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Abstract. The geometry of P-manifolds (odd symplectic manifolds) and SP-mani-
folds (P-manifolds provided with a volume element) is studied. A complete classi-
fication of these manifolds is given. This classification is used to prove some results
about Batalin-Vilkovisky procedure of quantization, in particular to obtain a very
general result about gauge independence of this procedure.

0. Introduction

A very general and powerful approach to quantization of gauge theories was
proposed by Batalin and Vilkovisky [1, 2]. The present paper is devoted to the
study of geometry of this quantization procedure. The main mathematical objects
under consideration are P-manifolds and SP-manifolds (supermanifolds provided
with an odd symplectic structure and, in the case of SP-manifolds, with a volume
element). The Batalin-Vilkovisky procedure leads to consideration of integrals of
the form j L Hdλ, where L is a Lagrangian submanifold of an SP-manifold M and
H satisfies the equation AH = 0, where Δ is an odd analog of the Laplacian. The
choice of L can be interpreted as a choice of gauge condition; Batalin and
Vilkovisky proved that in some sense their procedure is gauge independent.
Namely they proved that \LoHdλo = J L i Hdλ1 if Lagrangian submanifolds L o and
L x are connected by a continuous family Lt of Lagrangian submanifolds. We will
prove that the same conclusion can be made in the much more general case when
the bodies m(L0) and m(L1) of submanifolds Lo and Lx are homologous in the
body m(M) of M. This theorem leads to a conjecture that one can modify the
quantization procedure in such a way as to avoid the use of the notion of the
Lagrangian submanifold. In the next paper we will show that this is really so at
least in the semiclassical approximation. Namely if H is written in the form
exp h~1S, where S = So + hSx + . . . we will find the asymptotics of §LHdλ as an
integral over some set of critical points of So with the integrand expressed in terms
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of Reidemeister torsion. This leads to a simplification of quantization procedure
and to the possibility to get rigorous results also in the infinite-dimensional case,
using the results of [4]. (We are talking about the semiclassical approximation.)

The present paper contains also a complete classification of P-manifolds and
SP-manifolds. The classification is interesting by itself, but in this paper it plays
also a role of an important tool in the proof of other results.

1. Main Definitions and Theorems

Let us consider a domain U in a superspace Rn^n with coordinates (x1, . . ., xn,
ξu . . ., ξn). An odd Poisson bracket (antibracket) of functions F and G o n ί 7 can
be defined by the formula

{ F G ] (l)

where dr and dt denote the right derivative and the left derivative correspondingly.
(We suppose usually that x1, . . ., xn are even and ξu . . ., ξn are odd. However
one can weaken this assumption by requiring only that xa and ξa have opposite
parity.) The transformations of U preserving the bracket (1) will be called P-
transformations (or odd symplectic transformations). Volume preserving P-trans-
formations (i.e. P-transformations having unimodular Jacobian) will be called
SP-transformations. (Of course we have in mind the supervolume. Unimodularity
of the Jacobian matrix means that the Berezinian of this matrix is equal to 1.)
P-manifold (or odd symplectic manifold) is by definition a manifold pasted to-
gether from (rc|ft)-dimensional superdomains by means of P-transformations. Re-
placing in this definition P-transformations by SP-transformations we get the
definition of SP-manifold.1 In a general local coordinate system (z1, . . ., z2n) one
can write the Poisson bracket (1) in the form

{F,G)J-£ω^)d-§, (2)
where ωιj(z) is an invertible matrix. Its inverse matrix ω o (z) determines a differen-
tial form

ω = dz^ijdzj . (3)

It is easy to check that this form is closed (dω = 0). As in standard symplectic
geometry one can construct a vector field KH corresponding to a function H on
a P-manifold M by the formula

4 ( z ) = α ) ^ ) ^ . (4)

1 Using the language of G-structures we can say that P-manifold is a supermanifold provided
with locally flat P-structure where P is a group consisting of linear transformations of R"1"
preserving the bilinear form xiξι. To get the definition of SP-manifold we have to replace here the
group P by its subgroup SP = P n SL(n \ n). We will not use the language of G-structures;
speaking about P-structure or SP-structure we will have in mind the structure of P-manifold or
SP-manifold
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By definition KH is a Hamiltonian vector field with Hamiltonian H. If the function
H is odd then KH is even and vice versa. The bracket (2) determines the structure of
a Lie superalgebra on the linear (super)sρace F of (super)functions on M. It is easy
to check that the map H -» KH is a homomorphism of F into the Lie superalgebra
diffM of vector fields on M. A submanifold L a M is called isotropic if ω vanishes
on L (i.e. taωab(x)tb = 0 for every pair ί, t of tangent vectors to L at the point x e L).
A Lagrangian manifold L is by definition an isotropic manifold of dimension
(k\n-k), OSk^n.

One can give an invariant definition of P-manifold. Namely such a manifold
can be defined as an (n|n)-dimensional supermanifold provided with a non-degen-
erate closed odd 2-form ω. This definition is equivalent to a previous one because
one can prove an analog of Darboux theorem: a non-degenerate closed odd 2-form
ω locally can be written as dxadξa by an appropriate choice of coordinates
(x1, . . ., xn, ξl9 . . ., ξn) - Darboux coordinates. Moreover if L is a Lagrangian
submanifold of M one can choose Darboux coordinates in the neighborhood of
a point aeL in such a way that in this neighborhood L is singled out by the
equations xk + 1 = . . . = xn = 0, ξx = . . . = ξk = 0. If we don't require that xι are
even, ξt are odd, then we always can define a Lagrangian submanifold locally by
the equations ξx = . . . = ξn = 0.

The volume element in arbitrary coordinates (z1, . . ., z2n) can be specified by
means of the density function p(z). In such a way SP-structure on M is determined
by non-degenerate closed odd 2-form ω and by density p. (It is necessary to
emphasize that p is not arbitrary; one has to require that in the neighborhood of
every point in M one can make p = 1 by means of approrpiate choice of Darboux
coordinates.) As usual the volume element in M determines the divergence of
vector field Ka by the formula

Therefore one can define an operator A on the space F of functions on SP-manifold
M by the formula

ΔH = ^divKH. (6)

One can check that A2 = 0 using the existence of local coordinates with
ω = dxadξa, p = 1. In these coordinates

Δ t h (7)

and the relation A2 = 0 is evident. In a general coordinate system the relation
A 2 = 0 leads to conditions on p. One can prove that these conditions are sufficient
to assert that the non-degenerate closed odd 2-form ω and the density function p(z)
determine an SP-structure; see Theorem 5 below. In the formula (7) we suppose
that the variables xa, ξa have opposite parity; if x1, . . ., x" are even and ξu . . ., ξn

are odd as we assume usually the right derivative with respect to xa in (7) is of
course the standard derivative. If L is a Lagrangian submanifold of iSP-manifold
M one can define a volume element in L (up to a sign). Namely, if in Darboux
coordinates x1, . . ., x", ξu . . ., ξn the manifold L is singled out by the equations
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xk + 1 = . . . = xn = 0, ξι = . . . = ξk = 0 then the volume element in L can be
defined as dx1 . . . dxkdξk+1 . . . dξn. It is easy to check that this volume element is
well defined up to a sign. (This fact follows immediately from another description of
the volume element in L given in the proof of Lemma 4.) One has to impose some
global conditions to define the volume element globally. Namely, we will prove
that it suffices to require that M be orientable, i.e. that m(M) be orientable. We
denote by m(M) the body of M, i.e. the bosonic part of M.

The Batalin-Vilkovisky approach to quantization is based on the following
theorem: if Lo and Lλ are closed oriented Lagrangian submanifolds connected with
a smooth family of closed oriented Lagrangian submanifolds Lt and an even
function H on M satisfies the condition AH = 0 then \LoHdλo = ^LιHdλί. For
completeness we will sketch a proof of this statement. As usual it is sufficient to
consider an infinitesimal deformation of the Lagrangian manifold L\ moreover one
can assume that L is deformed only in a domain where (after appropriate change of
coordinates) it is singled out by equations ξt = . . . = ξn = 0 and where p = 1.
Then the deformed manifold can be specified by means of an odd function
Ψix1, . . ., xn) that vanishes outside of this domain. Namely, the deformed mani-

d Ψ
fold can be defined by the equations ξj = -j-j . The variation of the integral JL H dλ

ox
by this deformation can be written as

J dx3 δξj

Integrating by parts and using AH = 0 we obtain that this variation is equal to
zero.

In the formulation of Batalin-Vilkovisky theorem we assume that the volume
elements dλ0 and dλγ in Lo are chosen in an appropriate way; namely we require
the existence of volume elements dλt in Lt depending continuously on t and
connecting dλ0 and dλx. A similar assumption must be made about the orientation
of Lo and Lγ. Our aim is to prove a generalization of this theorem. Namely, we will
prove the following:

Theorem 1. Let Lo and L1 be closed oriented Lagrangian submanifolds of an
orientable SP-manifold M. If the cycles m(L0) and m{Lι) are homologous in m(M)
over R (i.e. m(L0) and m{L^) determine the same element of Hk(m(M\ R)) then

j Hdλo= j Hdλ1 (8)
Lo L\

for every function H satisfying AH = 0.

We will prove also

Theorem 2. If H = AK then for every closed Lagrangian manifold L

$Hdλ = 0. (9)
L

The proof of these theorems will be based on an explicit description of
P-manifolds and their Lagrangian submanifolds. I don't know any direct proof of
these theorems.
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2. Classification of P-Manifolds and Description of Lagrangian Submanifolds

We begin with the remark that every transformation x =f(x) of n-dimensional
domain with coordinates x1, . . ., xn can be extended to a P-transformation
(x1, . . ., x", ξu . . ., ξ n)-^(x 1, . . ., x", <f1? . . ., ξn) by means of the formula

This means that a cotangent bundle T*N to an n-dimensional manifold N has
a natural structure of P-manifold (the formula (10) coincides with the transforma-
tion law of covectors). We will prove

Theorem 3. Every (n\n)-dimensίonal P-manίfold M is equivalent to a P-manifold of
the form T*N. Namely, one can take N = m(M).

Let us begin with a remark that for every m-dimensional vector bundle α over
an n-dimensional manifold N one can construct an (m|n)-dimensional supermani-
fold considering the fibres as odd linear spaces. More precisely, if a vector bundle
over N has transition functions x* = / ' ( x \ . . ., x"), fjι = α£(x\ . . ., xn)η\ where
x ι are coordinates in the base, ηk are coordinates in the fibre, one can construct
a supermanifold pasted together by means of the same formulas where ηk are
considered as odd coordinates. It is well known that every real m\n-dimensional
supermanifold can be obtained by means of this construction [5]; therefore we can
assume that P-manifold M is a bundle α over N = m(M). (The bundle α has an
invariant description as the so-called conormal bundle [5]; we will not use this
description.) Sometimes we will use the notation JVα for the supermanifold corres-
ponding to the bundle α over N. Let us restrict the form ω specifying the
P-structure in M = Na to N a M (i.e. we take η = 0). The expression

ω\η=o = ωij(x)dxίdηj (11)

determines a non-degenerate pairing between fibres of α and tangent spaces to N.
The existence of this pairing permits us to identify α with cotangent bundle and
M with Γ*iV. However it is possible a priori that the P-structure on T*N arising
from this identification and the standard P-structure on Γ*AΓ are different. To
show the equivalence of these P-structures we note that corresponding forms ω and
ω0 can be connected by a smooth family ωt = (1 — t)ω0 + tω of closed non-
degenerate odd forms. (To check that the forms ωt are non-degenerate we use the
fact that ω and ω 0 coincide on N imbedded in standard way into Γ*ΛΓ. Non-
degeneracy of ωt on T*N follows from non-degeneracy onA^c T*N.) To finish the
proof we utilize the following:

Lemma 1. If ω is a non-degenerate closed odd 2-form and σ is a closed odd 2-form
then one can find a vector field V in such a way that σ = Lvω, where Lvω is the Lie
derivative ofω with respect to ω (the change ofω by the infinitesimal transformation V).

To prove this lemma we note that Lvω can be represented as

Lvω = (dω)v — dωv , (12)

where for every /c-form σ we denote by σv the (k — l)-form obtained from σ by
contraction with the vector field V. For example, if ω = dz^ijdzj then
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ωv = Vlc0ijdzj. If ω is closed then Lvω = — dωv. Every closed odd 2-form σ is
exact: σ = dλ, where λ = λjdzK It remains to say that V1 can be found from the
equation

λj = - V^j. (13)

This equation always has a solution because ω o is non-degenerate. Moreover this
solution is unique.

The proof of the lemma repeats the standard proof of the fact that an even
symplectic structure on closed manifold does not change if the 2-form defining it
changes, but corresponding cohomology class remains intact.

If ωt is a smooth family of non-degenerate closed odd 2-forms on M = T*N
coinciding on N a M it follows immediately from the lemma that all these forms
determine equivalent P-structures. The lemma shows that an infinitesimal
variation of form ω gives an equivalent P-structure. The study of a smooth
deformation of ω can be reduced to the study of infinitesimal variation. To
construct the transformations proving the equivalence we have to solve the differ-
ential equation

i(ί) = V(t)z(t), (14)

where the vector field V(t) satisfies

ώt = LV(t)ωt . (15)

It follows from the proof of the lemma that one can find V(t) in such a way that it
will be differentiable with respect to t. This assumption guarantees the existence of
solution to (14). (In the case of even symplectic structure it is necessary to assume
compactness of symplectic manifold to guarantee the existence of solution to the
analog of (14). In the case at hand we don't need this assumption because V1

generates a zero vector field on the body N of M = T*N.)
In what follows we restrict ourselves by the case when the P-manifold M is

realized as T*N with standard P-structure; as we proved this can be made without
loss of generality. Let us define standard Lagrangian submanifolds of T*N in the
following way. Let us suppose that K is a fc-dimensional submanifold of N. Then
we can construct an (n — /c)-dimensional bundle λ over K consisting of covectors
orthogonal to K. Supermanifold Lκ corresponding to this bundle is naturally
imbedded into T*N and can be considered as (k\n — /c)-dimensional Lagrangian
submanifold of Γ*iV.

Theorem 4. For every Lagrangian submanifold of T*N one can find a smooth
deformation of this submanifold into a standard Lagrangian submanifold (i.e. into
a submanifold of the form Lκ).

To prove this theorem we consider at first the group GM of all transformations
of arbitrary supermanifold M. Without loss of generality we assume that M = Nσ,
where σ is a vector bundle over a manifold N. Let us denote by Gσ the group of
automorphisms of the bundle σ. In local coordinates these automorphisms are
given by formulas xl = F^x1, . . ., xn\ fjj = a{(xγ, . . ., xn)η\ where a is a non-
degenerate matrix. The same formulas determine transformations of a supermani-
fold Nσ; therefore we have a natural imbedding i of Gσ into GM. There exists also
a natural map π of GM onto Gσ. In local coordinates a transformation of M can be
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written as

x ' = / ' ( x 1 , . . . , x " ) + Σ Σ fL....jJx1, ;XH)ηu .ηj2l' (16)

+ Σ Σ α £ , . . . , l 2 k + 1 ( x 1

J . . . , χ V 1 . »/i2k+1 (17)
fc= 1 ii, . . ., Ϊ2k+ l

Leaving only the first term in (16), (17) we get an automorphism of σ. (In more
invariant words one can say that the transformation of a supermanifold generates
naturally an automorphism of corresponding conormal bundle). It is easy check
that the maps i of Gσ into GM and π of GM onto Gσ generate a homotopy
equivalence between GM and Gσ. The main fact leading to this conclusion is that
(16), (17) determine a transformation of M by any choice/}' ,...,j2k,a

iiι,...,i2k+ι for
k ^ 1 if / ' (x 1 , , xn) and α/'ίx1, . . ., x ) determine an automorphism of σ.
Therefore we can simply multiply all these functions by τ, 0 ^ τ ^ 1, to obtain
a family Qτ, 0 ^ τ rg 1, of transformations of M obeying β i = iα, Qo = iπ> πβτ = π

If M is a P-manifold, we will denote by SM the group of all P-transformations of
M (transformations preserving the P-structure in M). In this case σ is a cotangent
bundle and Gσ is imbedded in SM. One can prove the following lemma which is
interesting by itself.

Lemma 2. The imbedding i of Gσ into SM and the natural map π of SM onto

Gσ determine a homotopy equivalence between Gσ and SM.

To prove this statement we use the deformation Qτ constructed above and the
arguments used in the proof of Lemma 1. Namely, we will define the deformation
Qτ as RτQτ, where Rτ is a transformation of M = T*N satisfying (R τ β τ )*ω = ω.
Such a transformation Rτ can be found by solving the equations (14), (15). To
guarantee the continuity of Rτ with respect to τ we have to eliminate the freedom in
the construction of Rτ. This can be made if we construct # τ by means of (15) with
Vt found as a solution of the equation λ) = — V}- ωij9 where λx = λ)dzj is specified
by the formula λx = (Q?)'^, dλ = ω.

Now we are able to prove Theorem 4. It is easy to check that for arbitrary
Lagrangian submanifold L of P-manifold M one can find a map φ of Γ*L into
M preserving P-structure. Representing L as Kβ, where K = m(L\ β is a vector
bundle over K we can construct a map of L onto a standard Lagrangian submani-
fold of M = T*N and extend this map to a map φ of T*L into M preserving
P-structure. Using Lemma 2 we can deform φ into φ and therefore every Lagran-
gian submanifold into a standard Lagrangian submanifold.

Let us consider a manifold N provided with a volume element α (one can
consider α as an n-form α(x\ . . ., xn)dxι Λ Λ dxn, where α(x1

> . . ., xn) is
a non-vanishing function on N). Differential forms on N can be considered as
functions on a supermanifold J7V, corresponding to the tangent bundle over N. If
x1, . . . jX" are local coordinates in N then x1, . . ., xw

5 ^ = dx1, . . ., ηn = rfxw can
be considered as coordinates in 7W. If ω is a differential form on N (a function on
TN) one can define a function ώ = Pω on T*N by the formula

ώ(x, £) = j e ξ ι ί / ίω(x, ^ o Γ 1 (x)dnf/ . (18)

In other words ώ is a Fourier transform of ω with respect to odd variables. (The
functions on Γ*iV can be identified with antisymmetric multivector fields. In this
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interpretation Fourier transformation is simply the duality transformation, i.e.
contraction of covector field ωtl_ ik with the universal antisymmetric tensor
0L~1εjί"'jn.) It is easy to check that

) . d(Fω) Γfdω\ _1 doc
= F(ηιω), -—-Γ- = F[—1\-a1—-iF(ω). 19

Cζi OX \OX ) OX

Using these formulas we obtain that

F(dω) = ΔF(ω), (20)

where d denotes the exterior differential of ω (in the language of functions on TN

we have d = ηι —.} and the operator A is constructed by means of SP-structure on

P-manifold T*N, specified by the volume element

x, ξ)dnxdnξ = a\x)dnxdnξ . (21)

(This connection between d and A was used in [3]).
Now we are able to prove Theorems 1 and 2 for the case when the manifold

M = T*N is provided with standard P-structure and with the volume element (21).
We will use the following statement that can be easily proved in this case.

Lemma 3. If ω is a form on N and K is a closed oriented submanίfold of N then

lκω = \LκF{ω)dλ, (22)

where Lκ denotes the Lagrangίan submanifold ofT*N corresponding to K.

The proof of Lemma 3 in the case when ω has a support in a domain where K in
an appropriate coordinate system can be singled out by equations xk+1 = 0 ,
. . ., xn = 0 is immediate. Without loss of generality one can assume that ω is
a monomial with respect to η1, . . ., ηn. Only the monomial ω = y(x)η1, . . ., ηk

gives a non-zero contribution to the integrals in (22). For this monomial we have

F(ω) = y(x)oc~1(x)ξk + 1 . . . ξn .

The volume element dλ on Lκ induced by (21) can be written in the form

dλ = *(x)dx1...dxkdξk + 1...dξn

(we omit the proof of this assertion because a more general fact will be proven later;
see Lemma 4). Using the expressions for F(ω) and dλ we obtain (22) in the case at
hand. The general case can be reduced to this simplest case by means of standard
technique (one has to use the partition of unity).

The statements of Theorems 1 and 2 follow immediately from (22) and (20)
when the Lagrangian submanifolds are standard. The case of general Lagrangian
submanifolds of Γ*iV can be reduced to this simplest case by means of Theorem 3.
Therefore we can say that Theorems 1 and 2 are proved in the case when
SP-structure in T*N is determined by the density that does not depend on ξ. (The
volume element corresponding to such a density can be represented up to a sign in
the form (21).)

In the consideration above we did not pay sufficient attention to the choice of
the sign of the volume element in Lagrangian submanifold. It suffices to analyze
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this question for standard Lagrangian submanifold Lκ. Let us introduce the
notation Λ(E) for the one-dimensional linear space of translationally invariant real
measures in the linear superspace E. In other words Λ(E) consists of functions of
bases in E having degree 1 (i.e. to specify an element oce Λ(E) we have to assign to
every basis ee E a real number oc(e) in such a way that oc(Ae) = det A α(e), where
e = Ae denote a basis obtained from e by means of a linear transformation:
et = AJβj.) To specify the volume element in Lκ one has to single out a non-zero
element of A(TLκ(z)) - a non-zero measure in tangent space TLκ(z) to Lκ at every
point zeLκ. One can identify A{TLκ{z)) with A(TK(m(z)))(g)ΠA(TN(m(z))/
TK(m(z)))* = Λ{TN(m(z)). (Here Π denotes the parity reversion. We used that
A{ΠE) = Λ(E)*9 Λ(E*) = Λ(E)*, A^) = A(E2)®A(E1/E2) if E2aE1). The
spaces A(TLκ(z)) can be considered as fibres of a line bundle over Lκ. If this bundle
is trivial and locally the volume element is defined up to a sign then the volume
element can be defined globally. Conversely if the volume element is defined
globally it can be considered as a non-zero section of this bundle and this bundle is
trivial. Using the identification ATLκ(z) = ATLκ(m(z)) = Λ(TN(m(z))) we con-
clude that in the case when N is orientable (i.e. the bundle over N with the fibres
A(TN(x)) is trivial) the volume element on every Lagrangian submanifold can be
defined globally. In the general case Lagrangian submanifold L of SP-manifold
M can be provided with global volume element if and only if its body m(L) can be
imbedded in an orientable submanifold of m(M).

3. The Proof of Main Theorems

Now we have to give a proof of Theorems 1 and 2 for general SP-manifold. The
proof is based on the following

Lemma 4. Let us suppose that SP-structure in a SP-manifold M is specified by the
density p. If the density p = peσ in M also determines a SP-structure in M then

Ap, + \{a,a}=0, (23)

where Δp denotes the operator A corresponding to the SP-structure determined by the
density p. The operator A corresponding to the density p can be written in the form

A~p = e-
σ/2Ap(eσ/2H) . (24)

Volume elements dλ and dλ in the Lagrangian submanifold L <= M corresponding to
SP-structures at hand are connected by the formula

dλ = eσ/2dλ. (25)

The statement of Lemma 4 is local and therefore we can simplify the proof using
Darboux coordinates and assuming that p = 1. We can write in these coordinates

ApH = ApH + i{σ, H} = A A H + ^ {σ, # } . (26)

Calculating A2 we get

AZ

PH = \Δpσ + - {σ, σ}, H \ = 0 . (27)
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This equation shows that in the case when the density p determines an SP-
structure, Δpσ + {σ, σ}/4 = const. This equation can be written also in the form

Δpe
σl2 = const eσ/2 . (28)

Applying Δp to (28) we obtain from Δ2

p = 0 that the constant in this equation is
equal to 0. In such a way

Δpe
σ/2 = 0 . (29)

Using (29) one can check that (24) follows from (23). To prove (25) we will give
another description of volume element in Lagrangian submanifold L. Let us fix
a basis (eί, . . ., en) in the tangent space TL(z) to L at the point z e L. Then one can
find a basis (el9 . . ., e n , / \ . . . ,/") in the tangent space TM(z) to M satisfying
ω(eiff

j) = δ (P-structure in M determines an odd bilinear form ω on TM(z)). The
volume element λ in L can be defined by the formula

λ(el9 . . ., en) = μ(el9 . . ^ J 1 , . . , / " ) 1 / 2 , (30)

where μ denotes the volume element determined by SP-structure in M. Equation
(25) follows immediately from (30).

Using Lemma 4 we can reduce the study of SP-structure with density function
p — peσ to the study of SP-structure with density function p. In particular we are
able now to prove Theorems 1 and 2 for all SP-manifolds. As we mentioned already
it is sufficient to consider manifolds of the form M = T*N with standard P-
structure. If SP-structure in M is specified by the density

p{x,ξ) = po{x)+ Σ P^ ' HxKii . ξiu (31)
k>l

we consider another SP-structure in M determined by the density PoM It is clear
that p(x, ξ) = po(x)eσ(x> ξ\ where σ(x, ξ) = 0 for ξ1 = = ξn = 0. It follows from
(25) that for every Lagrangian submanifold L c M w e have

\Hdλ = JHeσix>ξ)/2dλ0. (32)
L L

Further if ΔH = 0 we obtain from (24) that Δ0(Heσ/2) = 0 and if H = ΔK we get
that Heσ/2 = Δ0(Keσ/2). (We use the notations dλ and dλ0 for volume elements in
L determined by the densities p and po; the notations Δ and Δo have similar
meaning.) Using these remarks we reduce the proof of Theorems 1 and 2 for the
density p to the case of density p0. This case was analyzed already.

4. Classification of ^ P -

The consideraton above permits us to construct one-to-one correspondence
between SP-structures in connected P-manifold M and cohomology classes
seH(m{M), R) satisfying sn + 0. (Recall that by definition H{N, R) is the direct
sum of fc-dimensional cohomology groups Hk(N, R); we represent seH(m(M), R)
as s° + s1 + + sn

9 where skeHk(m(M\ R).) We suppose without loss of gener-
ality that M coincides with T*N provided with standard P-structure. Let us fix
a volume element α in N. If ω is a differential form ω = Σ^ = o ωk in N (i.e. a function
ω(x,η) on TN) we define a function ώ(x, ξ) on T*N by means of Fourier
transformation (18). Let us assume that the n-dimensional component ωn of the
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form ω does not vanish (i.e. ωn = β(x)dx1 Λ . . . Λ dxn, where β(x) Φ 0). We will
define the density function pω(x, ζ) on Γ*iV by the formula

pω(x,ξ) = oc2(x)ώ(x,ξ)2. (33)

It is easy to check that pω(x, ζ) does not depend on the choice of α:

)dnη)2. (34)

Theorem 5. The density function pω(x, ζ) = a2(x)ώ(x, ξ)2 determines an SP-struc-
ture in T*N if and only if the form ω is closed and its n-dimensional component ωn

does not vanish. Every SP-structure in T*N can be described by means of density
function of such a kind. If p ω and pω> are density functions corresponding to closed
forms ω and ω' then corresponding SP-structures are equivalent only in the case when
the form ω' — ω is exact.

We say here that two SP-structures on Γ*iV are equivalent if there exists
a P-transformation connecting these SP-structures and homotopic to the identity
mapping. (As we have seen the transformation of the supermanifold T*N is
homotopic to identity if and only if corresponding transformation of N is
homotopic to identity.)

Let us begin the proof with the remark that the application of Lemma 4 to
p = p ω ? p0 = α2, ώ(x, ξ) = eσl2 shows that the operator A corresponding to the
density ρω satisfies A2 = 0 if and only if the form ω is closed. Therefore if
p ω determines an SP-structure then ω is closed. To prove that in the case of closed
ω the density p ω determines an SP-structure we will construct a family ωt of closed
forms: ωt = (1 — t)ωn + ίω, corresponding densities pt = pωt and operators At

defined by the formula

ΔtH = e-σt/2A0(eσtlH) = ώ f 1 Δ0(ώtH) . (35)

Here Δo is constructed by means of the density p 0 corresponding to the form
ω f | f = o = &>". It is clear that the density p 0 determines an SP-structure. To prove
that ρω also determines an SP-structure it is sufficient to check that at least locally
we can transform pω into p 0 by means of P-transformation. To find such a P-
transformation we construct at first an infinitesimal P-transformation (Hamil-
tonian vector field) transforming pt into pt+dt. To verify the existence of such a field
we note that the change of density pt by the infinitesimal transformation generated
by the vector field Kt can be written as

^(p^Hp.divK,. (36)

If Kt is a Hamiltonian vector field with Hamiltonian Ht we obtain

pt = 2PtAtHt (37)

or equivalently

σt = 2ΔtHt = 2e-σt/2A0(eσtl2Ht) . (38)

From the other side we obtain from Lemma 4 that A0e
σt/2 = 0. Differentiating this

equation with respect to t we get

Δ0(σte
σ*12) = 0 . (39)
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It follows from (39) that (38) considered as an equation for Ht can be solved at least
locally. (One should make the Fourier transformation (18) and use the Poincare
lemma). As usual to find the transformation connecting pω and p 0

 w e n a v e to
integrate the equation i = Kt(z).

In such a way we proved that the density (33) determines an SP-structure if ω is
closed. The same arguments can be used to check that the pω> and pω determine
equivalent SP-structures if ω' — ω is exact (it follows from the exactness of ωr — ω
that Eq. (38) for Ht can be solved globally). To finish the proof of Theorem 5 we
have to check that in the case when ω' — ω is not exact the densities pω> and
ρω cannot determine equivalent SP-structures. Let us suppose that there exists
a P-transformation Q connecting pω, and pω and homotopic to identity. One can
conclude from Lemma 2 that in this case we can find a smooth family Qt of
P-transformations connecting Q = Q1 with the identity map Qo. Let us denote by
pt the density obtained from pω by means of Qt; corresponding form will be
denoted by ωt. The density pt+dt can be obtained from the density pt by means of
infinitesimal P-transformation (Hamiltonian vector field Kt = QtQT1) and we can
apply (38). It follows from (38) that the form ώt is exact, therefore the form
ω' — ω = J ώtdt is exact too.

Λcknowledegement. I am indebeted to A. Givental, M. Kontsevich, A. Weinstein and E. Witten
for useful discussions.

Note added in proof. As I was informed, O. Khudaverdian and A. Nersessian also considered
manifolds provided with an odd symplectic structure and a volume element. They proved some
results of the present paper. In particular, they checked that in the case when the operator
A satisfies A2 = 0 one can construct Darboux coordinates where A takes the standard form (7)
and proved some statements of Lemma 4.
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