, em-

ploying the definition of K and the fact that α(/) is conjugate linear. The relation of
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Φ(/) to the usual field operator Ψ(f) = —7= (a*(f) + a (/)) is easily found:
/2

so using α(/) = - = ( y ( / ) + κψ(κfϊl we see

/2

Then we have (cf. [5] Theorem 1, 2):

(a) Φ(/) is closable for all feS.
(b) FO is a set of analytic vectors for Φ(/).
(c) Given a sequence { j£} c S, s-limfc_ ^ J^ = /, we have

s-lim
fc-^c»

(Notation: s-lim means limit in the strong Hubert-space topology)
(d) The vacuum Ω = (1, 0, 0, . . . )eF0 is cyclic for the set (Φ(/) |/eS}.
(e) [Φ(/), Φ(Λ)]χ = ilm</, Λ > j χ = ΐB(/, Λ)χ for all χeF 0 and for all /, fceS.
(f) Define

then JF(/) is closable for all feS.

(g)

(h) W(f) is a < , >j-unitary operator on F0 for all feS.

Furthermore by [5], Prop. 6, given a < , >j-unitary operator U on S with
domain and range D(U) and R(U), define

D*(Γ(U)):= Span{σn(D(U)®

® ®JR(l/))}

Then for all feD(U) and

where Γ(17) is defined as usual with D"(Γ(U)) in the domain of Γ(E7)| V(n\
With all this preparation behind us, it is now possible to define the α operators

and to construct Ln, neZ. Define δ(n, μ)eS = R2 ®MD + 1 ® Γ2 by δ(n,μ) =

\® eμ®&nτ where eμ (resp. εn) is the μth (resp. nth) unit vector of MD + 1 (resp. /2).
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Then we make the following identifications with the heuristic objects:

= 4« = - (fl

+ (<$(0, μ)) + a'(δ(09 μ)))

, μ)) - a-(δ(0, μ))) ,

and so [αS,αv_ r o]χ = [α (δ(n, μ)), α + (<5(m, v))]χ = <<S(m, v), <5(
— 2tt'ngμvδn-m>0 for t, w > 0 as expected from the construction. Moreover,
α£β = 0 Vn ^ 1 as in the heuristic theory. These commutation relations agree with
the heuristic ones. With these identifications we can now use the heuristic expres-
sions:

1 °°
Lv=^-, Σ α-fc α/c + α'p p andzα k = ι
ι oo ι n— 1

L» = 7̂7 Σ α- fc αn + f e + — Σ αk α n _ f c + αn p
zα k = 1 ^fα fc=1

for n ̂  1, and L_ M = (LM)+ to define the Virasoro operators and we need to
determine the domains on which the infinite sums converge for these expressions to
make sense. We know that all finite partial sums in these expressions preserve F0.

Lemma 3.1. jF0 is not the domain of Ln, n^Q.

Proof. We exhibit a vector χeFQ for which L0χφ^(S\ and the case for
Lnχ for rc>0 follows similarly. Consider the vector a + (f)ΩeF0 with

P

< 00} is given by fn = n~(r+i) with 0 < r < 1. (Then clearly ΣΓ=ιn/» =

n~(2r+1) < °° for r > ° ) τhen

•(/)β =

= Σ Σ a + (δ(k,μ))gμμa-(δ(k,μ))a+(f)Ω

k=l

D

fc=l

where /= ( ) ® ^0 ® (wji) and we used
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However ( n f n ) φ l 2 because X^°=1 n(nfn)
2 = Ylnn

1~2r diverges for r < 1 which we
have here. Hence a + (f)Ωφ &(S). "

Recall that S0 := IR2 ® MD+ l (x) /0 (the finite mode space) is dense in S with respect
to the Hubert-space topology. Then the subspace of finite particle vectors con-
structed on SO :

F00:= Spanία + ίΛ) . . . a + ( f n ) Ω \ f ί e S Q , n < cx>} c F0

is also dense in J^(S) because the tensor product topology restricted to each
component is just the original Hubert space topology, and ΩeF0o

Lemma 3.2. F00 is in the domain of all Ln, rceZ, and is also preserved by these.

Proof. This follows easily from the observation that for χeF0o only a finite
number of terms in the sums Σ^=1 α_ f c αn+kχ, n ^ O can be nonzero, so LMχeF00

o, n ̂  0. L_ M χeF 0 o follows similarly.

The Virasoro relations on F00:

[Ln, Lw]χ = (n - m)Ln+mχ + —^- n(n2 - ί)δn+mt0χ VχeF 0 0

are proven in complete analogy with the heuristic derivation, simply from the
CCR's and that Ln preserves F00 for all n. The indirect methods of the heuristic
approaches [1] are unnecessary, elementary (but tedious) algebra is enough.

This setting up of the operator string theory is concluded by restricting the set
of field operators (Φ(/) 1/eS}, since for /eS\S0, Φ(f) will not in general preserve
F00. However we know that for a sequence {fk} c Sθ9 s-limfe^ ^fk =feS\SQ, that
$-\imk-+00Φ(fk)χ = Φ(/)χeF0 for all χeF0 0 ? and that for ΛeS 0, Φ(ft) preserves
F00. Hence since S0 is dense in S, the specification of {Φ(h)\heS0} on F00 will
uniquely determine (Φ(/ι) | heS} on F0. No information is lost by restricting our
attention to the set {Φ(h)\heSQ}9 which we henceforth do.

At this point we have properly defined all the basic spaces and operators
occurring in the heuristic model, and these have the correct commutation relations.
To summarize, we have:

1. A one particle Krein space {S, < , >#, J} with dense subspace S0,
2. A Fock-Krein space «^(S), Γ(J)9 with dense subspace F00 containing the vector

β,
3. A set of field operators (Φ(/) |/eS0} preserving F0o, and making Ω algebraic-

ally cyclic for F0o
4. A set of string constraints {Ln \ neZ} preserving F00> and on F00 these have the

requisite commutation relations with themselves and with {Φ(/)|/eS0}.

So at an infinitesimal level, the string operators are well-defined in the Fock-
Krein representation. In the following sections we want to see whether this
infinitesimal theory can be integrated up to a theory of bounded operators, which is
necessary preparation for a C*-algebra expression of the string. This Fock-Krein
representation is the one suggested by heuristic string theory [12], where the IIP is
traced solely to the occurrence of gμv in the commutation relations of the mode
oscillators, and it involved no mixing between different modes. That is why we
chose a fundamental symmetry J of MD+ ί instead of a more general fundamental
symmetry on MD+l (x) Γ2.
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It is necessary to remark at this point that there is another expression of the
string operators. Recall that J^(Cn) = L2(Cn, μ), where μ is the Gaussian measure
and the Fock representation corresponds to a harmonic oscillator representation
(using Hermite polynomials) on L2((C",μ), the vacuum being £2=1, cf. [20].
Hence on decomposition of S into mode spaces, we obtain for the Fock representa-
tion an infinite tensor product of these representations, and so L0 which preserves
modes, can be written purely as a differential operator on L2(Cϋ + 1, μ). In fact, this
turns out to be a Klein-Gordon equation, cf. [21]. The operators Ln, n φ 0 in this
formulation consist of a combination of differential and mode shifting operators, cf.
[21]. Since the solutions of a Klein Gordon equation are distributions concen-
trated on a mass hyperboloid, it is clear that the constraint L0ψ = α(0)^ cannot
have a solution if/ in the Hubert space.

In view of the fact that the constraints Ln are sums of terms of the form
a±(f} a±(h\ we will find the following lemma useful.

Lemma 3.3. [α±(/) α±(Λ),Γ(J)]χ = 0 VχeF 0 , / ,ΛeS .

Proof. J is a unitary operator on the Hubert space {S, <•,•>/}, and hence
a(Jf)χ = Γ(J)a(f)Γ(J)χ VχeF 0, feS and likewise for a*(Jf), using

1 = Γ(J). Now a + (f) = a*(f) and a ' ( f ) = a(Jf\ hence

= Γ ( J ) a * ( f ) Γ ( J ) χ V/εS,χeFo,

soforβ ± (/) fl±(Λ) = Σf = 1 α ± (Jί)β ± (Λ*)-β ± (/o)α ± (Λo),

Γ ( J ) a ± ( f ) ' a ± ( h ) Γ ( J ) χ = Γ^a^if^J^Γ^a^^Γ^χ

= α±(J/) α±(J/ι)χ.

Now Jfo =fo and Jfk = —fk, where f0 is the time component and fk are the space
components of / Hence

a ± ( J f ) a±(Jh)χ= | α^J/Jfl^J^χ - α±(J/0)α±(JΛ0)χ

D

= a ± ( f ) a±(h)χ,

and so [α ± (/) a ± (h\ Γ(J)] χ - 0.

Since the heuristic string is only given at the infinitesimal level, we intend in the
next sections to integrate up the gauge and time translations, in order to define the

string as a C*-algebra (Δ(S,B) in fact) together with the appropriate automor-
phism groups. We also intend to prove J-unitary implementability of these in the
given Fock-Krein representation, which is an interesting question in its own right.

4. Time Evolution: Integration and Implementation

In this section we write the infinitesimal time translations as infinitesimally sym-
plectic transformations on (S, B\ integrate it up to a symplectic one parameter
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group and show that this group is implementable in the Fock-Krein representa-
tion by a strong operator continuous one parameter group.

The time evolution of the string is defined with respect to an internal proper
time parameter, determined by the choice of a parametrization for the world-sheet
of the string, and this is why the use of the Hamiltonian framework here does not
spoil the Poincare co variance of the string. The Hamiltonian H = L0 generates the
infinitesimal time translations.

In (A. 1,2) of the appendix we calculated:

(adiAL0)(Φ(/))χ = Φ(λT0f)χ Vχ efΌo, A eR, fe SQ ,

with (Γ0/)(1) = ( - 2α'/o(2), -/<2), - 2/<2>, - 3/<2>, . . .)

and because of the good growth properties of Γ0/> the exponential series:

N C^T \k( f\

(exp λTo) (/):= s-lim £ - — ~-^ will converge absolutely:
N->oo k = l K

<", 2ufP, 32*/3

(ί), •) ,

where i = 1, 2 and k ̂  1 above. So

fe!

and this convergence is fast enough for the series to converge absolutely. A trivial
calculation then produces the result:

-/π

(2)sinλn, n ̂

((expλΓ0)/)i2) =

This constitutes a linear motion for the centre of mass variables, and a rotation for
each excitation mode separately, which is what we expect of a reasonable time
evolution for a free string. Note that exp λ Γ0 is extendible from SQ to all of S.
Observe at this point that the integration exp λ T0 of the infinitesimal time evolu-
tion T0 has the following consequence. If the quantum theory provides us with
a Lie algebra homomorphism from LDiff^S1 to the infinitesimal gauge trans-
formations such that JO is the image of the generator of the rotations on the circle,
then it is not possible to integrate this homomorphism up to the corresponding
groups. This is because the rotation group is not simply connected, but exp λ T0

produces the simply connected group R on the centre of mass variable. At the best
we will have to use some covering group of Diff+S1. For exp λ TQ to be an
acceptable time translation, it must be symplectic.
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Lemma 4.1. B(eλτ° /, eλτ°h) = B(f,h) V f , h e S .

Proof. This is a trivial calculation:

B(eίτ°f, e^h) = (/^ - 2α'A/<2>).n<2> -/22>'(C - 2α'An<2>)

+ 2α' n [(/,α) cos An - /f ' sin An) (nl2) cos An + n^ sin An)
n = l

- (/<2) cos An + /π

(1) sin An) (n<1} cos An - h™ sin An)]

=/oυ hf -/<2> C + 2af £ n(/B

(1> /z<2> -/π<
2> n<»)

n=l

= B(f,h) V / / ι e S .

Having obtained a reasonable one-parameter symplectic group eλτ° on S for the
time evolution, we now need to examine its implementability (with J-unitary
operators) in the Fock-Krein representation above. The formal equation used by
physicists:

(AdexpUL0)Φ(/) = (expadUL0)Φ(/) = Φ(eλτ°f)

suggests that we try to define expUL0 as a J-unitary implementer of eλτ°. However
the physicist's equation originates from Lie group theory analogies, and for
operators on infinite dimensional Hubert space it need not hold. In fact, due to the
kinetic term p p of L0 we know that ^^L0(k\)~l(iλp pfχ cannot converge for all
λ 6 R, χ 6 FOO in Hubert space topology, a fact we show in the next lemma.

(iλL )fc

Lemma 4.2. There are χ eF0o and λ elR/or which the sequence £f=0 — rr~Z di-

verges with N for the Hilbert space topology of^(S).

Proof. We will use the fact that a series £ un diverges if the sequence { un} does not
converge to zero. Choose χ = Ω eF00, then

L0Ω = — X α-fc αfc + α>p β = α'p pβ ,
fe=ι /

and so since [α_ fe αk, p p] = 0 V / c ^ l , we have (LQ)nΩ = (<y!p p)nΩ. Using

(a+ (5(0, μ)) - fl- (5(0, μ))), we find (p p)»β = Y(^o+ «o+ )M Ω + C,

where αo «o" := gμva
+ (δ(0, μ))α+ (δ(0, v)) and ζ J_ (^Q #0 )w^ because they

belong to different particle spaces. (Clearly (a£ a^ )nΩ e $?(2n) and ζ is a
linear combination of vectors belonging to particle spaces 3?(k) with k <2n.)

Because of this orthogonality, ||(p p)nΩ|| ^ — ||(αί a£)nΩ\\. Write αί αί =

-α+(5(0,0))fl+(5(0,0)) + ^1α
+(δ(0,0)fl+(5(0,0) τhen due to the contri-

bution of I2 to the inner product of S, for any component /, floifloiQ-Lflojflo}^
when i = t = j and where αoi:= α+((5(0, z)). Hence as above for (p p)wί2, we can
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(aίiajtfΩ + ξ, where ξλ(a^)2nΩ and so \\(a$ a£)nΩ\\
definition of a£, (a^)2nΩ = *J(2n\δ(Q, i) ® . . . ® 3(0, 0

write

(2n times) so \\(a^)2nΩ\\ = v ( 2 n ) ! and hence ||Lgβ|| ^ :-

^μα\/2|k,

and this will not converge to zero with k -> oo if |A | >

Hence s-lim.
k!

-χ does not define a suitable implementer for eλτ°. We

s
now aim to find a suitable implementer.

Recall that the J-inner product of S which defines the IIP of
B(f, Kh) + iB(f9 h\ and a bounded operator V on S is J-unitary if
(Vf, Vhyκ = </, /z>£ V/ Λ eS. From the imaginary part of < , >κ we see that this
means that V is symplectic, and this in turn implies via the real part that
[*, F] = 0.

Lemma 4.3. exp λT0 is not J -unitary on S. Let P be the projection onto the centre of
mass variables of S. Then [P, eλτ°~] = 0 and CλTo:= Peλτ° + (1 - P) is not J-
unitary, but Xλτ^= P + (1 - P)eλτ° is J-unitary. Clearly eλτ° = CλToXλTo.

Proof. That [P, eλτ°~] = 0 is obvious, because eλτ° does not mix terms of the
/2-sequences. Since Lemma 4.1 established that eλτ° is symplectic, we only need to
show that [X, eλTQ~] φ 0, and this will be entailed by the proof of [K, CλΓo] φ 0
= [X, ^ΛΓO] which proves the second part. These follow by straightforward

calculation, and we only do the first:

V/eS,

i.e. [K, CλΓo] Φ 0 .

Recall the result of Mintchev mentioned in Sect. 3, viz for a J-unitary operator V,
Γ(V) is Γ( J)-unitary on ^(S) and

Γ(V)Φ(f) = Φ(Vf)χ Vχ e F ξ , f e D ( V ) .

Corollary 4.4. (i) Γ(eλτ°) is not a J-unitary implementer for the transformation
Φ(/)h-> Φ(eΛΓ°/).
(ii) Γ(XλTo)Φ(f)Γ(X-λTo)χ = Φ(XλTJ)χ V/eS0, χ eF00 and Γ(XλTo) consti-
tutes a weakly continuous one parameter group of J-unitary operators.

Proof. Obvious.
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Theorem 4.5. (i) p p is essentially self-adjoint, and hence by spectral theory we can
construct Vλ = expi/lα'p p, a unitary (and J -unitary) weak operator continuous
one-parameter group.
(ii) The transformation Φ(f) -» Φ(CλTof) is implementable by Vλ, ana hence the
transformation Φ(f) -* Φ(eλτ°f) is implementable by VλΓ(XλTQ\ which is a weakly
continuous one parameter group of J-unitaries.

Proof, (i) Since pμ = — 7=(a+(δ(09 μ)) — α~((5(0, μ))) is a J-symmetric operator
>/2

preserving the domain F00, the same is true for p p = — (p0)2 4- (p1)2 + * '
+ (pD)2. So to show that p p is in fact symmetric, it suffices to prove that
[F( J), p p]χ = 0 Vχ eF0o

 and from the expansion of p p in terms of a±, this will
follow directly from Lemma 3.3. Now p p is symmetric and of the kind of operator
covered by Lemma 5.8, so it is essentially self-adjoint. Alternatively we can prove it
by showing F00 is contained in the set of analytic vectors of p p, then since F00 is
dense and invariant under p p, Nelson's analytic vector theorem implies that p p is

essentially self-adjoint. By spectral theory we define eίλa'P'P9 where λ,α' elR on
FOO which is then a weakly continuous one parameter group of unitaries (and
J-unitaries).
(ii) We next prove that for all χ e F0o> /eS0, A e R:

eiMlFpφ(f) e - ίλa'wχ = Φ(CλTo)χ

which will prove the theorem. Now [p p, Φ((I — P)/)]χ = 0 for all/e S, χ eF0,
so

Since P/ = /0, the zero mode, we have PS ̂  (CD+1 and

(I - P)S) = # (PS) ® #•((/ - P)S)

and so for ̂  eJ^(PS) s L2^''1), φ e^((/ - P)S),

and the evaluation of the first factor is the same as evaluating the time evolution of
a free particle in finite dimensional quantum mechanics:
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where the second step followed from the Weyl relations and:

We could always assume that ψeD(p)nD(q\ since that followed from
χ = \l/ (g) φ eF0. So:

= ( Φ ( P e λ T ° f ) + Φ((/ - P)f))χ

Clearly [F

So time evolutions are both integrable and J-unitarily implementable by a weakly
continuous one parameter group. Application of spectral theory directly to L0

would also have yielded the above J-unitary group.
We need to remark here about the apparent discrepancy with the finding in the

geometric framework [16, 17, 6] that the time evolutions commute with the com-
plex structure K. This discrepancy is resolved by the observation that in the
geometric framework the zero-mode (centre of mass variables) is omitted through
the use of based loops, and in our framework the noncommuting aspect of eλτ°
with K only shows up on the zero mode, i.e. IK, CΛΓo] Φ 0 = IK, XλTo] . Since the
gauge transformations as we shall see mix the zero-mode with other modes, we
prefer to retain the zero mode in this formulation.

5. Gauge Transformations

In this section we intend to do for gauge transformations what we did for the time
evolutions, i.e. find the infinitesimal gauge transformations and investigate integra-
bility and implementability of these. In all fairness we need to point out to the
reader forthcoming difficulties. We will find that the exponential series for the
infinitesimal gauge transformations on S have very unpleasant convergence prop-
erties (Prop. 5.3, 5.4). A suitable spectral theory to integrate up the infinitesimal
gauge transformations, is also not forthcoming, one reason being that these are not
complex linear operators with respect to the complex structure of the Fock-Krein
representation. This forces us to make a decomposition of each gauge transforma-
tion into two components which are separately integrable, but do not commute.
We prove implementability for these components and then use Trotter's product
formula on the implementers to obtain the integrated gauge transformations on
S together with their implementers. The decompositions are introduced early in the
analysis to establish notation, and any proof or derivation which is particularly
algebraic or ugly, is banished to the appendix.

Since [Ln9 n Φ 0} are not J-hermitian, we take J-hermitian parts instead:
Nn:= Ln + L_π and Mn:= i(Ln - L_n), so N0 = 2L0, N _ M = Nn, M_n = - Mn.
We will recombine these in a suitable fashion at the point of selection of the
physical vectors (or representations) according to the constraint conditions
(Ln - a(0)(Sn>0)|i/'> = 0 for all n > 0. Then {iNn, ίMn\n el} will in fact generate
a central extension of the Lie algebra LDiff+S1, i.e. the Lie algebra of the real
vector fields on the circle. Segal [11] integrated this central extension up to
a central extension of the group Diff +Sl. In fact, the operators Nn9 Mn are the



490 H. Grundling and C.A. Hurst

generators of infinitesimal gauge transformations of the string. Explicitly we
calculate the commutation relations of this Lie algebra from the Virasoro relations
to find Vχ eF00 and n > 0:

[iLo, iNn]χ = ~ nίMnχ, [zL0, zMJχ = niNnχ ,

[ΐNπ, iNw]χ = (n- m)iMn+mχ + (n + w)ΐM M _ m χ ,

[ιMn, iMm]χ = (m - ri)iMn+mχ + (n + m)iMn-mχ ,

ϋVm]χ = (m - n)iNn+mχ - (n + m)iNn-mχ

- l)(<5n+m,0

The infinitesimal gauge transformations generated by ίNn and iMn are cal-
culated in the appendix with the results:

(ad iNH)(Φ(f))χ = [UVM,

V/eS0, χ e F0o and n > 0 where:

(Tnf)P = (n- k)f$Lk\ - (n + fc)/i2j!k, fe > 0,

(^/)(

k

2) = In - fcl/iίίi*, + (n + fc)/^k - v/2/ifMf, fe > 0

and V/eS 0, χ eF00i w > 0 we have:

(adiMn)(Φ(/))χ = Φ(Rn/)χ,

where (Λ|| /)(« = n2 ̂ α' /π

(2), (!?„ /) <0

2) = 0 ,

(Λ,,/)^ = (n

(Kn/)k

(2) = (n + fe)/M

(2)

k + (n- k)f^9 k > 0 .

Then Γπ and -RM preserve SO and are infinitesimally symplectic (cf. (A. 5, 6)):

B(THf, h) + B(/, Γπ^) = 0 = B(RHf, h) + B(f9 Rnh) V/, h eS0, n ̂  1 .

Since N.n = Nn and M_M = - Mn, we also set T_π = Γw and R-n = - Rn for all
n ^ 1, and R0 = 0. Note that Tn and Rn are unbounded operators, hence they
cannot be in the Lie algebra of Sp(oo), so one cannot use Milnor's theorem (cf.
[22]) for integrating Lie algebra homomorphisms up to Lie group homomor-
phisms of the corresponding (infinite dimensional) groups.

Since Tn and Rn are also non-complex linear, i.e. [Tn, K~] Φ 0 φ [#„, K~\ as an
easy calculation shows, care must be taken in the analysis of these. This observa-
tion corresponds to the similar finding of Bowick and Rajeev [16, 17] regarding
the non-gauge invariance of their complex structure. As for the domains of the
operators Tn and Rn, we will take it to be SO = D(Tn) = D(Rn) throughout.

Next we examine the structure of Tn and Rn in order to obtain some useful
decompositions into more manageable parts before looking at integrability. Since
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Tn, Rn act as the identity on the MD+1 part of S0 = R2 ® MD+1 ® /0, we can
express these operators as 2 x 2 matrices of which the entries are operators on 10,
and these entries can then be expressed as infinite matrices. In what follows

space-time indices will be omitted. First, write Tn as a 2 x 2 matrix: Tn = I
\Pn rn

where ( t n f ) k = δk,02^2a'fn and (rnf)k = - δk,n ^/2f0 V / e i0, and for all /e /0,
n £ 1, fc > 0:

(snf)k = (n- k)fln-kl - (n + k)fn+k9 (pnf\ = \n- k \ f ] n - k ] + (n + k)fn+k .

The structure of the last two operators become clearer when these are expressed as
infinite matrices:

(n + If

column

(n + If
row

(2n + l)st

row

(n + l)st

row

(2n + l)st

row

0

0

0

0

0

0

0

0

/̂^"

0

0

0

0

0

0

0

0

0

0

0

1

0

- 1

0

0

0

1

0

1

0

... o o o o o
0 (n- 1) 0 -(n + 1) 0

... (n-2) 0 0 0 -(w + 2) 0

0 •" 0 0

0 .- 0

o ... o
- 2 0 0

l-n 0

0 -n 0

(n + l)st

column

... o o o o o
0 (n-1) 0 (n+1) 0

... (n-2) 0 0 0 (Λ + 2) 0

o o
o

o o
2 0

n-1 0

0 n 0

-2n + 1 0...

0 -2n 0

0 - 2n - 1

2n- 1

0

0

2n

0
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Likewise for Rn we write = = ( " n } where for all fe 1Q:
w vny

i.e. in matrix format

and

t

(n + If
row

0

0

0

Λ/2

0

(n + l)st

column

0 ••• 0 2J2m'

0 ••• 0 0

0 •••

0 ••• (

0 •••

) ()

0 •••

0 •••

0 •••

k)fn+k -\n- k\f{n-kl

k)fn+k -t- (n

for all / e /0> i.e.

(2n + l)st

row

(n + l)st

-̂ column

o o ... o o o o
0 0 - 0 (1-n) 0 (n + 1)

0 0 ... (2-n) 0 0 0

0 - 1 0 . . . . . . 0

0 0 0 - 0

0 - 1 0 . . . . . . 0

0 0 - 2 0 .- 0

j 1-n 0

0 ...... 0 -n 0

2) 0

2n- l 0

0 2π

0

0

+ 1 0
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x-

(n + l)st

row

(2π + l)st

row

0

0

0

0

0

0
0

0

(n + If
column

0 0 0 0

0 ... 0 (n-1) 0 (n+1)
••• 0 (π-2) 0 0 0

1 0 0

0 0 0

- 1 0 0

0 - 2 0 . . . 0

1-π 0

0 -n 0

0

0

(n + 2) 0

2n

V.

Now for a complex linear operator A we need [A, K~\ = 0. The general form of

a 2 x 2 matrix which commutes with K = ( , Λ 1 is ( , 1. Observe that the
V - 1 <V V - b a)

infinite tails of Tn and Rn (i.e. everything outside the first (n + 1) x (n + 1) block) will
be of exactly this form. This suggests a useful decomposition of Tn and Rn. Let Pn be
the projection of S on to the subspace spanned by the first n excitation modes (i.e.
from 0 up to (n — 1)). Then for an operator A on S, PnAPn will be the first n x n
block in the matrix notations above, and hence is a bounded operator of (complex)
rank less than n. So we form the decompositions:

Tn=tn+fn with Tn:=PnTnPn and fn:=Tn-Tn,

Rn = Rn + Rn with Rn:=PnRnPn and Rn:=Rn-Rn,

then [K, Γn] = 0 = [£, Rn] and Γn, #„ are finite rank (less than n) operators. It is
also not hard to see that [ΓM, fn~] Φ 0 Φ [Rn, Rn~] though these commutators will

ftn sn\of course be finite rank operators. Explicitly we have: Tn = I .n " 1 where:
\sn rnj

0 0 0

0 (n - 1) 0

0 (n-2) 0 0
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Then by inspection of the matrices we see sn — sn = — (pn — sn) =:sn, so
0 s \

~ " , hence [K, ΓJ = 0 Φ [£, ΓJ and by evaluation of snsn 4- snsn we
-Sπ oy

see that

SMSM sπsw ίwsw snτ

Likewise

and

where wn:= un + sn = t?? - sπ, hence [X, Kn] = 0 φ IK, Rn]. So now we have the
decompositions Tn = fn -f ΓM, RM = KM + _RM, where ΓM and RM are (real) rank
2(n + 1) operators and !"„, Λn commute with K. The methods of Araki [7],
developed to deal with non-complex linear symplectic transformations, did not
provide any stronger analytic tools than those already used here. ^

Next we need to examine the closability and adjoints of Tn9 Rn. In the
examination we exploit the fact that ΓM, Rn act as the identity on the MD+ 1 part of
S = R2 ® MD+ 1 ® I2 which contributes the indefinite part to the inner product of
S, and hence Tn, Rn can^be considered as (unbounded) Hubert space operators on
the Hubert space R2 (x) ί2, with dense domains containing R2 (x) /0 Hence ordinary
Hubert space operator theory and spectral theory is applicable to Rn, Tn and their
various decompositions.

Lemma 5.1. ?„, Rn, are dosable complex^ linear operators which are essentially
antiself adjoint. Since [ J, TM] =0 = [ J, Rn], they are also essentially anti-J-
selfadjoint.

Proof. Let A = f n or Rn. By definition D(A + ):= { f e S \ 3h eS s.t.
<ft, fe>x = </, AkyκVk e D(A)} = D(A*) since [yl, J] = 0 and J preserves S0.
Decomposing </ι, k>x = </, >4fe>x, we get

i.e. B(h, Kk) = B(f, KAk) and B(h, k) = B(f, Ak).

That is fεD(A*) iff there exists an h e 5 such that £(/ι, fe) = 5(/, Afc) Vfc G S0

/ 0 s \
(since [A, K] = 0 and K preserves S0). Recall Tn = I _ „ n 1 with (sn/)0 = 0 and

( s n f ) k = -(n + k)fn+k-(k-n)θ(k-n)fk-nVfεl0, k > 0, where θ(fc):= {0 if

fc^O; 1 if k>l}. Also ^w = fr ?) with (fiΛ/)o = 0, («„/)* = (n + k)/Λ + J k

-(k - n)θ(fc - n ) Λ _ Λ V / G / 0 , k > 0. So /GD(7?) iff for all fc eS0 (suppressing
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space-time indices):

B(f, fnk) = 2of

2α'
7 = 11+1

7=1

= β(Λ, fc) = W - «> + 2α'
i=ί

So since this is true for all k eS0, we obtain

Λg )=:(7ί1

+/)W = 0, i = l , 2 , and

Aίυ =:(^+/)<1) = (n + £)/„<?, + (ft - n)0(fc - rc)Λ<2Jn

/42) =:(f;/)^ = - (n + /c)(/π

(i\ - (k - n)θ(k - n)

where k > 0. Thus /eD(Γ*) if these expressions define an element of S. Clearly
SO c D(f*) and so since this is dense in S, Tn is closable. Moreover we have also

^ — ~
shown that Tn

+ ^ - Tn = ί Λ " , i.e. XΓM = I " ^ is symmetric, using
\Λ 0 / \0 sn/

[ΛΓn]=0.
To prove that all heS0 = D(Tn) = C™(Tn) are analytic vectors for KTn, it

λk

suffices to show that Σfc^oΓj II (^)fcεw II < °o for some A > 0 and for all m > 0,

where εm is the unit vector for the m th mode in /0 Now using exactly the same
argument as in the proof of Lemma A.8, we find

(since snεm is snεm with some terms omitted). So

o o j i k o o / o n f c f c oo

Σ £j IKSJ^mll ^ 2^ Σ -£p Π (m + ίn) ='-l\fu' Σ

and on application of the ratio test:

2λ k

k + 1 °°

Hence the series converges for λ < l/2n, and so S0 is_ a dense invariant set of
analytic vectors for KTn, hence by Nelson's theorem KTn is essentially selfadjoint,
i.e. Tn is essentially anti-selfadjoint. Rn follows similarly.
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Observe that in the proof above we showed that for all f^k eS0, #(/, fnk) =
J3(fn

+/, fc) = - B(fnf, k) and the same for Rn, i.e. fn and Rn are infinitesimally
symplectic. Since Tn and Rn are also infinitesimally symplectic (cf. Appendix), this
implies the same property for the remaining part of the decompositi9ns fn and Rn.
However fn and Rn are not antihermitian since [K, ΓM] φ 0 Φ [K, RΛ], and on the
complex Hubert space R2 (x) /2, are real linear but not complex linear. This means
that we cannot apply the classical Weyl theorem on the spectra of compact
perturbations. Moreover, exponentiation of Γn, jRn, fn9 Rn, will not produce unitary
operators, so that these transformations are not implementable via the map Γ (cf.
Sect. 4).

Corollary 5.2. Tn and Rn are closable operators.

Proof. Tn is densely defined andjslosable, Tn is bounded hence continuous and
a closed operator. So using D ( f n ) r \ D ( f n ) = D(fn\ Tn is closable. Rn follows
similarly.

Now in order to go to a C*-algebra framework, we need to exponentiate Tn and Rn

into symplectic operators on S. Since these are not complex linear, the Hubert-
space spectral theory of S will not work directly, and if we only consider the real
linear theory in order to construct a complex Hubert theory on S as a real Hubert
space, the spectral theory on the new space will also not help because these
operators are not normal. So next we consider the convergence properties of the
exponential series with relation to the Hubert-space topology. (Similar conver-
gence properties are obtained with relation to the weak star topology of S0 on S.)

Proposition 5.3. The exponential series Σ^°=0 "/> n> Q converges absolutely in

the Hubert norm of S for all f e S0 and for all λ e I — —, — 1. This series diverges in

the Hilbert norm topology for all nonzero f e SO and λ e R\ ( ,-)./« the region

of convergence, denote the limit by Qxp(λTn)f, n > 0.

The proof of this is lengthy and has been placed in the appendix, Prop. A.6.

Proposition 5.4. (i) QXpλTn is an unbounded operator on S for nonzero \λ\ < l/2n
with SQ in its domain.
(ii) Given λ, μ eR such that |λ|, |μ| < l/2n and \λ + μ\ < l/2n, then the power series
ofQxpλTn converges on (expμ77

n)(Sr

0), and

(expAΓM)((expμΓn)/) = (exp(λ + μ)Tn)f V/eS0 ,

where we maintain the notation QxpλTn on this larger domain.

Proof, (i) We only need to show that expλTn is unbounded. Given a converging
sequence of the form {/#:= X^iVk^^J^eN in So? converging to an /eS (hence
we must have Σ^°=1 iίk < oo), we consider:

N M

s-lim(exρAΓn)/JV = s-lims-lim £ yk £
JV-»Όo N->oo M - * o o k = l m = 0
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ιm m— 1

where use was made of A.9. So:

m = 0

The series ££°= 1 \yk\^/2a?ke\λ\k will certainly diverge if |yk | ^/k eλfc does not tend to
zero as k goes to infinity, and this is quite easy to arrange by choosing e.g. yk = k ~ 2.

Then fN— ^->/= Σ^°=1 k~25j[1 ) eS, but s-lim jV_>00(exp/Un)/]V does not exist, i.e.

exp/lΓn is unbounded.

(ii) Let μ, λ be as given. Since / converges absolutely for all

/eS0, we can rearrange its terms without affecting convergence:

ι

= Σ Σ

where the order of the limits does not matter due to the absolute convergence. It is
clear that the last limit exists, i.e. the power series of expAΓn converges on the
region (expμΓn) (S0).

To construct a C*-algebra expression of the string, we need a symplectic space
containing {S0, B} to model the excitation modes, together with all relevant
transformations written as symplectic transformations on this space. Now by 5.4(i),
we know that explΓπ cannot be extended by continuity to S. If there is some
subspace of S containing S0 which is preserved by all expirn, 0 < \λ\ < l/2n, then
it is possible to compose enough exp /I TVs to obtain a convergent exponential series
on SQ (using the absolute convergence of the factors) which will violate the
divergence part of 5.3. Hence we are forced to conclude that Tn for n φ 0 does not
integrate up to a symplectic transformation group in a useful manner via an
exponential series. Moreover, since Tn is neither complex linear, nor normal as
a real linear operator, we cannot use spectral theory to define explΓ,,.

Next we will find the decomposition of the infinitesimal gauge generators Nn

and Mn corresponding to the decompositions Tn = Tn + fn, Rn = Rn + Rn.
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Consider for n ̂  1 the decomposition of Ln\

Ln = Ln + Ln = -(Nn + Nn- iMn - iMn],

where

L '= — Y α α H-α p L ' = V α α

Mn = i(Ln-L.n\ Mn = i(Ln-L.n\

Lemma 5.5.

[iMn,

Proof. Appendix A.5.

Lemma 5.5 immediately implies that

Hence the _ decomposition L^ = Ln + Ln forces exactly the decompositions
7; = 7; + 7; and Λn = .Rn + Γn constructed before, and we already know (cf. 5.1)
that ?„, Rn are integrable via spectral theory, and ΓM, Rn are integrable because they
are finite rank operators, and so their exponential series always converge abso-
lutely. So by Stone's theorem {exp/bc|x = Γπ, Rn; λ elR, n ̂  1} arej3ne-parameter
unitary groups (hence J-unitary groups since [J, Tn~\ = 0 = [ J, #„]) and hence
since the symplectic form B is the imaginary part of the inner product, this implies
that these families are also symplectic operators on S.

On the other hand, the families exρ/lΓw, QxpλRn on S are not unitary nor
J-unitary since [ΓM, X] Φ 0 Φ [X, X].

Lemma 5.6. expAT^ and expλRπ are symplectic real linear operators for all λ eIR,
and n

Proo/. Since ΓM and Rn are finite rank matrices, the series exp/lΓM/, etc. will
converge absolutely for all feS. Since the symplectic form is jointly continuous
with respect to the Hubert norm topology, the result follows by rearrangement of
the series, i.e.

B(expAΓ l l/,expAf l lΛ)= Mm lim £ £ B ( ( λ f n ) k f , ( λ T J h ) / k \ r l
£->oo N^ oo fc = 0r = 0

K N
k+r - * +k= lim lim X X λk+r( - !)*£(/, Γn

+kh)/klr\
X-^ oo N-oo fe = 0r = 0

for all f, h e S and where we used B( fnf, h) = - B(/ Γ.Λ).
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The decomposition Ln = Ln + Ln may lend itself to stronger selection criteria than
the usual condition

for the physical vectors, e.g.

Observe that in the transition from Nn, Mn to Tn, Rn, we have lost the central
term of the Virasoro relations, so this information may need to be put back into the
theory at the abstract level, and furthermore, to complete the presentation of the
physics, we also need to include the Poincare transformations. However, an easy
calculation of [Mμv, Φ(/)] shows that the Poincare transformations act as the
identity on the mode space part I2 of S, and so since the rest is finite dimensional,
these transformations are integrable by power series, and also commute with the
constraints. So in the interests of an economic presentation, we henceforth omit the
Poincare transformations from the discussion.

It is now necessary Jo prove implementability of the families expΛJf, where
X e{Γ0, Γrt, Rn:> ΓM, Rn\n€%*} by weak operator continuous families of J-
unitary operators. This will indicate the usefulness of the Fock-representation, in
that if these families are implementable, it may be possible to define the integrated
constraints from these implementers in an acceptable way.

Theorem 5.7. (i) The families εxpλX for X e{Γπ, Rn\n ̂  1} are implementable on
Φ by weak operator continuous families of J-unitary operators, Γ(expλX).
(ii) Let A e{Nn, Mn\n ^ 1}, then \_A, Γ( J)]χ = 0 Vχ eF00, and A is essentially
self-adjoint. Hence by spectral theory we can construct expιX4, and this will be
a weak operator continuous one parameter group.
(in) Given A = Nn or MM,

oo o w \

Σ -}τ
nh}ξ

,n = θ"! /

Vλ eR, h e S0, ξ s F00, where T = fn or Rn respectively, and we already know that
λn

V °° _ 7™/ι converges absolutely.
n\

Proof. The proof of (i) is standard, because expλX are weak operator continuous
families of unitary (and J-unitary) operators.

1 „_! . . . . .
(ii) Recall that Ln = -τ-,Σl = ι a fc* a «-fe + an'P, L-n = (LJ+, Nn = Ln + L_ π and

4α * *
Mn = i(Ln — L-n\ where n ̂  0. Hence A consists of a combination of quadratic
monomials in the creators and annihilators, not mixing space-time components,
and application of Lemma 3.3 will produce [A, Γ( J)]χ = 0 Vχ eF00 By construc-
tion A is J-symmetric, and this then implies that it is symmetric. That A is
essentially self adjoint follows from the next lemma. (Recall that
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Lemma 5.8. Given an operator of the form:

R=Σ {*(/<)• β(Λ<) + fl*(Λ) flfa) + a*(κ,) α*(t>()} ,
i = l

where f i , hh gi9 rh ui9 vt e SO are arbitrary, the operator B = R + jR* is essentially
self-adjoint with F00 in its domain.

Proof. By construction B is a symmetric operator which leaves F00 c C°°(£)
invariant. So we only need to prove that F0o consists of analytic vectors for B. Note
that B is of the form

B= <*(kά A M So,
;=ι

where α0(/) denotes either a(f} or α*(/). Let ψ be an rc-particle vector, then by the
usual estimate

Π l l / ί lIWi) A Λ W I I £ V" + * V» +

we obtain \\BNφ\\ ^LNJn + l . . . Jn + 2N F 2 N \ \ φ \ \ , where F = sup{||/,||,

=: Σ % ii</ΊI

Apply the ratio test:

LF2λ
2) /I

as N —> oo, and so the series converges for A < Ϊ/2LF2. Thus ι/f is analytic for B, and
as FOO is spanned by the finite particle vectors, B is essentially selfadjoint by
Nelson's theorem. V

Proof of (iii). We collect a few facts from Stone's theorem for use below: t -> elt* is

weak operator continuous, i.e. (η, (elt^ — eis^)ξ} ->• 0 Mr\, ζ e «^(S), and

lim = 0 3 F00

from which the Cauchy-Schwarz inequality implies:

= 0 Vξ e

Our main argument in this part is aimed at establishing

—
ήϊ
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for all η, ξ e F00 and all t in some neighbourhood of zero. Start with the unitary
W(f) = expiΨ(f) and define for fixed ξ e F00, η eD(A):

fh(t):= <>?, eltl W(h)e-**ξy, Vί e R, Λ eS0

and so:

/Λ'(ί) - lim/c'1 <*f, [eί(ί+k)^(/ι)e-'(ί+/c)I - e^WWe'^ξy
k->0

= limk~1 (e-^η, [_(eίkl - l)W(h)(e~ikΆ - 1) + (e** - \}W(h)
k^O

+ W(h)(e~ikl - l)]έΓίίJξ>

, (e~ίk -

where we made use of:

|| W(h)(e~ikA - l)
k^O

= lim/c -1 IKe-^-l^H \\(e'ik2 - l)ξ\\
k^O

= \imk~1 \\(e~ikl - l)η\\ -lim \\(e~ikl - l ) ξ \

because both the limits in the penultimate step exist. Now since we cannot be sure
that (Ad eltA}(W(h}} preserves D(A\ we do not make use of the self-adjointness of
A to simplify the equation for/^(ί). Instead, introduce the concept

:= <B*η, Cξy - <>/, CBξ) ,

where η, ξ eF00 and B, B* are operators preserving F0o? which because it is in
D(C\ means that (η, (adw B)n(C)ξ> also makes sense for n a positive integer. Then:

fί(t) = ^(ad

and since A preserves F00, the nih derivative

makes sense, and so fh(t) is C°° as a function of t. When t = 0, adwiA becomes just
adiA (making use of the self-adjointness of A), i.e.,,

Now the map s -> W(sh) for s E 1R and for h e S0 fixed, is weak operator continuous
by Stone's theorem, so the function s -»/s

(

Λ

w)(0) is continuous. We prove that it is
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differentiate at s = 0 using the fact that AF00 c F00 £ D(Ψ(h)):

-f k)h) - W
s = o k-*o

Since fh is C°° in ί, we can write down its Taylor series in t around 0, but need to
prove convergence for it.

00 fW(G\ °° - tn

/»(*) = ΣjL-r1ft= Σ <η,(*diAγ(w(h))ξy-,
n=0 n' «=0 n

00 I f I" " /n\

iΛWi^Σ^Σ^y

For ξ e V(rn} n F00 we make use of the estimate:

l lα^Λ) . . . a ± ( f k ) ξ \ \ £y/(m+l)...(m

and to obtain estimates for Mkξ||, observe that

-έ"? llα* α«-^H + llα» p£l l

This estimate also holds for ||Ln

+ξ||, and hence:

2) H S U + 2(D + l)7(m + l)(m + 2)

2) |

II Akξ || g (2Θ) V(m + l)(m + 2) . . . (m + 2/c) |
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Apply the ratio test for convergence:

503

ak

and is less than one whenever

ίc + 1
2,2ft, ,

and this will also hold for the series ΣΓ=o \t\k \\Akη | |/fc!, and so the Taylor series
converges absolutely for ί in the indicated range around 0. Since W(h) disappears
from the estimates, the series oίfsh(t) also converges uniformly as functions of s, and
similarly the series

Σ T = Σ n!

will also converge uniformly as a series of functions in s, so we can interchange
differentiation in s with the limit of the series to obtain, when | ί | < 1/40:

T/*(t)as s=0 «=0

as

ί!
n!

s = 0

using the definition of fh(t). Since by the convergence of the series we know that
this exists, Stone's theorem implies that e~itAξ eD(Ψ(h)) for t in the indicated
range, and so by application of Stone's theorem:

ds fSh(t) =

for all η, ξ eF00 and ί < 1/40. This corresponds to the usual formal physicist's
equation mentioned in Sect. 4. Using Φ(h) = Ψ(P-h) - KΨ(KP+h), the same
relation will also hold for Φ(h) instead of Ψ(h\ i.e.

where T= Tn or Rn, and η, ξ ejF00, \t\ < 1/40. But since
heSQ, this can be repeatedly applied to get

tn

„ , , - X y^

n!

^ ^ 0 ,j — T^fceSo for

eF0o
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Since F00 separates ^(S\ this means that

Note that the convergence proof above showed that F00 is a set of analytic
vectors for A. The proof above will break down at this point for A = Nn or Mn,
since it is easily seen that F00 is not a subset of the set of analytic vectors of these A,
and so the Taylor series will not converge (this is because for these A, there is an
infinite sum in the expression, whose size is limited by the number of nonzero
modes of ξ eF00, and since A increases both particle number and maximum mode
space number, the exponential sum diverges).

We are now ready to prove both integrability for the full gauge transformations
Tn and Rn as well as implementability for the integrated transformations. Denote
by Sp(S, B) the group of symplectic transformations on {S, B}.

Theorem 5.9. (i) The limits

I t ^ t \

1-J*v» I £tvn T ovw T \ f (~*m -f f r~ C*

fc-»oo \ k k J

/c +oo

exist in the strong Hilbert space topology on (S, < , >£) and

-™«ψ = Φ(Gϊf)ψ V/eSo, ψ e

**»ιl/ = Φ(Qϊf)ψ V/ES0, ψ eF

(ii) G?, βf eSpJ(5,5):= {T ε Sp(S, B)\ [Γ, J] = 0}, [G?, K] Φ 0 Φ [β»,
ί -> G? anrf ί -> β" are one parameter groups for all n e2ζ*.

/ (i) Begin by collecting some relevant facts and notation. Fix neZ*.
St:= expίf;, Γt:= expίΓM eSpJ(S,B). [7f:= Γ(St), Ft:= expitNn and by 5.7 we
have UtΦ(f)U-tξ = Φ(Stf)ξ and VtΦ(f)V.tξ = Φ(Ttf)ξ V/E5 0, ξ EF0 0.

Lemma 5.10. Ut = Γ ( e x p t f n ) = expitNn.

Proof. Γ(expί fn) = QxptdΓ(fn). Choose a generic m-particle vector: if/ =

i = 2 i = 2

Π «*(/<
i=3

= ... =dΓ(fn)φ. V
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Since it is inconvenient that Φ(/) exponentiates up to an unbounded operator, we
now switch our attention to the auxiliary field Ψ(f), using the relation
φ(f) = ψ(P_ f) - KΨ(KP+ f\ where J = P+ - P_ . We also use the notation
Bj( , ):=B( 9J ).

Lemma 5.11. (i) There is a group isomorphism Θ\ SpJ(S, B) -> SpJ(S, Bj) given by
Θ(T):= P-T-P+KTK VΓeSpJ(S, B).
(ii) Given T<=SpJ(S, B) and unitaries Uτ such that [£7T, Γ(J)] = 0, then

V / e S , χ e F 0

iff UτΨ(f)Uflχ=Ψ(θ(T))χ V/eS, χ eF0o .

Proof, (i) Since the inverse of θ is again the same expression:
θ~l(T) = P-T- P+KTK VΓ eSpJ(S, Bj) (making use of [X, P±] = 0), we only
need to show it is a homomorphism,

Γ2) = P,TiT2 - P+KTiT2K = P-7\P_:Γ2 + P+KT1K P+KT2K

- P+KT2K) =

where use was made of \_Ti9 P + ] = 0, i = 1, 2 which follows from [Γf, J] = 0.
(ii) Given Γ, 17 Γ and UτΦ(f)Uf1χ = Φ(Γ/)χ we calculate:

- KΨ(KTP + f)χ .

But since we can vary the components P±/ of /independently:

U τ Ψ ( P . f ) U f l χ = Ψ ( T P - f ) χ a n d

UτΨ(KP + f ) U τ ^ I = Ψ(KTP+f)χ which implies that

l/Γ<F(P+/)l7f1χ = n - KTKP + f ) χ , using [X, P±] = 0 .

So UτΨ(f)Uf1χ = Ψ((P-T-P+KTK)f)χ = Ψ(θ(T)f)χ ,

and since this argument is reversible, the lemma is proved. V

We now intend to use the Trotter formula (cf. Reed and Simon [26]):

lim (Ut/k Vtlk)
k = exp it(Nn + Nn) = expίtNn,

fc-»00

where the limit is in the strong operator topology and NΛ9 Nn and Nn all are
essentially selfadjoint by Lemma 5.8. Denote W(f)\= QxρiΨ(f). Now

e™» W(f)e-™»ψ = s-lims-ΰm(£/t/m Kt/M)m W(f)(V-t/kU-t/k)
kψ (1)

m-*oo fe-*oo

for all \l/ G^(S). We now use the following fact (easy to prove and standard):

Lemma 5.12. Given ίwo strong operator convergent sequences of unitaries Am -» A,
Bm -> B on ^(S\ we have s-lim^,^^ AmBmψ = ABψ for all ψ e ^"(S). Γ/iαί is,

s-lims-lim AmBkψ = ABψ = s-limAmBmψ .
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So application of 5.12 to Eq. (1) above produces:

^ = s-lim(l/ί/wFί/wΓ W(f)(V-t,mυ -tl

= s-lim WW-1 (St/m)0-1(Γ(/m)Γ/)./'
m->oo

= s-lim W(θ ~ 1 ((Stlm TtlmΓ)f)ψ , (2)
m-»oo

where we made use of UtΨ(f)U-tψ = Ψ(θ~1(St)f)φ and Vl Ψ(f)V-tψ =
Ψ(θ~1( Tt))ψ which followed from 5.1 1 (ii) and the listed relations at the start of this
proof.

Lemma 5.13. Let {fm} c S be a sequence and assume that the limit
s-limm_00 W(fm)ψ exists for all ψ ε^(S). Then s-limw^00/m exists and

s-lim W(fm)ψ=w s-lim f

s-lim ψ(fm)ψ = «ps-lim/ w WT eF0 .

Proof. By Reed and Simon X41(d) [26], the last two statements follow from the
existence of sΛ\mm-,^fm, so we only need to prove this existence. Since
s-limm_>00 J^(/m)^ exist by hypothesis, and the exponential series

= Σι^oί*r(/)]ll^/n' converges absolutely in the Hubert norm for all
3, we can interchange a limit with the limit of the series to obtain for all

_ v λk k
m-»oo fc = 0 * m-»oo

- s-lim FWmWdλ „„
= s-lim ψ(fm)ψ

exists. Now Ψ(fm)Ω = -=(β(/ m ) + α*(/m))Ω = -=/ m e F(1> = S, hence

s-lim^oo Ψ(fm)Ω = —ps-lim fm exists. V
•v/2 m-+oo

Now apply 5.13 to Eq. (2) to prove that the limit

s - l i m θ ~ 1 ( ( S t / m T t / m ) m ) f = : θ ~ ί ( G f ) f exists, and that
m-»oo

eit^nW(f)e~it^n\l/ = H7(0~1(G")/) iA and hence:

Thus from Lemma 5.11, eit^nΦ(f)e~i^n\l/ = Φ(GJf)\l/9 ψ eF0. Since all operators
in the definition of θ are Hubert norm continuous, G"/= s-limw_>00(5ί/mΓί/m)/and
this completes the proof of 5.9 (i), given that Qt can be treated in complete analogy.



Operator Quantization of Open Bosonic String 507

Proof of 5.9(ϋ). G?, Q1 εSpJ(S,B) follows from the facts that l/f, Vt9 e'**,
e**n eSpJ(S, B) and the symplectic form is continuous w.r.t. the Hubert space
topology (alternatively use the CCR's of Φ(f) and the implementing equations in
5.9(i).)

To see that [G?, X] φ 0 φ [Q?, X], differentiate the implementing equations
in 5.9 (i) to obtain

and we alrea_dy know that [ΓM, K] Φ 0.
From eitNneisNn = e

i(s+t)Nn and the implementation equations in 5.9(i) we also
obtain Gn

tG
n

s = Gn

t+s W, s eR, Gg = / and similarly for QΓ

So we may regard G" and Qn

t as the integrated gauge transformations for the string,
given that they have the appmpriate implementers. These will not be contractions
for all values of t (since exρίΓM is not). So finally, we have obtained as a starting
point for the C*-algebra of the string:

(i) a symplectic space {S, B} modelling the behaviour of the excitation modes αw,
(ii) a one parameter symplectic group exp/lΓ0 giving time evolution for the string,

(iii) a collection of one parameter families of symplectic groups

giving the gauge transformations of the string,
(iv) the Poincare group acting as symplectic transformations on S.

The central term of the Virasoro relations is regarded as a representation depend-
ent phenomenon, as is the use of Krein spaces. In the next section we will consider
these issues in detail.

To obtain a full theory for the string, including gauge transformations, we have
two options:

(i) Consider the Fock-representation as physically unimportant, an historical
accident, and set up the algebraic part of the theory in a purely C*-algebraic
framework - a representation-free formalism. We intend to do this in the next
section, and also to find a criterion for selecting the physical representations.
We do not expect the Fock-representation to satisfy this criterion.

(ii) Consider the Fock-representation as physically important, but in need of
augmenting, and obtain the whole orbit of the Fock-representation under the
action of the gauge group as is done by Bo wick and Rajeev [16, 17] enlarging
the field algebra correspondingly. We will explore this option in a future
project.

6. The Field Algebra of the String

In this section we will propose a C*-dynamical system to describe the string,
examine its physical representations and constraint conditions. Following that we
consider how the Virasoro central term is reintroduced at the algebraic level (if
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required) and study the set of Fock-Krein representations of the string from
a C*-algebra point of view.

Given that the string fields Φ(f) satisfy

we can use the CCR algebra A(S, B) (cf. [9]) to abstract the algebraic structure of
these. In this case, there is an action α of the discrete symplectic group
α: Sp(S,B)-+AutA(S,B) given by aτ(δf):= δτf VΓeSp(S, B), fεS, where [ δ f \
fεS} is the set of generating unitaries of A(S, B) satisfying the Weyl relations [9].
There is then an invariant state ω0 e <£(A(S, B)) for the action α, and it is given by
ω0(<5/) = 1 if /= 0 and ω0(<5/) = 0 if /φ 0. Now, as remarked at the end of the
previous section, all the relevant transformations of the string have been written as
symplectic transformations acting on the string field smearing space, so we can use
the action α to define these as automorphisms on A(S, B). Let ̂  be the group in
Sρ(S, B) generated by the time translations and gauge transformations, i.e. by the
set {etτ°, G?, QΠ ίeR, rceZ*}. Let & c Sρ(S, B) be the group of Poincare trans-
formations on S, and G is the discrete group generated by both ^ and by^f . Since
Sg only acts on the MD+1 part of S = R2 x MD+ί x Γ2 and ̂  only acts nontrivially
on the IR2 x Γ2 part, this means that G ̂  <& x .̂ We now define the action
α : G -> Autz4(S, B) by the restriction of the action α on Sp(S, B) above. Our claim
is that at the abstract algebraic level all the physical information of the string is
contained in the C*-dynamical system (α, G, A(S, B)).

Now physical representations of the string should be representations of A(S, B)
which are covariant or at least projective covariant for this dynamical system. This
requirement can be easily absorbed into the abstract framework as follows. Start by
making a choice of cocycle σeZ2(^, ΊΓ) which we require for the projective
representation of .̂ (E.g. σ = 1 for a covariant system, and if we want specifically
the Virasoro central term, then we obtain a nontrivial σ ^ 1 from the unitaries eitL°,
eitNn^ eitMn on ̂ ^ for it ) Exten(} the cocycle trivially from % to G ^ J^ x 0, and

construct the twisted crossed product #"σ:= G x Λ,σA(S, B) (consult Raeburn [30]
or Sutherland [31] for its definition). Then 3FG has the following properties: there is
a canonical injection ί:A(S,B)-+^σ as well as a twisted injective homomorphism
ti: G -» !/(#,) such that uguh = σ(g, h)ugh Vg,heG and i(<*g(A)) =
Ugi(A)u~1 VAeΔ(S,B)9 geG. Moreover ^σ has the universal property that its
nondegenerate representations are in bijection with the σ-covariant representa-
tions of A(S, B) and in such a way that given a σ-covariant representation (π, V\

then there is a representation π:&σ -+&(<& ) for which π ° i = π and Vg = π(ug)
Vgf e G. So 3Fσ is a good candidate for the full field algebra for the string if all
physical representations are required to be σ-covariant.

Now in a representation of 3Fσ we need to select the physical subtheory of the
string, and this is done through the enforcement of constraints. Guided by our
findings in [19], we will not require that physical states be either regular (i.e. the
maps t-+π(δtf) are strong operator continuous for all f e S ) or that the one
parameter unitary groups ί -> π(uQXptTo), t -> π(wG«), t -> π(wβ«) be strong operator
continuous. So we allow for the fact that gauge generators may not be definable,
nor the infinitesimal theory of the string used by physicists in these representations.
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This is to avoid the problems that occur when constraints cannot be enforced
because they are eigenvalue equations with the eigenvalue in the continuous part of
the spectrum. This problem occurs in the Fock-Krein representation of the string
in the preceding sections.

The case σ = 1 is most easily dealt with, and its existence is a bonus of the
C*-approach. This corresponds to the absence of the central term in the commuta-
tion relations of the heuristic constraints. So at the heuristic level, for such a theory,
physical vectors ψ can be selected by

VneZ*

or at the exponentiated level:

. (1)

Now in a given representation π : 3Fσ -> ̂ (J^), we have that π(t/expίΓo) (resp. n(uGn\
π(uQn)) correspond to the heuristic objects eltL° (resp. eltN*9 e

ltMn\ and this suggests
the choice of a C*-constraint set

as abstract constraints in ̂  (cf. [32,29]) from which the physical states are
selected as Dirac states:

and each vector state induced by a vector ψ satisfying Eq. (1) in some representa-
tion will be in SD. Then ©D Φ 0 iff 1£C*(Φ - 1) (cf. [32]) and in this case * is
called first-class, otherwise it contains second class constraints [33]. Now if
α(0) = 0 it is easy to see that <*U is first class: this is because there is already given the

α-invariant state co0 on A (S, B\ and by the technique in the proof of Theorem 3.3
[29], such an invariant state can always be used to construct a Dirac state on ̂  . If
α(0) φ 0, there is an additional phase in the constraint relations, and this may make
<*U second class. This question calls for detailed analysis of the structure of ̂ . Based
on the heuristic findings, we guess that for some values of α(0), <% is second class.
This analysis is left for the future.

Next consider the case σ φ 1. In this case it is very easy to see that ^U is second
class, and one may impose the constraints either by using the method proposed in
[33] for dealing with quantum second class constraints, or by imitating the
heuristic constraint conditions Ln\l/ = α(0)(5M5θ^ Mn ^ 0. (We do not expect these
two methods to give the same answer.) The latter is_done as follows. Recall the
correspondences e/ίL°«-»π(ι/expίΓo), eίtN"+-+π(uqn\ eitMn^π(u^n) for a representa-
tion π of JV Then we propose selection conditions for physical states by:
an ωeSC^J is in 6P if

(i) ω(uexptΓo) = β"««0> VίeR, _
(ii) lim^o* 'M^CttG- - iιιβ? + (i - 1)1]) = 0 Vn ^ l,AeΔ(S>B).

(Since in the Fock-representation πF, Nn is the generator of the one parameter
group t -» πF(uGn) and Mn generates t ->• πF(uQ»\ and Nn - iMn = 2LΠ.)

Whether SP φ 0 we do not know. Our preferred option for dealing with second
class constraints is the method of [33] which is somewhat more refined than just

the selection of the gauge invariant part of A(S, B) as the physical observables.
Moreover, even at heuristic level, the splitting of the constraint set in half by the



510 H. Grundling and C.A. Hurst

Gupta-Bleuler type method used for the string does not get rid of all the gauge
degrees of freedom.

Finally, we wish to examine Fock-Krein representations of the string from the
C*-algebra point of view Since the string field Φ(f) on the Fock-Krein space

\ <•>•>/} exponentiated up to unbounded operators exρiΦ(/) (cf. Sect. 3),
this forces us to consider δf -» expiΦ(/) as an unbounded Krein representation of
the *-algebra A(S, B). (Exponentiation of ίΦ(f) is in terms of a power series).
However we can use the auxiliary field

Ψ(f) = Φ(P-f) - KΦ(KP+fl [<?(/), Ψ(h)-] = iBj(f9 h)

(which is modelled by A(S, Bj) in an ordinary Fock representation on ^(S) to
convert the problem of these Krein representations to a C*-algebra one. Also, by
Lemma 5.11 it is sufficient for ΓeSpJ(S, B) to study implementability of Θ(T) on
A(S, Bj) to obtain information of implementability of T on A(S, B) in the Fock-
Krein representation. Note that time evolutions and gauge transformations are all
in Sp J(S, J3), but the Poincare transformations are not. These arguments are easily
made into a proof of:

Proposition 6.1. (i) A Fock-Krein representation Up (as in Sect. 3) of A(S, B) is by
a Fock-representation
Uτ on &(S) with [t/

= π J

F ( δ τ f ) V/eS,

construction uniquely associated to a Fock-representation πF of A(S, Bj) on
(ii) For ΓeSpJ(S, B) and unitaries Uτ on &(S) with [t/Γ, Γ(J)] = 0, we have

iff

This can be generalised to other regular representations of A(S, Bj) and also to
other Krein structures J' Φ J, in which case the auxiliary C*-algebra A(S9 Bj>) and
dynamical system is different.

We leave the important and difficult problem of the enforcement of the
constraints and consequent selection of physical representations for a future
investigation. We claim that at this point the aim of the paper that of obtaining an
adequate C*-framework for the string - has been achieved.

Appendix

All the operators here act on and preserve F00, and so for ease of notation we do
not indicate this explicitly. Recall identifications

)) = αS, a + (δ(n, μ)) = α^, n^

with [αj , α;] = - 2α'n<r (5M+W,0 Vn ,

1 °°
^0 = -̂7 Σ «-k αk + αp p ,

zα k=1

i n— 1 Λ oo

L« = 7~7 Σ a fe* a n-fe+^-^ Σ α-fc απ + f e + αn
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for n ί; 1. Then [Lπ, p"] = 0, and using notation i = K for the complex structure:

[A,, «"] = »«S Vn, [A>, «£] = mat Vm Φ 0, and

[A., α£] = mα^+m Vn, m. Recall now:

= P f ( o } + β'/(o2) + 4= Σ (i(«-* - α*)'/"' + («-* +
/2 fc=ι

So

1 00
r(2) . 1 V / / / />(2) V(1K / r(2)

= Ittn'J 0 ~\ -7= 2^ '<(0ίn + k ' ( j k l J k ) ~ ( X ' n - k ' ( j k

For this to make sense on F00? we also need to restrict /to be in S0. So the
infinitesimal time translations are:

x/2fe=ι

fe=l

=:Φ(T0f) V/eSo, (A.I)

where (T0fY»:= (- 2α'/(

0

2), -A", - 2/<2), - 3/(

3

2), . . .),

/'T1 f \W - (C\ f^ Ίf^ ^f^ ^ W f c ^ ΓΔ Ί\
\ •*• OJ ) — vΛ J 1 5 - 4 / 2 ? ~ ! / 3 ? • • • / "/^ *^0 v * A/

Observe that Γ0 preserves S0> though it does not preserve S. Next we need to find
the infinitesimal gauge transformations adiJVB and adiMn with Nn:= Ln + L-n,
Mn:=i(Ln-L.n),

= i(αB + α_ n ) /[,2) + 4= Σ
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*=ι

jf i

- * Σ *(/i1) «,+*-/i2) P.+*)-K/2«/ lί1) αo

fe=l

-i Σ

-i (k-n)(f?ln qt-f?l,'Pll)

k=l

i £ (k + n)(f(1ln qk-f¥ln p k ) - ί 2 n ( f ( 2 j qn-f(£ pn)
k=l

'nf™' P2 - iqn (2nf% - ^ 2 f ) + i 2 n / > pn

-i Σ

=:-iΦ(Tnf),
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i.e. (adϊWn)(Φ(/)) = Φ(TJ) V/eS, where:

(2) ~ ,.(1) p. f(2)
—

)_ f t | - (n + fe)/l^, k Φ n ,

fc)/^*, fc + n . (A.3)

By an entirely similar calculation we find (adiMπ)(Φ(/)) = Φ(Rnf), where

(Λ,/)^ = 2v/2α7<,2)n ,

(RJ)™ = 0 ,

(RJ)^ = (n + k ) f ΐ i k - |n - *|/}i>_t | + Jϊfφδ^, k^l,

)_M , k Z 1 . (A.4)

Observe that Tn and J?π preserve S0 though not S. It is possible to show by direct
calculation that Tn and Rn are infinitesimally symplectic operators on S0 (and this
provides a useful check on the somewhat cumbersome algebra), but it is far easier
to deduce it from the consistency of the setup and:

B(TΛf, h) + B(f, Tnh) = - ί(ίΦ(TJ\ Φ(ft)] + [*(/), Φ(Tnh)-])

= i([[ιWn, Φ(/)], Φ(Λ)] + [*</), [Wπ> Φ(/t)]] = 0 ,

making use of the Jacobi identity and [iNn, [Φ(/), Φ(n)]] = 0.

Lemma A.5. Given for n^ί, Ln:= ^τΣΓ=ι a-*'a»+t> -^«:= L« - A . with the

corresponding Nn, Mn, Nn, Mn operators as in Sect. 5. Then

and ίiM.,Φ(f)]χ = Φ(RΛf)χ VfeS0,χeF00

with fn, Rn as in Sect. 5.

Proof. First observe that

rr in
[A,, «m] = -̂7 - « + ' m μ .. .otherwise
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[£-„, α£] = 0 i f l ^ m ^ n and mα^π+m otherwise. So:

if 0 ̂  m ̂  n

JIM «m] = [Ai + £-»> αml = •( ^αm-« if ~ « ̂  Wl ^ 0 ,

H- α£_M) otherwise ,

if 0 ̂  m ̂  n ,

im(α^+m — α£_ M ) otherwise .

So using the smearing formula:

1
= P-/o } + <Γ/o2) + -7= Σ (i(«-* ~

we obtain:

1in *(/)] =-7= Σ
/ 2 k = ι

= Σ fc{(«-+* -«-.-*

-- Σ
'2 fc=n+

+ («_,_„ - αn+)t) /l2) + i(αn+)t + «_„_,)-

Σ i •/ r(2) s(ί)\
kl(pn + k'fk -Qn + k'fk )

fc=l

ki(-pt-t'fP + qt-.

2n

k=l
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= -iΦ(fj\ where fn =

515

0 SH , and
-sn 0

(S.fk:= ~(n + k)fn+k -(k- n)θ(k - n)/,_π .

From an entirely similar calculation we find [Mn, Φ(/)] = — iΦ(Rnf).

λkπ.
Proposition A.6. The exponential series

kl
-/, n > 0 converges absolutely in

the Hilbert norm ofS for all /eSQ

 and for allλei — —, — ). This series diverges in
\ 2n 2n J

the Hilbert norm topology for all nonzero /e 50 and λ e R\ I , - 1. In the region

of convergence, denote the limit by exp(/lΓM)/ n > 0.

We prepare three lemmata for the proof:

Lemma A.7.

(i) T f =
fe-i

f .
0 / \ f e(pnsn)

k k> 1 .

Pn
= u

Proof. Observe from the matrix expressions that:

in = 0 = r2, pnίn = 0 = rnpn ,

(2n + l)st

column

0. .. 0 -.

tnsn = | 0 . . . 0

0 . . . \

0. . .

/
and

(2n + l)st

row

/ °

Now pn or sn applied to a sequence shifts its entries by n modes, multiplying also by
a number. So the first column of (pnsn)rn is 2χ/2n2(0, . . . ,0, 1, 0, . . . ,
0,1, 0, ... )Γ and it is zero elsewhere, and the nonzero entries are in the rows
labelled (n + 1) and (3n + 1). In general (pnsn)

krn has nonzero entries only in the
first column in the rows labelled (mn + 1), where m must be odd. Hence from the
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form of tnsn displayed above, we see:

tnSn(PnSn)krn = 0 = tn(snPn)
kSnTn Vfc ^ 0 .

To prove (i) we do induction on fe. If k = 1, by the equations above:

)
9 / 9

= / t; + snpn tnsn + snrn

_fsnpn tnsn + snrr

\ 0 pnsn

Now assume that (i) holds for k and prove it for k + 1:

_ 2kT2 _ n n
n

0 (pnsn)
k

>nPn tnSn + Snrn^

0 pnsn

n \k+l („ n \k„ « _j_ /• « (n o \k
Vn) \*nVn) ^n'n > inί>n\ljn^n)

using the identities above, which completes the induction. /
To prove (ii) we also do induction on fe. When fc = 0, Tn = ( } as required.
Assume that (ii) holds for k and prove it for k + 1:

nsn)
kPn (Pnsn)

krnj\ 0 pnsn

which completes the induction V

Lemma A.8. Using our previous notation where εn is the unit vector for the nih mode
in /o, we have the following estimates where k ̂  1:

2k

Π (m + In) ^ ||(pnsn)
>[

6m|| ,
1 = 0

2k -I

Froo/ The last equation follows directly from definitions. Recall that the norm in
Γ2 is l l / l | 2 = / ^ + 2α'X;=1m/2, and so ||εj|2 = δ0,m + 2α'm(l - δ0,m) (and

so in general for f=^=0λmεmel0, we find ||/||2 = I2, + 2α'X^=1m/l2). By
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definitions:

!

m(εn_m - εn+m), if m < n

- nε2n, if m = n

- m(εm_n + εm+n); if m > n ,

The same inequality is true for pnεm because sn and pn only differ in the signs of the
coefficients. Observe now that sn and pn applied to an εm create at most two εf's,
multiplied by ± m, and so for a monomial in sn and pn applied to εm, the magnitude
of its leading term (i.e. the entry for the highest mode which is nonzero) is always
larger than all the other stepwise created terms. That is,

|| (sn}
kεm || ^ 2k || L((sn)

kεm) \\ , || (pn)
kεm \\ ̂  2k \\ L((pn)

kεm) \\ ,

\\(snpn)
kεm\\^22k\\L((snpn)

kεm)l etc.,

where L(f) for fe /0 denotes the leading term of/ By examination of the forms of sn

and pn we see:

fc-l

Hence

l l ( s , , )*βml l 2 ^ 2α'(m + kn)22k U (m + In)2

ι = o
k

.e.

and exactly the same inequality holds for any monomial of order k in sn and pn. For
the next inequality of A.8, observe from the form of tnsn at the start of the proof of

A.7, that ίnsn/picks out the 2nth mode of/, multiply by — 4>/2α'rc2, and insert this
into the 0th mode (whose norm differs from that of the other modes by a factor of
(2α')1/2) So since ||/2|||| ^ ||/||,

,, , -^ ι, ι ,, „ •"Λ / ^Oί ϊI i 1

„ „

2k -2

ι = o

(S.P,)*-1 5^,6011 = II (s.?,,)1-1

2k -1

and rnεw = 0 for m φ 0. V
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Lemma A.9. Let A be any monomial of order k in sn and pn. Then

\\Aεm\\ ^ 2a'(m + kn) Π (m + In) .

Proof. Due to orthogonality considerations, ||/|| ̂  ||£(/)|| for all /e/ 0>
hence since L(Aεm) = ± εm+fcn ΠίΓo (m + /w)> we obtain || Aεm \\ 2 ̂

2α'(m + fcn)(Π?Γo (m + ln^2 V

λkTk

Proof of A.6. We first do the convergence of ΣΓ=o nfϊorfeS0. Since Tn acts as

the identity on MD+ 1 , i.e. it does not mix space- time indices and acts identically for
each, it suffices to show convergence with respect to the Hubert space topology of

R 2 ®Γ 2 . Observe now that <δ™:= K J® εm, ^L2 ):=K )®εm; m e Z + l is

a real basis for R2 ® /0 and that Tn is real linear. So for /= Σj=ι Σmio ̂ ^mλ

/ ^ Σ Σ i ^ Σ o ^ ^

/ 7

show that ΣΓ=o " ̂ ^ converges for the Hubert space topology of R2

Using A. 7 write for JV even:

N/2-1

/ tn(snpn)
k (Snpn)

k

fc^Ό (2k + ΐ)l\(pnsn)
kpn (pnsn)

k

and it suffices to show that both the even and odd series converge on δ^ as
N -^ co. From A.7 and the norm of R2 ® ί2 we see:

2 _ ι ι / ς „ \ f c ς p I I 2
— lllS«Pπ; sn£m\\

where the norm on the left-hand sides is that of R2 ® / 2, and the norm on the
right-hand sides is that of 72. Hence on employment of A.8 we get:



Operator Quantization of Open Bosonic String 519

and using orthogonality:

l 2 — II f < ? n—

Hence

r F II 4-n' « fcm II "

2k

' 4 f e + 2α'2
1 = 0

2/c-l

,ir +
2fc-l

Π (

1 = 0

l)24k + 2

2k

2/c+l

foi)

2k+l

2k +1

= /a722)!+2

1 = 0

2*+l

Now return to the series:

k=! (2/c)!

1 = 0

N i 2k

^V«' Σ

2k

and this will converge as N -» oo if it satisfies the ratio test:

(2k)!

k+ι
>t< 1:

(2λ)
2k

(2k + 2)(2k +1)
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i.e. this series converges absolutely when \λ\ < l/2n,

?! (2/c)! ^ Σ
7 Σ

fc=l

which converges absolutely for \λ\ < l/2n. Now let m Φ 0:

2k

k = l

Hence the even series converges absolutely on S0 for |λ| < l/2rc. Now examine the
odd series:

N ;2 f e + 1

Z-t /<") 7, i 1 "v ^ 2,/?(» V? + 1) Σ
2 k + l 2 f c + l

tΊ (2/c+l) ! ,1*0
Π (m + ίn)

= 2(nV + Vα') X c, ,

and apply the ratio test as above:

1)!
2)c+l

(2An)2 ,
(2Λ + 3)(2fc + 2)

so the odd series on δ^ converges absolutely for \λ\ < ί/2n. Now

N χ

Lu /ΛI.

2k+l

= v

 k% (2k+1)! v

with convergence properties as before. Let m φ 0:

N ι 2 k + l N (i\ ι\\2k+l 2k+l
y λ rr2k+is(V ^o /Γ7 v W Λ U
^—ί /07^ i

2fc+l

n um

which completes the convergence part of the proof of A.6, so

= 2>/«' Σ ct,k = 0

λkτk

° ^/con-
=0

verges as required. For the divergence part of the proof we use A.9. By the
equations ( * \ earlier in this proof,

(I 7- 2k s(l) M _ | i / « n \k M \\T2kδ(2)\\ > \\(n ϊ }kP II
IM n °m \\ — IK^nPn) bm\\> II ̂  n ° m II = \\\Pn^n) bm\\ •>

ι r π 2
I •*• n

2fe+l

and so:
]2k

5(1)

(2/c)!

}2k 2k+l

+ /«) s ξfc .
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Now:

ξ.k+1 A
2 Jm + (2k + 2)n fl (w +

(2k + 2)n V'2 (m + (2fe + 3)n)(m + (2fc + 2)n)

m + 2fcn y (2fc + 2)(2fc

Hence for \λ\ > 1/n, £fc becomes progressively larger with fe and hence
λ2k

ΣΓ=o ToΓVT Tnkδ(m} diverges for \λ\ > 1/n. It is sufficient for divergence of a series to

prove that it has one subsequence whose terms go to infinity, so we do not consider
the other subsequences (which has similar behaviour), and the divergence proof
ends here.
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Addendum

We have been asked by the referee to compare the string C*-algebra constructed
here, with the recently published string C*-algebra of Wiesbrock [34]. This latter
approach draws from a heuristic construction of Witten [35] in which the kine-
matics of an interacting string is modelled by a groupoid with strings as elements,
and where multiplication is joining of overlapping strings. Briefly, Wiesbrock's
construction runs as follows. The classical string space consists of the set of
continuous paths ω: [0,1] -> Rd, so classical string theory is given by the algebra
of functionals on string space with pointwise multiplication and addition, and the
sup norm. In the spirit of noncommutative differential geometry, this system will be
quantized by proposing a noncommutative product for these functionals. Each
string has a distinguished point at \ which allows the part [0, \~\ -> Rd (resp.
[i, 1] ->]Rd) to be labelled "source" (resp. "range"), and two strings join if the
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range of the first is the source of the second, which leaves the product consisting of
the source of the first and the range of the second. For two string functionals Φ, Ψ,
Wiesbrock defines the product functional (Φ* Ψ)(ωs, ωr) as an integral over all
possible splittings of ω = (ωs, ωr), and so need a measure on path space. For this,
he chooses a measure μ consisting of a Gaussian on ̂ '([0,1], Rd) with covariance
operator (- Δ'N)~1/2 on L2[0,1] (cf. Glimm and Jaffe [20]), where - A'N is the
restriction of the Laplacian with Neumann boundary conditions at 0,1 to the
complement of its kernel, together with a Lebesgue measure on its kernel. This
necessitates the extension of the space of strings from the continuous strings to the
Schwartz space 5 '̂([0, 1], Rd), in which the set of continuous strings is of μ-
measure zero. Moreover

J'2

where for ω = (ωs, of, x) e supp μ, ωs is the source, of is the range and x is the jump
at \. Given two string functionals Φ, !Pe(suppμ)*, the product (Φ* Ψ)(ωs, ωr, x)
is defined as convolution over x and an integral over all possible splittings of
ω = (ωs, of, x) using the half-string Gaussian μr on e9*'([i, 1], Rd) with covariance
(- A'N) ~1/2 on L2[i, 1] taking into account Radon-Nikodym derivatives. Involu-
tion is naturally defined and this defines a C*-algebra d as the C*-enveloping
algebra of the L1 -algebra.

Next the dependence on the initial parametrisation must be lifted, so repara-
metrisations yeDiίf [0,1] compatible with the groupoid structure (i.e. fixing the
points 0, i, 1) are taken to comprise the symmetry group DiffV (a Frechet Lie group
with Lie algebra found by Witten). However, DiffV does not act as automorphisms
on j/ because reparametrisation can transform the Gaussian μ to an incompatible
measure (since the covariance (— A'N)1/2 is not invariant modulo Hubert-Schmidt
under reparametrisation). To deal with this, Wiesbrock uses the Quillen determi-
nant bundle to define a line bundle of which the base is DiffV and each fibre is
identified with a Gaussian measure, reparametrised by the base element in DiffV.
This bundle needs to be combined with another bundle over DiflV to produce
a "Haar measure" on DiffV, via a Kahler structure on M = (Diff S1/S1)0 proposed
in [15,16], and an identification DiffV <= M. It starts with a canonical splitting of
7\ M which produces an almost complex structure on M with respect to the given
parametrisation, and making 71M into a Hubert space Jf. The resultant complex
structure is only invariant modulo Hubert-Schmidt operators under reparamet-
risation, which allows identification of M with the index 0 component of the
universal Grassmannian over J f, which is a Hubert manifold over the Hubert-
Schmidt operators. This provides M with a Kahler metric from which one
constructs a line bundle over M with Quillen's DET*-bundle, shift operators on
Jf, and semi-infinite forms of Γ*M. Using PickrelΓs quasi-invariant cylinder
measure on Gr(Jf )0 (and the fact that M c GLres), Wiesbrock obtains a quasi-
invariant measure on DiffV and an action of Gr(^f) on the space of classical
strings.

Enlarging now the string functionals to functionals on the product of string
space with Gr(^f), multiplication of two such functionals is defined as convlution
on the midpoint, integration over all possible splittings for the given fixed left and
right halves (as for .$/) and integration over all possible reparametrisations identi-
fied with elements of Gr(J f). Radon-Nikodym derivatives are taken into account.
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Whilst in general this multiplication is not associative, the claim is that the
Radon-Nikodym derivatives cancel when d = 26 to provide an invariant measure
and an associative multiplication. (The proof of the latter rests on the analysis of
the line bundles over Diίf^.) This structure is claimed to produce a C*-algebra,
appropriate for interacting strings.

Using the Gaussian cylinder measures, Fock-representations are easily ob-
tained with the right creation and annihilation operators, and the Faddeev-Popov
ghosts are defined as operators on ffl through exterior multiplication of the basis
elements of 7\M (identified with the Ln in our case). However, this cannot
reproduce a BRST-charge, because the space is Hubert, hence no proposed BRST-
charge can be both selfadjoint and 2-nilpotent.

To compare this with our approach, we will not dwell on the somewhat
impenetrable technical details, but point out general theoretical differences.
1) Our approach is less ambitious, in that we only aimed at obtaining a C*-algebra

which can reproduce the operator theory of the free string - once that was made
precise. Time evolution automorphisms and Poincare transformations were
included. Wiesbrock, on the other hand, models the interacting string, omitting
time evolution and Poincare transformations. (Since his strings are in Rd, he
would need to have sheets in Rd + 1 rather than paths.) So Wiesbrock models
kinematics only, the dynamics is yet to be provided. Even classically one would
like to have a time evolution for which a string can be seen to go through its
splittings and joinings, with some coupling constant to control the strength of
the interaction.

2) The space geometry of the string is explicit in Wiesbrock's approach in that the
classical strings as (discontinuous) paths is the starting point for his algebra. In
our case the geometry was flushed out at the heuristic level by taking the
Fourier transformed theory on the world-sheet (assumed as given). Quanti-
zation then proceeded by replacing the oscillator modes with quantum oscil-
lators and retaining the rest of the formalism. In Wiesbrock's case, quantizing
was done through defining a new product on string functional^ as described
above. There is no way in which we can see how to imbed our theory into
Wiesbrock's; multiplication in his case intimately involves the splittings and
joinings, and there is no obvious way to switch these off to produce a free string.
In fact, whilst Wiesbrock's algebra can produce Fock representations, we
cannot see how to identify any Weyl relation in his algebra, so we are not sure
why it is said to have a "Bosonic part".

3) In Wiesbrock's approach the reparametrisations fix the points at 0, i, 1,
producing the group Όiffw as the restricted symmetry group. There is no such
restriction in our picture.

4) Wiesbrock's finding that his Gaussian measure is not invariant under repara-
metrisations, we would like to identify with Bowick and Rajeev's finding that the
complex structure of their Fock representation is not invariant under repar-
ametrisation and with our finding that the Fock-Krein complex structure is not
invariant under the gauge group. However, we deal with Krein representations
for Poincare covariance, whilst Wiesbrock is concerned with Hubert representa-
tions.

5) Wiesbrock claims his C*-algebra is only defined when d = 26 (when his multi-
plication is associative), but in our case there is no such difficulty, and we only
expect the dimension 26 restriction to arise in requiring the vacua of particular
Fock representations to satisfy the constraints.
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6) It is still necessary for both approaches to examine the existence and structure of
the physical states and representations, i.e. those satisfying the constraints.

35. Witten, E.: Non-commutative Geometry and String Field Theory, Nucl. Phys. B268, 253-294
(1986)
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