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Abstract. We estimate the accuracy of the mean field approximation induced by the
Thomas-Fermi potential for the ground state energy of atoms and molecules.
Taking the Dirac exchange correction into account, we show the error to be of the
form O(Z5/3~δ) + D for any δ < 2/231 as the total nuclear charge Z becomes large.
D is an electrostatic energy of the difference density that measures the deviation of
the mean field ground state from self-consistency.

1. Introduction

The nonrelativistic quantum mechanical model for an atom (K = 1) or molecule is
given by the Hamiltonian

N i

Σ — — , (1)
\X~X\

acting as a self-adjoint operator on DN := /\?L χ $ c ^N •= /\"= χ jf9

^ : = L 2 ( R 3 ) ® ( C m , # := # 2(IR 3) ® <CW. Here, Z := (Z 1 ? . . . , Zκ) and R:=
(Rl9 . . . , Rκ) denote the charges and positions of the nuclei. We will drop this
dependence in our notation henceforth. Unless stated otherwise, the operators are
always assumed to act as identity on Cm.

We are interested in approximations for the ground state energy

EQ(N):=M{(ΨN\HN\ΨN)\ΨNeDN, \\ΨN\\ = 1} . (2)

The most widely used one in physics is the Mean Field approximation. It consists in

replacing the pair potential Σ ^ ^ : : in (1) by an average one-body poten-
- \Xi Xj\

tial

(3)
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where D(f, g) := J- rf(x)g(y) induces the Coulomb norm and \Ό{p, p) is the

electrostatic energy of a nonnegative density p e L ^ R 3 ) . So, provided
D(ρ, p) < oo, the substitute Hamiltonian reads

HM := £ (-Λ,- £ ̂  + I J ^
and is defined on DN. In the case of atoms and molecules with N electrons a natural
candidate for p is the corresponding Thomas-Fermi (TF) density p T F , and the
Mean Field potential becomes the TF-potential φτF (see [11]). We introduce

self-adjointly realized on D. By general arguments σess(/iTF) = [0, oo) and
tfdiscί^TF) £ (— oo , 0). Moreover, if N ^ Z then the chemical potential μ = 0 [11]
and |σdisc(/2TF)| < oo, whereas μ > 0 and |σdisc(/zTF)| = oo for N < Z. We set
J V = ft-*, O)I>TF] in case trx {χ(_00, 0 ) [ ^ T F ] } ^ N. Otherwise

PN' = Σ\<Pt><<Pt\> (6)
ί = l

is a spectral projection onto iV eigenfunctions φf of /zTF with lowest possible
negative eigenvalue. Note that PN might be nonunique due to degeneracy of the AΓth

eigenvalue and we pick just any of the possible ones. We observe trx {PN} ^ N. For
any nonnegative trace class operator d = Yjiλi\χiy <χf| on 2tf with orthonormal χt

we call /?[rf](x) := Σ ^ = 1 ΣiΛ'l^iί^' σ ) l 2 ^ e corresponding density. In particular,
PN '•= PIPN]> We are now in the position to formulate our main result

Theorem 1. Consider a molecule of nuclear charges Zj at positions Rj, 1 ^ j ^ K,
with fixed ratios Zj/Z, where Z := ^ = 1 Z 7 and K ^ 1. Let N ^ Z + cZι~1ΠΊ.
Then for any 0 < δ < 2/231 there exists cδ > 0 swc/i that

^ EQ(N) - hr^hnPn} - ^D(pΎF, pτF) - cDj

- p T F , pN - pΎF), (7)

3 /6ί.
where cD := — I

4 π \ m

The contribution cD || p T F ||^3 in EQ(N) has been proposed by Dirac [2] and is due
to exchange corrections. We remark that cδ above is independent of Z/Z, K, R, and
JV/Z. Theorem 1 states that up to errors of O(Z5/3 ~δ) the ground state energy EQ(N)
can be evaluated by solving the eigenvalue problem for the Schrδdinger operator
hΎF, provided this spectral analysis yields

D(pN - PTF, PN ~ PTF) = O(Z5/3'δ) . (8)

Indeed, Dίj2(pN — p T F , ρN — pT F) is a natural norm to measure the quality of our
choice p = p T F of the Mean Field density, for it is positive definite and vanishes in
case of self-consistency pN = p T F . This indicates that Dί/2(pN — p T F , pN — ρT F)
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measures the deviation of the Mean Field energy

EMF(N) := trJ/iTpP*} - l-D{pτF, pT F) - cD J d3 x p%3 (x) (9)

from the Hartree-Fock energy EnF(N) of the system, disregarding exchange correc-
tions. The question how far EQ(N) then deviates from EHF(N) has already been
settled within the desired accuracy in [1] and we consider the present work as
a continuation of [1]. Because of its importance for the present work we quote
Theorem 1 from [1] which we are going to use here as a separate theorem.

Theorem 2. Fix Z, R and let γ be the 1-particle density matrix of a μ-approximate
ground state φNeDN of HN, i.e. (φN\HNψN) f^ EQ(N) + μ. Then for any
0<δ< 1/12 it holds

\EQ(N) - EHF(N)\ S dδZN2'3 I l U

z

 y M + μ , (10)

where dδ:= 828(5 ~ 1 / 3 m 2 / 3 .

In the atomic case, i.e. K = 1 with N ^ Z, p T F is radially symmetric and the
eigenvalue problem for hTF is even one-dimensional. However, the desired accuracy
Z5/3~δ for tri{hτFPN} and D(pN — p T F , pN — pτF) requires a quite delicate WKB-
analysis of /ιTF, which is interesting in its own right, but shall not concern us here.
This analysis has been carried out by Fefferman and Seco [5] and we simply quote
their claim (B) (p. 7) in [6] to supplement Theorem 1 in the atomic case: For
?''-— PίX(-oo, O)(^TF)] a n d some δ > 0 it holds

D(p>-pTF,p'-PτF) = O(Z5i3-δ). (11)

Fefferman and Seco also established Theorem 1 in [6] for atoms with EQ(N)
replaced by infN EQ(N), but their method is completely different from ours. We will
prove this fact as a corollary of Theorem 1.

Corollary 1. Consider an atom, i.e. K = 1. There exists cδ > Ofor any 0 < δ < 2/231
such that

^ inf EQ(N) -

5Ξ cόK
2 Z 5 / 3 - * + λ-D{p' - pτF, p - pτF), (12)

where φΎF is the neutral ΎF-potential, pΎF is the neutral ΎF-density and

P'':= p[X(-oo,o)(fcτF)].

This corollary follows if we set N := Z + z 1 - 2 / 7 7 in Theorem 1, because it is
known that EQ(N) = iniNEQ(N) for N^Z + cZ1'9156 [4,15], and that
PN = Xt-oo, O)[ΛTF] for N ^ Z + cZ2'3 [7].

Moreover, Fefferman and Seco compute

Z2 ^ | | | | ^ 0{Z5l3~δ) (13)
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in the case of the neutral TF-atom. This justifies a claim of Schwinger [14] who
predicted the total contribution in order Z 5 / 3 to the ground state energy of
a neutral atom to be given by ^ c D | | p T F | | ^ 3 , for in this case || PTF llί/i = cZ5/3

follows from scaling and Z ^ N ^ Z + cZ2/3 is still considered "neutral."
This paper is organized as follows. In Sect. 2 we reformulate the Hartree-Fock-

and Mean Field approximation in terms of one-particle density matrices. In
Sect. 3 we derive an abstract estimate on the error term in Theorem 1, which is
estimated semiclassically in Sect. 4. For this semiclassical estimate we use a coher-
ent state method rather than invoking a result of Ivrii and Sigal [9]. This is for two
reasons; first it illustrates that leading order asymptotics suffice to make our
method work. And secondly, it enables us to trace back the exchange correction to
the one proposed by Dirac [2] in Sect. 5. Finally, the proof of Theorem 1 is given at
the end of Sect. 5.

2. One-Particle Density Matrices

We set

on D := H2(Wi3) ® <Cm c j f and D ® D, respectively, and write

HN = Σ *< + \ Σ Vti, (15)
ι = l ^iφj

the indices specifying the components in ® f = 1 D the operators act on. For

a normalized Slater determinant φN := (AΠ)~1/2Σπ( — l)π%π(i) ® ®%π(N)G Av we
compute

<φN\HNφN) = tΓi {hγφ} + i t r 2 { F ( l - Ex)(yφ ® γφ)} =: εHF(yφ), (16)

where yφ := £f = 1 !&><&! and Ex := Σu\φi ® <Pj><<Pj<8> <Pi\ for any ON-basis
{ψi}ιew in J f. Conversely, a given y = yf = y2, tr t {7} = AT can be associated with
the normalized Slater determinant φN built from its eigenfunctions: y = yφ. The
Hartree-Fock energy, i.e. the infimum of all the expectation values of the form (16),
may thus be rewritten as

EHF(N) = inf{εHF(7) I y = y' = y\ \xγ {7} = N, trx {hy} < 00 } . (17)

By Lieb's variational principle [12, 1], we may weaken y = y1" = y2 to 0 ^ y ^ 1
and by weak lower semicontinuity [16] tTι{y} = N to tr^y} ^ iV in (17), so

EHF(N) = inϊ{εHF(y) 10 S 7 S I trx {y} ^ iV, trx {/zy} < 00 } . (18)

We rewrite the Mean Field energy in a similar fashion. Define 0 ^ dΊF ^ N on
Jf by the integral kernel dΎF(x, σ\x\ σ') := ^""Mffσ'PT^WPi^ίΛ s o i t s diagonal
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summed over the spin variable equals p T F . Then we obtain

EMF(N) = t Γ l {hPN} + tr2{ V(dΎF ®PN)}- ^tv2{ V(dΎF ® dΊF)} -

=: EMF(N) - ϊcDμ3xp%3(x) -l-tx2{VEx(PN ® PN)}~\ . (19)

This notation makes the following lemmata completely transparent.

Lemma 1. Let 0 ^ y ^ 1, tv1 {y} ^ N and tτ1 {hy} < oo. Then

eHF(7) ^ ^ M F W - l-iτ2{VEx{y ®y-PN® PN)} . (20)

Proof.

-tϊ2{VEx(y <g> y)} = trx {Λy} + -tr 2 { K(y ® y)}

^tr 2{ V(dΎF ® rfTF)}

^tr 2{ VEx(PN ® PN)} . I (21)

A similar estimate in the opposite direction is as follows.

Lemma 2.

EHF(N) S EMF(N) + l-D{pΉ - p T F , pN - pτF) . (22)

Proof. We estimate

-dτF)®(PN-dTF)]}

(23)

Here enters tv1 {PN} ^N.

3. Exchange Estimates

From Lemmas 1 and 2 we see that the error bound in Theorem 1 essentially asserts
the smallness of

-tr2{ VEx(y ®y-PN®PN)} , (24)



300 V. Bach

provided εHF(y) — EnF(N) is small enough, and

^tr2{ VEx(PN ® PN)} = cD\p^(x)d*x . (25)

We estimate the above quantities by means of the following lemma.

Lemma 3. Let 0 ̂  α, b ̂  1, tr^α}, tXι{b} < oo and X = X2 be bounded self-
adjoint operators on ffl. Then

I tr2 {(X <g> X)Ex(a ®a-b®b)}\

^ (tΓl{X(a - fe)2})1/2.min{(2tr1{X(a + b)})1/2, tΓ l{X( f l + b)}} . (26)

Proo/ Let £, i7 be trace class and {φJ^N an ON-basis in 2tf. Then
OO

tr2{£x(£®F)}= Σ (φi®φj\(E®F)φj(S)φi)

£ (27)

Hence,

|tr2{(X ® X)Ex(a ®a-b®b)}\ = \tr x

= \tr1{(a-b)X(a

(28)

Observe that 0 ̂  XFX ̂  2 implies

tr jEXFZ] 2 } ^ 2tr!{XFX} = 2tri{XF} . (29)

On the other hand,

tv^lXFX^SitrΛXFX})2, (30)

because of 0 ̂  XFX. This, inserted in (28) proves the assertion. |

Patterned after Lemma 5 in [1], we can exploit Lemma 3 to show

Lemma 4. Let 0 ̂  α, b ̂  1, tΓi {α}, trx {fc} < oo be bounded self-adjoint operators
on Jf. Then, for any ε > 0,

\tv2{{VEx(a®a-b®b)}\

- c ' ( t l { + fc} ) " ^ « + ̂ l l ϊ / 2 l l p [ « + ί ' 3 l l ^ > (3D

ε

Proof U s i n g X ( r z ) = X\r z) ~ Xfr z) := χ{xUx -z\^r}® l (σ) , we m a y d e c o m p o s e (see

[ 3 ] )

U ] ζ X ( r , z ) ® X i r , z ) ) . (32)
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An application of Lemma 3 then yields

\tr2{VEx(a®a-b®b)}\

^-\d*z]% |tr2 {{X{r,z) ® X{r,z))Ex(a ®a-b®b)}\
π r

xmin{(2tr1 {X{r>z)(a + b)}γ'\ tΓl{X(r,z)(a + b)}} . (33)

Observe that tτi{X(rtZ)d} = Γ _z]<rpW(x)d3x. Denoting p_ := p[(α - b)2] and
p+ := p[a + i>], the integranα on the right hand of (33) is bounded above by

0 r \\x-z\£r / \ | χ - z |

00 dr/ \ 1 / 2 / \ 1 / 2 1
+ 2 f -5 J p-{x)d*x) J p + ( ^ 3 x , (34)

for any measurable choice of R(z). We introduce the maximal function for
peL^Έi3) by

/4πr3\-i

M[p](z):=sup — - J p(x)rf3x. (35)

With the aid of the maximal functions M _ : = M[p-~] and M + : = M [ p + ] , choosing
i^(z) — 4(4πM+(z)/3)~ 1 / 3 , we obtain the following upper bound on (34):

1 / 2 R{z) dr

Mψ{) J ^

R{z) dr °° drl

Mψ{z) J ̂ ϊ + Z ^ f J
4/3

^(^J13 ε-1/2(jp4x)d3x)ll2-Ί\p+\\\ \\p+\\l'li • (36)

To get the last inequality, we applied successively the Holder-, the maximal- and
again the Holder inequality and assumed 0 < ε < 1/6. This is very similar to
(88)-(91) in [1]. I

The form of Lemma 4 is a little inconvenient and for the cases of interest may
easily be reduced to

Lemma 5. Let 0 ̂  α, b rg 1 be two self-adjoint operators on 2tf with
tΓi {b} S tΓi {a} = N < oo and trx {ha}, trx {/ib} < 0. Γ/ẑ n ί/zere exists C *> 0 swc/z
that for all 0 < ε < 1/6,

^ Γ t e l { f l ( ^ " f e ) } Y / 2 V . (37)

Proof. Using a kinetic energy bound of Lieb [10] (see also [1]), we derive
IIPίf]IIs'isS cZ2tri{/} from 0 ̂ / g 1 and t r J ^ J g O . We insert this,
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(x + y)p ^ 2p(xp + yp) for x, y ^ 0, and

trχ{(α - fc)2} = tr x{α2 + b2 - lab] ^ 2AΓ - 2tr{αZ>} = 2trx{a(l - &)} (38)

into Lemma 4 and arrive at the upper bound in (37). The lower bound is similar. |

4. Bounds on Truncated Particle Numbers

In the preceding section we estimated the difference of exchange terms induced by
1-pdm, α, b in terms of a truncated particle number tri{α(l — b)}. For large
molecules we bound these quantities in the semiclassical limit. To this end we use
a coherent state method similar to Lieb [11].

For a radial, normalized #eL 2(lR 3) we define fpq(z) := g(z — q)exp(ipz).
fpqeL2(Έί3) is normalized and we d e n o t e ^ :=fpq® δσj.ejfc9 being normalized, as
well. It is easy to see [11,8] that weakly in # 2 ( R 3 ) ® (Cm and for
φGL 5 / 2 (R 3 ) + L°°(lR3)hold

m d3nd3a m d3nd3a

σ=l V^) σ = l \LTί)

Σ ί ^ π ^ ^ ^ ' ^ X ̂ 1 = φ*lgl2' (39)

<Jk\ - ^UK> = p 2 + IIV0IIi, <&{<!>&> = [ Φ * I0l2](<z),

I ^ I (40)

We choose g(x):= gλ(x) = λ~3/2g1(x/λ), g1(x):= π~3/4'Qxp( — x2/2) and define
a bounded operator 0 ^ dλ ^ 1 on i f by

m d3υd3a
^ '•= Σ ί-T^T^^CP, « > <ΛσJ , (41)

σ = i l^TΓ j

where M(p, g) := θ [ μ — hΎF(p, q)\ hτF(p, q) := p2 — 0 T F . Note that, via the TF-
equation [11],

Λ 2 / 3

pW(q) (42)

away from the nuclei. Then

ΣίS^ (43)
σ=l \M)

and, thus, tr^d^} = || PTF IIi = min{iV, Z}. In what follows we will frequently use

0 S \d3q{φΊ¥{q) - [φΎF * \gλ\
2~](q)}p(q)

g cZλ1'5UpII5/3 (44)
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for nonnegative p e L 5 / 3 ( R 3 ) n L ^ R 3 ) . The first two inequalities in (44) follow
from a subharmonicity argument (see [11]) and the third from the Holder- and
Jensen inequality and the scaling properties of gλ. Now, we prove the following
lemma

Lemma 6. Let 0 ^ y ^ 1, trx {hy} ^ 0 be either

(i) the 1-pdm y = yψ of a Z5/3'-approximate ground state ψNeJ^N, i.e.
5/\

(ii) y = yφfor a Slater determinant φNeSDN and εHF(y) — EHF(N) ^ Z 5 / 3 , or
(iii) y = PN.

Then

p,q) + c(Z5/3 + Zλ~2 + Z12/5λ1/5) . (45)

(46)

Proof Both in case (i) and (ii) we apply the Lieb-Oxford inequality [13]

This gives us

1 1
F> PTF)

(47)

For both (i) and (ii) tr t {/17} ^ 0 implies || p [y] || ̂ 1 ^ cZ 7 / 3 (see [11,1]). This yields

^ £HF(N) + \D{PτΈ, pτF) + cZ5'3 . (48)

Now, by (40) and (44)

-D(pTF,pTF)

£tx1{hdi}+-ti2{V(dλ<8)dλ)}+-D(pτF,pτF)

+ D(pτF, pΎF)

- m $ Ί W L M { p ' q ) { p 2 ~~φτF{q)) + cZλV5 "PτF"5/s

N\\Vgλ\\l (49)
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Inserting | |PTFII 5 /3 ^ cZΊj5 and \\Vgλ\\l ^cλ~2 gives (45) in Case (i) and (ii). In
Case (iii) we observe

+ cZ12l5λ115 + cZλ~2 , (50)

using (44) again. |

We define F(/l) := Z 5 / 3 + Z/l" 2 + Z 1 2 / 5A 1 / 5 . Now we derive a bound on
tri{dλ(l — y)} in all the three above cases by (45).

Lemma 7. Let 0 ^ 7 ̂  1, trx {/iy} ^ 0, trx {y} ^ N fulfill

L {^TFΪ} ^ mj 3 hΎF(p, q)M(p, q) + cF(λ) . (51)

Then

tτMl-y)} £cKF*'Ί{λ). (52)

Proof. For any £ > 0 we have

tχi{dλ(i - y)} = Σ i ^ ^

+ i Σ ί
Ai σ = 1

<m f

jtΓil/iTFy} - mj I' J1 M(p, q)hΎF(p, q)

+ N\\VgΔ\l + jd3q(φτF(q) - LΦTF* Iίil2](?))p[y](«)I (53)

By (44), UV^IIi ύcλ~\ \\p\_i\\\%Ί\ ύ cZη^ and (51), this gives

^ ! i £ ( 5 4 )

We distinguish N ^ Z from JV < Z. In the former case μ = 0 and it was shown in
[1] that

J § ^ 3 ί cX7'*£3'4, (55)
(p, q)^~E \^π)
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which, choosing E := K~1F4Π{λ\ leads us to (52). Actually, (55) required
E = o(Z4/3l but if E ^ eZ 4 / 3 then (55) is trivial anyway.

If N < Z we emphasize φΎFfN(q) := 0TF(<?)> μjv := μ and ρΎF,N(q) := PTFO?). From
TF-theory follows [11] [</>TF,iv(4) ~ i"jv]+ = αpτ{?jvte) ^ αpτ£z(tf) = </>TF,Z(<?)> w i t h

α - ί ό ^ m " 1 ) 2 / 3 . Thus

m

m
βπ1

φτF,N ^ μN

(56)

again, by (55). |

5. The Dirac Exchange Correction

In this section we link the exchange term induced by dλ with the Dirac exchange
correction C^HPTF!!*/3* (see [2,14]). Recall from the last section we may represent
the 1-pdm dλ by its integral kernel

dλ(x, μ\y, v) := l^f

The exchange term induced by dλ reads

Wex:=tr2{VEx(dλ®dλ)} =^$

z

~ q)eip{χ-y)δμv .

p
x —

(57)

(58)

where ^ ( ^ 1 ^ ) : = dλ(x, μ\y9 μ). Our specific choice of gλ allows us to compute the
right hand of (58) almost explicitly. It requires a tedious integration and the result is

Lemma 8.

l-ix2{VEx{dλ®dλ)} -

1 + Z2ln(Z)(λ + Z ~ 1 / 3 " v ) ] (59)

for any v > 0.

Proof We start with a change of variables 2s := x H- y, 2r := x — y. Moreover, we
observe gλ(z + r)gλ(z — r) = #f(z) exp( — r2/λ2). Hence, abbreviating pf(q) :=
[φΎF(q) - μyί = (βπ2™-1)11'

d3sd3r -r2/λ2

d3ad3 S + Q) pf(s + ®

J p2dp f p2dp

00 1

x J re~r2/λ2dr$dΩpdΩP2π J
o - i

(60)
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Here, we wrote 3c whenever necessary to distinguish it from |3c|. We observe

$dΩpdΩp2π j" dxexp(2i|p - p\rx) = 1^~r sin(2rp)sin(2rp) . (61)
-i PPr

This yields

Λ m oo e~r2/λ2 / Pf{

Wex = jz—A^^^ (id3qgl(q) f pύn{2rp)dp) . (62)
\zπ) o r \ /

Defining

Pf{s+q) Pf{s+q) \2

j psin(2rp)dp — j psin(2rp)φ) (63)
o o /

and

we can extract the leading part from Wex\

[sin(r) — rcos(r)] 2

= cD$p%3(x)d3x-ε1-ε2. (65)

It remains to estimate ε l 5 ε 2 ̂  0. We start with ε 2 . Using 1 — e~*2 ^ α 2 e ~ α 2 , we get

0 α \ 0 Λ / \ 0 /

c (°° f ίx)dx\ l y / 2

= " ( ί ) ( 6Φ

This, inserted in (64), yields

-f (67)

The estimate on εx is more delicate. We use

ί j p sin (p) dp j S —g— (P/ - P/)2 (68)

for small r > 0 and

[sin(2rpy) — 2rpfcos(2rpf) — sin(2rpj) + 2rp /cos(2rp /)] 2 ^ cr2[pf + p j ] 2 (69)

for large r > 0, denoting pj := p/(s + ̂ f), p x := pf(s + ̂ ). Therefore, for any measur-
able choice of JR = R(s, q, q\

Γ 3r-P})R2 + ilLiP^]- (70)
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We optimize by choosing R := (pf + pf)\pj — P/Γ 1 . Furthermore, we apply
(α + b)\a3 - b3\ ^ 2\a4 - b4\ which holds for a, b ^ 0 and obtain

εx g c$d3s\d3qg2

λ(q)d3qg2

λ(q)\pj - pj\ . (71)

We pause to motivate the next step. We would like to estimate

\pj(s + q) - p?(s + §)| g } |Vp^(5 + s')\ds' , (72)

where 5' is on the straight line between q and q. Then

]uc\d3s\d3qgl{q)d3qgl{

\ds'

^ c

-λ. (73)

The trouble with this estimate is that | Vp*| £ L ^ R 3 ) , due to singularities at Rj. To
overcome this difficulty we have to cut out the region around the nuclei.

To this end, we introduce a cut-off p0 > 0:

\pj - p)\ £ <9[po - PfWίPo ~ Pfl lpj - P}\

+ 2θ[p/-p0] P* (74)

Hence

po - P / ] β [ p 0 - P>] IP/ - P/l

i i p ^ . (75)
Now, we estimate

|pj(s + q) - pί(s + ήί)| ^ } I VpJ(s + s')|rfs' , (76)

where we assume the path s + s' φ A := {xeM.3\pf(x) > p0] and to be of shortest
possible length. We choose pi '•= cZ4l3 + v for some v > 0 to be picked later. Then
A <= [J*=1Bz-ίl3-v(Rjl because pj(x) ^ c £ * = 1 Zj\x - RjΓ1. It follows

$ ί/3~v . (77)
q

We obtain

fil S c\d3s\d3qg2Md3qg2

λ{q)]\Vp*{s + s')\χ^A(s + s ' )* ' + cf

q

c K Z ί 7ZΓ2
Ivl < 7-1/3-v X
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~ C(JΛ \VPf^d3s)(KZ~ll3~V + tt34ti(q)d3qgϊ(q)\q - q\j + cKZ5>3~*

£c^AVpϊ\\ί(KZ~ll3~Ύ + Q + cKZ5'3-*. (78)

We split up the remaining integral by means of A' := {JK

=1Bz-m(Rj);

£ ^ ! ^ + c j Z 8 / 3 , V p / M Z l / 3 χ ) | d 3 χ

j=l \X Kj\ A'

+ cZ2 , (79)

and we finally arrive at

εx + ε2 ^ cvK
2\_Zλ~γ + Z2\n{Z)(λ + Z ~ 1 / 3 " v ) ] . | (80)

Proof of Theorem 1. The first step of the proof consists in linking the quantum
mechanical ground state energy EQ(N) with the Hartree-Fock energy EHF(N). We
invoke Theorem 2:

\EQ(N) - £HF(N)I S - ^ i b V ~ 7j}) 1 / 3 " ε Z 4 / 3 + ε (81)

for 0 < ε < 1/12 and yψ being the 1-pdm of a Z4/3-approximate ground state
φNeJfN of HN. From Lemma 1 and 2 we derive

ym ® ym -PN®PN)}- Z*'3

^ £HF(JV) - tr i{/ιTFPN} + -Z)(PTF, PTF) - -tΐ2{VEx(PN® PN)}Z)(PTF, PTF)

^ (82)

for any orthogonal projection yHF = THF = 7HF, trj {yHF} = N, with εHF(}ΉF) -
EHF(N) ^ Z 4 / 3 . Now, we use Lemma 5 combined with the triangle inequality and
find for any ε ̂  0,

\tr2{VEx(yHF ® γHF -PN® PN)}\

^ - J l ( t r i ^ H F ( l - dλ)} + ttl{PN{l - dλ)}γl2

ύ -4f2^Λdχ(ί - 7HF)} + t Γ l {^(l - PN)} + Z 1 - 2 ' 7 7 ) 1 ' 2 - ^ 7 / 6 ^ . (83)
o

Note that in the second inequality we used N f^Z + zl~2j11 and
teι{dλ} = min{iV, Z}. Of course, this estimate holds for \tv2{VEx(dλ(g) dλ

- PN (g) Pw)} |, as well. Moreover, notice that

tΓ l{(l - dλ)yψ} = 2tr1{dλ(l - y^)} . (84)
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We insert (81), (83) and (84) into (82) and obtain for any 0 < ε < 1/12,

εl/3V

+ t r j ^ l - Λv)} + z 1 - 2 ' 7 7 ) 1 ' 3

^ EQ(N) - tΓ!{hτFPN} + -D(pΊF, pτF) - -tr2{V Ex(dλ ® dλ)}

ί - ^ ( t r ! {dA(l - yψ)} + t Γ l {dA(l - γHF)} + Z 1 "

+ -2)(PΛΓ - PTF, PN ~ PTF) . (85)

In (85) exactly the three cases treated in Lemma 6 occur, which, therefore, fulfill the
assumptions in Lemma 7 and imply the bound

1/7 -

, pT F) - l-iτ2{VEx{dλ

J 3 " 2 / 3 3 + z ^ 2 + Z 1 2 / 5 Λ 1 / 5 ] 1 / 7 - ε Z 4 / 3 + ε . (86)

The error term we pick up when replacing ^tτ2{VEx(dλ® dλ)} by Cjy^pj1? is
estimated in Lemma 8 and turns out to be small compared to the /[-dependent error
term in (86). More precisely, Theorem 1 follows now from Lemma 8 and the choice
A : = Z " 2 1 / 2 3 and v := 10/33. |

Acknowledgement. I would like to thank C. Fefferman for pointing out that the question presently
addressed was left open in [1] and H. Siedentop for a remark that simplified the proof of
Lemma 3.
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